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Abstract For k ≥ 3, we establish new estimate on Hausdorff dimensions of the singular set of

stable-stationary harmonic maps to the sphere Sk. We show that the singular set of stable-stationary

harmonic maps from B5 to S3 is the union of finitely many isolated singular points and finitely many

Hölder continuous curves. We also discuss the minimization problem among continuous maps from Bn

to S2.

Keywords stable stationary harmonic map, Hausdorff dimension, rectifiablity

MR(2000) Subject Classification 58E20, 35J50

1 Introduction

Let Ω ⊂ R
n be a bounded, smooth domain, Sk = {x ∈ R

k+1 : |x| = 1} be a unit sphere in
R

k+1. The Sobolev space H1(Ω,Sk) = {v ∈ H1(Ω, Rk+1) : v(x) ∈ Sk for a.e. x ∈ Ω}. Recall
that u ∈ H1(Ω,Sk) is a harmonic map, if

Δu + |∇u|2u = 0, in D ′(Ω). (1.1)

It is well known that Schoen–Uhlenbeck [1, 2] have proved that if u ∈ H1(Ω,Sk) is an
energy minimizing harmonic map, then the Hausdorff dimension of S (u), the singular set of
u, is at most n − d(k) − 1, with

d(k) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2, k = 2,

3, k = 3,

min
{[

k

2

]

+ 1, 6
}

, k ≥ 4,

where [ ] is the integer part.
This theorem has been extended to stable stationary harmonic maps u ∈ H1(Ω,Sk), k ≥ 3,

by Hong–Wang [3].
One of the purposes of this note is to show that the theorems in [2] and [3] can be improved

for 4 ≤ k ≤ 7. In order to describe it, we recall

Definition 1 A harmonic map u ∈ H1(Ω,Sk) is a stationary harmonic map, if
∫

Ω

{

|∇u|2div(X) − 2
n∑

i,j=1

〈∇iu,∇ju〉∇iX
j

}

dx = 0, ∀X ∈ C1
0 (Ω, Rn). (1.2)
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Examples of stationary harmonic maps include energy minimizing harmonic maps and
smooth harmonic maps. The crucial property of stationary harmonic maps is the energy mono-
tonicity identity (cf. Price [4] or Schoen [5]) : For x ∈ Ω, 0 < r ≤ R < d(x, ∂Ω),

R2−n

∫

BR(x)

|∇u|2 − r2−n

∫

Br(x)

|∇u|2 = 2
∫

BR(x)\Br(x)

|y − x|2−n

∣
∣
∣
∣

∂u

∂|y − x|
∣
∣
∣
∣

2

. (1.3)

Definition 2 A harmonic map u ∈ H1(Ω,Sk) is a stable harmonic map, if
d2

dt2
|t=0

∫

Ω

∣
∣
∣
∣∇

(
u + tφ

|u + tφ|
)∣

∣
∣
∣

2

dx ≥ 0, (1.4)

or equivalently ∫

Ω

{|∇φ|2 − |∇u|2φ2} dx ≥ 0 (1.5)

for any φ ∈ C∞
0 (Ω, Rk+1), with 〈φ(x), u(x)〉 = 0 for a.e. x ∈ Ω.

It follows from the proof of [2] Theorem 2.7 that for k ≥ 3, (1.5) implies
∫

Ω

{

|∇η|2 − k − 2
k

|∇u|2η2

}

dx ≥ 0, ∀ η ∈ C∞
0 (Ω). (1.6)

Now we define

d̂(k) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

3, k = 3

4, k = 4
5, 5 ≤ k ≤ 9

6, k ≥ 10.

By direct comparison, we have that d̂(k) = d(k) for k = 3 and k ≥ 8, d̂(4) = 4 = d(4) + 1,
d̂(5) = 5 = d(5) + 2, d̂(6) = 5 = d(6) + 1, d̂(7) = 5 = d(7) + 1.

Now we are ready to state the first theorem.
Theorem 1 For k ≥ 3, let u ∈ H1(Ω,Sk) be a stable stationary harmonic map. Then the
singular set of u, S (u), has its Hausdorff dimension at most n − d̂(k) − 1.

From the compactness theorem on stable stationary harmonic maps into Sk (k ≥ 3) in [3]
and the dimension reduction argument in [1, 2], Theorem 1 follows from the nonexistence of
stable stationary tangent maps in R

m for m ≤ d̂(k). To show this fact, we need to establish
a sharp Kato’s type inequality for smooth harmonic maps from Sm to Sk (see Proposition 2.3
below). We remark that such an inequality has been proved for harmonic functions (see Yau
[6]), and for harmonic maps from S3 to S3 recently by Nakajima [7]. Moreover, It has been
proved by [7] that any tangent map at an isolated singular point of a stable stationary harmonic
map from B4 to S3 is, after isometry transformations, of the form x

|x| (see also Theorem 3.1
below). On the basis of this type of classifications, we are able to generalize the theorems by
Hardt–Lin [8] (see also Almgren–Lieb [9]) on minimizing harmonic maps from B3 to S2 and
prove
Theorem 2 Assume that u ∈ H1(B4,S3) is a stable stationary harmonic map. Then for
any 0 < ε < 1, there exist positive constants Kε, Lε such that (i)

r2−n

∫

Br(a)

|∇u|2 ≤ Kε, ∀Br(a) ⊂ B1−ε, (1.7)

and (ii) the number of singularities of u in B1−ε is bounded by Lε.
We are also able to extend the structure theorem on the singular set of minimizing harmonic

maps from B4 to S2 by Hardt–Lin [10] and obtain
Theorem 3 Assume that u ∈ H1(B5,S3) is a stable stationary harmonic map. Then for any
ε > 0, the singular set of u inside B1−ε is the union of finitely many isolated singular points
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and a finite collection of bi-Hölder continuous curves with a finite number of intersections.
Moreover, the number of isolated singular points, curves, and the intersection points is bounded
by a universal constant Mε > 0.

The paper is written as follows. In §2, we outline the proof of Theorem 1. In §3, we prove
Theorems 2 and 3. Since the stability condition for stable harmonice maps into S2 is void, it
remains unknown whether Theorem 1 remains to be true for k = 2. In §4, we consider a class of
harmonic maps which are weak limits among continuous maps to S2, and study their regularity
properties.

2 Kato’s Inequality and the Proof of Theorem 1
In this section, we prove a sharp version of Kato’s type inequality and combine it with both
the stablity inequality (2.1) and the Bochner formula (2.2) to show Theorem 1. We start with
Proposition 2.1 For m ≥ 2 and k ≥ 3, let φ ∈ H1(Sm,Sk) be a harmonic map such that
φ̄(x) = φ( x

|x| ) : R
m+1 → Sk is a stable harmonic map. Then we have

∫

Sm

{

|∇η|2 +
(m − 1)2

4
η2 − k − 2

k
|∇φ|2η2

}

≥ 0, ∀ η ∈ C∞(Sm). (2.1)

Proof Note that φ̄ is homogeneous of degree zero. For any η2 ∈ C∞(Sm), we let η(x) =
η1(|x|)η2( x

|x| ), where η1 ∈ C∞
0 (R+) satisfies

∫ ∞
0

(η′
1(r))2rm dr

∫ ∞
0

η1(r)2rm−2 dr
= inf

{ ∫ ∞
0

(η′(r))2rm dr
∫ ∞
0

η(r)2rm−2 dr
: η ∈ C∞

0 ((0, +∞))
}

=
(m − 1)2

4
,

and substitute it into (1.6). Then a straightforward calculation implies (2.1).
Now we recall the Bochner formula for smooth harmonic maps (see Eells–Lemaire [11]).

Proposition 2.2 For m, k ≥ 2, if φ ∈ C∞(Sm,Sk) is a harmonic map, then

Δ
(

1
2
|∇φ|2

)

= |∇2φ|2 + (m − 1)|∇φ|2 −
m∑

α,β=1

{|∇eα
φ|2|∇eβ

φ|2 − 〈∇eα
φ,∇eβ

φ〉2}, (2.2)

where {eα}m
α=1 is any local orthonormal frame of Sm.

The crucial step to improve d(k) is the following Kato’s type inequality for harmonic maps
(see Nakajima [7] for m = k = 3).
Proposition 2.3 If φ ∈ C∞(Sm,Sk) is a nonconstant harmonic map, then

|∇2φ|2 ≥ m

m − 1
|∇|∇φ||2, x ∈ Sm. (2.3)

Moreover, the equality holds at a point x ∈ Sm iff ∇2φ(x) = 0.
Proof By choosing normal coordinates at x0 ∈ Sm and φ(x0) ∈ Sk, we have

|∇2φ|2(x0) =
k∑

i=1

m∑

α,β=1

(φi
αβ(x0))2.

On the other hand, since φ is a harmonic map, we have
m∑

α=1

φi
αα(x0) = 0, ∀ 1 ≤ i ≤ k.

For any 1 ≤ i ≤ k, let {λi
α}1≤α≤m ⊂ R be the eigenvalues of (φi

αβ(x0)) such that |λi
1| ≤

· · · ≤ |λi
m|. Then we have

|∇2φ|2(x0) =
k∑

i=1

m∑

α=1

(λi
α)2, (2.4)

and
m∑

α=1

λi
α = 0, ∀ 1 ≤ i ≤ k. (2.5)
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On the other hand, by the Cauchy–Schwarz inequality and (2.5), we have
m−1∑

α=1

(λi
α)2 ≥ 1

m − 1

( m−1∑

α=1

λi
α

)2

=
(λi

m)2

m − 1
, 1 ≤ i ≤ k, (2.6)

so that
m∑

α=1

(λi
α)2 ≥ m

m − 1
(λi

m)2. (2.7)

By the Releigh quotient, we have, for 1 ≤ i ≤ k,

|λi
m|2 = sup

{0�=v∈Rm}

∑m
α=1(

∑m
β=1 φi

αβ(x0)vβ)2

|v|2 .

Therefore, we have

|∇φi|2(x0)|∇2φi|2(x0) ≥ m

m − 1

m∑

α=1

[ m∑

β=1

φi
αβ(x0)φi

β(x0)
]2

, 1 ≤ i ≤ k. (2.8)

Taking sum of (2.8) over i and applying the Cauchy–Schwarz inequality and the Minkowski
inequality, we have, at x0,

|∇φ|2|∇2φ|2̀`=
( k∑

i=1

|∇φi|2
)( k∑

i=1

|∇2φi|2
)

≥
( k∑

i=1

|∇φi||∇2φi|
)2

≥ m

m − 1

{ k∑

i=1

[ m∑

α=1

( m∑

β=1

φi
αβφi

β

)2] 1
2
}2

≥ m

m − 1

m∑

α=1

[ k∑

i=1

m∑

β=1

φi
αβφi

β

]2

=
m

m − 1
|〈∇2φ,∇φ〉|2.

Since |∇|∇φ||2 = |〈∇2φ,∇φ〉|2
|∇φ|2 , this yields (1.7).

Observe that the equality in (1.7) holds at x0 ∈ Sm if and only if both the Cauchy–Schwarz
inequality and the Minkowski inequality are equalities. This implies:

(i)

λi
1 = · · · = λi

m−1 = − λi
m

m − 1
, ∀ 1 ≤ i ≤ k,

(ii)
|∇2φ1|2
|∇φ1| = · · · =

|∇2φk|
|∇φk| ,

(iii) ∇φi(x0) is an eigenfunction of ∇2φi(x0) with the eigenvalue λi
m:

m∑

β=1

φi
αβ(x0)φi

β(x0) = λi
mφi

α(x0), ∀ 1 ≤ i ≤ k, 1 ≤ α ≤ m,

and (iv)
∑m

β=1 φi
αβ(x0)φi

β(x0)(= λi
mφi

α(x0)) is independent of 1 ≤ i ≤ k and 1 ≤ α ≤ m.
In particular, we have that ∇φi(x0) = μi(1, . . . , 1) for some μi �= 0 for 1 ≤ i ≤ k. Note that

(i) and (ii) imply
(λ1

m)2

(μ1)2
= · · · =

(λk
m)2

(μk)2
, (2.9)

and (iii) implies
λ1

mμ1 = · · · = λk
mμk. (2.10)

(2.9) and (2.10) imply |λi
1| = · · · = |λi

m|. Hence we have λi
α = 0 for all 1 ≤ α ≤ m, 1 ≤ i ≤ k,

i.e. ∇2φ(x0) = 0. This completes the proof of Proposition 2.3.
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Combining Proposition 2.2 with Proposition 2.3, we have
Proposition 2.4 If φ ∈ C∞(Sm,Sk) is a nonconstant harmonic map, then

Δ
(

1
2
|∇φ|2

)

≥ m

m − 1
|∇|∇φ||2 + (m − 1)|∇φ|2 +

1 − m

m
|∇φ|4. (2.11)

Furthermore, the equality holds at a point x ∈ Sm iff
∇2φ(x) = 0, |∇eα

φ|2(x) − |∇eβ
φ|2 = 0 = 〈∇eα

φ,∇eγ
φ〉 (2.12)

for all 1 ≤ α, β, γ ≤ m, α �= γ.
Proof Observe that the lower bound of the last term in (2.2) is given by

−
m∑

α,β=1

{|∇eαφ|2|∇eβ |2 − 〈∇αφ,∇βφ〉2} ≥
m∑

α=1

|∇αφ|4 − |∇φ|4

≥ 1
m

( m∑

α=1

|∇αφ|2
)2

− |∇φ|4

≥ 1 − m

m
|∇φ|4. (2.13)

Therefore (2.2) and (2.3) imply (2.11). Moreover, the equality in (2.11) holds iff both (2.3)
and (2.13) are equalities and hence (2.12) is true. This proves Proposition 2.4.

Now we are ready to show the obstruction for the existence of stable tangent maps. Recall
that a nonconstant map φ ∈ C∞(Sm,Sk) is called a stable tangent map, if φ is a harmonic map
and its homogeneous degree zero extension φ̄(x) = φ( x

|x| ) : R
m+1 → Sk is a stable harmonic

map.
Proposition 2.5 For m ≥ 2 and k ≥ 3, if φ ∈ C∞(Sm,Sk) is a stable tangent map, then
(m−1)2

4m ≥ k−2
k .

Proof By direct calculations, we have

Δ
(

1
2
|∇φ|2

)

= |∇φ|Δ|∇φ| + |∇|∇φ||2.
This, combined with (2.11), implies

Δ|∇φ| ≥ 4
m − 1

|∇|∇φ| 12 |2 + (m − 1)
(

|∇φ| − 1
m
|∇φ|3

)

. (2.14)

Integrating (2.14) over Sm, we obtain
∫

Sm

|∇|∇φ| 12 |2 +
(m − 1)2

4
|∇φ| ≤ (m − 1)2

4m

∫

Sm

|∇φ|3. (2.15)

On the other hand, the stablity inequality (2.1) implies
∫

Sm

|∇|∇φ| 12 |2 +
(m − 1)2

4
|∇φ| ≥ k − 2

k

∫

Sm

|∇φ|3. (2.16)

Therefore we have (
k − 2

k
− (m − 1)2

4m

) ∫

Sm

|∇φ|3 ≤ 0.

This implies k−2
k ≤ (m−1)2

4m . The proof is complete.

It is easy to check that if 2 ≤ m < d̂(k) then (m−1)2

4m < k−2
k . Therefore we obtain the

following non-existence theorem on stable tangent maps.
Proposition 2.6 For k ≥ 3, there exists no stable tangent map in R

m+1 for 2 ≤ m ≤ d̂(k)−1.
Completetion of Proof of Theorem 1 By the compactness theorem on stable stationary har-
monic maps into Sk (k ≥ 3) in [3] and Proposition 2.6, Theorem 1 follows from the Federer
dimension reduction argument as in [2].
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3 Proof of Theorems 2 and 3
In this section, we first review the classification theorem in [7] on stable tangent maps from R

4

to S3, which also follows from Propositions 2.4 and 2.5 above, and then we outline proofs of
Theorems 2 and 3, which are natural extensions of the corresponding theorems on minimizing
harmonic maps from B3 to S2 by Hardt–Lin [8] and Almgren–Lieb [9], and from B4 to S2 by
Hardt–Lin [10].
Theorem 3.1 ([7]) Suppose that φ ∈ C∞(S3,S3) is a nontrivial harmonic map such that its
homogeneous of degree zero extension φ̄(x) = φ( x

|x| ) : R
4 → S3 is a stable harmonic map. Then

φ̄(x) = Q

(
x

|x|
)

(3.1)

for some orthogonal rotation Q ∈ O(3).
Proof The reader can refer to [7] for the orginal proof. Here we indicate a slightly different
argument that follows from Propositions 2.4 and 2.5. In fact, when m = k = 3 we have
k−2

k = (m−1)2

4m . Therefore both (2.3) and (2.11) must be equalities and (2.12) is satisfied for
any x ∈ S3. In particular, φ : S3 → S3 is a conformal, totally geodesic map. This is possible iff
φ : S3 → S3 is an isometry.

A direct consequence of Theorem 2.1 is the following fact on stable stationary harmonic
maps from R

4 to S3.
Proposition 3.2 For a bounded domain Ω ⊂ R

4, if u ∈ H1(Ω,S3) is a stable stationary
harmonic map, then S (u), the singular set of u, is discrete, and for any x0 ∈ S ,

Θ(u, x0) = lim
r→0

r−2

∫

Br(x0)

|∇u|2 =
3
2
|S3|. (3.2)

Moreover, if there exists an r0 > 0 such that
∫

Br0 (x0)
|∇u|2 = 3

2 |S3|r2
0, then there exists a

Q ∈ O(3) such that u(x) = Q
(

x−x0
|x−x0|

)
for x ∈ Br0(x0).

Proof The discreteness of S (u) follows from the partial regularity theorem in [3]. Moreover,
it follows from the monotonicity identity (1.3) and the compactness theorem in [3] that for any
x0 ∈ S (u) and ri → 0, there exists a nontrivial smooth harmonic map φ ∈ C∞(S3,S3) such
that, after taking possible subsequences,

lim
i→∞

∥
∥
∥
∥u(x0 + rix) − φ

(
x

|x|
)∥

∥
∥
∥

H1(BR)

= 0, ∀R > 0. (3.3)

In particular, φ( x
|x| ) : R

4 → S3 is a stable harmonic map. Therefore, Theorem 3.1 implies
φ = Q for some Q ∈ O(3). Hence

Θ(u, x0) =
∫

B1

∣
∣
∣
∣∇

(

Q

(
x

|x|
))∣

∣
∣
∣

2

=
∫

B1

∣
∣
∣
∣∇

x

|x|
∣
∣
∣
∣

2

= 3
∫ 1

0

r dr|S3| =
3
2
|S3|.

This implies (3.2). This, combined with the monotonicity identity (1.3), implies

r−2

∫

Br(x0)

|∇u|2 =
3
2
|S3| + 2

∫

Br(x0)

|y − x0|−2

∣
∣
∣
∣

∂u

|y − x0|
∣
∣
∣
∣

2

, ∀ r > 0 small. (3.4)

If
∫

Br0 (x0)
|∇u|2 = 3

2 |S3|r2
0 holds for some r0 > 0, then (3.4) implies ∂u

∂|y−x0| = 0 for a.e. y ∈
Br0(x0). Therefore u(x) = φ( x−x0

|x−x0| ) for x ∈ Br0(x0), with some nontrivial smooth harmonic
map φ ∈ C∞(S3,S3). Applying Theorem 3.1 again, we have that there is a Q ∈ O(3) such that
u(x) = Q

(
x−x0
|x−x0|

)
in Br0(x0).

Now we are ready to prove Theorem 2.
Proof of Theorem 2 Since u ∈ H1(B4,S3) is a stable harmonic map, the stablity inequality
(1.6) implies ∫

B4
|∇u|2η2 ≤ 1

3

∫

B4
|∇η|2, ∀ η ∈ C1

0 (B4). (3.5)
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This implies, for any 0 < ε < 1,
∫

B1−ε

|∇u|2 ≤ Cε−1. (3.6)

Therefore (1.7) follows from (3.6) and the monotonicity identity (1.3).
To show (ii), we may assume for simplicity ε = 1

2 and prove that the number of singular
points of u inside B 1

2
is uniformly bounded. This follows if we can prove that there exists a

universal constant δ0 > 0 such that the distance between any two singular points of u inside
B 1

2
is at least δ0. Suppose that this is false. Then we may assume that there exist a sequence

of stable stationary harmonic maps ui ∈ H1(B4,S3) and a sequence of points xi ∈ B 1
2

with
|xi| → 0 such that {0, xi} ⊂ S (ui). Now we claim that there exists another universal constant
δ1 > 0 such that ∫

B2|xi|
|∇ui|2 ≥

(
3
2
|S3| + δ1

)

(2|xi|)2. (3.7)

For otherwise, the rescaled maps vi(x) = ui(|xi|x) : B2 → S3 satisfy

lim
i→∞

2−2

∫

B2

|∇vi|2 =
3
2
|S3|,

so that the compactness theorem of [3] implies that there exist a stable stationary harmonic
map v∞ ∈ H1(B4,S3) and a point x∞ ∈ S3 such that vi → v∞ in H1(B2), {0, x∞} ∈ S (v∞),
and

2−2

∫

B2

|∇v∞|2 =
3
2
|S3|.

This, combined with Proposition 3.2, implies v∞(x) = Q( x
|x| ) in B2 for some Q ∈ O(3).

Hence S (v∞) = {0}. We get the desired contradiction.
Proof of Theorem 3 With the help of Theorem 3.1, Proposition 3.2, the proof of Theorem 3
can be carried out exactly in the same manner as in Hardt–Lin [10]. We omit it here.

We end this section with a remark.
Remark 3.3 For m, k ≥ 3, if u ∈ H1(Bn,Sk) is a stable stationary harmonic map, then
S (u), the singular set of u, is an (n− d̂(k)− 1)-rectifiable set. In fact, since the set containing
all stable stationary harmonic maps from Bn to Sk forms a compact subset of H1

loc(B
n,Sk)

by the compactness theorem of [3], one can apply Simon’s proof [12] to this case to yield the
rectifiablity of S (u).

4 Harmonic Maps into S2

Since the stability inequality (1.6) for stable harmonic maps into S2 has no implication on the
regularity, we consider a special class of harmonic maps that are obtained from minimizing
sequences among continuous maps into S2. Some general discussions have been presented by
Lin [13], but the S2 case seems of particular interest.

For n ≥ 3, asssume that g ∈ C0(∂Bn,S2) has a continuous, H1-extension map G ∈
C0(Bn,S2) ∩ H1(Bn,S2). Consider an energy minimizing sequence {ui} ⊂ C0 ∩ H1(Bn,S2),
with ui|∂Bn = g. After taking possible subsequences, we may assume that ui → u weakly in
H1(Bn,S2) and there exists a nonnegative Radon measure μ on Bn such that |∇ui|2 dx → μ
as convergence of Radon measures. Moreover, by Fatou’s lemma, we know that there is a
nonnegative Radon measure ν, called a defect measure, such that μ = |∇u|2 dx + ν.

Lemma 4.1 u ∈ H1(Bn,S2) is a weakly harmonic map.
Proof Let φ ∈ C1

0 (Bn, R3), consider the maps ut
i(x) = ui(x) − t(φ(x) ∧ ui(x)) : Bn → S2 for

|t| sufficiently small. Then it is easy to see
|ut

i(x)|2 = 1 + O(t2), |∇ut
i(x)|2 = |∇ui(x)|2 + 2t〈∇(φ ∧ ui)(x),∇ui(x)〉 + O(t2).
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Setting wt
i(x) = ut

i(x)
|ut

i(x)| : Bn → S2, we have

lim
i→∞

∫

Bn

|∇wt
i |2(x) ≥ lim

i→∞

∫

Bn

|∇ui|2(x).

Note that

∇wt
i(x) =

∇ut
i(x)

|∇ut
i(x)| −

〈∇ut
i(x), ut

i(x)〉ut
i(x)

|ut
i(x)|3 ,

so that ∫

Bn

|∇wt
i(x)|2 =

∫

Bn

|∇ut
i(x)|2

|ut
i(x)|2 − |〈∇ut

i(x), ut
i(x)〉|2

|ut
i(x)|4 .

Since 〈∇ut
i(x), ut

i(x)〉 = O(t) we obtain

lim
i→∞

∫

Bn

|∇wt
i(x)|2 = lim

i→∞

∫

Bn

|∇ut
i(x)|2 + O(t2)

= lim
i→∞

∫

Bn

|∇ui|2 + 2t

∫

Bn

〈∇(φ ∧ ui)(x),∇ui(x)〉 + O(t2).

This implies limi→∞
∫

Bn〈∇(φ ∧ ui)(x),∇ui(x)〉 = 0. This implies Δu ∧ u = 0 in the sense of
distributions. Since |u| = 1, this implies u satisfies Δu + |∇u|2u = 0, and hence u is a weakly
harmonic map.

For the limit Radon measure μ, we have

Lemma 4.2 For any a ∈ Bn, 0 < r < da = 1 − |a|, then μ(Br(a))
rn−2 is monotonically nonde-

creasing with respect to r. In particular, Θn−2(μ, a) = limr→0
μ(Br(a))

rn−2 exists for any a ∈ Bn

and is uppersemicontinuous.
Proof See [13] Lemma 2.2. The basic reason is that a homogeneous of degree zero extension
is essentially admissiable, with some replacement near the origin by suitable rescalings of the
minimizing sequence.

For the limit Radon measure μ and the limit map u, we have the following Caccioppolli
type inequality.
Lemma 4.3 There is an ε0 > 0 such that for any θ ∈ (0, 1

2 ) there exists a Cθ > 0 such that
if μ(B2r(a))

(2r)n−2 ≤ ε20 for B2r(a) ⊂ Bn, then

μ(Br(a)
rn−2

≤ θ
μ(B2r(a))
(2r)n−2

+ Cθ

∫

B2r(a)
|u − uB2r(a)|2
(2r)n

, (4.1)

where uB2r(a) =
�

B2r(a) u

|B2r(a)| .

Proof See [13] Lemma 2.4 and Lemma 2.6.
Now we state two consequences of the Caccoppolli inequality (4.1).

Proposition 4.4 There exist ε0 > 0 and C0 > 0 such that if μ(B2r(a))
(2r)n−2 ≤ ε20 for B2r(a) ⊂ Bn

then
μ(Br(a))

rn−2
≤ C0

∫

B2r(a)
|u − uB2r(a)|2
(2r)n

. (4.2)

Proof (4.2) follows from (4.1) and a covering argument (see Simon [14]).

Proposition 4.5 There exists an ε0 > 0 such that if μ(B2r(a))
(2r)n−2 ≤ ε20 for B2r(a) ⊂ Bn, then

u ∈ C∞(Br(a),S2).

Proof First observe that (4.2) implies that if μ(B2r(a))
(2r)n−2 ≤ ε20 then we have the reverse Hölder

inequality: ∫

Br(a)
|∇u|2

rn−2
≤ C0

∫

B2r(a)
|u − uB2r(a)|2
(2r)n

. (4.3)
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It is well known that a weakly harmonic map u ∈ H1(Bn,S2) satisfying (4.3) enjoys the
partial regularity as above. The reader can also see [13] Theorem 2.3.
Remark 4.6 A direct consequence of (4.2) and Proposiition 4.6 is the following: There exist
ε0 > 0 and C1 > 0 such that if for Br0(a) ⊂ Bn, μ(Br0 (a))

rn−2
0

≤ ε20 then

μ(Br(a))
rn

≤ C1r
−2
0 , ∀ 0 < r ≤ r0

2
. (4.4)

In particular, there exists a nonnegative f ∈ L∞(B r0
2

(a)) such that

ν = f(x) dx. (4.5)

Proof Proposition 4.5 implies that u ∈ C∞(B r0
2

(a), S2) and

‖∇u‖C0(B r0
2

(a)) ≤ C1r
−1
0 . (4.6)

Therefore (4.2) implies

μ(Br(a))
rn−2

≤ C1

(
r

r0

)2

, ∀ 0 < r ≤ r0

2
. (4.7)

This implies (4.4). (4.5) follows from (4.4).
In fact, we have

Proposition 4.7 There exists an ε0 > 0 such that if μ(Br0 (a))

rn−2
0

≤ ε20, then ν ≡ 0 in B r0
2

(a).

Assuming for the moment the conclusion of Proposition 4.7, we have the following theorem.
Theorem 4.8 Under the above notations, set Σ = {a ∈ Bn : Θn−2(μ, a) ≥ ε20}. Then

(i) Σ is a closed subset and Hn−2(Σ ∩ Br) is finite for any 0 < r < 1.
(ii) Σ is an (n − 2)-dimensional rectifiable set.
(iii) u ∈ C∞(Bn \ Σ,S2).
(iv) ν ≡ 0 in Bn \ Σ and ui → u in H1

loc(B
n \ Σ,S2).

Proof (i) follows from the Vitali’s covering Lemma. (iii) follows from Proposition 4.5. (iv)
follows from Proposition 4.7. (ii) has been proved by [13] Theorem 3.5 (see also Lin [15]).

Now we return to the proof of Proposition 4.7.
Proof of Proposition 4.7 For n = 2, 3, we can refer to the proof by [13, Lemma 3.2]. For
n ≥ 4, the original proof of [13, Lemma 3.2] has a mistake, we outline a proof that is a suitable
modification of that of Luckhaus’ extension Lemma (see [16]). Since the proof is based on
inducation on n ≥ 4, for simplicity we only consider the n = 4 case.

To prove f ≡ 0 in B r0
2

, it suffices to show that for any a ∈ B r0
2

, there exists δ(r) > 0, with
limr→0 δ(r) = 0, such that

ν(Br(a)) ≤ δ(r)rn, ∀ 0 < r <
r0

4
. (4.8)

By scalings, we may assume that a = 0 and r0 = 2. From Proposition 4.5 and (4.6), we
have u ∈ C∞(B2,S2) with

‖∇u‖C0(B1) ≤ Cε0. (4.9)

By the Fubini’s theorem, we may assume that {ui} ∈ C0 ∩ H1(B2,S2) is the minimizing
sequence such that ui → u weakly in H1(B2,S2) and

∫

∂B1

|∇ui|2 ≤ Cε0, ∀ i ≥ 1, lim
i→∞

∫

∂B1

|ui − u|2 = 0. (4.10)

Now we need to prove the following Lemma.
Lemma 4.9 For any δ ∈ (0, 1), there exists a sequence of maps vi ∈ C0 ∩H1(B1 \B1−δ,S2)
such that

vi|∂B1 = ui, vi|∂B1−δ
= u

( ·
1 − δ

)

, (4.11)
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and
∫

B1\B1−δ

|∇vi|2 ≤ Cδ

∫

∂B1

(

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2)

+ Cδ−1

∫

∂B1

∣
∣
∣
∣ui(x) − u

(
x

1 − δ

)∣
∣
∣
∣

2

+ 0(i−1). (4.12)

Assuming Lemma 4.9 for the moment, we can prove (4.8) as follows. Define another sequence
of maps ūi ∈ C0 ∩ H1(B1,S2) by

ūi(x) =

⎧
⎨

⎩

u

(
x

1 − δ

)

, x ∈ B1−δ,

vi(x), x ∈ B1 \ B1−δ.

Then we have∫

B1

|∇u|2 + ν(B1) = lim
i→∞

∫

B1

|∇ui|2 ≤ lim
i→∞

∫

B1

|∇ūi|2

= lim
i→∞

(

(1 − δ)n−2

∫

B1

|∇u|2 +
∫

B1\B1−δ

|∇vi|2
)

≤
∫

B1

|∇u|2 + Cδ

(∫

∂B1

|∇u|2 + ν(∂B1)
)

.

This gives ν(B1) ≤ Cδμ(∂B1). Rescaling back to the original scales, we prove (4.8). Hence
f ≡ 0 in B r0

2
. The proof of Proposition 4.7 is complete.

Proof of Lemma 4.9 As mentioned before, Lemma 4.9 has been proved by [13] Lemma 3.2 for
n = 3. Now we want to show that Lemma 4.9 also holds for n = 4.

First we follow [16] to conclude that there exists a triangularization of S3 by boxes of side
lengths δ, {Δi}L

i=1 with L ≤ Cδ−3, such that

δ

L∑

i=1

∫

∂Δi

(

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2

+
∣
∣
∣
∣ui − u

( ·
1 − δ

)∣
∣
∣
∣

2)

≤ C

∫

S3

(

|∇ui|2 + |∇u|2 +
∣
∣
∣
∣ui − u

( ·
1 − δ

)∣
∣
∣
∣

2)

. (4.13)

By bi-Lipschitz transformation, we may assume that each sub-annual region Fj = {(r, θ) :
1 − δ ≤ r ≤ 1, θ ∈ Δj} can be identified by Gj = [1 − δ, 1] × Δj for 1 ≤ j ≤ L. Observe that
∂Gj = ({1} × Δj) ∪ ({1 − δ} × Δj) ∪ ([1 − δ, 1] × ∂Δj .

For 1 ≤ j ≤ L, applying Lemma 4.9 for n = 3, we conclude that there exists a map
vi ∈ C0 ∩ H1([1 − δ, 1] × ∂Δj ,S2) such that

vi|{1}×∂Δj
= ui|{1}×∂Δj

, vi|{1−δ}×∂Δj
= u

( ·
1 − δ

)∣
∣
∣
∣
{1−δ}×∂Δj

and
∫

[1−δ,1]×∂Δj

|∇vi|2 ≤ Cδ

∫

∂Δj

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2

+ Cδ−1

∫

∂Δj

∣
∣
∣
∣ui − u

( ·
1 − δ

)∣
∣
∣
∣

2

. (4.14)

Now define wi ∈ C0(∂Gj , S
2) by letting wi = ui on {1}×Δj , wi = u( ·

1−δ ) on {1− δ}×Δj ,
and wi = vi on [1 − δ, 1] × ∂Δj .

We now divide it into two cases:
(1) α = [wi] ∈ Π3(S2) is trivial: In this case we know that wi has a continuous, H1-

extension w̄i : Gj → S2 such that
∫

Gj

|∇w̄i|2 ≤ C

( ∫

∂Gj

|∇wi|2
)

. (4.15)
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Therefore we can use the same construction as that in the proof of Lemma 4.2 (see also
[13, Lemma 2.2]) to find an essentially homogeneous of degree zero extension map w̃i ∈ C0 ∩
H1(Gj ,S2) of wi such that for any ε > 0
∫

Gj

|∇w̃i|2 ≤ Cδ

∫

∂Gj

|∇wi|2+Ci−1

∫

Gj

|∇w̄i|2 ≤ Cδ

∫

∂Gj

|∇wi|2+i−1C

( ∫

Gj

|∇wi|2
)

. (4.16)

(2) α = [wi] ∈ Π3(S2) is nontrivial: Although wi doesn’t have continuous extension from
Gj to S2, the theorem of White [17] implies that α−1 ∈ Π3(S2) can be represented by a map
fi ∈ C1(S3,S2) such that fi ≡ pi in S3 \ Bεi

for some pi ∈ S2, with εi → 0, and
∫

Bεi

|∇fi|2 ≤ i−1. (4.17)

Now we first modify wi on a small ball B2εi
⊂ [1 − δ, 1] × ∂Δj to obtain w̄i such that

[w̄i] = [wi] = α, w̄i ≡ pi in Bεi
⊂ [1 − δ, 1] × ∂Δj , and

∫

∂Gj

|∇w̄i|2 =
∫

∂Gj

|∇wi|2 + 0(εi). (4.18)

Next we glue w̄i with fi along ∂Bεi
⊂ [1− δ, 1]× ∂Δj and denote the resulting map by ŵi.

It is readily seen that [ŵi] ∈ Π3(S2) is trivial,

ŵi|{1}×Δj
= ui|{1}×Δj

, ŵi|{1−δ}×Δj
= u

( ·
1 − δ

)∣
∣
∣
∣
{1−δ}×Δj

,

and ∫

∂Gj

|∇ŵi|2 ≤
∫

∂Gj

|∇wi|2 + Ci−1 + O(εi). (4.19)

Now we can follow the same construction as in (1) to obtain an extension w̃i ∈ C0 ∩
H1(Gj , S

2) such that w̃i = ui on {1} × Δj , w̃j = u( ·
1−δ ) on {1 − δ} × Δj , and

∫

Gj

|∇w̃i|2 ≤ Cδ

∫

∂Gj

|∇wi|2 + O(i−1, εi)

≤ Cδ

[ ∫

Δj

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2

+
∫

[1−δ,1]×∂Δj

|∇vi|2
]

+ O(i−1, εi)

≤ Cδ

[ ∫

Δj

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2

+ δ

∫

∂Δj

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2

+ δ−1

∫

∂Δj

∣
∣
∣
∣ui − u

( ·
1 − δ

)∣
∣
∣
∣

2]

+ O(i−1, εi). (4.20)

Finally we repeat the above construction over Gj for 1 ≤ j ≤ L to obtain an extension map
w̃i ∈ C0 ∩ H1(B1 \ B1−δ,S2) that satisfies (4.11) and

∫

B1\B1−δ

|∇w̃i|2 ≤ Cδ

L∑

i=1

∫

Δj

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2

+ Cδ
L∑

i=1

(

δ

∫

∂Δj

|∇ui|2 +
∣
∣
∣
∣∇u

( ·
1 − δ

)∣
∣
∣
∣

2

+ δ−1

∫

[1−δ,1]×Δj

∣
∣
∣
∣ui − u

( ·
1 − δ

)∣
∣
∣
∣

2)

+ O(i−1).

This, combined with (4.13), implies (4.12). Therefore the proof of Lemma 4.9 is complete.
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