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Abstract

In this paper, we first establish regularity of the heat flow of biharmonic maps into the unit
sphere S* € RE*! under a smallness condition of renormalized total energy. For the class of such
solutions to the heat flow of biharmonic maps, we prove the properties of uniqueness, convexity
of hessian energy, and unique limit at ¢ = oo. We establish both regularity and uniqueness
for Serrin’s (p, ¢)-solutions to the heat flow of biharmonic maps into any compact Riemannian

manifold N without boundary.

1 Introduction

Forn>4and L > k > 1, let 2 C R" be a bounded smooth domain and N C RLtL be a k-
dimensional compact Riemannian manifold without boundary. For m > 1, p > 1, the Sobolev
space WP (Q, N) is defined by

Wm™P(Q,N)={ve WmP(Q,REY)  w(z) € N for ae. z € Q}.

On W?22(Q, N), there are two second order energy functionals:
Ea(w) = [ 18uf and Fau) = [ (a0
Q Q

where (Au)T is the tangential component of Au to T, N at u, which is called the tension field of u
([6]). A map u € W22(€Q, N) is called an extrinsic (or intrinsic) biharmonic map, if u is a critical
point of Es(-) (or Fy(-) respectively). It is well known that biharmonic maps are higher-order
extensions of harmonic maps, which are critical points of the Dirichlet energy Ej(u) = [, |Vul?
over WH2(Q, N). Recall that the Euler-Lagrange equation of (extrinsic) biharmonic maps is given
by ([41] Lemma 2.1):

Au = Ny [u] = [A(A(w)(Vu, V) + 2V - (Au, V(P(w))) — (A(P(u)), Au)] L T, N, (1.1)

where P(y) : REFY — T, N is the orthogonal projection for y € N, and A(y)(:,-) = VP(y)(-,-) is
the second fundamental form of N at y € N. Throughout this paper, we always use /\/bh[u] to

denote the nonlinearity in the right hand side of the biharmonic map equation (1.1).



Motivated by earlier studies on regularity of harmonic maps by Schoen-Uhlenbeck [39], Hélein
[13], Evans [7], Bethuel [2], Lin [25], Riviere [31], and many others, the study of biharmonic maps
has attracted considerable interest in the field and prompted a large number of interesting works
by many analysts in the last several years. The regularity of biharmonic maps to N = S” — the unit
sphere in REF! — was first studied by Chang-Wang-Yang [4]. Wang [41, 42, 43] extended the main
theorems of [4] to any compact Riemannian manifold N without boundary. It asserts smoothness
of biharmonic maps in dimension n = 4, and the partial regularity of stationary biharmonic maps
for n > 5. Here we mention in passing the interesting works on biharmonic maps by Angelsberg
[1], Strzelecki [30], Hong-Wang [16], Lamm-Riviere [23], Struwe [38], Ku [19], Gastel-Scheven [10],
Scheven [33, 34], Lamm-Wang [24], Moser [27, 28|, Gastel-Zorn [11], Hong-Yin [17], and Gong-
Lamm-Wang [12].

The initial and boundary value problem for the heat flow of biharmonic maps is follows. For
0 < T < 400, and ug € W22(Q, N), a map u € Wy 2(Q x [0,T], N), i.e. dyu, V2u € L2(2 x [0,T]),

is called the heat flow of a biharmonic map, if u satisfies in the sense of distributions

Opu+ APu =Ny [u] in Qx (0,7T)

u =uyg on dp(2 x [0,T7) (1.2)
Ou  dug
% —E on 39 X [0,1—1)7

where v denotes the outward unit normal of 0€2. Throughout the paper, we denote 9,(2 x [0,T]) =
(2 x {0}) U (092 x (0,T)) as the parabolic boundary of € x [0, 7.

The formulation of heat flow of biharmonic maps (1.2) remains unchanged, if Q2 is replaced by
a n-dimensional compact Riemannian manifold M with boundary M. On the other hand, if Q
is replaced by M that is a n-dimensional compact Riemannian manifold without boundary or a
complete, non-compact Riemannian manifold without boundary, then the Cauchy problem of heat

flow of biharmonic maps is considered. More precisely, if M = (), then (1.2) becomes

{ Opu + Au =Ny [u] in M x (0,T) (1.3)

u =g on M x {0}.

The Cauchy problem (1.3) was first studied by Lamm [21], [22] in dimension n = 4 for
ug € C°(M,N), where the existence of a unique, global smooth solution is established under
the condition that [lug|ly2.2(p) is sufficiently small. For any ug € W22(M, N), the existence of
a unique, global weak solution to (1.3), that is smooth away from finitely many times, has been
independently proved by Gastel [9] and Wang [44]. The interested readers can verify that with
suitable modifications of their proofs, the existence theorem by [9] and [44] remain to hold for (1.2)
in any compact 4-dimensional Rimannian manifold M with boundary dM, if, in addition, the trace
of ug on OM for ug € W22(M, N) satisfies uo|ons € W%’2(8M, N). Namely, there is a unique,
global weak solution u € WQIQ(M x [0,00), N) to (1.2) such that

(i) E2(u(t)) is monotone decreasing for ¢ > 0; and



(ii) there are Tpo =0 < T} < ... < Ty < Ty4+1 = 400 such that

k k
ue [ C®(M x (T, Tiy1),N) and Vu € [|C*(M x (T, Tiy1), N), V a € (0,1).
i=0 i=0
For dimensions n > 4, Wang [45] established the well-posedness of (1.3) on R” for any ug : R — N
that has sufficiently small BMO norm. Moser [29] showed the existence of global weak solutions
u € W212(Q x [0,00), N) to (1.2) on any bounded smooth domain  C R" for n < 8 and ug €
W22(Q, N).

Due to the critical nonlinearity in the evolution equation (1.2); of heat flow of biharmonic
maps, the question of regularity and uniqueness for weak solutions of (1.2) is very challenging for
dimensions n > 4. There has not been much work done in this direction. This motivates us to
study these issues for the equation (1.2) in this paper. Another motivation for us to study these
issues comes from our recent work [14] on the these issues for the heat flow of harmonic maps.
We are able to obtain several interesting results concerning regularity, uniqueness, convexity, and
unique limit at time infinity of the equation (1.2), under the smallness condition of renormalized
total energy.

Before stating our main theorems, we need to introduce some notations.

Notations: For 1 < p,q < 400, 0 < T < 00, define the Sobolev space
Wh2(Q x [0, 7], N) = {u e L2([0,T], W22(Q,N)) : v € Lz([O,T],LQ(Q))},
the LLE-space
LILP(Q x [0, T], RE+) = {f Q% [0,T] » REL . e L9([0, 7Y, LP(Q))},

and the Morrey space Mﬁ’A for0<A<n+4,0<R<oo,and U=U; xUs CR" xR:

MENU) = {fELloc HfHMwU +oo},
where

1
B A—n—4 p\P
= su su r
HfHM]%’A(U) <( P ; b /R(m,t) /! )

z,t)€U 0<r<min{ R,d(x,0U1),V/1}

and

By(z)={y e R": |y —z| <7}, P(x,t) = B(2) x [t —r*,t], d(z,0U;) = igg |z — yl.
yedUs

Denote B, (or P,) for B,(0) (or P(0) respectively), and MPAU) = MENU) for R = co. We also
recall the weak Morrey space for R = oo, MY ’)‘(U ), that is the set of functions f on U such that

4)
il sup  {P A g | < o,

(U) r>0,(z,t)eU



where LP*(P(x,t) NU) is the weak LP-space, that is the collection of functions v on P, (x,t) N U
such that

o850 r, e = 590 {1z € P ) AT [o(2)] > a) ] < +oo.
Recall that if N = S* := {y € RF*+!: |y| = 1}, then direct calculations give
Npplu] = —(|Au® + A(|Vul?) + 2(Vu, VAu))u,
so that the heat flow of biharmonic maps to S¥, (1.2);, can be written as
du + A%u = —(|Aul* + A(|Vul?) + 2(Vu, VAU)))u. (1.4)
The first theorem addresses the regularity of (1.4).

Theorem 1.1 For 1 < p <2 and 0 < T < 400, there exists €, > 0 such that if u € W212(Q X
[0,T],S%) is a weak solution to (1.4) and satisfies that, for zo = (zq,t0) € 2 x (0,T] and 0 < Ry <
2 min{d(zo, 9Q), Vo },

2
IV ullag e g aoy) 196l argn g o)) < € (1.5)

then u € C™ (P@ (20), SL>, and
16

‘Vmu’(zo) < C—Sg, Vom > 1. (1.6)
Ry

Remark 1.2 It is an open question whether Theorem 1.1 holds true for any compact Riemannian
manifold N without boundary (with p = 2).

Utilizing this regularity theorem, we have the following uniqueness theorem.

Theorem 1.3 Forn >4 and 1 < p < 2, there exist g = €p(p,n) > 0 and Ry = Ro(£2, e9) > 0 such
that if uy, ug € W21’2(Q x [0,T),St) are weak solutions to (1.2), with the same initial and boundary
value ug € W2(Q,SL), that satisfy

2
maxx | [V=uill sz 0.1 + 198l aincan oy | < €0 (17)
then uy = ug on 2 x [0,T.
There are two main ingredients to prove Theorem 1.3:

(i) The interior regularity of u; (i = 1,2): u; € C=(Q x (0,7T),S") and

1 1 1
m i , < —_— T~ mo 1
max [V (2 t)NEO<R6” dm(x,89)+t4> "

for any (z,t) € Q2 x (0,T) and m > 1.
(ii) The energy method, with suitable applications of the Poincaré inequality and the higher-order
Hardy inequality (see Lemma 3.1 below).



Remark 1.4 (i) We would like to point out that the novel feature of Theorem 1.3 is that the solu-
tions may have singularities at the parabolic boundary 0,(Q2 % [0,T]). Thus the standard argument
to prove uniqueness for classical solutions is not applicable.

(ii) For Q = R"™, if the initial data ug : R™ — N satisfies that for some Ry > 0,

sup {r4”/ |V2up|? : z € R",r < Rg} < e,
By (x)

then by the local well-posedness theorem of Wang [45] there exists 0 < To(~ R3) and a solution
u € C®R" x (0,Tp), N) of (1.8) that satisfies the condition (1.7).

Prompted by the ideas of proof of Theorem 1.3, we obtain the convexity property of the Es-

energy along the heat flow of biharmonic maps to S”.

Theorem 1.5 Forn > 4,1 < p <2, and 1 < T < oo, there exist ¢ = eg(p,n) > 0, Ry =
Ro(2,e0) >0, and 0 < Tp = To(eo) < T such that if u € W21’2(Q x [0,T],SY) is a weak solution to
(1.2), with the initial and boundary value ug € W22(Q,S%), satisfying

2
1A u”M}%ﬁ”(QX(O’T)) + HatuHM;glp(Qx(o’T)) < €0, (1.9)

then
(i) E2(u(t)) is monotone decreasing for t > Ty; and
(ii) for any ty >t > To,

vt —utea? <[ [ 1auttP - [ aut)P] (110)
for some C = C(n,¢y) > 0.

A direct consequence of the convexity property of Fs-energy is the unique limit at ¢t = oo of
(1.2).

Corollary 1.6 Forn > 4 and 1 < p < 2, there exist €9 = €p(p,n) > 0, and Ry = Rp(2,€9) > 0
such that if u € Wy (Q x [0,00),S%) is a weak solution to (1.2), with the initial and boundary
value ug € W22(Q,St), satisfying the condition (1.9), then there exists a biharmonic map us €

. Qo ou
C®NW22(Q,SY), with (teo, W) = (uo, a—yo) on 0%, such that

tn u(t) — o ) =0, (1.11)
and, for any compact subset K CC 2 and m > 1,
li t) — m(ry = 0. 1.12
i u(t) = w1 (1.12)

Remark 1.7 (i) We would like to remark that if Theorem 1.1 has been proved for any compact
Riemannian manifold N without boundary, then Theorem 1.3, Theorem 1.5, and Corollary 1.6

would be true for any compact Riemannian manifold N without boundary.



(ii) With slight modifications of the proofs, Theorem 1.1, Theorem 1.3, Theorem 1.5, and Corollary
1.6 remain to be true, if Q is replaced by a compact Riemannian manifold M with boundary OM .
(iii) If Q is replaced by a compact or complete, non-compact Riemannian manifold M with OM = ()
then Theorem 1.1, Theorem 1.3, Theorem 1.5, and Corollary 1.6 remain to be true for the Cauchy
problem (1.3). In fact, the proof is slightly simpler than the one here, since we don’t need to use
the Hardy inequalities.

(iv) Schoen [35] proved convexity of the Dirichlet energy for harmonic maps into N with nonpositive
sectional curvature. The convexity for harmonic maps into any compact manifold N with small
renormalized energy was proved by [14]. In §3 below, we will show the convezity for biharmonic
maps with small renormalized Es-energy. Theorem 1.5 seems to be the first convexity result for the
heat flow of biharmonic maps — a higher-order geometric evolution equation.

(v) In general, it is a difficult question to ask whether the unique limit at t = oo holds for geometric
evolution equations. Simon in his celebrated work [36] showed the unique limit at t = oo for smooth
solutions to the heat flow of harmonic maps into a real analytic manifold (N,h). Corollary 1.6

seems to be first result on the unique limit at time infinity for the heat flow of biharmonic maps.

A natural class of weak solutions satisfying the smallness condition (1.9) are Serrin’s (p, q)-
solutions. We say a weak solution u € Wy(€2 x [0,T], N) to (1.2) is a Serrin’s (p, q)-solution if, in
addition, V2u € L{LE(2 x [0,T7]) for some p > % and ¢ < oo satisfying

nod_y (1.13)
p g
In §5, we will prove that if u is a Serrin’s (p, ¢)-solution of (1.2), with p > %,¢ < oo and an initial
and boundary data ug € W"(Q, N) for some r > 2, then u satisfies (1.9) for some pg > 1. Thus,
for N = S*, the regularity and uniqueness properties for Serrin’s (p, q)-solutions to (1.2) with
p> 75, q¢ < oo follow from Theorem 1.1 and Theorem 1.3.
For a compact Riemannian manifold N without boundary, the regularity and uniqueness prop-

erties for Serrin’s (p, ¢)-solutions to (1.2) need to be proven by different arguments. We have

Theorem 1.8 Forn >4 and 0 < T < oo, let uj,ug € W212(Q x [0,T],N) be weak solutions to
(1.2), with the same initial and boundary value ug € W22(Q, N). If, in addition, V*uy, V?uy €
LILE(Q x [0,T]) for some p > & and q < oo satisfying (1.13), then ui,uz € C=(Q x (0,T),N),
and u; = uy in Q x [0,T].

Remark 1.9 (i) It is a very interesting question whether Theorem 1.8 holds for Serrin’s (p,q)-
solutions to (1.2) in the end-point case p =5 and q = o0,
(ii) Ifup € W2"(M, N) for somer > %, then the local existence of Serrin’s (p,q)-solutions to (1.2),

for some p > % and q < oo, can be shown by the fized point argument (see, e.g. [8] §4).

In dimension n = 4, by applying Theorem 5.2 (with p = 2 (= §) and ¢ = 00) and the second

half of the proof of Theorem 1.3, we obtain the following uniqueness result.



Corollary 1.10 Forn =4 and 0 <T < oo, there exists € > 0 such that if up and ug € W212(Q X
[0,T], N) are weak solutions of (1.2), under the same initial and boundary value ug € W22(Q, N),
satisfying
limsupEg(ui(t)) < Eg(ui(to)) + €1, Vitg € [O,T), (114)
titd
fori=1,2. Then uy = ug in Q x [0,T). In particular, the uniqueness holds among the class of

weak solutions of (1.2), whose Es-energy is monotone decreasing for t > 0.

We would like to point out that for the Cauchy problem (1.3) of heat flow of biharmonic maps
on a compact 4-dimensional Riemannian manifold M without boundary, Corollary 1.10 has been
recently proven by Rupflin [32] through a different argument.

Concerning convexity and unique limit of (1.2) at t = oo in dimension n = 4, we have

Corollary 1.11 For n = 4, there exist e > 0 and 11 > 0 such that if u € W212(Q x (0,4+00),N)
is a weak solution of (1.2), with the initial-boundary value ug € W*2(Q, N), satisfying

Ex(u(t)) < €3, Vt>0, (1.15)

then (i) Ea(u(t)) is monotone decreasing for t > Ti;
(ii) for to > t1 > T, it holds

/Q V2 (u(t1) — u(t2))]” < C (Ba(u(tr)) — Ex(u(t2)))

for some C = C(e2) > 0; and
O 0
(iii) there erists a biharmonic map us € C* N W22(Q, N), with (tso, u—y) = (uyp, %) on 09,
such that tlim [u(t) — voollw22(0) = 0, and for any m > 1, K CC Q, tlim lu(t) — toollcm(xy = 0.
—00 —00

It is easy to see that the condition (1.15) holds for any solution u € W212(Q x [0,00),N) to
(1.2), if Ea(u(t)) < Fa(ug) for t > 0 (e.g. the solution constructed by [9] and [44]) and F2(ug) < €2.

The paper is written as follows. In §2, we will prove the e-regularity Theorem 1.1 for weak
solutions to (1.2) under the assumption (1.5). In §3, we will show both convexity and uniqueness
property for biharmonic maps with small Fs-energy. In §4, we will prove the uniqueness Theorem
1.3, the convexity Theorem 1.5, and the unique limit Theorem 1.6. In §5, we will discuss Serrin’s
(p, q)-solutions to (1.2). We will prove Theorem 1.8 on both regularity and uniqueness of Serrin’s
solutions, Corollary 1.10, and Corollary 1.11. In §6 Appendix, we will sketch a proof for the

higher-order regularity of heat flow of biharmonic maps.

2 e-regularity

This section is devoted to the proof of Theorem 1.1, i.e. the regularity of heat flow of biharmonic
maps to S under the smallness condition (1.5). The idea is motivated by that of [4] on the

regularity theorem of stationary biharmonic maps to S¥.



The first step is to rewrite (1.4) into the form where nonlinear terms are of divergence structures,

analogous to the equation of biharmonic maps to S” discovered by [4]. There are four types of

nonlinearities with divergence structures appearing in (1.4):
T = (U?Auﬁ(uﬂ - Cﬁ))j or ((uo‘ - c%ufu%)j
T, =A ((ua - CO‘)|VUB|2> , A ((uﬁ — cﬁ)Auﬁ) , or A (ua(uﬁ - cB)Auﬁ>
= ((U6 B Cﬁ)u?)jn'

T, = (uo‘utﬁ - u’guto‘) (uﬁ —0'8>,

(2.1)

where the upper index «, 3, etc, denotes the component of a vector function, the lower index 7, j,

etc, denotes the differentiation in the direction z;, x;, etc, and ¢ € RI*1 is a bounded constant.

Lemma 2.1 The equation of heat flow of biharmonic maps (1.4) is equivalent to

ug + A%u = F(T1, Ty, T3, Ty) := a linear combination of terms of T1, T, T3 and Ty,

whose coefficients can be bounded independent of u.

(2.2)

Proof. To prove (2.2), we follow [4] Proposition 1.2 closely. First, by Lemma 1.3 of [4], we have

that, for every fixed «,

c*A (|Vu5 |2> and (u;ﬂVu'B |2> ~ are linear combination of terms of 17,73, T3.
J

Set
S = u®|AuP|?, Sy = 2uauf (Auﬁ)j, Sz = u*A (\VUBIQ) .

Differentiation of |u| =1 gives
u“u§ =0, uP Auf +|VuP|? = 0.

By (1.2), we have
u AP 4+ utul = WP A+ uPud

It follows from (2.5) and (2.6) that
Sy,
- =u u?(Au’B)j

= (u(au”); — u’ (Au),)

] (u(Au?); = (Au); — uf A’ + ol Au®) 4l (1§ Au® — uf Aue)

- { (uﬁ - 0’8) (ua<Auﬁ)j —u? (A, — A+ quua)}
(w7 = o) (w0 — ) + uf (ug A - u)Au®)

= {(uﬂ — cﬁ) (uo‘Auﬁ — uﬂAua) }jj — {uJ’B (uo‘AuB — uBAua) }j

-2 { (uﬁ - cﬂ> (u?Auﬂ - quua> }j + u]’B (U?A’U,B - u?Auo‘) + Ty

J

= {u@ (uo‘Auﬁ — uﬁAua) } + u]ﬁ (u?‘AuB — quuo‘> + Ty + T + T4 terms.
J

8

(2.3)

(2.4)

(2.7)



By (2.3) and (2.5), we have
Ss = (u® — ™) A (|vuﬁ\2) + A (yvuﬂP)

3
=A ((ua‘ —c?) |Vu5|2> — 2uf (|Vuﬂ|2>j — Au®|VuP? + ZTl terms
=1

3 (2.8)
=—2 (u?\Vuﬁ\Q) 4 Au|VUP)? + ZT; terms
J 1=1
3
= — AudPAu® + Z T; terms.
=1
By (2.8), the definition of S1, and (2.7), we have
3
S1+ 855 = (uaAu'B — uBAua> AuP + Z T, terms
=1
= { (uO‘Auﬁ — uBAua> ujﬁ} - (U?Auﬁ - quua> u]’g
J
3 (2.9)
— (u"Au? — uBAuJQ‘) uf + Z T, terms
=1
Z—S2—SQ+Z3:T terms
2 2 : '
=1
Therefore we obtain
S1 + S + S3 = a linear combination of 11,715, T3, Ty terms.
This completes the proof. O

Next we recall some basic properties of the heat kernel for A? in R™ and the notion of Riesz

potentials on R"*1. Let b(x,t) be the fundamental solution of

(0 + A%*)v =0 in R

b(z,t) =t"1g <€) :
ta

o6) = 2m 8 [ et gerr,

Then we have (see [20] §2.2):

where

and the estimates:
1 —n—m 1
‘Vmb(x,t)‘ <c(ffi+lal) "V @) eRPL Y m> 1. (2.10)
To study (1.2), we equip R"™! with the parabolic distance d:

5((2,1), (y,5)) = [t — 5|7 + |z — y|, (z,8), (y,5) € R™F\,



We define the Riesz potential of order a in R"*! with respect to 6, for 0 < a < n + 4, by

(Pt = |

Rn+1

1 a—n—4 n+l
(lt=sl+le=9l)" " Iflw9), (@) e R™L (2.11)
Now we are ready to prove the e-regularity property for heat flow of biharmonic maps to S”.

Proposition 2.2 For any 1 < p < 2, there exists €, > 0 such that if u : Py — St is a weak solution
of (1.4) and satisfies

sup 1"27’"4/ (IV2ul? 4+ r?|Opul?) < €b, (2.12)
(z,t)EP2,0<r<2 Pr(z,t)

then u € COO(P%,SL), and

v

< > 1. 2.1
enpy S Cam), V> (213)

Proof. We first establish Holder continuity of « in P% . It is based on the decay estimate:
Claim. There exist ¢, > 0, ¢ > 1, and 6y € (0, %) such that for any zo = (xg,%0) € PLand 0 < r < 1,

1
][ lu— uPoor(Zo)|q < 2][ lu — UPT(ZO)’q’ (2.14)
Poyr(20) Pr(z0)
where up, () = ]{3 ( )u, 0 < r <1, denotes the average of u over P.(2p).
r{Z0

By translation and scaling, it suffices to show (2.14) for zgp = (0,0) and r = 2. First, we need
to extend u from P; to R"*!. Let the extension, still denoted by u, be such that

lul <2in R" 4 =0 outisde P,

and

/ V2l + Bl < / V2ulP + |Byul?.
Rn+1 Py
For 1 <1 <4, let w; : Riﬂ — RLH! be the solution to the equation:

Oywy + Ale =T; in RTJLF—H

(2.15)
w; =0 on R" x {0}.
Define v : P, — REHL by
v =wu— F(wy,ws, w3, wy).
Here F is the linear combination of wy,...,wy given by Lemma 2.1. By (2.2) we have
O+ A% =0 in Pj. (2.16)
It follows from (2.15) and the Duhamel formula that for 1 <1 < 4,
wy(x,t) = / b(x —y,t —s)Ti(y,s), (z,t) € RT‘I. (2.17)
nx[0,t]

10



Set ¢ = u$, in (2.1). Considering Ty = ((uo‘ - u%Q)ufuzﬁj)] (other forms of 77 can be handled

similarly), we obtain

wi (2, )] =

[ Vbl et = ) = il 0.
R™ % [0,¢]

f —n—1 (2.18)
S (sl —al) "l unl Vul V.

§I3 (XP2 ’u - ZLPQHVUHVQ’U,’) (J}, t)?
where x p, is the characteristic function of Ps.

By the estimates of Riesz potentials in L9-spaces (see also §5 below), we have that for any

feLi1<q<+oo, Io(f) € LI, where % = % — 7%4' If ¢1, q1 > 1 satisfy

i1, t.1_ 3
@ p 2 @ ntd
then
< - 2 ) < — .
Hun’ Lii (Py) = CHU up, Lot (Py) Vu’ Loo(py) Veu . Cep|lu — up, L (Py) (2.19)
For T = A ((u® — uaPQ)\Vuﬁ ?) (other forms of T, can be handled similarly), we obtain
walo ) =| [ Abw =yt - ) ) VP (g )
R"x[0,t]
1 —n—2 2.20
S (=t rle=ol) " - unl Vuls) (220)
Rn+1
Sz (xpy|u —up,|[Vul?) (2,1).
If G2, g2 > 1 satisfy
i1t 2
@ p g n+d
then
<0l L -
sz‘LqQ(PQ) _C'Hu up, Lo2(Py) |Vul Le(Py) < Cepllu —up, Lo (Py) (2.21)
For T = ((u'g - u}B)Q)uJB) ~, we obtain
jit
wale ) =| [ Abe =gt = )~ ) )
R7x[0,t]
(2.22)

1 —n—3
s [ (e=slt 4o =ol) " u unl V)
Rn+1
SII (szlu - UPQHVUD :

If g3, g3 > 1 satisfy

1
g 2p g3 n+4



then

Vul

Opwy + A%wy = <u°‘utﬁ - uﬁuf‘) (uﬁ — uf-b) .

ngl : <CHu—u132 SC’epHu—uP2

Li3(Py) — L33 (P) L2P(P) La3 (Pg)'

For Ty, we have

Multiplying (2.24) by wy, integrating over R™ and using the Holder inequality, we obtain

sup / |w4|2+/ V242 SC’H@tu)
—21<¢<0 JR" R7 x [—24,0]

1 1 n
where -4+ — 4+ —— =1
P aa 2(n+4)
By interpolation and the Sobolev’s inequality, we have

2 <C 2 V2,42
2(nt4) < sup lwal® + |V2wg|” ] .
L™ () —24<t<0 JR? R™ x[—24,0]

Combining (2.26) with (2.25), we obtain

u—u

P w4‘ 2(n+4
LP(Py) *llLaa(py) L2 (pyy’

Jos

U — Up, < Ce¢p

U — Up
L44(Py) 2

o] 200, <

LP(Py) L9(Py)
Let

q = max{qi,q2, 3,94} > 1 and ¢ = min{qi, ¢, g3, Ga} > 1.
By (2.19), (2.21), (2.23) and (2.27), we have

>

1<i<4

La(Pz)

< C¢

i U —up,
Li(Py) ’

On the other hand, by the standard estimate on v, we have that for any 0 < 0 < 1,

1 3 4 7
(f 1w-vnl) < co(f 1o-onl) <co({ fu-une X))
Py P Py =1

Adding (2.28) and (2.29) together, we obtain
1 1
~\ g n+4 q
< \u—uP6]q> <C (0_%51,—1-9) ( |u—uP2]q>
Py Py

1 e
<3 ’u_uP2’ ’
2 P,

n+4

C(07" e +0) <

where we have chosen ¢ and ¢, so that

DN

It follows from (2.12) that u € BMO(F%) and
[U]BMO(P‘Z) = { ]{3( : ”U, — upr(z)] : PT(Z> C PQ} < C’ep.

12

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

(2.31)



Hence, by the John-Nirenberg inequality (see [18]), we have that for any 0 < r < 1,

(7{3 ju — uPr|q> é < Clep,4,9) (fp u — uprﬂ) % : (2.32)

Combining (2.32) with (2.30) completes the proof of the Claim.

It is standard that iterating (2.14) yields the Holder continuity of w by using the Campanato
theory [3]. The higher-order regularity then follows from the hole-filling type argument and the
bootstrap argument, which will be sketched in Proposition 6.1 of §6 Appendix. After this, we have
that u € C’OO(P%,SL) and the estimate (2.13) holds. O

Proof of Theorem 1.1. By the definition of Morrey spaces, for zg = (xg,t9) € Q2 x (0,7) and
Ry < $ min{d(zo, 6), &}, we have

oup ey / (IV2uf? + r?P|0pul?) < €b. (2.33)
z=(z,t)€EPR, (20), TS% Pr(z)
2

Consider v(z,t) = u(xo+ %x, to+ (%)416) : Py — SP. Tt is easy to check that v is a weak solution of
(1.4) and satisfies (2.12). Hence Proposition 2.2 implies that v € C*°(P1,S") and satisfies (2.13).
2
After rescaling, we see that u € C°°(Phg, (20),S") and the estimate (1.6) holds. O
16

Since biharmonic maps are steady solutions of the heat flow of biharmonic maps, as a direct

consequence of Theorem 1.1 we have the following e-regularity for biharmonic maps to S*.

Theorem 2.3 For 1 < p <2, there exist €, > 0 and ro > 0 such that if u € W2P(Q,S%) is a weak
solution of (1.1) and satisfies

sup sup TQP"/ |V2ulP < €hs (2.34)
2€Q 0<r<min{ro,d(z,00)} B, (x)

then u € C>=(9,St), and

1 1
IV™u(z)] < cep( +

T dm(x,éﬂ))’vm—l (2.35)

Remark 2.4 For p =2, Theorem 2.3 was first proved by Chang-Wang-Yang [4]. For biharmonic

maps into any compact Riemannian manifold N without boundary, Theorem 2.3 was proved by
[41, 43] for p = 2.
3 Convexity and uniqueness of biharmonic maps

We will outline the convexity and uniqueness properties for biharmonic maps with small energy,
which are the second-order extensions of the corresponding theorems on harmonic maps with small
energy by Struwe [37], Moser [26], and Huang-Wang [14].

13



Consider the Dirichlet boundary value problem for a biharmonic map u € W?22(, N):

2u :th [u] in

(u,?j) :(uo,aauyo) on 0. (31)

where ug € W22(Q, N) given.
We recall the higher-order Hardy inequality.

Lemma 3.1 There is C > 0 depending only on n and Q such that if f € W02’2(Q), then

/d4 (x.09) c/ |V2f(x (3.2)

Proof. For simplicity, we indicate a proof for the case {2 = B; — the unit ball in R™. The
interested readers can refer to [5] for a proof of general domains. By approximation, we may

assume f € C§°(B;1). Writing the left side of (3.2) in spherical coordinates, integrating over Bj,
and using the Holder inequality, we obtain

0
/ / / ‘f| ) nfl danl(e)dr
B (1— |x\ sn—1 (L —r)

/ L g Cop 1P = ) an = o)ar
<C/ / |f|1|f7"rn 1dHn_1(9)d’l”
Sn 1 —’I"
@IV /(@)
=€/, <1—|x\>

ol [ 1’ (f )

Thus, by using the first-order Hardy inequality, we obtain

/ S@F o IV@)P
g (=)t = 7 Jp, (1= [2])2 ~

This yields (3.2). O

<c [ V@) (3.4)
By
Now we introduce the Morrey spaces in R". For 1 <[ < 400,0 < A <n,and 0 < R < +o0,
fe M]l%A(Q) if and only if f € Lioc(Q) satisfies

flb ;= sup sup r’\_”/ fI'd < 400.
1£ly1 ), 1

z€Q 0<r<min{R,d(x,0Q)}

We have the convexity property of biharmonic maps with small energy.

14



Theorem 3.2 Forn >4, € (0,1), and1 < p < 2, there exist ¢, = €(p,0) > 0 and R, = R(p,0) >
0 such that if u € W22(Q2, N) is a biharmonic map satisfying either

(i) || V? uHMz i(qy < €2, when N is a compact Riemannian manifold without boundary, or

(ii) |V UHMgzp (@) < €&, when N = St,
P

then
/ |Av|? > / |Aul> + (1 - 5)/ V2 (v — u)|? (3.5)
Q Q
2.2 61} ou
holds for any v € W=2(Q, N) with = (u,— | on 0Q.
Y ov

Proof. First, it follows from Theorem 2.3 for N = S’ or the regularity theorem by Wang [43]
that if €, > 0 is sufficiently small then u € C*°(Q, N), and

1 1
m < _—t > 1. .
|V u(x)]_Cep<Rgl+dm(x’aQ)>,Va:EQ,Vm_l (3.6)

For y € N, let P(y) : R — (T, N)L denote the orthogonal projection map from RET! to the
normal space of N at y. Since N is compact, a simple geometric argument implies that there exists
C > 0 depending on N such that

PLy)(z —y)| < Clz—y|%, Vz e N. (3.7)

Since
th [u] L T,N,

it follows from (3.7) that multiplying (1.1) by (u — v) and integrating over 2 yields
/Au Alu—v) = /th (u—v)

< / (V2 [920] + [V2ul? + [Vl [Vl fu — ]2
9]

oo [l Juop

~ o RE T dia,00)

< %/Wv%u—wQ, (3.8)
Q

where we choose R, > ¢,, and use (3.6), the Poincaré inequality, and the Hardy inequality (3.2)
during the last two steps.
It follows from (3.8) that

/|AU|2_/ Au|2_/ |Au—Av|2:2/Au-A(v—u) z—cep/ V2u—o)2 (3.9
Q Q Q Q Q

Since (u —v) € Woz’z(ﬂ), we have

/\Au—my?:/ V2(u — o)
Q Q

15



and hence

[Avf? = [ JAu* > (1-Ce) | [V(u—0).
Q Q Q

This yields (3.5), if €, > 0 is chosen so that Ce, < 6. O

Corollary 3.3 Forn > 2 and 1 < p < 2, there exist €, > 0 and R, > 0 such that if ui,us €
W22(Q, N) are biharmonic maps, with u; — ug € WOZ’Q(Q,RL“), satisfying either

(1) max \\VQui|]M2,4(Q) < €9, when N is a compact Riemannian manifold without boundary, or
i=1, Ry
(ZZ) {Eflﬁé HVQUI'HM}IQQP(Q) < €p; when N = SLy
=1, .

then u1 = ug in €.

Proof. Choose § = %, apply Theorem 3.2 to u; and us by choosing sufficiently small €, > 0 and

Rp > 0. We have
1
/ A > / A2 4 1 / V2 (s — )P,
Q Q 2 Jo

1
/’AUl’QZ/‘AU2‘2+2/’VQ(Ul—’U,Q)Z.
Q Q Q

Adding these two inequalities together yields / |V2(u1 —ug)|* = 0. This, combined with u; —ug €
Q

and

WOQ’Q(Q), implies u; = ug in . O

4 Uniqueness and convexity of heat flow of biharmonic maps

This section is devoted to the proof of uniqueness, convexity, and unique limit at ¢ = oo for (1.2)

of the heat flow of biharmonic maps, i.e. Theorem 1.3, Theorem 1.5, and Corollary 1.6.

Proof of Theorem 1.3. First, by Theorem 1.1, we have that for i = 1,2, u; € C*®(Qx (0,7),S"),

and

1 1 1

mi ) < m Il . a0 m | ) Q 7T7 21 4.1
’V u(xt)’—CEP<R;"+dm(x,aQ)+t4> V(z,t) € Qx (0,T), Vm (4.1)

Set w = u; — us. Then w satisfies

w4+ A?w = Ny [ur] — Mpplue]  in Q% (0,7)

w=0 on 9,(2 x (0,T)) (4.2)
gu = on 9N x (0,T).

Multiplying (4.2) by w and integrating over 2, we get, by (3.7), (4.1), the Poincaré inequality and

16



the Hardy inequality (3.2), that

CZ/Q\wl2+2/Q\V2w‘2 - 2/(th[u1] — Npplu2]) - w

< Z / Ve (V2] 1920 o Vo] (9o
2

. /\w L @Ol | w0

~ d4x8Q) t

< o / V2ul? + / 2.
Q

If we choose €, > 0 sufficiently small and R, > ¢,, then it holds

d C
JRCGEE AR
dat Jo t Jo

It follows from (4.3 that

d _1 2 . _ld 2 1_§ 2
dt(t 2/Q|w|) = Q|w| 3! 2/Q|w|
< (ce—)ti/ w|? < 0.
Q

Integrating this inequality from 0 to ¢ yields
3 / lw|* < lim ¢t~ 2 / lw|?.
Q tl0t

¢
w(x,t) = / wy(x, 7)dT, a.e. x €,
0

Since w(-,0) = 0, we have

and so, by the Holder inequality,

é/|w:rt é/ /|wt| :L‘T)d:nd7'<0t2 —0,ast|0".

This, combined with (4.5), implies w = 0 in Q x [0,7]. Hence u; = ua. The proof is complete.

Now we want to prove Theorem 1.5 and Corollary 1.6. To do so, we need:

(4.3)

(4.4)

(4.5)

|

Lemma 4.1 Under the same assumptions as in Theorem 1.5, there exists Ty > 0 such that

Jo [0wu(t)[? is monotone decreasing for t > Tp:

/ |0ul?(t2) + C |V20,ul? < / |Opul?(ty), To <t <ty <T.
Q Q

QX[tl,tQ}
Proof. For any sufficiently small h > 0, set

u(z,t+h) —u(z,t)

ul(z,t) = Y

, (x,t) € Qx (0,7 — h).

17
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Then u” € L2([0,T — k], WZ*(2)), dyu € L2(Q x [0,T — k) and }grori [uh — Byul| 2 x (0.1 = O

Since wu satisfies (1.2), we obtain
ol + A2yl = %(th[u(t )]~ N [u0)). (4.7)
Multiplying (4.7) by u”, applying (3.7), integrating over €, and applying (4.1), we have
G Lz [ 18 [ Nl Bl N ) 1P
X

IV2ul? + |Vu| [ V3| + [Vul?[V2ul|) (¢ + h)|u"]?
[9]

N

+/ (IV2ul® + [Vl V2l + [Val?[V2ul[) () u"]?
Q

hP ‘uhP ’uhP

d4(ZC, 89) TO

|u

S o [ VR
Q

provided that we choose R, > €, and T > ¢€,. Since

[veate = [ st

Q Q

d hi2 2, h|2 1 2, h|2

g 2 [ VR < (54O ) [ v (4.8)

Choosing €, > 0 so that Ce, < %, integrating on Ty < t1 < to < T, we have

[ e +c / [ < [ e (49)

Sending h — 0 yields (4.6). O

_|_

this implies

Now we can show the monotonicity of Es-energy for heat flow of biharmonic maps for ¢ > Tj.

Lemma 4.2 Under the same assumptions as in Theorem 1.5, there is Ty > 0 such that / |Au(t)?
Q

is monotone decreasing for t > Ty:
/ |Aul?(t2) + 2/ |Ou)* < / |Aul?(t1), To <t; <ty <T. (4.10)
Q Qx[t1,t2] Q

Proof. For ¢ >0, let ns € C§°(Q2) be such that
0<ns <1, ns=1forzeQ\Q and [V"ns| < C5™.

Here Q5 = {z € Q: d(z,09) < §}. Multiplying (1.2) by d,un? and integrating over Q X [t1, 2], we

obtain
to
/ |Au(ts)n? — / |Au(ty)n? +2 / / Ol
Q Q t1 Q

to [3)
=— 4/ / Au - dyu (|V175|2 + nsAns) — 8/ / Au - VounsVns.
t1 Q t1 Q

(4.11)
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It suffices to show the right-hand side of the above identity tends to 0 as § — 07. By Lemma 4.1,
we have that dyu € L*([Ty, T, WOQQ(Q)) so that

to
/ /Q VOV + Beul® (IVnsl* + | Ans )
t1
to
<672 \Voyul® + 672|0pul? (4.12)

t1 JQs
to
S/ / |V20,ul|*> = 0, as 6 — 0.
t1 Qs

This, combined with the Hoélder inequality, implies that for to > t; > Ty,

to to
—4/ / Au - Qyu (|V77(5|2 + 175A175) — 8/ / Au-VounsVns — 0, as § — 07
t1 Q t1 Q

Thus (4.10) holds and the proof is complete. O
Proof of Theorem 1.5. First, by Theorem 1.1, we have that v € C*(Q x (0, T],S*), and

1 1 1
m < > . .
]v u(:c,t)‘ < Cep (Rgl—i_dm(x,aﬁ) +t’2>’ ¥ (2,8) € Q% (0,T), ¥m>1 (4.13)

For t9 > t1 > Ty, we have

/Q Au(ty) 2 /Q | Auta) [ — /Q Aulty) — Au(t)]?

9 /Q (Au(t) — Aults)) Au(ts)

- / (ultr) — u(ts)) us(ts) (4.14)
/th (t2)] - (u(tr) — u(t2))
=I+11I.

For I1, applying (3.7), we obtain

INpR[u(t2)] - (u(ts) = u(t)] S [N lult2)]lu(ty) — ults) ]

Hence, by (4.13), the Hardy inequality and the Poincaré inequality, we have

et [ (G + g * 3 o) v

(4.15)
<Ce, [ [Vu(ts) ~ u(t)P-

For I, by Lemma 4.1, we have

s

’ Orul? 4.16
L2<>—tz—t1/ /‘“"L" (4.16)
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By the Holder inequality and (4.10), this implies

1< /Q Byu(ta)lults) — ults)

S 1Bvu(ta) gy llultr) = ulta)l 2

2 (4.17)
Ve [ o
X|t1,t2

<[Py [1aumP - [ s
QX[tl,t2] Q Q

Putting (4.17) and (4.15) into (4.14) implies (1.10). This completes the proof. O

Proof of Corollary 1.6. It follows from Lemma 4.2 that / | Au(t)|? is monotone decreasing for
Q
t > Tp. Hence

c= lim/|Au(t)|2
Q

t—o00

exists and is finite. Let {¢;} be any increasing sequence such that lim ¢; = +o0o. Then (1.10)
1—00

implies that

2
/ ‘VQ(u(tHj) —u(ti))‘ < C[/ Au(tiy;)? —/ |Au(ti)\2} 0, as i — oo,
Q Q Q
. . 2.9 L . auoo au(]
for all j > 1. Thus there exists a map uo, € W**(Q,S"), with (uco, 8—) = (up, 8—) on 012, such
v v
that

S, Hu(t) a uOOHWM(Q) =0

Since (4.10) implies that there exists a sequence t; — oo, such that

=0.

lim ‘atu(ti) ——

11— 00

Thus us € W22(Q,S¥) is a biharmonic map. Since it also holds, for any m > 1, and any compact
subset K CC €2, that

Hu(t)‘ <C(n,m,K), Vt > 1,
CnL(K)
we conclude
lim Hu(t) —UOOH =0,
t—00 cm(K)
and us € C(Q, S*). This completes the proof. O

5 Regularity and uniqueness of Serrin’s (p, ¢)-solutions

In this section, we will prove Theorem 1.8 that asserts both smoothness and uniqueness for Serrin’s

(p, q)-solution to (1.2). First, we would like to verify
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Proposition 5.1 Forn > 4, 0 < T < 400, suppose u € W;’Q(Q x [0,T],N) is a weak solution
to (1.2), with the initial and boundary value ug € W*"(Q, N) for some 2 < r < +oo, such that
Viu € L?L%(]\g x [0,T]) for some p > %5 and q < oo satisfying (1.13). Then

(i) Opu € LFLE(Q x [0,T)); and

(ii) for any € > 0, there exists R = R(u,€) > 0 such that for any 1 < s < min{§, 2},

sup {r2s—<n+4>/ (IV2u]® 4 r2%|0ul®) | (2,t) € Q% [0,T], 0 <r < R} <€, (5.1)
Pr(a,t)N(2x[0,T))

Proof. For simplicity, we will sketch the proof for = R™. By the Duhamel’s formula, we have
that u(z,t) = ui(x,t) + ua(x,t), where

ui(z,t) = /n b(x —y,t)uo(y), (5.2)

t
ug(x,t) = /0 /n bz —y,t — s)Npplul(y, s)

(5.3)
t
= / / b(x —y,t —s)[V - (V(A(u)(Vu,Vu)) + 2Au - V(P(u))) — Au - A(P(u))](y, s).
0 n
We proceed with two claims.
29 2p
Claim 1. V3u € L L (R x [0,T)).
For uq, we have
Viu(2,t) = V.ob(z —y,t)Vuo(y). (5.4)
RT’L

Direct calculations, using the property of the kernel function b, yield

va’u‘ 20 2 <71 VQUQ‘ . (5.5)

L2 L2 (R"x[0,T)) Lr(R™)
For us, we have
t
Viuset) = [ [ Vi -yt -8 [V(AW) (T, Va) + 280 V(P(w)
0 JRrn
t
[ V=gt )8 AP@): 9
o Jr»

By the Nirenberg interpolation inequality, we have Vu € L27L?(R™ x [0,T]). By the Hélder
3¢ 3p

inequality, we then have V(A(u)(Vu, Vu)) +2Au - V(P(u))) € qu Ll?p (R™ x [0,T]). Hence, by the

Calderon-Zygmund L‘ng—theory, we have

i

<||VA@)(Vu, Vu) + 280 V(P()
L%L%(R"X[O,T}) H (Aw)(Ve, V) u VIPw) L%L%(RW[O,T})
< 2
NHVU‘ LfPLiq(Rnx[o,T})H u‘ LP L (R x[0,T7) (5.7)
2
ST .
Ly LE (R™x[0,T7)
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For Ms, we have
Ma|(, ) S 1 (|92l + [Vul*) (@, 8), (,8) € R x [0,T].

Recall the following estimate of I;(-) (see, for example, [8] §4):

; ‘ < H ‘ ’ 5.8
H 1(f) L2 L2 Rex[0,T]) ™ f LY LR (R x[0,T]) (5.8)
where sy > 51 and rp > 1y satisfy
4 4
LA P (5.9)
1 S1 2 52
2 2
Applying (5.8) to Ma, we see that My € L,® L (R™ x [0,T1]), and
2
) s1+ v | -
H oll 2p 24 S+ u LPLL(R™ x[0,T7]) ( )

L7 L3 (Rnx[0,T7)

Combining these estimates on V3uq, My, and My yields Claim 1.
a P

Claim 2. V4u € L2 L2 (R" x [0,T)). It follows from Claim 1 that

Ny lu] = [A(A®)(Vu, Vi) + 280 - V(P(w))) — Au- A(P(u))] € L L2 (R™ x [0,T7)).

Since .
V(. t) = / V(@ — gt — 5Ny [ul (3, 5),
0 Rn

-~ g P
we can apply the Calderon-Zygmund L] LE-theory again to conclude that V4us € L2 L2 (R" %[0, T).
For u;, we have

V4U1(1‘, t) = Vib(w - Y, t)VQUO(y).
R?’L

Hence, by direct calculations, we have

< i)
~ L7 (R™)

v

V2UO‘

g P
LZLZ (R™x[0,T))

Combining these two estimates yields Claim 2.
g P
By (1.2), it is easy to see that dyu € L Lz (R™ x [0,7]). In fact, we have

H@tu’ P g SHth[u] — Azu‘ P g
L2 L2 (R™x[0,T]) L2 Lz (R"x[0,T]) (5 11)
St+ |72l . + T V|
~ LYLE(R"x[0,T]) Lr(R™)

This implies (i).
(ii) follows from (i) and the Holder inequality. In fact, for any 1 < s < min{%, £}, it holds

1
<r2s—(n+4) /PT(MW(QX[O’TD ‘vzu‘s> < HVQU‘

22
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and

g P

(TAS?(H@ /Pr(x,t)m(Mx[o,T])‘aM) Hatu‘ P L2 (Pr(@tN(@x[0T])

These two inequalities clearly imply (5.1), provided that R = R(u,€) > 0 is chosen sufficiently

small. O

Now we prove the e-regularity property for Serrin’s (p, ¢)-solutions to (1.2).

Theorem 5.2 There exists eg > 0 such that if u € W21’2(P1,N), with V?u € L{LE(Py) for some
q > %5 and p < oo satisfying (1.18), is a weak solution of (1.2) and satisfies

v

< 5.12
LITE(P) — o (5.12)

then u € COO(P%,N) and

V™ ul|cop,y < C(m,p,q,n)||V2uHthng(P1), Vom>1. (5.13)

1

2

Before proving this theorem, we recall the Serrin type inequalities and the Adams’ type estimates

of Riesz potential between Morrey spaces in (R"*1,§).

Lemma 5.3 Assume p > & and q < oo satisfies (1.13). For any f € L{LE(Q x [0,T]), g €

L2WZ2(Q x [0,T]), and h € L2W2*(Q x [0,T]), we have

1

9 q
Lo LS Tt Ml 20 ( / I llsle) 610

)

and

1
/Q 198 S Wl ey 191 22 oy (/ 11 uguizm)). (5.15)

i

Proof. For convenience, we sketch the proof here. By the Holder inequality, we have

/Q\ngHh\ < 1 flze @ gl zr @121l 220 (5.16)

1 1
where — + — 5 It follows from (1.13) that 2 < r < -22.. Hence by the Sobolev inequality we
p T
have

2 2n 2 n
gl @) < N9l Eaqeyl9l 2o, o 5 191 Ex(ay 910y (5.17)

Putting (5.17) into (5.16) yields

2 n
[ 15161100 S 171zl 915 Vel 220 (5.18)
1 1 . . .. . .
Since — + 4— + 5= 1, (5.14) follows by integrating on [0,7] and the Holder inequality.
P

23



To see (5.15), note that the Holder inequality implies

< s n .
Kgfuvmvw__WHuquVgh,mﬂmuD32m) (5.19)

1 1 -2
Wheref+—+n =1

p s 2n

1 1 1 2 1
Since — = — + A (e +(1—- a —, the Nirenberg interpolation inequality implies

s m 2p\2 n 2p ) 2

2
IVallLs) S 9l 72 H9HW22 (5.20)

Putting (5.20) into (5.19) and using the Sobolev inequality, we obtain

2 n
N Z R P A A L e (5.21)
) 1 n 1 . . .. . .
Since — + o + 5= 1, (5.15) follows by integration on [0,7'] and the Hélder inequality. O
q p

Now we state the Adams’ estimate for the Riesz potentials on (R™*1 §). Since its proof can be

done exactly by the same argument as in Huang-Wang ([15] Theorem 3.1), we skip it here.

Proposition 5.4 (i) For any >0, 0 < A < n+4 1<p < ,if f € LP(R*1) 0 MPA(R™ L),

then Ig(f) € LP(R™T1) 0 MPAR™ML), where p = )\_pﬁ. Moreover,
¢ g
(Do @n+ry < ClFI g oy 1 | o @) (5.22)
()l prsr@ntry < Cllf lager wntry- (5.23)

(ii) For any 0 < B < X < n+4, if f € LR 0 MMNE), then f L3 (R N
M~ x5 (R™*1). Moreover,

8 1-8
||Iﬁ( ) > C||f||RJI,A(Rn+1)||f||L1(?Rn+l) (5-24)

“(Rr+1)

uwﬁufwwmscwmmwm. (5.25)

*

Proof of Theorem 5.2. The proof is based on three claims.

Claim 1. For any 0 < o < 1, we have that V*u € M?*~1%(Ps), and
4

Hv2 H < C’HV2 ‘ . (5.26)
M2:4-4e(Py) LILE(Py)
For any 0 < r < 1 and 29 = (9, %) € P%, by (5.12) we have
IV2ull Lo 12 (P (20)) < € (5.27)
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Let v : Po(z) — RIF! solve

V¢ + AQU =0 in PT(Z())

v=u on dpP(20) (5.28)
v _0u OBy (x0) x (to — 14, to]
ov  Ov on 0=tk

Set w = u—wv. Multiplying (5.28) and (1.2) by w, subtracting the resulting equations and integrating

over P,(zp), we obtain

sup / lw|?(t) + 2/ V2w
tO_"AStStO BT(QZO) P’V‘(ZO)

=| Npnlu] - wl
Pr(20)
=| - )_V(A(“)(V“avu))VW—<AU,A(P(U))>w—2(Au,V(P(u))>Vw| (5.29)
2. 12 2
</ Pl + / Tl

=I+11I.

For I, we can apply (5.14) to get

1

to P
1S 1%l n iy ([ 1900, oyl - (530
0o—T

For 11, by (5.15), we have

1
to 7
|II’ 5 HvuHLEWll’Q( )”wHL2W2 2(Pr(20)) </t 4 Hvzu”Lp(B HwHL? BNwo))) . (5'31)

o—"T

Putting (5.30) and (5.31) into (5.29) and applying the Poincaré inequality, we obtain

sup / lw|?(t) + 2/ |V2w]?
to—rt<t<to J Br(zo) Pr(z0)

i (5.32)
Il 3120, V200 B,y (I 19200 o 012 )+ 0 < 000
2 2 _
||VUHL§WIL2(13T(ZO))HV wHLQ(PT(zO))Hv UHL;’OLI%(BT(:EO))’ q=0o0
Since Hv2u||Lng(PT(ZO)) < ¢, we obtain, by the Young inequality,
sup lw|?(t) + 2 |V2w|?
t()*?’4§t§t0 fBT(ZO) fP”'(’ZO)
2,(|2 2 g 2
< IVl e, o) + GHVUHLQI/Vé’Z(PT(zo)) hoe to— i}l<pt<to 1l z2 5, w0y 4 < 2 (5.33)
- 2,112 2,112 _ '
IV=0llEa p, ey + CIIV u” ~LE (B.(a Hvu||L2W12 Pa(z0))” 17 %%
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By choosing € > 0 sufficiently small, this implies

/ V2u0l? < e/ Vul? + [V2ul2. (5.34)
Pr(z0) Pr(20)
Since N is compact and u maps into N, |u| < Cy. Hence, by the Nirenberg interpolation inequality,
we have
/ V2 5/ V202 4 77+, (5.35)
Pr(z0) Pr(z0)
Combining (5.35) with (5.34), we have
/ V2w < e/ IV2u|? + er™ ™, (5.36)
Pr(z0) Pr(20)
By the standard estimate on v, we have
(07“)_"/ V2|2 < 947‘_"/ V20|%, V 0 € (0,1). (5.37)
Por(20) Pr(20)
Combining (5.36) with (5.37), we obtain
(07“)"/ IV2ul? < C (0" + 07 ") 7‘"/ IV2ul? + Cef™r%, V 6 € (0,1). (5.38)
Por(20) Pr(z0

For any 0 < a < 1, choose 0 < 6§ < 1 and € such that

2
1 P 94a+n
40é < : .
0 ande_mln{<2c> e }

Therefore, for any (zg) € P% and 0 <r < %,

Cot <

N | =

(Or) " / V202 < gloy—n / V20?4 ghor. (5.39)
Por (a1 Prat)

It is standard that iterating (5.39) implies

7‘_"/ |V2u)? < Crie (/ IV2u)? + 1> (5.40)
Pr(z0) Py

for any 2 € P3 and 0 <r < 1. (5.40) implies that V2u € M2v4—4a(P%), and (5.26) holds. This
proves Claim 1.

Claim 2. For any 1 < 3 < +oo, V2u € L?(P, ), and
16

2
£[[vef

. (5.41)

H ’ H
LB(P LILE(P
( 19) t x( 1)

This can be proven by utilizing estimates of Riesz potentials between Morrey spaces. To do so, let

n € C§°(P1) be such that

4
<n< =1i Myl < C.
0<n<1,p=1linPs, |nl+ ) [V <C

m=1
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Let Q : R™ x [~1,00] — REH! solve
BQ+A2Q = V- <n2V(A(u)(Vu, V) + 202(Au, V(P(u))>> — 2 (Au, A(P(w))) (5.42)
QL}1 — 0.
Set
S =V (n2V(A(u)(vu, V) + 20 {Au, V(P(u)))) and Jo = —12(Au, A(P(u))).

By the Duhamel formula, we have, for (z,t) € R” x (-1, 00),
VQut) = [ Vbt s) (4 ) (5,5)
R x[—1,t]

= [ Vet ) (A (Va, V) + 2028w V(P@))) (5:5)
R™ x[—1,t] (5.43)

[ R gt = P A AP (55)
R™ x[—1,¢]
=Ki(x,t) + Ko(x,t).
It is clear that for (z,t) € R" x (=1, 00),
Kl 1) S 1 (0P (Val + [Vl V) ) (2, 0), Kol (@, 8) < (292 + [Val) ) (2, 1)

It follows from (5.26) and the Nirenberg interpolation inequality that Vu € M*4=4%(Ps) and

4

HVUH < Hv%( . (5.44)
M44— 40‘ P%) L?Lg(P1)
Hence, by the Holder inequality, we have that for any 0 < a1, as < 1,
7 (|Vul® + |Vu||V3u|) € M =i (R™1Y and n?(|V?ul? + |Vu|?) € M1AT4e2 (R,
and
(a4 |vu v < vl v
|19l + 19V | gy i Vi o [T e
4 4
< Hv2 ‘ (5.45)
LILE(Py)
20102, (2 4 < 2
RO 0] VOSSR o P
4 4
5 |12
< HV u‘ . (5.46)
LILE(Py)

Now applying Proposition 5.4, we conclude that

2—2a9

N L7 (R, Ky € M2

14— 4oy A—4aog

K = Vi= "(R™),
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and
2

K H o HK H sa < Hv2 ’ . 5.47
H ! M;T%A_Ml(wﬂ) R MET%A_MZ(RTLH) ~ " L{LE(Py) ( )
Sending oy 1 % and ag T %, we obtain that for any 1 < § < +o00, K1, Ks € Lﬁ(R”H), and
2
2
1Bllgsqgeossy + 1 Kollgsqgosy S |V, 0 (5.48)
This implies that for any 1 < 8 < +o0, V2Q € L#(R"*!), and
2 2. ||?
HV QH < Hv u’ . (5.49)
LB(RP+1) LILE(Py)
Since (u — @) solves
(at +A2)(u— Q) =0in Ps,
it follows that for any 1 < 8 < +o0, V2u € L#(Ps ), and
16
2 2, ||?
H H < Hv ul . (5.50)
LA(Pg) L{LZ(P1)

This implies (5.49) and Claim 2 is proven.

Claim 3. uw € C*(P1,N) and (5.13) holds. It follows from (5.49) that for any 1 < 8 < 400, there
2
exist f,g € LP(Ps ) such that (1.2) can be written as
16

O+ A)u=V-f+g.

Thus, by the LP-theory of higher-order parabolic equations, we conclude that V3u € L# (P%)
3
Applying the LP-theory again, we would obtain that 0;u, V*u € L?(Pss). Taking derivatives of the
64
equation (1.2) and repeating this argument, we can conclude that u € C*°(P1, N), and the estimate
2

(5.13) holds. Combining together these three claims, the proof of Theorem 5.2 is complete. O

Proof of Theorem 1.8. Let ¢g > 0 be given by Theorem 5.2. Since p > 5 and ¢ < oo, there
exists Tp > 0 such that

max IV uill L 12 (x0,10)) < €o- (5.51)

1
This implies that for any z¢g € Q and 0 < tg < Ty, if Ry = min{d(zo,0R),t;3} > 0, then (5.51)

implies

max | V2uil| a1z (b, (o)) < €0- (5.52)
Hence by suitable scalings of the estimate of Theorem 5.2, we have that for ¢ = 1,2, u; €
C*°(Pry (20), N) and
2
’Vm’u,l (x(),t()) < ¢ # + im . (553)
~ d™(zxg, 0N2) td

Using (5.53), the same proof of Theorem 1.3 implies that u; = ug in Q x [0,Tp]. Repeating this

argument on the interval [Ty, 7], we can show u; = ug in Q x [0, 7. O
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Proof of Corollary 1.10. Let ¢y > 0 be given by Theorem 5.2. Since ug € W22(Q, N), by the
absolute continuity of / |V2ug|? there exists rg > 0 such that

2
max/ |V2ug)? < Q. (5.54)
xeQ) Bry (2)NQ 2

2
Choosing € < %0 and applying (1.14), we conclude that there exists 0 < to < r§ such that

2 2 2 .
(D)7 < f =1,2. .
zeé%%}lfﬁto /BT (z)NQ ‘v “1( )‘ = on ’ (5 55)

1 1
Set Ry = min{ro,tj} =t; > 0. Then it is easy to see that (5.55) gives

max

<€, for i=1,2. (5.56)
z=(z,t)ex0,to]

Qui‘

Lg® LE (Pry (2)N(2x[0,t0]))

This implies that u; and ug satisfy (5.12) of Theorem 5.2 (with p = 2 and ¢ = c0) on P,(z), for
any z € Q x [0,%y] and r = min{ Ry, d(x, 09), ti} > 0. Hence by suitable scalings of the estimate of

Theorem 5.2, we have

1 1 1 1 1
Mz, ) Seo (o -t | S0t ), Ym > 1, (5.
H%%X‘V uil )‘N60<R8“+dm(x,89)+t4>N60<dm(x,8§2)+t4) = (5:57)

for any (z,t) €  x [0,tp]. Here we have used Ry > t1 in the last inequality. Applying (5.57) and
the proof of Theorem 1.3, we can conclude that u; = ug in  x [0,%]. Continuing this argument
on the interval [tg, T] shows u; = ug in Q x [0, 7. O

Proof of Corollary 1.11. Let e2 > 0 be given by Theorem 5.2. Then (1.15) yields

v

< €9. .
LEL2x[000)) (5.38)

Hence by suitable scalings of the estimate of Theorem 5.2, we have u € C*°(Q x (0,00), N) and
there exists 77 > 0 such that

1 1

m <oty >1 .
‘v u(x,t)‘NEQ <dm(x’m)+ﬁ>,vm_ , (5.59)

holds for all z € 2 and ¢ > T1. Now we can apply the same arguments as in the proof of Theorem

1.5 and Corollary 1.6 to prove the conclusions of Corollary 1.11. O

6 Appendix: Higher-order regularity

It is known, at least to experts, that higher-order regularity holds for any Holder continuous solution
to (1.2) of the heat flow of biharmonic maps . However, we can’t find a complete proof of this fact
in the literature. For the completeness, we will sketch, in this appendix, a proof that is based on

the parabolic-type hole-filling argument.
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Proposition 6.1 For 0 < a < 1, if u € VVZL2 N CY P, N) is a weak solution to (1.2), then
ue C®(P,N), and

vau‘ Vom > 1. (6.1)

ey & [ ooy [

Proof. By Claim 2 and Claim 3 in the proof of Theorem 5.2, it suffices to establish that V?u €
M%4=4%(Py) for some % < & < 1, and
2

L2W22(Py)

HV2“H . (6.2)

L2 ()

2 [ cngy + ¥

This will be achieved by the following hole-filling argument. For any fixed zp = (z¢,%9) € P% and
0<r<ilet¢eCg(R) bea cut-off function of By (zo), i.e.

M?2,4—4a (P3
2

0<¢<1, ¢=11in B(x9), ¢ =0 outside Ba,(z¢), |V"¢| < Cr—™, Vm > 1.

Set ¢ ::][ u € REFL. Multiplying (1.2) by (u — ¢)¢* and integrating over R™, we obtain
P (20)

d
dt o ’u_012¢4+2/RnA<U_C)'A((U—c)qu‘) :Q/Rn'/\/bh[“] _ (u_c)¢4
s / [VZul*fu — el + / V|| V2u|[V((u — c)¢?). (6.3)
Rn R™

For the second term in the left hand side of (6.3), we have

2 [ Aw—0)-Alu=—cg) =2 | Vw—c) V2((u-c)¢")
R R

> 9 / V22 - C / [ — (V2] + [VoIY) + 6| VoVl (6.4)
BT(ZO) Rn

Substituting (6.4) into (6.3) and integrating over t € [tg — r*, tg], we obtain

/ ]V2u|2 < / |u — c|2 + (2—(n+4) + COSCPQT(ZO)U> / |V2u‘2
Pr(20) Bay(z0) % {to—74} Par(20)

+Cr" (os.cp%(z())u)2 +C 1+ (oscpzr(z())u)z] r_2/P - ¢*|Vul?
2r(20

+C (V)¢ (6.5)
PQT(ZO)
By integration by parts and the Holder inequality, we have
_ _ 2
r 2/ (]52|Vu]2 <Cr? (OSCP2r(ZO)U) / |V2u‘ +Cr" (Oscpzr(zo)u) )
Py (20) Par(20)

and

C PH V|t < 2~ (H4) IV2ul* + Cr™ (oscPQT(ZO)u)4 +C (OSCP2T(ZO)U)2/ |V2ul?.
Par(20) Par(20) Par(20)
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Putting these two inequalities into (6.5) and using
0SCp,, (20U < CT%,

we get

[P (emaen) [ oot [
Pr(z0) Par(20) Par(20)
< <2—(n+2) _i_CToc)/ |V2’U,‘2+C7”n+2a, (6.6)
P

QT(ZO)

where we have used the following inequality in the last step:

C(1+ r2aya? /

‘VQ’U,’ < 2(n+3)/ ‘v2u’2+crn+2a'
PQ’I‘(ZO)

PQT‘(ZO)
Choosing 7 > 0 so small that Cr® < 2-("3) we see that (6.6) implies

1
'r_"/ V2| < (27")_"/ V2uf? 4+ Cr2e. (6.7)
Py (20) 2 Par(20)

It is clear that iterating (6.7) implies that there is ag € (0,1) such that VZu € M*472%0(Ps) and
2

. (6.8)

¥ L :
L2(P)

ST
M2,4—2a0 (P%) Co (PZ)

We can apply the estimate (6.8) and repeat the above argument to show that V2u € M2’4*40‘0(P%)
and (6.8) holds with «g replaced by 2cp. Repeating these argument again and again until there
exists & € (%, 1) such that V?u e M2’4_46‘(P%) and the estimate (6.2) holds. The remaining parts
of the proof can be done by following the same arguments as Claim 2 and Claim 3 of the proof of

Theorem 5.2. This completes the proof. O
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