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We prove that in dimensions three or four, for suitably chosen initial data, the short time

smooth solution to the Landau-Lifshitz-Gilbert equation blows up at finite time.

1 Introduction

The Landau-Lifshitz-Gilbert equation is the fundamental evolution equation for spin

fields in the continuum theory of ferromagnetism, first proposed by Landau and Lifshitz

[1] in 1935. In the simplest case, where the energy of spin interactions is modeled by

E(u) =
1
2

∫
Ω

|∇u|2 for magnetic moment u : Ω ⊂ Rn
→ S2, the Landau-Lifshitz-Gilbert

equation for u : Ω × (0,+∞) → S2 is given by

αut + βu ∧ ut = ∆u + |∇u|2u, (1.1)

where α ≥ 0,β ∈ R, α2 + β2 = 1, and ∧ is the vector product in R3. Note that (1.1) reduces

to the heat flow of harmonic maps to S2 for α = 1,β = 0, and to the Schrödinger flow of

harmonic maps to S2 for α = 0,β = 1. We assume throughout this article that 0 < α < 1,
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hence (1.1) is the hybrid of both the heat flow and Schrödinger flow of harmonic maps to

S2, and is of parabolic type.

Motivated by the study on the heat flow of harmonic maps by Chen [2], Struwe [3],

Chen-Struwe [4], Chen-Lin [5], Coron-Ghilagdia [6], Chen-Ding [7] and others, people have

recently been interested in the analysis of the Landau-Lifshitz-Gilbert Equation (1.1).

For example, Alouges-Soyeur [8] established the existence of global weak solutions of

(1.1) under the Neumann boundary condition in any dimensions. Chen-Ding-Guo [9]

studied partial regularity of (1.1) in dimension two, Moser [10, 11] proved the partial

regularity for suitably weak solutions of (1.1) in dimensions three and four, and Liu [12]

considered the partial regularity of (1.1) in general dimensions, analogous to Feldman

[13] and Chen-Li-Lin [14] on the heat flow of harmonic maps to spheres. More recently,

the existence of partially smooth, global weak solutions of (1.1), similar to [4, 5], has

been obtained by Guo-Hong [15] for n = 2, Melcher [16] for n = 3 and Ω = R3,

and Wang [17] for n ≤ 4 and Ω = Rn or Ω ⊂ Rn bounded domains with Dirichlet

boundary conditions. Due to the lack of Struwe’s parabolic monotonicity formula (cf.

[3, 4]), the above mentioned results by [10, 11, 16, 17] are limited to low dimensions. It

remains a very interesting and difficult question to investigate (1.1) for dimensions at

least five. Since (1.1) is a strongly parabolic system, it is well-known that there always

exists a unique short time smooth solution. Another interesting question is whether

the short time smooth solution actually blows up at finite time. Recently, there have

been several articles by numerical methods which strongly suggest the appearance of

singularities in finite time for the Landau-Lifshitz-Gilbert Equation (1.1) (we refer the

interested readers to Bartels-Ko-Prohl [18] and Pistella-Valente [19]). Through the works

by [6, 7], it is well-known that a finite time singularity does occur for the heat flow of

harmonic maps. We would like to remark that the crucial ingredient in [6, 7] is the ε-

regularity for smooth solutions to the heat flow of harmonic map, which is based on both

the Struwe’s parabolic energy monotonicity formula and the Bochner identity for the

heat flow of harmonic maps (cf. [3, 4, 20]). However, neither Struwe’s parabolic energy

monotonicity formula nor the Bochner identity are available for the Landau-Lifshitz-

Gilbert Equation (1.1). Fortunately, inspired by the works of [10, 16, 17], we are able to

employ (i) the slice energy monotonicity formula for (1.1) in low dimensions, (ii) the local

Hardy space estimate, and (iii) the duality between Hardy and BMO spaces, to establish

an ε- priori estimate for (1.1), and adapt the construction by [7] on suitable initial data to

prove.
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Theorem 1.1. For n = 3, 4, let (M, g) be a n-dimensional, compact Riemannian manifold

without boundary, and let iM > 0 denote the injectivity radius of M. Then there exists

ε = ε(M,α) > 0 such that if u0 ∈ C∞(M,S2) satisfies E(u0) ≤ ε2 and is not homotopic to a

constant, then the short time smooth solution u to

αut + βu ∧ ut = ∆gu + |∇u|2gu, x ∈ M, t > 0, (1.2)

u(x, 0) = u0(x), x ∈ M, (1.3)

must blow up before T = i2
M , where ∆g is the Laplace–Beltrami operator with respect to g

and |∇u|2g =
∑n

α,β=1 gαβ〈 ∂u
∂xα

, ∂u
∂xβ

〉. �

Remark 1.2.

(1) There exists initial data u0 ∈ C∞(M,S2) satisfying the conditions of Theo-

rem 1.1. In fact, if Π1(M) = Π2(M) = {0} and [M,S2] 	= 0 (i.e. there are

nontrivial free homotopy classes, e.g. M = S3), then a well-known theo-

rem by White [21] asserts

inf

{∫
M

|∇u|2g dvg |u ∈ C∞(M,S2), [u] = α ∈ [M,S2]
}

= 0. (1.4)

(2) If M = S3, then [S3,S2] = Z. Let H(z,w) = (|z|2 − |w|2, 2zw) : S3 = {(z,w) ∈
C × C : |z|2 + |w|2 = 1} → S2 be the Hopf map. Let Φλ(x) = λx : R3

→ R3

be the dilation map for λ > 0, Π : S3
→ R3 be the sterographic projection

map from the north pole, and Ψλ = Π−1 ◦ Φλ ◦ Π : S3
→ S3. Then direct

calculations imply

lim
λ→∞

∫
S3

|∇(H ◦ Ψλ)|2 = 0, (1.5)

and H ◦ Ψλ, λ > 0, are homotopic to H.

For manifolds with boundaries, we can consider either the Dirichlet boundary

value problem or the Neumann boundary value problem of (1.2)–(1.3). Recall that for

∂M 	= ∅, φ,ψ ∈ C(M,S2) are homotopic, relative to ∂M, if φ = ψ on ∂M and there exists

H ∈ C(M × [0, 1],S2) such that H(x, 0) = φ(x) and H(x, 1) = ψ(x), x ∈ M, and H(x, t) = φ(x)

for (x, t) ∈ ∂M × [0, 1].

For the Dirichlet boundary problem of (1.2)–(1.3), we have

Theorem 1.3. For n = 3, 4, let (M, g) be a n-dimensional compact Riemannian manifold

with boundary, and let iM > 0 be the injectivity radius of M. Then there exists ε =

ε(M,α) > 0 such that if u0 ∈ C∞(M,S2) satisfies u0|∂M = constant, u0 is not homotopic to
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a constant relative to ∂M, and E(u0) ≤ ε, then the short time smooth solution u to (1.2),

(1.3), and

u(x, t) = u0(x) = constant, x ∈ ∂M, t > 0, (1.6)

must blow-up before T = i2
M . �

Remark 1.4. For n ≥ 3, let (M, g) be a n-dimensional manifold with boundary and

Π1(M) = Π2(M) = 0. In [21], White also proved that for any u0 ∈ C1(M,S2), with u0|∂M =

constant,

inf{E(u) | u ∈ C1(M,S2), [u] = [u0] rel. ∂M} = 0. (1.7)

In particular, if M = Bn,n ≥ 3, then we can find u0 ∈ C1(Bn,S2) such that u0|∂Bn =

constant, u0 is not homotopic to a constant relative to ∂Bn, and E(u0) is arbitrarily small.

For the Neumann boundary value problem, we have the following.

Theorem 1.5. Let M = Ω = {x ∈ R4 : 1 ≤ |x| ≤ 2}, g = g0 be the Euclidean metric on R4,

and u0(x) = (H ◦ Ψλ)( x
|x| ) : M → S2, where H ◦ Ψλ is given by Remark 1.2 (2). Then for any

T > 0, there exists λ = λ(T) > 0 such that the short time smooth solution u to (1.2)–(1.3)

and

∂u
∂ν

(x, t) = 0, x ∈ ∂Ω, t > 0 (1.8)

must blow up before time t = T. �

Remark 1.6.

(1) It is unknown whether theorem 1.5 holds in dimension three. Namely in

dimension three, we are unable to construct a map u0 ∈ C∞(M,S2)

such that E(u0) can be arbitrarily small, and it can’t be deformed into

a constant map through families of maps H ∈ C1(M × [0, 1],S2) with
∂H
∂ν (x, t) = 0 for (x, t) ∈ ∂M × [0, 1]. In fact, for M = B3 = {x ∈ R3 : |x| ≤ 1},
it is not difficult to show that for any map φ ∈ C∞(B3,S2), with ∂φ

∂ν = 0,

there exists Φ ∈ C1(B3 × [0, 1],S2) such that Φ(·, 0) = φ, Φ(·, 1) = constant,

and ∂Φ
∂ν = 0 on ∂B3 × [0, 1].

(2) It is a very important open problem whether the Landau-Lifshitz-Gilbert

equation has finite time singularity in dimension two. It is well-known

(cf. Chang-Ding-Ye [22]) that there exists finite time singularity for the

heat flow of harmonic maps in two dimensions.
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The article is organized as follows. In §2, we establish a priori estimates for

smooth solutions of (1.2) under a small energy condition and prove Theorem 1.1. In §3,

we establish boundary a priori estimates for smooth solutions of (1.1). In §4, we prove

both Theorem 1.3 and 1.5.

2 Hölder continuity estimate and Proof of Theorem 1.1

In this section, we first establish a priori continuity estimate of smooth solutions to (1.2)

under small energy condition, and then give a proof of Theorem 1.1.

Lemma 2.1 (Energy inequality). For any n ≥ 1, T > 0, and u0 ∈ C∞(M,S2), let u ∈
C∞(M × [0,T),S2) solve (1.2)–(1.3). For t ∈ (0,T), denote u(t) = u(·, t). Then we have

α

∫ t

0

∫
M

|ut|
2

+ E(u(t)) = E(u0), (2.1)

and, for any 0 ≤ s < t < T and φ ∈ C∞0 (M),

α

∫ t

s

∫
M

|ut|
2φ2

+

∫
M

|∇u(t)|2φ2 ≤
∫

M
|∇u(s)|2φ2

+
4
α

∫ t

s

∫
M

|∇u|2|∇φ|2. (2.2)
�

Proof. Since u ∧ ut · ut = 0, (2.1) follows from multiplying (1.2) by ut and integrating the

resulting equation over M × [0, t). To see (2.2), we multiply (1.2) by utφ
2 and integrate the

resulting equation over M × [s, t] to get

α

∫ t

s

∫
M

|ut|
2φ2

+
1
2

∫
M

|∇u(t)|2φ2
=

1
2

∫
M

|∇u(s)|2φ2
− 2

∫ t

s

∫
M

ut · ∇uφ∇φ.

By the Hölder inequality, we have

|2
∫ t

s

∫
M

ut · ∇uφ∇φ| ≤ α

2

∫ t

s

∫
M

|ut|
2φ2

+
2
α

∫ t

s

∫
M

|∇u|2|∇φ|2.

Hence (2.2) follows.

Let iM > 0 be the injectivity radius of M. For x ∈ M, t > 0, and 0 < r <

min{iM ,
√

t}, let Br(x) ⊂ M be the ball with center x and radius r, and Pr(x, t) = Br(x) ×
(t − r2, t) ⊂ M × (0,+∞) be the parabolic ball with center (x, t) and radius r. Now we have

the localized energy inequality. �
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Lemma 2.2. For any n ≥ 1 and T > 0, let u ∈ C∞(M × (0,T),S2) solve (1.2). Then for any

z0 = (x0, t0) ∈ M × (0,T), 0 < r < min{iM ,
√

t0}, and t ∈ (t0 −
r2

4 , t0), there exists Cα > 0

depending only on α,M such that

r2−n
∫

B r
2
(x0)

|∇u(t)|2 + r2−n
∫

P r
2
(z0)

|ut|
2 ≤ Cαr−n

∫
Pr(z0)

|∇u|2. (2.3)
�

Proof. For 0 < r < min{iM ,
√

t0}, let φ ∈ C∞0 (Br(x0)) be such that 0 ≤ φ ≤ 1, φ ≡ 1 on

B r
2
(x0), and |∇φ| ≤ 4r−1. Let s0 ∈ (t0 − r2, t0 −

r2

4 ) be such that

∫
Br(x0)

|∇u(s0)|2 ≤ 2r−2
∫

Pr(z0)
|∇u|2.

Putting φ into (2.2), we have

α

∫ t0

s0

∫
B r

2
(x0)

|ut|
2 ≤

∫
Br0 (x0)

|∇u(s0)|2 +
64
αr2

∫ t0

s0

∫
Br0 (x0)

|∇u|2, (2.4)

and, for any t ∈ (t0 −
r2

4 , t0),

∫
B r

2
(x0)

|∇u(t)|2 ≤
∫

Br(x0)
|∇u(s0)|2 +

64
αr2

∫ t0

s0

∫
Br(x0)

|∇u|2. (2.5)

It is clear that (2.4) and (2.5) imply (2.3).

Now we are ready to prove the following decay estimate. �

Lemma 2.3. For 1 ≤ n ≤ 4, and any T > 0 and γ ∈ (0, 1), there exist ε0 > 0 and Cα > 0

depending only on M, g, γ,α such that if u ∈ C∞(M × (0,T),S2) solves (1.2) and satisfies,

for z0 = (x0, t0) ∈ M × (0,T) and 0 < r ≤ min{iM ,
√

t0},

r−n
∫

Pr(z0)
|∇u|2 ≤ ε2

0,

then u ∈ Cγ(P r
2
(z0),S2), and

[u]2Cγ (Ps(z0)) ≤ Cαr−(n+2γ)
∫

Pr(z0)
|∇u|2, ∀0 < s ≤ r

2
. (2.6)

In order to prove Lemma 2.3, we first need to recall the following decay Lemma

that can be proved by a simple blowing up argument (see e.g. [10] Lemma 3.3 or [17]

Lemma 5.10). �
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Lemma 2.4. There exists a constant C0 > 0 such that for any θ ∈ (0, 1
4), there exists

ε1(θ) > 0 such that for any solution u ∈ C∞(M× [0,T),S2) of (1.2), z0 = (x0, t0) ∈ M×(0,T)

and 0 < r ≤ min{iM ,
√

t0}, if u satisfies

r−n
∫

Pr(z0)
|∇u|2 ≤ ε2

1(θ),

then we have

(θr)−n−2
∫

Pθr(z0)
|u − uz0,θr|

2 ≤ C0θ
2r−n

∫
Pr(z0)

|∇u|2, (2.7)

where uz0,θr =
1

|Pθr(z0)|

∫
Pθr(z0) u. �

2.1 Proof of Lemma 2.3

For simplicity, we may assume n = 4. In fact, if n ≤ 3, then we let M̂ = M × S4−n,

ĝ(x, y) = g(x)+h0(y) with h0 the standard metric on S4−n, and define û(x, y, t) = u(x, t) for

x ∈ M, y ∈ S4−n. One can easily check that û ∈ C∞(M̂× (0,T),S2) solves (1.2) and satisfies

r−4
∫

Pr(z0)
|∇û|2 ≤ ε2

0. Hence it suffices to prove (2.6) for û. Since it is a local result, we

may further assume that M = R4 and g is the Euclidean metric. One can modify without

difficulties the following argument to handle the general case, see [4] for example.

Now we have

Claim. For any δ ∈ (0, 1), there exist C(δ) > 0 and ε2(δ) > 0 such that if

r−4
∫

Pr(z0)
|∇u|2 ≤ ε2

2(δ),

then

( r
8

)−4
∫

P r
8
(z0)

|∇u|2 ≤ δr−4
∫

Pr(z0)
|∇u|2 +

C(δ)
δ

r−6
∫

Pr(z0)
|u − uPr(z0)|

2. (2.8)

First, by considering ur(x, t) = u(z0+(rx, r2t)) : R4×(− t0
r2 , 0) → S2,we may assume

r = 1, z0 = (0, 0), and u ∈ C∞(R4 × (−1, 0],S2) solves (1.2). Denote Br(0) by Br and Pr(0, 0)

by Pr. Now we divide the proof of the claim into three steps.

Step 1 (slice monotonicity inequality). For any t ∈ (−1, 0], x0 ∈ R4, 0 < r1 ≤ r2 < +∞, it

holds

r−2
1

∫
Br1 (x0)

|∇u(t)|2 ≤ 2r−2
2

∫
Br2 (x0)

|∇u(t)|2 + 2
∫

Br2 (x0)
|ut|

2. (2.9)
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It is well-known that (2.9) follows from the standard Pohozaev type argument

(see [10, 16, 17] for more details). Here we sketch the proof. Assume x0 = 0, let R(u)(p) :=

αp + βu ∧ p : R3
→ R3. Since u ∈ C∞(R4 × (−1, 0],S2), we multiply (1.2) by x · ∇u(t) and

integrate it over Br to get

∫
Br

R(u)(ut)x · ∇u =

∫
Br

∆ux · ∇u

= r
∫

∂Br

∣∣∣∣∂u
∂r

∣∣∣∣
2

+

∫
Br

|∇u|2 −
r
2

∫
∂Br

|∇u|2. (2.10)

This, combined with |R(u)(ut)| = |ut|, yields

d
dr

(
r−2

∫
Br

|∇u|2

2

)
= r−2

∫
∂Br

∣∣∣∣∂u
∂r

∣∣∣∣
2

− r−3
∫

Br

R(u)(ut)x · ∇u

≥ r−2
∫

∂Br

∣∣∣∣∂u
∂r

∣∣∣∣
2

+
d
dr

(
r−1

∫
Br

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣
)

− r−1
∫

∂Br

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ .
Integrating this inequality from r1 to r2, we have

r−2
2

∫
Br2

|∇u|2 ≥ r−2
1

∫
Br1

|∇u|2 + 2
∫

Br2 \Br1

r−2

∣∣∣∣∂u
∂r

∣∣∣∣
2

−2r−1
1

∫
Br1

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ − 2
∫ r2

r1

r−1
∫

∂Br

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ . (2.11)

By the Hölder inequality, we have

2r−1
1

∫
Br1

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ ≤ 1
2

r−2
1

∫
Br1

|∇u|2 + 2
∫

Br2

|ut|
2,

and

2
∫ r2

r1

r−1
∫

∂Br

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ ≤
∫

Br2 \Br1

r−2|
∂u
∂r

|2 +

∫
Br2

|ut|
2.

Putting these inequalities into (2.11), we obtain (2.9).

Step 2 (estimate on good Λ-slices). For any Λ ≥ 1, define the set of good Λ-slices by

GΛ
=


t ∈

[
−

1
4
, 0

]
|

∫
B 1

2

|ut|
2 ≤ Λ2

∫
P 1

2

|ut|
2


 , (2.12)
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and the set of bad Λ-slices BΛ = [− 1
4 , 0] \ GΛ. By Fubini’s theorem, we have

|BΛ| ≤ 1
Λ2

. (2.13)

For any t ∈ GΛ, by (2.3) and (2.12), we have

∫
B 1

2

|∇u(t)|2 +

∫
B 1

2

|ut(t)|2 ≤ CΛ2
∫

P1

|∇u|2. (2.14)

This and (2.9) imply that for any t ∈ GΛ, we have

sup

{
s−2

∫
Bs(x)

|∇u(t)|2 | x ∈ B 1
4
, 0 < s ≤ 1

4

}
≤ C

∫
B 1

2

(|∇u(t)|2 + |ut(t)|2)

≤ CΛ2
∫

P1

|∇u|2. (2.15)

Let η ∈ C∞0 (B1) be such that 0 ≤ η ≤ 1, η = 1 on B 1
8
, and |∇η| ≤ 16. For any t ∈ GΛ fixed,

observe

∫
B 1

8

|∇u(t)|2 ≤
∫

R4
η2|∇u(t)|2 =

∫
R4

η2|∇u(t) ∧ u(t)|2, (2.16)

and (1.2) can be written as

∇ · (∇u(t) ∧ u(t)) = R(u(t))ut(t) ∧ u(t), in B1 (2.17)

where ∇· is the divergence operator.

Now we need to apply the duality theorem (cf. [23]) between Hardy and BMO

space to estimate (2.16). First, by the Poincaré inequality and (2.15), we have

[u(t)]BMO(B 1
4
) = sup

{
inf
c∈R3

s−4
∫

Bs(x)
|u(t) − c| |Bs(x) ⊂ B 1

4

}

≤ C sup

{(
s−2

∫
Bs(x)

|∇u(t)|2
) 1

2

|Bs(x) ⊂ B 1
4

}

≤ CΛ

(∫
P1

|∇u|2
) 1

2

. (2.18)
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By integration by parts, we have

∫
R4

η2|∇u(t) ∧ u(t)|2 = −

∫
R4

∇ · (η2∇u(t) ∧ u(t)) · [(u(t) − c(t)) ∧ u(t)]

+

∫
R4

η2[(∇u(t) ∧ u(t)) ∧ ∇u(t) − λ] · (u(t) − c(t))

+λ ·
∫

R4
η2(u(t) − c(t)) = I + II + III

where

c(t) =
1

|B 1
2
|

∫
B 1

2

u(t), λ =

∫
R4 η2[∇u(t) ∧ u(t)] ∧ ∇u(t)∫

R4 η2
.

Direct calculations, (2.9), (2.14), and (2.17) imply

∫
R4

|∇ · (η2∇u(t) ∧ u(t))|2 ≤ 2

(∫
R4

|∇η|2|∇u(t)|2 +

∫
R4

η2|ut(t)|2
)

≤ C
∫

B 1
2

(|∇u(t)|2 + |ut(t)|2). (2.19)

This implies

|I | ≤ ‖∇ · (η2∇u(t) ∧ u(t))‖L2(R4)‖u(t) − c(t)‖L2(B 1
2
)

≤ C


∫

B 1
2

(|∇u(t)|2 + |ut(t)|2)




1
2

∫

B 1
2

|u(t) − c(t)|2




1
2

≤ δ

∫
B 1

2

(|∇u(t)|2 + |ut(t)|2) +
C
δ

∫
B 1

2

|u(t) − c(t)|2. (2.20)

For III, by the Poincaré inequality and (2.3), we have

|III | ≤ |λ|‖u(t) − c(t)‖L2(B 1
2
) ≤ C


∫

B 1
2

|∇u(t)|2


 ‖∇u‖L2(B 1

2
)

≤ C


∫

B 1
2

|∇u(t)|2


(∫

P1

|∇u|2
) 1

2

. (2.21)

To estimate II, we need to recall the definition of local Hardy spaces and the

relationship between local Hardy space and H1(Rn), due to Semmes [24], and a local

Hardy space estimate.
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Definition 2.5. For any domain U ⊂ Rn, f ∈ L1
loc(U) is in the local Hardy space H1

loc(U),

if for any K ⊂⊂ U, ∃ ε = ε(K,U) > 0 such that

‖f ‖H1

loc
(K) :=

∫
K

sup
0<r≤ε

sup
η∈J

|ηr ∗ f |(x) < +∞, (2.22)

where J = {η ∈ C∞0 (Rn) |supp(η) ⊂ B1, ‖∇η‖L∞ ≤ 1}, ηr ∗ f (x) = r−n
∫

Rn η( x−y
r )f (y). We

would point out that the norm defined in (2.22) depends on the choice of ε, although the

space H1
loc(U) is independent of ε. For U = Rn, if we choose ε = +∞ in (2.22), then we get

the Hardy space H1(Rn):

H1(Rn) = {f ∈ L1
loc(Rn) | ‖f ‖H1(Rn) = ‖ sup

r>0,η∈J
|ηr ∗ f | ‖L1(Rn) < +∞}.

Lemma 2.6 ([24]).

(a) For any bounded domain U ⊂ Rn, if f ∈ H1
loc(U), then for any η ∈ C∞0 (U),

with
∫

η 	= 0, η(f − λ) ∈ H1(Rn) and

‖η(f − λ)‖H1(Rn) ≤ C(U)‖f ‖H1

loc
(supp(η)) (2.23)

where λ =

∫
ηf∫
η

.

(b) If f ∈ H1(U), g ∈ L2(U), and ∇ · g ∈ L2(U), then ∇f · g ∈ H1
loc(U). Moreover,

‖∇f · g‖H1

loc
(U) ≤ C(U)(‖∇f ‖2

L2(U) + ‖g‖2
L2(U) + ‖∇ · g‖2

L2(U)). (2.24)

By Lemma 2.6, (2.18), (2.19), and the duality theorem between H1(R4) and

BMO(R4) (cf. [23]), we have

|II | ≤ C‖η2[(∇u(t) ∧ u(t)) ∧ ∇u(t) − λ]‖H1(R4)[u(t)]BMO(B 1
4
)

≤ C‖(∇u(t) ∧ u(t)) ∧ ∇u(t)‖H1

loc
(B 1

4
)[u(t)]BMO(B 1

4
)

≤ C[‖∇u(t)‖2
L2(B 1

2
) + ‖∇ · (∇u(t) ∧ u(t))‖2

L2(B 1
2
)][u(t)]BMO(B 1

4
)

≤ CΛ

(∫
P1

|∇u|2
) 1

2
∫

B 1
2

(|∇u|2 + |ut|
2). (2.25)
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Putting all estimates together, we obtain, for any t ∈ GΛ,

∫
B 1

8

|∇u(t)|2 ≤
[
δ + CΛ

(∫
P1

|∇u|2
) 1

2

]∫
B 1

2

(|∇u(t)|2 + |ut(t)|2)

+
C
δ

∫
B 1

2

|u(t) − c(t)|2. (2.26)

Integrating (2.26) over t ∈ [−( 1
8)2, 0] ∩ GΛ and applying (2.3), we obtain

(
1
8

)−4 ∫
B 1

8
×([−( 1

8 )2,0]∩GΛ)
|∇u|2 ≤

[
δ + CΛ

(∫
P1

|∇u|2
) 1

2

]∫
P1

|∇u|2

+
C
δ

∫
P1

|u − uP1 |
2. (2.27)

On the other hand, by (2.3) and (2.13), we have

(
1
8

)−4 ∫
B 1

8
×([−( 1

8 )2,0]∩BΛ)
|∇u|2 ≤ C

Λ2

∫
P1

|∇u|2. (2.28)

Adding (2.27) and (2.28) together, we have

(
1
8

)−4 ∫
P 1

8

|∇u|2 ≤ C
δ

∫
P1

|u − uP1 |
2

+ [δ + CΛ

(∫
P1

|∇u|2
) 1

2

+ Λ−2]
∫

P1

|∇u|2. (2.29)

Therefore, by choosing Λ = δ−
1
2 and ε2

2(δ) =
∫

P1
|∇u|2 ≤ δ3

C2 , we have

(
1
8

)−4 ∫
P 1

8

|∇u|2 ≤ C(δ)
δ

∫
P1

|u − uP1 |
2

+ 3δ

∫
P1

|∇u|2. (2.30)

Returning to the original scale, (2.30) implies (2.8).

Step 3. (decay estimate). We follow the iteration argument by Melcher [16] closely here.

For simplicity, assume z0 = 0 and r = 1. For any γ ∈ (0, 1), let δ = 8−3, θ = θ(γ) ≤
( δ2

2C0C(δ) )
1

2−2γ , and k ≥ 1 be such that 8kθ = 1, here C(δ) > 0 is given by (2.8) and C0 > 0

is given by Lemma 2.4. For ρ ∈ (0, 1), set E(u, ρ) = ρ−n
∫

Pρ
|∇u|2. For 0 ≤ i ≤ k − 1, if

E(u, 8i+1θ) ≤ ε2(δ)2 and E(u, 1) ≤ ε1(8i+1θ)2, then (2.8) and Lemma 2.4 imply

E(u, 8iθ) ≤ δE(u, 8i+1θ) +
C0C(δ)

δ
E(u, 1). (2.31)
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Hence if we choose

E(u, 1) ≤ min{ε1(8θ)2, · · · , ε1(8kθ)2,
δ

2C0C(δ)
ε2(δ)2},

then by induction we have E(u, 8iθ) ≤ ε2(δ)2 for 0 ≤ i ≤ k. Hence by iteration, (2.8) and

Lemma 2.4 yield

E(u, θ) ≤ δE(u, 8θ) + C0C(δ)
(

θ

δ

)2

82δE(u, 1)

≤ · · · · · ·

≤ δkE(u, 8kθ) +
C0C(δ)
1 − 64δ

(
θ

δ

)2

E(u, 1). (2.32)

According to the definition, we have δk = θ3, E(u, 8kθ) = E(u, 1), and θ2−2γ ≤ δ2

2C0C(δ) .

Therefore (2.32) implies

E(u, θ) ≤
(

θ3−2γ
+

4
7

)
θ2γE(u, 1) ≤ θ2γE(u, 1). (2.33)

This and (2.3) imply that

s−4
∫

Ps(z)
|∇u|2 + s2|ut|

2 ≤ Cα

(s
r

)2γ

r−4
∫

Pr(z0)
|∇u|2, ∀z ∈ P r

2
(z0), 0 < s ≤ r

2
. (2.34)

Hence, by the parabolic Morrey’s Lemma (cf. [13]), we conclude that u ∈ Cγ(P r
2
(z0),S2)

and (2.6) holds. This completes the proof of Lemma 2.3. �

2.2 Proof of Theorem 1.1.

It is similar to [7]. We argue by contradiction. Suppose it were false. Then for any small

ε > 0, we can find a map u0 ∈ C∞(M,S2) that is not homotopic to a constant, and

E(u0) < ε2, and (1.2)–(1.3) has a smooth solution u ∈ C∞(M × [0, i2
M ],S2). Denote T0 = iM .

By (2.1), we have

∫
M

|∇u(t)|2 ≤ ε2, ∀0 ≤ t ≤ T2
0 . (2.35)

Letting ε0 be given by Lemma 2.3 and ε ≤ T0ε0, implies

T−4
0

∫
PT0 ((x,T2

0 ))
|∇u|2 ≤ T−2

0 max
0≤t≤T2

0

∫
M

|∇u(t)|2 ≤ T−2
0 ε2 ≤ ε2

0, ∀x ∈ M. (2.36)
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Therefore, by Lemma 2.3, we have

oscB T0
2

(x)u(T0) ≤ Cα(T−4
0

∫
PT0 (x,T0)

|∇u|2)
1
2 ≤ CαT−1

0 ε, ∀x ∈ M. (2.37)

Since M is compact, there exist N0 = N0(M) ≥ 1 such that

|u(x,T0) − u(y,T0)| ≤ N0 max
z∈M

oscB T0
2

(z)u(T0) ≤ CαN0T−1
0 ε, ∀x, y ∈ M. (2.38)

Therefore, by choosing ε = ε(M,α) sufficiently small, we see that u(T0)(M) is contained

in a convex, hence contractable, coordinate neighborhood in S2 and u(T0) is homotopic

to a constant. But this implies u0, through u(·, t), 0 ≤ t ≤ T0, is homotopic to a constant.

This contradicts with the choice of u0. Hence the solution u to (1.2)–(1.3) must blow up

before i2
M . The proof is complete.

3 Estimate for Dirichlet and Neumann boundary conditions

In this section, we prove boundary a priori estimates for smooth solutions of (1.2), with

either the Dirichlet or Neumann conditions, under a small energy condition.

Denoting M = M ∪ ∂M, we have

Lemma 3.1 (Energy inequality). For T > 0 and u0 ∈ C∞(M,S2), let u ∈ C∞(M × [0,T),S2)

solve (1.2)-(1.3), and satisfy either (i) u|∂M×[0,T) = u0 or (ii) ∂u
∂ν |∂M×[0,T) = 0. Then u

satisfies the energy equality (2.1), and the local energy inequality: for any φ ∈ C∞(M)

and 0 ≤ s < t < T,

α

∫ t

s

∫
M

|ut|
2φ2

+

∫
M

|∇u(t)|2φ2 ≤
∫

M
|∇u(s)|2φ2

+
4
α

∫ t

s

∫
M

|∇u|2|∇φ|2. (3.1)
�

Proof. The same proof of Lemma 2.1 works, except that we need to show the boundary

term
∫

∂M
∂u
∂ν utφ

2, appearing in the integration by parts, vanishes for φ ∈ C∞(M). This

is evident, for (i) the Dirichlet condition implies ut = 0 on ∂M, and (ii) the Neumann

condition implies ∂u
∂ν = 0 on ∂M. (2.1) follows by choosing φ ≡ 1.

To simplify the presentation, we assume from now on that (M, g) = (Ω, g0) with

Ω ⊂ Rn a bounded, smooth domain and g0 the Euclidean metric on Rn.

For x0 ∈ ∂Ω, denote B+
r (x0) = Br(x0)∩Ω and P+

r (x0, t0) = B+
r (x0)× [t0 − r2, t0). Now

we have �
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Lemma 3.2. Under the same assumptions as in Lemma 3.1, for z0 = (x0, t0) ∈ ∂Ω× (0,T),

0 < r <
√

t0 and t ∈ (t0 −
r2

4 , t0), there is Cα > 0 such that

r2−n
∫

B+
r
2
(x0)

|∇u(t)|2 + r2−n
∫

P+
r
2

(z0)
|ut|

2 ≤ Cαr−n
∫

P+
r (z0)

|∇u|2. (3.2)
�

Proof. Applying (3.1), (3.2) can be proven by the same argument as in Lemma 2.2. We

omit the details.

Now we are ready to state the boundary decay estimate under a small energy

assumption. �

Lemma 3.3. For 1 ≤ n ≤ 4, T > 0, δ ∈ (0, 1), there exist r0 = r0(Ω), ε3 = ε3(δ) > 0, C(δ) > 0

such that if u ∈ C∞(Ω × [0,T),S2) solves (1.2), with either

(1) there is p0 ∈ S2 such that u(x, t) = u0(x) = p0 for (x, t) ∈ ∂Ω × [0,T), or

(2) ∂u
∂ν (x, t) = 0 for (x, t) ∈ ∂Ω× [0,T), and satisfies, for z0 = (x0, t0) ∈ ∂Ω× (0,T) and some

0 < r ≤ min{r0,
√

t0},

r−n
∫

P+
r (z0)

|∇u|2 ≤ ε2
3, (3.3)

then

( r
8

)−n
∫

P+
r
8

(z0)
|∇u|2 ≤ δr−n

∫
P+

r (z0)
|∇u|2 +

C(δ)
δ

r−(n+2)
∫

P+
r (z0)

|u − cr|
2, (3.4)

where either (1) cr = p0 or (2) cr =
1

|P+
r (z0)|

∫
P+

r (z0) u. �

Proof. We adapt the proof of Lemma 2.3. First, by the same dimension reduction as

in Lemma 2.3, we assume n = 4. Next, observe that we can reduce the case (b) into

the interior case. In fact, for any smooth metric g on Ω, there is a sufficiently small

ρ = ρ(Ω, g) > 0, such that the nearest point projection map Π∂Ω : Ωρ → ∂Ω is smooth,

where Ωρ = {x ∈ Ω : dg(x, ∂Ω) < ρ}. Define the reflection map R∂Ω along ∂Ω by

R∂Ω(x) = 2Π∂Ω(x)−x for x ∈ Ωρ,Ω
∗
ρ = R∂Ω(Ωρ), and Ω∗ = Ω∪Ω∗

ρ. It is easy to see that for

a sufficiently small ρ > 0, the nearest point projection, still denoted by Π∂Ω, from Ω∗
ρ to

∂Ω is well-defined and smooth. Hence the inverse map R−

∂Ω(y) = 2Π∂Ω(y) − y : Ω∗
ρ → Ωρ

can be identified with R∂Ω. Hence we can extend u0, u and the metric g from Ω to

Ω∗ by letting u0(x) = u0(R∂Ω(x)), u∗(x, t) = u(R∂Ω(x), t), and g∗(x) = (R∗
∂Ωg)(x), the

pullback of g by R−

∂Ω = R∂Ω, for x ∈ Ω∗
ρ and t ∈ [0,T). Then one can check that if

u ∈ C1(Ω× [0,T),S2) solves (1.2), (1.3) and (1.8) for (Ω, g), then u∗ is in C1(Ω∗ × [0,T),S2)
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and solves (1.2) for (Ω∗, g∗), and (1.3) with u0 replaced by u∗
0. Hence Lemma 3.3 for

the case (b) follows from Lemma 2.3. We will only sketch the proof of Lemma 3.3 for

the case (a). It follows from the smoothness of Ω and the standard boundary flatten

argument that we may assume for simplicity that there exists r0 = r0(Ω) > 0 such that

B+
r0

(x0) := Ω ∩ Br0(x0) = {x = (x ′, x4) ∈ R4 : |x − x0| ≤ r0, x4 ≥ 0} (the general case can be

handled by slight modifications of the argument given below; for example, see [5]).

By translation and rescaling, we assume r0 ≥ 1, r = 1, z0 = (0, 0), u ∈ C∞(R4
+ ×

(−1, 0],S2) solves (1.2) and u|∂R4
+×(−1,0] = p0. As in Lemma 2.3, we divide the proof into

two steps. First, we need

Step 1 (slice boundary monotonicity inequality). For any t ∈ (−1, 0], x1 ∈ ∂R4
+, 0 < r1 ≤

r2 < +∞, it holds

r−2
1

∫
B+

r1
(x1)

|∇u|2 ≤ 2r−2
2

∫
B+

r2
(x1)

|∇u|2 + 2
∫

B+
r2

(x1)
|ut|

2. (3.5)

To prove (3.5), assume x1 = 0, write B+
r for B+

r (0) and define S+
r = ∂B+

r ∩ {x ∈
R4 | x4 > 0}, Tr = ∂B+

r ∩ {x ∈ R4 | x4 = 0}. By the Pohozaev argument, we multiply (1.2) by

x · ∇u and integrate over B+
r to get

∫
B+

R

R(u)(ut)x · ∇u =

∫
B+

r

∆ux · ∇u

=

∫
B+

r

|∇u|2 +

∫
∂B+

r

x · ∇u
∂u
∂ν

−
1
2

∫
∂B+

r

|∇u|2x · ν

=

∫
B+

r

|∇u|2 +

∫
S+

r

x · ∇u
∂u
∂r

−
1
2

∫
S+

r

|∇u|2x · x
|x|

+

∫
Tr

x · ∇u
∂u
∂x4

−
1
2

∫
Tr

|∇u|2x4.

Since x4 = 0 on Tr, we have
∫

Tr
|∇u|2x4 = 0.

∫
Tr

x ·∇u ∂u
∂x4

also equals to zero, since u(t) = p0

on Tr implies x · ∇u =
∑3

i=1 xi
∂u
∂xi

= 0 on Tr. Therefore we have

∫
B+

r

R(u)(ut)x · ∇u =

∫
B+

r

|∇u|2 + r
∫

S+
r

∣∣∣∣∂u
∂r

∣∣∣∣
2

−
r
2

∫
S+

r

|∇u|2. (3.6)

This implies

d
dr

(
r−2

∫
B+

r

|∇u|2

2
− r−1

∫
B+

r

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣
)

≥ r−2
∫

S+
r

∣∣∣∣∂u
∂r

∣∣∣∣
2

− r−1
∫

S+
r

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ . (3.7)
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(3.5) follows by integrating (3.7) from r1 to r2, and

2r−1
1

∫
B+

r1

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ ≤ 1
2

r−2
1

∫
B+

r1

|∇u|2 + 2
∫

B+
r2

|ut|
2,

2
∫ r2

r1

r−1
∫

S+
r

|ut|

∣∣∣∣∂u
∂r

∣∣∣∣ ≤
∫

B+
r2

\B+
r1

r−2

∣∣∣∣∂u
∂r

∣∣∣∣
2

+

∫
B+

r2

|ut|
2.

Step 2 (estimate on good slices). For any Λ ≥ 1, denote P+
r (0, 0) by P+

r and define

GΛ
+ =


t ∈

[
−

1
4
, 0

]
|

∫
B+

1
2

|ut(t)|2 ≤ Λ2
∫

P+

1
2

|ut|
2


 , BΛ

+ =

[
−

1
4
, 0

]
\ GΛ

+ . (3.8)

Then we have

|BΛ
+ | ≤ Λ−2. (3.9)

For any t ∈ GΛ
+ , by (3.2) and (3.8), we have

∫
B+

1
2

(|∇u(t)|2 + |ut(t)|2) ≤ CΛ2
∫

P+

1

|∇u|2. (3.10)

This, combined with (3.5) and (2.9), implies

[u(t)]2BMO(B+

1
2
) ≤ sup


s−2

∫
Bs(x)∩B+

1
2

|∇u|2 |x ∈ B+
1
4
, 0 < s ≤ 1

4




≤ C
∫

B+

1
2

(|∇u(t)|2 + |ut(t)|2) ≤ CΛ2
∫

P+

1

|∇u|2. (3.11)

Now let η ∈ C∞0 (B 1
4
) be even with respect to x4, 0 ≤ η ≤ 1, η = 1 on B 1

8
, and

|∇η| ≤ 16. Let v : R4 × (−1, 0] → S2 be the extension of u that is even w.r.t. x4. Define

w : R4 × (−1, 0] → R3 by

w(x, t) = (u − p0)((x1, x2, x3, x4), t), x = (x1, x2, x3, x4) ∈ R4
+, t ∈ (−1, 0],

= −(u − p0)((x1, x2, x3,−x4), t), x = (x1, x2, x3, x4) ∈ R4
−, t ∈ (−1, 0]. (3.12)

Then we have

∫
B+

1
8

|∇u(t)|2 ≤
∫

R4
+

η2|∇w(t) ∧ v(t)|2 =
1
2

∫
R4

η2|∇w(t) ∧ v(t)|2. (3.13)
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Since ∇ · (η2∇w(t) ∧ v(t)) is odd w.r.t. x4, we have

∫
R4

|∇ · (η2∇w(t) ∧ v(t))|2 = 2
∫

R4
+

|∇ · (η2∇u(t) ∧ u(t))|2

≤ 4
∫

R4
+

(|∇η|2|∇u(t)|2 + |η|2|ut(t)|2)

≤ C
∫

B+

1
2

(|∇u(t)|2 + |ut(t)|2)

≤ CΛ2
∫

P+

1

|∇u|2. (3.14)

By (3.11), we also have

[w(t)]2BMO(B 1
4
) ≤ C[u(t)]BMO(B+

1
4
) ≤ CΛ2

∫
P+

1

|∇u|2. (3.15)

By integration by parts, we have

∫
R4

η2|∇w(t) ∧ v(t)|2 = −

∫
R4

∇ · (η2∇w(t) ∧ v(t)) · (w(t) ∧ v(t))

+

∫
R4

η2[(∇w(t) ∧ v(t)) ∧ ∇v(t) − λ] · w(t)

+λ

∫
R4

η2w(t) = I + II + III

where

λ =

∫
R4 η2(∇w(t) ∧ v(t)) ∧ ∇v(t)∫

R4 η2
.

It is easy to see

|λ| ≤ C
∫

B+

1
2

|∇u(t)|2.

Hence, by the Poincaré inequality and (3.2), we have

|III | ≤ |λ|‖w(t)‖L2(B+

1
2
) ≤ C

∫
B+

1
2

|∇u(t)|2‖∇u(t)‖L2(B+

1
2
)

≤ C
∫

B+

1
2

|∇u(t)|2
(∫

P+

1

|∇u|2

) 1
2

. (3.16)
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For I, similar to (2.20), we have

|I | ≤ ‖∇ · (η2∇w(t) ∧ v(t))‖L2(R4)‖w(t)‖L2(B1)

≤ C


∫

B+

1
2

(|∇u(t)|2 + |ut(t)|2)




1
2

‖u(t) − p0‖L2(B+

1 )

≤ δ

∫
B+

1
2

(|∇u(t)|2 + |ut(t)|2) +
C
δ

∫
B+

1

|u(t) − p0|
2. (3.17)

It follows from (3.14) and (3.15) that II can be estimated exactly as same as in (2.25).

Namely, we have

|II | ≤ CΛ

(∫
P+

1

|∇u|2

) 1
2


∫

B+

1
2

(|∇u(t)|2 + |ut(t)|2)


 . (3.18)

Putting all these estimates together, we obtain, for t ∈ GΛ
+ ,

∫
B+

1
8

|∇u(t)|2 ≤


δ + CΛ

(∫
P+

1

|∇u|2

) 1
2


∫

B+

1
2

(|∇u(t)|2 + |ut(t)|2) +
C
δ

∫
B+

1
2

|u − p0|
2.

(3.19)

Finally, by integrating (3.19) over t ∈ [−( 1
8)2, 0] ∩ GΛ

+ , applying (3.2), (3.8), and the

following inequality:

(
1
8

)−4 ∫
B+

1
8
×([−( 1

8 )2,0]∩BΛ
+ )

|∇u|2 ≤ 1
Λ2

∫
P+

1

|∇u|2, (3.20)

we obtain

(
1
8

)−4 ∫
P+

1
8

|∇u|2 ≤ C
δ

∫
P+

1

|u − p0|
2

+ [δ + CΛ

(∫
P+

1

|∇u|2

) 1
2

+ Λ−2]
∫

P+

1

|∇u|2. (3.21)

It is clear that, by choosing Λ2 = δ−1 and ε2
3(δ) ≤ δ3

C2 , (3.21) implies (3.4).

Now we need the boundary version of Lemma 2.4. For simplicity, we only con-

sider the case n = 4 and Ω = R4
+. �
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Lemma 3.4. There exists C0 > 0 such that for any θ ∈ (0, 1
4) there is ε4(θ) > 0 such that

if u ∈ C∞(R4
+ × (−1, 0],S2) solves (1.2), with either (a) there exists p0 ∈ S2 such that

u(x, t) = p0 for (x, t) ∈ ∂R4
+ × (−1, 0] or (b) ∂u

∂ν (x, t) = 0 for (x, t) ∈ ∂R4
+ × (−1, 0], and

satisfies, for z0 = (x0, t0) ∈ ∂R4
+ × (−1, 0] and 0 < r <

√
t0,

r−4
∫

P+
r (z0)

|∇u|2 ≤ ε2
4(θ), (3.22)

then

(θr)−6
∫

P+

θr(z0)
|u − cr |

2 ≤ C0θ
2r−4

∫
P+

r (z0)
|∇u|2, (3.23)

where

cr = p0, for case (a)

=
1

|P+
r (z0)|

∫
P+

r (z0)
u, for case (b).

�

Proof. Without loss of generality, we assume r = 1 and z0 = (0, 0). The case (b) is an easy

consequence of Lemma 2.4. In fact, let v : R4 × (−1, 0] → S2 be the extension of u that is

even w.r.t. x4. Then, as in the proof of Lemma 3.3, we have that v ∈ C∞(R4 × (−1, 0],S2)

solves (1.2), and satisfies

∫
P1

|∇v|2 = 2
∫

P+

1

|∇u|2 ≤ 2ε2
4(θ).

Hence, by Lemma 2.4, there exists ε4(θ) > 0 such that

θ−6
∫

Pθ

|v − vPθr |
2 ≤ C0θ

2
∫

P1

|∇v|2.

This easily implies (3.23).

To prove (3.23) for case (a), we argue by contradiction (cf. also [17]). Suppose it

were fasle. Then there exist θ0 ∈ (0, 1
4) and {uk} ∈ C∞(R4

+ × (−1, 0],S2) solving (1.2) with

uk = pk on ∂R4
+ × (−1, 0], such that

∫
P+

1

|∇uk|
2

= ε2
k → 0,

but

θ−6
0

∫
P+

θ0

|uk − pk|
2 ≥ kθ2

0ε
2
k. (3.24)
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Define vk =
uk−pk

εk
: R4

+ × (−1, 0] → R3. Then we have

∫
P+

1

|∇vk|
2

= 1, vk|∂R4
+×(−1,0] = 0, (3.25)

R(uk)(
∂vk

∂t
) − ∆vk = εk|∇vk|

2uk, in R4
+ × (−1, 0], (3.26)

and

θ−6
0

∫
P+

θ0

|vk|
2 ≥ kθ2

0. (3.27)

It follows from (3.25), (3.2), and Ponicaré inequality that {vk} ⊂ H1(P+
1
2
,R3) is bounded.

Hence we may assume that vk → v weakly in H1(P+
1
2
), strongly in L2(P+

1
2
), and pk → p0 ∈ S2

and uk → p0 a.e.. Then we have∫
P+

1
2

|∇v|2 ≤ 1, v|∂R4
+×(−1,0] = 0, (3.28)

R(p0)(vt) − ∆v = 0, in R4
+ × (−1, 0]. (3.29)

By the standard theory of linear parabolic equations, there exists C > 0 such that

θ−6
0

∫
P+

θ0

|v|2 ≤ Cθ2
0. (3.30)

This contradicts (3.27). Hence (3.23) holds.

With Lemmas 3.3, 3.4, and Lemma 2.3, we are ready to prove the boundary apriori

estimate for smooth solutions of (1.2), with either constant Dirichlet or zero Neumann

boundary conditions, under a small energy assumption. �

Lemma 3.5. For 1 ≤ n ≤ 4, Ω ⊂ Rn bounded smooth domain, 0 < T < +∞, there

exists r0 = r0(Ω) > 0 such that for any γ ∈ (0, 1) there are ε5 > 0, Cα > 0 depending

only on γ,α such that if u ∈ C∞(Ω × (0,T),S2) solves (1.2), with either (a) u(x, t) = p0

for (x, t) ∈ ∂Ω × (0,T) or (b) ∂u
∂ν (x, t) = 0 for (x, t) ∈ ∂Ω × (0,T), and satisfies, for

z0 = (x0, t0) ∈ ∂Ω × (0,T) and 0 < r < min{r0,
√

t0},

r−n
∫

P+
r (z0)

|∇u|2 ≤ ε2
5, (3.31)

then u ∈ Cγ(P+
r
2
(z0),S2) and

[u]2Cγ (P+
r
2

(z0)) ≤ Cαr−(n+2γ)
∫

P+
r (z0)

|∇u|2. (3.32)
�
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Proof. For simplicity, assume x0 = 0 ∈ ∂Ω, t0 = 1, T = 2. Let r0 = r0(Ω) > 0 be so

small that we may assume Ω ∩ Br0(x0) = Rn ∩ Br0(x0) = B+
r0 . We follow the same iteration

scheme as in Lemma 2.3. Let δ =
1
83 and θ = θ(γ) ≤ ( δ

2C0C(δ) )
1

2−2γ , here C0 and C(δ) are the

constants in Lemma 3.4 and 3.3 respectively. Let k ≥ 1 be such that 8kθ = 1 and denote

E+(u, ρ) = ρ−n
∫

P+
ρ (0,1) |∇u|2 for 0 < ρ ≤ r0. For 0 ≤ i ≤ k − 1, if

E+(u, 8i+1θr) ≤ ε3(δ)2, E+(u, r) ≤ ε4(8i+1θ)2,

where ε3, ε4 are given by Lemma 3.3 and 3.4, then we have

E+(u, 8iθr) ≤ δE+(u, 8i+1θr) +
C0C(δ)

δ
E+(u, r). (3.33)

Hence, if we choose

ε2
5 := E+(u, r) ≤ min{ε4(8θ)2, . . . , ε4(8kθ)2,

δ

2C0C(δ)
ε3(δ)2},

then we have E+(u, 8iθr) ≤ ε3(δ)2 for all 0 ≤ i ≤ k. Hence, by iteration, Lemma 3.3 and

Lemma 3.4 yield

E+(u, θr) ≤ δkE+(u, r) +
C0C(δ)
1 − 64δ

(
θ

δ
)2E+(u, r) ≤ θ2γE+(u, r). (3.34)

This, combined with Lemma 2.3 and (3.2), implies

s−n
∫

Ps(z)∩(Ω×(0,2))
|∇u|2 + s2|ut|

2 ≤ Cα(
s
r
)2γr−n

∫
Pr(z)∩(Ω×(0,2))

|∇u|2, (3.35)

for any z ∈ P+
r
2
(z0) and 0 < s ≤ r

2 . Therefore, by the parabolic Morrey’s Lemma, we

conclude that u ∈ Cγ(P+
r
2
(z0),S2) with the desired estimate (3.32). �

4 Proof of Theorem 1.3 and Theorem 1.5

In this section, we apply Lemma 2.3 and 3.4 to prove both Theorem 1.3 and 1.5.

4.1 Proof of Theorem 1.3.

It is similar to the proof of Theorem 1.1. Suppose it were false. Then for any ε > 0 we can

find u0 ∈ C∞(M,S2) with u0|∂M = p0 ∈ S2, E(u0) ≤ ε2, and u0 homotopically nontrivial
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rel. ∂M, such that (1.2)–(1.3)–(1.6) has a smooth solution u ∈ C∞(M × [0, i2
M ],S2). Denote

T0 = i2
M . By (2.1),we have

∫
M

|∇u(t)|2 ≤
∫

M
|∇u0|

2 ≤ ε2, ∀t ∈ (0,T0). (4.1)

Let ε6 = min{ε0, ε5}, where ε0 and ε5 are given by Lemma 2.3 and Lemma 3.5 respectively.

Choosing ε ≤ T0ε6, we have

T−4
0

∫
(BT0 (x)∩M)×[0,T2

0 ]
|∇u|2 ≤ T−2

0 max
0≤t≤T2

0

∫
M

|∇u(t)|2 ≤ T−2
0 ε2 ≤ ε2

6, ∀x ∈ M. (4.2)

Therefore, by Lemma 2.3 and 3.5, we have

oscB T0
2

(x)u(T0) ≤ Cα(T−4
0

∫
(BT0 (x)∩M)×[0,T2

0 ]
|∇u|2)

1
2 ≤ CαT−1

0 ε, ∀x ∈ M. (4.3)

Since M is compact, there exists N0 = N0(M) ≥ 1 such that

oscMu(T0) ≤ N0 max
x∈M

oscB T0
2

(x)u(T0) ≤ N0CαT−1
0 ε. (4.4)

By choosing ε sufficiently small, this implies that u(T0)(M) is contained in a contractible,

coordinate neighborhood in S2 and hence u(T0) is homotopic to p0 ( rel. ∂M). In particu-

lar, u0 is homotopic to p0 (rel. ∂M). This contradicts with the choice of u0. Therefore, any

smooth solution of (1.2)–(1.3)–(1.6) has to blow up before T0.

4.2 Proof of Theorem 1.5.

Suppose it were false. Then there exists T0 > 0 such that for λk → ∞, there are smooth

solutions uk ∈ C∞({x ∈ R4 : 1 ≤ |x| ≤ 2} × [0,T0],S2) to (1.8), uk(x, 0) = (H ◦ Φλk)(
x
|x| ) for

x ∈ R4 with 1 ≤ |x| ≤ 2, and ∂uk
∂ν (x, t) = 0 for x ∈ ∂{x ∈ R4 : 1 ≤ |x| ≤ 2} and t ∈ [0,T0].

Since

lim
λk→∞

∫
{x∈R4:1≤|x|≤2}

|∇uk(0)|2 = 0,

we have, by (2.1), Lemma 2.3, Lemma 3.5, and the same argument as in the proof of

Theorem 1.3, that for λk sufficiently large, uk(T0)({x ∈ R4 : 1 ≤ |x| ≤ 2}) is contained in a

contractable, coordinate neighborhood in S2. Let F(x, t) = uk(x, t) : {x ∈ R4 : |x| = 1.5} ×
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[0,T0] → S2. Then F deforms the Hopf map H(x) = uk(x, 0) into a contractable coordinate

neighborhood of S2, which yields that the Hopf map H : S3
→ S2 is homotopically trivial.

We get the desired contradiction. This completes the proof.
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