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In this paper, we prove that if n ≥ 2 and x0 is an isolated singularity of a non-negative

infinity harmonic function u, then either x0 is a removable singularity of u or u(x) =
u(x0) + c|x − x0| + o(|x − x0|) near x0 for some fixed constant c �= 0. In particular, if x0 is

nonremovable, then u has a local maximum or a local minimum at x0. We also prove

a Bernstein-type theorem, which asserts that if u is a uniformly Lipschitz continuous,

one-side bounded infinity harmonic function in R
n\{0}, then it must be a cone function

with center at 0.

1 Introduction

Throughout this paper, we assume that n ≥ 2. Let � be an open subset of R
n. Recall that

a function u ∈ C (�) is an infinity harmonic function in � if it is a viscosity solution of

the infinity Laplace equation

�∞u =
n∑

i, j=1

uxi uxj uxi xj = 0 in �. (1.1)
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See Appendix A for the definition of viscosity supersolution, subsolution, and solution

of elliptic equations. It is well known that an infinity harmonic function in � is a local

minimizer of the supremum norm of the gradient, in the sense that for any open set

V ⊂ �, if v ∈ W1,∞(V ) satisfies

u|∂V = v|∂V ,

then

esssupV|Du| ≤ esssupV|Dv|.

An infinity harmonic function is also an absolutely minimal Lipschitz extension in �,

i.e. for any open set V ⊂ V ⊂ �,

sup
x�=y∈∂V

|u(x) − u(y)|
|x − y| = sup

x�=y∈V

|u(x) − u(y)|
|x − y| . (1.2)

The infinity Laplace equation can be viewed as the limiting equation of p-Laplace

equations as p ↑ +∞. More precisely, for p ≥ 1, let up be a p-harmonic function in �, i.e.

up solves the p-Laplace equation

�pup = div(|Dup|p−2 Dup) = 0 in �. (1.3)

If up → u∞ uniformly in � as p ↑ +∞, then u∞ is an infinity harmonic function in �. We

refer to a recent survey article by Crandall [3] for more backgrounds and information of

equation (1.1). For 1 ≤ p ≤ +∞, if up is a p-harmonic function in �\{x0}, then x0 is called

an isolated singularity of up. x0 is called a removable singularity, if up can be extended

to be a p-harmonic function in �. Otherwise x0 is called a nonremovable singularity.

When 1 < p ≤ n, the classical theorem of Serrin [10] says that a non-negative p-harmonic

function up is comparable to the fundamental solution of p-Laplace equation near its

nonremovable isolated singularity. When n = 2 and 2 < p < +∞, Manfredi [8] derived

an asymptotic representation of up near its nonremovable isolated singularity. In this

paper, we will show that a non-negative infinity harmonic function is asymptotically

a cone function near its nonremovable isolated singularity. In particular, an infinity

harmonic function has a local maximum or minimum value at a nonremovable isolated

singularity. This is surprising and is largel related to the highly degenerate ellipticity of
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the infinity Laplace equation. Note that cone functions are fundamental solutions of the

infinity Laplace equation. The following is our first main theorem.

Theorem 1.1. Suppose that n ≥ 2 and u ∈ C (B1(x0)\{x0}) is a non-negative infinity har-

monic function in B1(x0)\{x0}. Then, u ∈ W1,∞
loc (B1(x0)) and one of the following holds: either

(i) x0 is a removable singularity;

or

(ii) there exists a fixed constant c �= 0, such that

u(x) = u(x0) + c|x − x0| + o(|x − x0|),

i.e.

lim
x→x0

|u(x) − u(x0) − c |x − x0||
|x − x0| = 0.

In particular, in case (ii), u has either a local maximum or a local minimum at x0, and

|c| = esssupV |Du|,

where V is some neighborhood of x0. �

We want to note here that the above theorem is not correct when n = 1. For exam-

ple, for any t ∈ (0, 1], ut = t (−|x|) + (1 − t )x is an infinity harmonic function on (−1, 1)\{0}
and 0 is an isolated singularity. When t �= 1, Theorem 1.1 (ii) is not satisfied.

Also, the assumption that u is one-sided bounded near its isolated singularity

is necessary for the above theorem to hold. Otherwise u may oscillate between −∞ and

+∞. See such an example in Bhattacharya [2].

As an application of Theorem 1.1, we can construct a family of nonclassical

infinity harmonic functions in R
2.

Corollary 1.2. Suppose that � is a bounded domain in R
2 and x0 ∈ �. Assume that

u ∈ C (�) is an infinity harmonic function in �\{x0} and satisfies u|∂� = 0 and u(x0) = 1.

Then u ∈ C 2(�\{x0}), if and only if � = Br(x0) for some r > 0, and u(x) = 1 − |x−x0|
r for

x ∈ Br(x0). �

We also prove a Bernstein-type theorem on uniformly Lipschitz continuous in-

finity harmonic functions in R
n\{0}.
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Theorem 1.3. If u satisfies the following:

(i) esssup
Rn |Du| = 1;

(ii) for some M ∈ R and ε > 0, u(x) ≤ M + (1 − ε)|x| for all x ∈ R
n;

(iii) u is an infinity harmonic function in R
n\{0}.

Then

u(x) = u(0) − |x|.
�

The first author has proved in [9] that if u is a uniformly Lipschitz continuous infinity

harmonic function in R
2, then u must be linear, i.e. u = p · x + c for some p ∈ R

2 and

c ∈ R. In general, a uniformly Lipschitz continuous infinity harmonic function in R
n\{0}

might be neither linear nor a cone. The following is a family of such functions. For R > 0

and 0 < α < 1, let uR,α be the solution of the following equation:

�∞uR,α = 0 onBR(0)\{0},
uR,α(0) = 0 and uR,α|∂ BR(0) = αxn − (1 − α)R.

It is clear that

uR,0(x) = −|x|

and

uR,1(x) = xn.

Hence for each R, there exists 0 < α(R) < 1, such that

uR,α(R)(0, . . . , 0, 1) = 0.

Suppose now that u = limR→+∞ uR,α(R). Then u is an infinity harmonic function in

R
n\{0} and esssup

Rn |Du| = 1. Moreover, u is neither a linear nor a cone function, since

u(0, . . . , 0, 1) = 0 and u(0, . . . , 0, t ) = t for t ≤ 0. Using Theorem 1.1 and the fact that

u(x′, xn) = u(−x′, xn), it is not hard to see that the u constructed as above is not C 2 in

R
n\{0}. See Corollary 3.2 for the proof. When n = 2, using some techniques developed by

[9] we can show that any uniformly Lipschitz continuous infinity harmonic function in
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R
2\{0} must be bounded by a linear function and a cone. We conjecture that if u is C 2 in

R
n\{0}, then it must be either a linear or a cone function. We say that u is an entire infin-

ity harmonic function if it is a viscosity solution of equation (1.1) in R
n. Here, we want

to mention that Aronsson [1] has proved that a C 2 entire infinity harmonic function must

be linear when n = 2. Estimates derived by Evans [5] imply that this conclusion is true

for a C 4 entire infinity harmonic function in all dimensions. It remains an interesting

question whether the C 4 assumption in [5] can be relaxed to C 2.

This paper is organized as follows. In Section 2, we will review some preliminary

facts of infinity harmonic functions. In Section 3, we will prove our theorems from the

introduction. In Appendix A, we will prove a simple lemma of isolated singularities of

viscosity solutions of fully nonlinear elliptic equations. Similar arguments can also be

found in [7]. In Appendix B, we will present the tightness argument.

2 Preliminary

For x0 ∈ � and 0 < r < d(x0, ∂�), we denote

Br(x0) = {x ∈ R
n | |x − x0| < r}.

and

∂ B1 = {x ∈ R
n | |x| = 1}.

Also, we set

S+
u,r(x0) = maxx∈∂ B1(x0) u(x) − u(x0)

r

and

S−
u,r(x0) = u(x0) − minx∈∂ B1(x0) u(x)

r
.

It is obvious that

max
{
S+

u,r(x0), S−
u,r(x0)

} ≤ esssupBr (x0)|Du|. (2.1)

The following theorem is due to Crandall–Evans–Gariepy [4].
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Theorem 2.1. ([4]). If u ∈ C (�) is a viscosity subsolution of equation (1.1), S+
u,r(x0) is

monotonically increasing with respect to r. We denote

S+
u (x0) = lim

r↓0+
S+

u,r(x0).

For xr ∈ ∂ Br(x0) such that u(xr) = max∂ Br (x0) u, the following endpoint estimate holds:

S+
u (xr) ≥ S+

u,r(x0) ≥ S+
u (x0). (2.2)

If u ∈ C (�) is a viscosity supersolution of equation (1.1), then S−
u,r(x0) is monoton-

ically increasing with respect to r. We denote

S−
u (x0) = lim

r↓0+
S−

u,r(x0).

For xr ∈ ∂ Br(x0) such that u(xr) = min∂ Br (x0) u, the following endpoint estimate holds:

S−
u (xr) ≥ S−

u,r(x0) ≥ S−
u (x0). (2.3)

If u ∈ C (�) is a viscosity solution of equation (1.1), then S+
u (x0) = S−

u (x0). We denote

Su(x0) = S+
u (x0) = S−

u (x0).

If u is differentiable at x0, then

|Du(x0)| = S+
u (x0) = S−

u (x0). (2.4)

�

By the above theorem, if u is a viscosity subsolution, then S+
u (x) is upper-

semicontinuous. Combining equations (2.1) and (2.4), we have that

S+
u (x) = lim

r↓0+
esssupBr (x)|Du|. (2.5)
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Similar conclusion holds for S−
u (x) when u is a viscosity supersolution. Moreover, the

following theorem is well known.

Theorem 2.2. Suppose that u ∈ W1,∞(B1(0)) is a viscosity subsolution of equation (1.1)

in B1(0). Assume that

S+
u (0) = esssupB1(0)|Du|.

Then there exists an e ∈ ∂ B1 such that

u(te) = u(0) + t S+
u (0) for all t ∈ [0, 1].

Also Du(te) exists and Du(te) = eS+
u (0) for t ∈ (0, 1). �

When n = 2, Savin has proved in [9] that any infinity harmonic function is C 1.

More recently, Evans–Savin [6] have shown C 1,α-regularity for infinity harmonic functions

in R
2. Moreover, the following uniform estimate holds.

Theorem 2.3. ([9]). For n = 2 if u is an infinity harmonic function in B1(0) and for some

e ∈ B1(0),

max
B1(0)

|u − e · x| ≤ ε.

Then for any δ > 0, there exists ε(δ) > 0 such that if ε < ε(δ), then

|Du(0) − e| ≤ δ.

�

From Theorem 2.1, it is easy to see that if u ∈ C (B1(0)) is a viscosity subsolution

or supersolution of equation (1.1) in B1(0), then, for 0 < r < 1,

esssupBr (0)|Du| ≤ 2

1 − r
sup
B1(0)

|u|.
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Applying Theorem 2.3, a simple compactness argument implies the following result

which will be needed in the proof of Corollary 1.2.

Theorem 2.4. For n = 2, suppose that u and v are two infinity harmonic functions in

B1(0) satisfying |u|, |v| ≤ 1 and

max
B1(0)

|u − v| ≤ ε.

Then for any δ > 0, there exists ε(δ) > 0 such that if ε < ε(δ), then

|Du(0) − Dv(0)| ≤ δ.

�

3 Proofs of Theorems

The following lemma is the crucial step in the proofs of our theorems.

Lemma 3.1. Assume that u : R
n → R satisfies the following:

(i) esssup
Rn |Du| ≤ 1.

(ii) u(0) = 0 and for some ε > 0, u(x) ≤ (1 − ε)|x| for all x ∈ R
n.

(iii) u is a viscosity subsolution of equation (1.1) in R
n\{0}.

(iv) There exists e ∈ S1 such that

u(−te) = −t for all t ≥ 0.

Then

u(x) = −|x|.
�

Proof. Note that (i) and (iv) imply that esssup
Rn |Du| = 1. Without loss of generality, we

assume that e = (0, . . . , 0, 1). For a fixed ε > 0, let

S = {u : R
n → R | u satisfies (i)–(iv)}.
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Let us denote

w = sup
v∈S

v.

It is clear that w ∈ S. For any λ > 0, we have wλ = w(λx)
λ

∈ S. Hence for all λ > 0,

w ≥ wλ.

This implies that w = wλ for all λ > 0, i.e. w is homogeneous of degree 1. By (i), (iv), and

Lemma B.1 in Appendix B, we have that for x = (x′, xn) ∈ R
n−1 × R,

w(x′, xn) ≤ xn. (3.1)

If there exists a point (x1, 0) with x1 ∈ R
n−1 and |x1| = 1 such that w(x1, 0) = 0, then (i) and

equation (3.1) imply that for all t ≥ 0,

w(x1, −t ) = −t.

We claim that

w(x1, t ) = t for all t ∈ R.

In fact, denote T = sup {t | w(x1, s) = s for all s ≤ t}. It is clear that T ≥ 0. If T < +∞,

then (i) and equation (2.5) imply that

S+
w

(
x1, T − 1

2

)
= 1.

Hence by (i), Theorem 2.2, and the triangle inequality

w(x1, t ) = t for T − 1

2
≤ t ≤ T + 1

2
.

This contradicts the definition of T . Thus, T = +∞. Therefore, applying Lemma B.1 again,

(i) implies that

w(x′, xn) = xn for all (x′, xn) ∈ R
n.
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This contradicts (ii). Hence,

max
{(x′,0)| |x′|=1}

w < 0.

This, combined with the homogeneity of w, implies that there exists δ > 0 such that

w ≤ 0 on �δ, (3.2)

where

�δ = {(
x′, xn

) | xn ≤ 0 or x2
n ≤ δ|x′|2} .

Let us denote

Cδ =
{

(x′, xn) | xn ≤ 0 and x2
n >

1

δ
|x′|2

}
.

Geometrically, it is clear that for all x ∈ Cδ, B|x|(x) ⊂ �δ. Therefore, for x ∈ Cδ, equation

(3.2) and Theorem 2.1 imply that

S+
w (x) ≤ −w(x)

|x| . (3.3)

Suppose that u is differentiable at x ∈ Cδ. By the homogeneity of w,

Dw(x) · x = w(x).

Hence, by equations (2.4) and (3.3)

Dw(x) = w(x)

|x|2 x.

Since w is Lipschitz continuous, this easily implies that w ∈ C ∞(Cδ) and

Dw(x) = w(x)

|x|2 x. (3.4)
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Hence,

|Dw(x)| = −w(x)

|x| in Cδ. (3.5)

Therefore, by equation (3.4), we have

D(|Dw(x)|) = 1

|x|
(

−Dw(x) + w

|x|2 x
)

= 0 in Cδ.

By (i) and (iv), this yields that |Dw(x)| ≡ 1 in Cδ, and hence by (3.5),

w(x) = −|x| in Cδ.

Since

−|x| ≤ u(x) ≤ w(x),

we have that

u(x) = −|x| in Cδ.

Now we denote

A = {v ∈ ∂ B1 | u(−tv) = −t for all t ≥ 0}.

It is obvious that A is closed and nonempty. Moreover, the above proof implies that A
is also an open set of ∂ B1. Since ∂ B1 is connected for n ≥ 2, we conclude that A = ∂ B1.

Thus, we obtain u(x) = −|x| for all x ∈ R
n. �

Proof of Theorem 1.1. It follows from [2] that limx→x0 u(x) exists. Hence, by

defining u(x0) = limx→x0 u(x), u ∈ C (B1). Suppose that x0 is a nonremovable singularity.

Then by Lemma A.2 in Appendix A, we may assume that u is viscosity supersolution

of equation (1.1) in B1(x0). Hence, u ∈ W1,∞
loc (B1(0)). Without loss of generality, we assume

that x0 = 0 and u(0) = 0. Since u is not a subsolution of equation (1.1) at x0, (A.4) and

Remark A.3 in the Appendix A imply that there exist 0 �= p ∈ R
n and ε > 0, such that in a
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neighborhood of 0,

u(x) ≤ p · x − ε|x|.

Hence, there exist δ > 0 and another smaller neighborhood V ⊂ V ⊂ B1(0) of 0, such that

u(x) ≥ p · x − δ in V

and

u(x) = p · x − δ on ∂V .

Let us denote

t̄ = sup {t ≥ 0| [0, −tp] ⊂ V} ,

where [0, −tp] denote the line segment between 0 and −tp. Hence,

c = esssupV |Du| ≥ u(0) − u(−t̄ p)

|t̄ p| = δ

|t̄ p| + |p| > |p|.

Let us denote

K = sup
x�=y∈∂(V\{0})

|u(x) − u(y)|
|x − y| .

Since u is an absolutely minimal Lipschitz extension in B1(0)\{0}, then, by equation (1.2),

we have that

K ≥ esssupV |Du| = c > |p|. (3.6)

Also

u(x) ≤ p · x − ε|x| ≤ |p||x| in V. (3.7)
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Combining equations (3.6) and (3.7) gives

K = max
x∈∂V

u(0) − u(x)

|x| .

Choose x̄ ∈ ∂V , such that

−u(x̄) = u(0) − u(x̄) = K|x̄|.

Since K > |p|, we have by the triangle inequality and the definition of K,

{t x̄| 0 ≤ t < 1} ⊂ V.

This implies that K ≤ c. Therefore, K = c and

u(t x̄) = tu(x̄) = −tc|x̄| for 0 ≤ t ≤ 1. (3.8)

We now choose λm → 0+ as m ↑ +∞. Then we may assume that

lim
m→+∞

u(λmx)

λm
= w(x) uniformly in C 0

loc(Rn).

It follows from equations (3.7) and (3.8) that w(x)
c satisfies all the assumptions of

Lemma 3.1 with e = − x̄
|x̄| . Hence, Lemma 3.1 implies that

w(x) = −c|x| for all x ∈ R
n.

Since this is true for any sequence {λm}, we have that

lim
λ→0+

u(λx)

λ
= −c|x|.

Hence, Theorem 1.1 holds. �
Proof of Theorem 1.3. It is clear that when R is sufficiently large, by (ii) we have

that

u(x) ≤ M + (1 − ε)R ≤ u(0) +
(
1 − ε

2

)
R for all x ∈ ∂ BR.
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Hence, by the comparison principle with cones (cf. [4]), we have

u(x) ≤ u(0) +
(
1 − ε

2

)
|x| on BR(0).

Sending R → +∞ implies that

u(x) ≤ u(0) +
(
1 − ε

2

)
|x| for all x ∈ R

n.

Without loss of generality, we may assume that u(0) = 0. Therefore, by Lemma 3.1, it

suffices to show that there exists e ∈ ∂ B1, such that

u(−te) = −t for all t ≥ 0, (3.9)

We first claim that

lim
r→0

esssupBr (0)|Du| = 1. (3.10)

If the claim were false, then there exist r > 0 and δ ∈ (0, ε) such that

esssupBr (0)|Du| ≤ 1 − δ. (3.11)

Choose x0 ∈ R
n such that

S+
u (x0) ≥ 1 − δ

2
.

By equations (2.5) and (3.11), we have that x0 /∈ B r
2
(0). Hence, by the endpoint estimate

(2.2), there exists a sequence {xm}m≥0 such that

|xm − xm−1| = r

2
,

u(xm) − u(xm−1) ≥ Su(x0)
r

2
,

and

Su(xm) ≥ 1 − δ

2
.
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Therefore, it is easy to show that

lim
m→+∞ |xm| = +∞,

and

u(xm) ≥ u(x0) +
(

1 − δ

2

)
|xm − x0| ≥ u(x0) +

(
1 − ε

2

)
|xm − x0|.

This contradicts (ii) when m is sufficiently large. Hence equation (3.10) holds.

It follows from Lemma A.2 in Appendix A that u is either a viscosity supersolution

or viscosity subsolution of equation (1.1) in R
n. If u is a viscosity subsolution of equation

(1.1) in R
n, then

S+
u (0) = 1.

Hence by Theorem 2.2, there exists e ∈ ∂ B1 such that

u(te) = t for all t ≥ 0.

This contradicts (ii) when t is sufficiently large. Thus, u must be a viscosity supersolution

of equation (1.1) in R
n. Then

S−
u (0) = 1.

Hence, by considering −u and applying Theorem 2.2, there exists e ∈ ∂ B1 such that

u(−te) = −t for all t ≥ 0. Now the conclusion follows from Lemma 3.1. �
Proof of Corollary 1.2. Without loss of generality, we assume that x0 = 0. Choose

x̄ ∈ ∂�, such that |x̄| = d(0, ∂�) = r. Then by equation (1.2), it is not hard to see that

esssup�|Du| = 1

r

and for 0 ≤ t ≤ 1,

u(t x̄) = 1 − t.
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Hence by Theorem 1.1, we conclude that

lim
λ→0+

u(λx) − u(0)

λ
= −|x|

r
.

This and Theorem 2.4 then imply that

lim
x→0

∣∣∣∣Du(x) − x

r|x|
∣∣∣∣ = 0.

In particular, we have

lim
x→0

|Du(x)| = 1

r
. (3.12)

Let us choose y0 ∈ �\{0} such that Du(y0) �= 0. Then there exist δ > 0 and ξ :

[0, δ] → � such that

ξ̇ (t ) = Du(ξ (t )) and ξ (0) = y0.

Then if δ > 0 is the maximal time interval, then ξ (δ) ∈ ∂� ∪ {0}. On the other hand, it is

easy to see that

u(ξ (δ)) = u(y0) + |Du(y0)|δ > 0,

so that

ξ (δ) = 0.

Since |Du(ξ (t ))| ≡ |Du(y0)|, equation (3.12) implies that

|Du(y0)| = 1

r
.

Hence, we have

|Du(x)| ≡ 1

r
for all x ∈ �\{0},

so that u(x) = 1 − |x|
r . Since u|∂� = 0, this forces � = Br(0). �
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Corollary 3.2. The uniformly Lipschitz continuous function constructed in the intro-

duction is not C 2(Rn\{0}). �

Proof. By the construction and the comparison principle with cones, u

esssup
Rn |Du| = 1, (3.13)

u(0, −t ) = −t ∀t ≥ 0, (3.14)

and

u(x′, xn) = u(−x′, xn) ∀(x′, xn) ∈ R
n. (3.15)

It follows from equations (3.13), (3.14), and Theorem 1.1 that

u(x) = −|x| + o(|x|), x near 0. (3.16)

Assume that u ∈ C 2(Rn\{0}). Then |Du| is constant along its gradient follows, u is

linear on the half line {(0, . . . , 0, t )| t ≥ 0}. Since u(0, . . . , 0, 1) = 0, we have that for t > 0,

u(0, . . . , 0, t ) ≡ 0.

This contradicts equation (3.16). �

Definition 3.3. Let F be a closed set and g a uniformly Lipschitz continuous function

on F , we say that u : R
n → R is an absolutely minimal Lipschitz extension of (F , g), if

u|F = g and for any open subset U ⊂ R
n\F ,

sup
x,y∈U ,x�=y

u(x) − u(y)

|x − y| = sup
x,y∈∂U ,x�=y

u(x) − u(y)

|x − y| . (3.17)

�

In general, the uniqueness of absolutely minimal Lipschitz extensions is an open

problem. In the following, as an application of Lemma 3.1, we will prove the uniqueness

of absolutely minimal Lipschitz extensions for a special pair of (F , g). Fix e ∈ ∂ B1, we

choose F = {te||t ≤ 0} and g(x) = e · x. When n ≥ 2, we can see that u(x) = −|x| is an

absolutely minimal Lipschitz extension of (F , g). Moreover, Definition 3.3 implies that

any absolutely minimal Lipschitz extension u of (F , g) satisfies
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(i) esssup
Rn |Du| = 1;

(ii) u ≤ 0;

(iii) u is an infinity harmonic function in R
n\{0};

(iv) u(−te) = −t for t ≥ 0.

Here (i) and (iv) are obvious and (ii) follows if we apply equation (3.17) to the

open set Uε = {x ∈ R
n| u(x) > ε} for any ε > 0. Suppose that Uε �= ∅. Then we would have

that u|Uε
≡ ε, which is impossible. We want to say a little bit about (iii). It is clear that

u is an infinity harmonic function in R
n\F . By Lemma B.2 in Appendix B, we have that,

for x ∈ F \{0}, Du(x) = e. Hence, by the definition of viscosity solutions and (iv), u is an

infinity harmonic function on F \{0}.
The following corollary is an immediate result of Lemma 3.1.

Corollary 3.4. u(x) = −|x| is the unique absolutely minimal Lipschitz extension of

(F , g). �

A Appendix A: Simple Lemma of Isolated Singularities of Fully Nonlinear Elliptic
Equations

Let Sn×n denote the set of all n × n symmetric matrices. Suppose that F ∈ C (Sn×n × R
n ×

R × �) and satisfies that

F (M1, p, z, x) ≥ F (M2, p, z, x),

if all the eigenvalues of M1 − M2 are non-negative.

Definition A.1. We say that u ∈ C (�) is a viscosity supersolution (subsolution) of

F (D2u, Du, u, x) = 0,

if for any φ ∈ C 2(�) and x0 ∈ �,

φ(x) − u(x) ≤ (≥)φ(x0) − u(x0) = 0

implies that

F (D2φ(x0), Dφ(x0), φ(x0), x0) ≤ (≥)0.
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u is viscosity solution if it is both a supersolution and a subsolution. �

The following is a simple lemma. Similar argument can be found in [7].

Lemma A.2. Suppose that u ∈ C (B1) and is a viscosity solution of the equation

F (D2u, Du, u, x) = 0 in B1(0)\{0}.

Then u is either a viscosity supersolution or a viscosity subsolution in the entire ball.

In particular, if u is differentiable at 0, then u is a solution in the entire ball, i.e. 0 is a

removable singularity. �

Proof. Without loss of generality, we assume that u(0) = 0. We claim that if u is not a

viscosity supersolution, then there exist ε > 0 and p ∈ R
n such that

u(x) ≥ p · x + ε|x| in Bε (0). (A.1)

In fact, if u is not a viscosity supersolution in the entire ball, then there exists φ ∈
C 2(B1(0)) such that

φ(x) − u(x) < φ(0) − u(0) = 0 for x ∈ B1(0)\{0} (A.2)

and

F (D2φ(0), Dφ(0), u(0), 0) > 0.

Let us choose p = Dφ(0). If equation (A.1) is not true, then for any m ∈ N, there exists

xm ∈ B 1
m

(0) such that

u(xm) < φ(xm) + 1

m
|xm|. (A.3)

It is clear that xm �= 0. Let usdenote

φm(x) = φ(x) + xm

m|xm| · x.
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Let us choose ym ∈ B1(0) such that

u(ym) − φm(ym) = min
B1(0)

(u − φm).

It follows from equations (A.2) and (A.3), that ym �= 0 and limm→+∞ ym = 0. Hence,

F (D2φ(ym), Dφ(ym) + xm

m|xm| , u(ym), ym) ≤ 0.

Sending m → +∞, we obtain

F (D2φ(0), Dφ(0), u(0), 0) ≤ 0.

This is a contradiction. Hence, equation (A.1) holds. Similarly, we can show that if u is

not a viscosity subsolution at 0, then there exist ε > 0 and p ∈ R
n such that

u(x) ≤ p · x − ε|x| in Bε (0). (A.4)

Note that equations (A.1) and (A.4) cannot happen simultaneously. In particular, if u is

differentiable at 0 neither can happen. Hence, Lemma A.2 holds. �

Remark A.4. If F is the infinity Laplace operator, i.e. F (p, M) = p · M · p, then the vector

p ∈ R
n in equations (A.1) and (A.4) is not 0, since p = Dφ(0). �

B Appendix B: Tightness Argument and Conclusions

The results in this section are well known. We present here for reader’s convenience.

Lemma B.1. Suppose that u ∈ W1,∞(Rn) and satisfies that

(i) esssup
Rn |Du| ≤ 1;

(ii) for t ≥ 0,

u(0, . . . , 0, −t ) = −t.
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Then, for x = (x′, xn) ∈ R
n−1 × R,

u(x) ≤ xn. (B.1)

In particular, if (ii) is true for all t ∈ R, then u = xn for x ∈ R
n. �

Proof. Note that (i) and (ii) imply that esssup
Rn |Du| = 1. By (i) and (ii), we have that for

t > 0,

|u(x) + t | = |u(x) − u (0, . . . , 0, −t )| ≤
√

|x′|2 + (xn + t )2.

Hence

u(x)2 + 2tu(x) ≤ |x′|2 + x2
n + 2txn.

So

u(x)2

2t
+ u(x) ≤ |x′|2 + x2

n

2t
+ xn.

Sending t → +∞, we derive equation (B.1). �

Lemma B.2. Suppose that u ∈ W1,∞(B1(0)) and satisfies that

(i)

esssupB1(0)|Du| ≤ 1; (B.2)

(ii) for some e ∈ ∂ B1,

u(e) − u(0) = 1. (B.3)

Then for 0 < t < 1,

u(te) = u(0) + t (B.4)
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and

Du(te) = e. (B.5)

�

Proof. By equation (B.2), we have that, for any x, y ∈ B1(0),

|u(x) − u(y)| ≤ |x − y|.

Hence, equation (B.4) follows from equation (B.3) and the triangle inequality. Choose

x0 ∈ {te| 0 < t < 1}. Suppose that λm → 0 as m → +∞ and

lim
m→+∞

u(λmx + x0) − u(x0)

λm
= w(x).

By equations (B.2) and (B.4), w(x) satisfies that

esssup
Rn |Dw| ≤ 1

and

w(te) = t for all t ∈ R.

Hence, by Lemma B.1, w(x) = e · x. Since this is true for any sequence {λm}, we get that

lim
λ→0

u(λx + x0) − u(x0)

λ
= e · x.

Therefore, equation (B.5) holds. �
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