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Abstract

In this paper, we first establish regularity of the heat flow of biharmonic maps into the unit

sphere SL ⊂ RL+1 under a smallness condition of renormalized total energy. For the class of such

solutions to the heat flow of biharmonic maps, we prove the properties of uniqueness, convexity

of hessian energy, and unique limit at t = ∞. We establish both regularity and uniqueness

for Serrin’s (p, q)-solutions to the heat flow of biharmonic maps into any compact Riemannian

manifold N without boundary.

1 Introduction

For n ≥ 4 and L ≥ k ≥ 1, let Ω ⊂ Rn be a bounded smooth domain and N ⊂ RL+1 be a k-

dimensional compact Riemannian manifold without boundary. For m ≥ 1, p ≥ 1, the Sobolev

space Wm,p(Ω, N) is defined by

Wm,p(Ω, N) =
{
v ∈Wm,p(Ω,RL+1) : v(x) ∈ N for a.e. x ∈ Ω

}
.

On W 2,2(Ω, N), there are two second order energy functionals:

E2(u) =

∫
Ω
|∆u|2 and F2(u) =

∫
Ω
|(∆u)T |2,

where (∆u)T is the tangential component of ∆u to TuN at u, which is called the tension field of u

([6]). A map u ∈ W 2,2(Ω, N) is called an extrinsic (or intrinsic) biharmonic map, if u is a critical

point of E2(·) (or F2(·) respectively). It is well known that biharmonic maps are higher-order

extensions of harmonic maps, which are critical points of the Dirichlet energy E1(u) =
∫

Ω |∇u|
2

over W 1,2(Ω, N). Recall that the Euler-Lagrange equation of (extrinsic) biharmonic maps is given

by ([41] Lemma 2.1):

∆2u = Nbh[u] := [∆(A(u)(∇u,∇u)) + 2∇ · 〈∆u,∇(P (u))〉 − 〈∆(P (u)),∆u〉] ⊥ TuN, (1.1)

where P (y) : RL+1 → TyN is the orthogonal projection for y ∈ N , and A(y)(·, ·) = ∇P (y)(·, ·) is

the second fundamental form of N at y ∈ N . Throughout this paper, we always use Nbh[u] to

denote the nonlinearity in the right hand side of the biharmonic map equation (1.1).
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Motivated by earlier studies on regularity of harmonic maps by Schoen-Uhlenbeck [39], Hélein

[13], Evans [7], Bethuel [2], Lin [25], Rivière [31], and many others, the study of biharmonic maps

has attracted considerable interest in the field and prompted a large number of interesting works

by many analysts in the last several years. The regularity of biharmonic maps to N = SL – the unit

sphere in RL+1 – was first studied by Chang-Wang-Yang [4]. Wang [41, 42, 43] extended the main

theorems of [4] to any compact Riemannian manifold N without boundary. It asserts smoothness

of biharmonic maps in dimension n = 4, and the partial regularity of stationary biharmonic maps

for n ≥ 5. Here we mention in passing the interesting works on biharmonic maps by Angelsberg

[1], Strzelecki [30], Hong-Wang [16], Lamm-Rivière [23], Struwe [38], Ku [19], Gastel-Scheven [10],

Scheven [33, 34], Lamm-Wang [24], Moser [27, 28], Gastel-Zorn [11], Hong-Yin [17], and Gong-

Lamm-Wang [12].

The initial and boundary value problem for the heat flow of biharmonic maps is follows. For

0 < T ≤ +∞, and u0 ∈W 2,2(Ω, N), a map u ∈W 1,2
2 (Ω× [0, T ], N), i.e. ∂tu,∇2u ∈ L2(Ω× [0, T ]),

is called the heat flow of a biharmonic map, if u satisfies in the sense of distributions
∂tu+ ∆2u =Nbh[u] in Ω× (0, T )

u =u0 on ∂p(Ω× [0, T ])

∂u

∂ν
=
∂u0

∂ν
on ∂Ω× [0, T ),

(1.2)

where ν denotes the outward unit normal of ∂Ω. Throughout the paper, we denote ∂p(Ω× [0, T ]) =

(Ω× {0}) ∪ (∂Ω× (0, T )) as the parabolic boundary of Ω× [0, T ].

The formulation of heat flow of biharmonic maps (1.2) remains unchanged, if Ω is replaced by

a n-dimensional compact Riemannian manifold M with boundary ∂M . On the other hand, if Ω

is replaced by M that is a n-dimensional compact Riemannian manifold without boundary or a

complete, non-compact Riemannian manifold without boundary, then the Cauchy problem of heat

flow of biharmonic maps is considered. More precisely, if ∂M = ∅, then (1.2) becomes{
∂tu+ ∆2u =Nbh[u] in M × (0, T )

u =u0 on M × {0}.
(1.3)

The Cauchy problem (1.3) was first studied by Lamm [21], [22] in dimension n = 4 for

u0 ∈ C∞(M,N), where the existence of a unique, global smooth solution is established under

the condition that ‖u0‖W 2,2(M) is sufficiently small. For any u0 ∈ W 2,2(M,N), the existence of

a unique, global weak solution to (1.3), that is smooth away from finitely many times, has been

independently proved by Gastel [9] and Wang [44]. The interested readers can verify that with

suitable modifications of their proofs, the existence theorem by [9] and [44] remain to hold for (1.2)

in any compact 4-dimensional Rimannian manifold M with boundary ∂M , if, in addition, the trace

of u0 on ∂M for u0 ∈ W 2,2(M,N) satisfies u0|∂M ∈ W
7
2
,2(∂M,N). Namely, there is a unique,

global weak solution u ∈W 1,2
2 (M × [0,∞), N) to (1.2) such that

(i) E2(u(t)) is monotone decreasing for t ≥ 0; and
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(ii) there are T0 = 0 < T1 < . . . < Tk < Tk+1 = +∞ such that

u ∈
k⋂
i=0

C∞(M × (Ti, Ti+1), N) and ∇u ∈
k⋂
i=0

Cα(M × (Ti, Ti+1), N), ∀ α ∈ (0, 1).

For dimensions n ≥ 4, Wang [45] established the well-posedness of (1.3) on Rn for any u0 : Rn → N

that has sufficiently small BMO norm. Moser [29] showed the existence of global weak solutions

u ∈ W 1,2
2 (Ω × [0,∞), N) to (1.2) on any bounded smooth domain Ω ⊂ Rn for n ≤ 8 and u0 ∈

W 2,2(Ω, N).

Due to the critical nonlinearity in the evolution equation (1.2)1 of heat flow of biharmonic

maps, the question of regularity and uniqueness for weak solutions of (1.2) is very challenging for

dimensions n ≥ 4. There has not been much work done in this direction. This motivates us to

study these issues for the equation (1.2) in this paper. Another motivation for us to study these

issues comes from our recent work [14] on the these issues for the heat flow of harmonic maps.

We are able to obtain several interesting results concerning regularity, uniqueness, convexity, and

unique limit at time infinity of the equation (1.2), under the smallness condition of renormalized

total energy.

Before stating our main theorems, we need to introduce some notations.

Notations: For 1 ≤ p, q ≤ +∞, 0 < T ≤ ∞, define the Sobolev space

W 1,2
2 (Ω× [0, T ], N) =

{
v ∈ L2([0, T ],W 2,2(Ω, N)) : ∂tv ∈ L2([0, T ], L2(Ω))

}
,

the LqtL
p
x-space

LqtL
p
x(Ω× [0, T ],RL+1) =

{
f : Ω× [0, T ]→ RL+1 : f ∈ Lq([0, T ], Lp(Ω))

}
,

and the Morrey space Mp,λ
R for 0 ≤ λ ≤ n+ 4, 0 < R ≤ ∞, and U = U1 × U2 ⊂ Rn × R:

Mp,λ
R (U) =

{
f ∈ Lp

loc
(U) :

∥∥∥f∥∥∥
Mp,λ
R (U)

< +∞
}
,

where ∥∥∥f∥∥∥
Mp,λ
R (U)

=
(

sup
(x,t)∈U

sup
0<r<min{R,d(x,∂U1),

√
t}
rλ−n−4

∫
Pr(x,t)

|f |p
) 1
p
,

and

Br(x) = {y ∈ Rn : |y − x| ≤ r}, Pr(x, t) = Br(x)× [t− r4, t], d(x, ∂U1) = inf
y∈∂U1

|x− y|.

Denote Br (or Pr) for Br(0) (or Pr(0) respectively), and Mp,λ(U) = Mp,λ
∞ (U) for R =∞. We also

recall the weak Morrey space for R =∞, Mp,λ
∗ (U), that is the set of functions f on U such that

‖f‖p
Mp,λ
∗ (U)

= sup
r>0,(x,t)∈U

{
rλ−(n+4)‖f‖pLp,∗(Pr(x,t)∩U)

}
< +∞,
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where Lp,∗(Pr(x, t) ∩ U) is the weak Lp-space, that is the collection of functions v on Pr(x, t) ∩ U
such that

‖v‖pLp,∗(Pr(x,t)∩U) = sup
a>0

{
ap|{z ∈ Pr(x, t) ∩ U : |v(z)| > a}|

}
< +∞.

Recall that if N = SL := {y ∈ RL+1 : |y| = 1}, then direct calculations give

Nbh[u] = −(|∆u|2 + ∆(|∇u|2) + 2〈∇u,∇∆u〉)u,

so that the heat flow of biharmonic maps to SL, (1.2)1, can be written as

∂tu+ ∆2u = −(|∆u|2 + ∆(|∇u|2) + 2〈∇u,∇∆u〉)u. (1.4)

The first theorem addresses the regularity of (1.4).

Theorem 1.1 For 1 < p ≤ 2 and 0 < T < +∞, there exists εp > 0 such that if u ∈ W 1,2
2 (Ω ×

[0, T ],SL) is a weak solution to (1.4) and satisfies that, for z0 = (x0, t0) ∈ Ω× (0, T ] and 0 < R0 ≤
1
2 min{d(x0, ∂Ω),

√
t0},

‖∇2u‖
Mp,2p
R0

(PR0
(z0))

+ ‖∂tu‖Mp,4p
R0

(PR0
(z0))
≤ εp, (1.5)

then u ∈ C∞
(
PR0

16

(z0), SL
)

, and

∣∣∣∇mu∣∣∣(z0) ≤ Cεp
Rm0

, ∀ m ≥ 1. (1.6)

Remark 1.2 It is an open question whether Theorem 1.1 holds true for any compact Riemannian

manifold N without boundary (with p = 2).

Utilizing this regularity theorem, we have the following uniqueness theorem.

Theorem 1.3 For n ≥ 4 and 1 < p ≤ 2, there exist ε0 = ε0(p, n) > 0 and R0 = R0(Ω, ε0) > 0 such

that if u1, u2 ∈W 1,2
2 (Ω× [0, T ], SL) are weak solutions to (1.2), with the same initial and boundary

value u0 ∈W 2,2(Ω, SL), that satisfy

max
i=1,2

[
‖∇2ui‖Mp,2p

R0
(Ω×(0,T ))

+ ‖∂tui‖Mp,4p
R0

(Ω×(0,T ))

]
≤ ε0, (1.7)

then u1 ≡ u2 on Ω× [0, T ].

There are two main ingredients to prove Theorem 1.3:

(i) The interior regularity of ui (i = 1, 2): ui ∈ C∞(Ω× (0, T ), SL) and

max
i=1,2

|∇mui|(x, t) . ε0

(
1

Rm0
+

1

dm(x, ∂Ω)
+

1

t
m
4

)
(1.8)

for any (x, t) ∈ Ω× (0, T ) and m ≥ 1.

(ii) The energy method, with suitable applications of the Poincaré inequality and the higher-order

Hardy inequality (see Lemma 3.1 below).
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Remark 1.4 (i) We would like to point out that the novel feature of Theorem 1.3 is that the solu-

tions may have singularities at the parabolic boundary ∂p(Ω× [0, T ]). Thus the standard argument

to prove uniqueness for classical solutions is not applicable.

(ii) For Ω = Rn, if the initial data u0 : Rn → N satisfies that for some R0 > 0,

sup
{
r4−n

∫
Br(x)

|∇2u0|2 : x ∈ Rn, r ≤ R0

}
≤ ε20,

then by the local well-posedness theorem of Wang [45] there exists 0 < T0(≈ R4
0) and a solution

u ∈ C∞(Rn × (0, T0), N) of (1.3) that satisfies the condition (1.7).

Prompted by the ideas of proof of Theorem 1.3, we obtain the convexity property of the E2-

energy along the heat flow of biharmonic maps to SL.

Theorem 1.5 For n ≥ 4, 1 < p ≤ 2, and 1 ≤ T ≤ ∞, there exist ε0 = ε0(p, n) > 0, R0 =

R0(Ω, ε0) > 0, and 0 < T0 = T0(ε0) < T such that if u ∈ W 1,2
2 (Ω× [0, T ],SL) is a weak solution to

(1.2), with the initial and boundary value u0 ∈W 2,2(Ω,SL), satisfying

‖∇2u‖
Mp,2p
R0

(Ω×(0,T ))
+ ‖∂tu‖Mp,4p

R0
(Ω×(0,T ))

≤ ε0, (1.9)

then

(i) E2(u(t)) is monotone decreasing for t ≥ T0; and

(ii) for any t2 ≥ t1 ≥ T0,∫
Ω
|∇2(u(t1)− u(t2))|2 ≤ C

[ ∫
Ω
|∆u(t1)|2 −

∫
Ω
|∆u(t2)|2

]
(1.10)

for some C = C(n, ε0) > 0.

A direct consequence of the convexity property of E2-energy is the unique limit at t = ∞ of

(1.2).

Corollary 1.6 For n ≥ 4 and 1 < p ≤ 2, there exist ε0 = ε0(p, n) > 0, and R0 = R0(Ω, ε0) > 0

such that if u ∈ W 1,2
2 (Ω × [0,∞), SL) is a weak solution to (1.2), with the initial and boundary

value u0 ∈ W 2,2(Ω, SL), satisfying the condition (1.9), then there exists a biharmonic map u∞ ∈

C∞ ∩W 2,2(Ω,SL), with (u∞,
∂u∞
∂ν

) = (u0,
∂u0

∂ν
) on ∂Ω, such that

lim
t↑∞
‖u(t)− u∞‖W 2,2(Ω) = 0, (1.11)

and, for any compact subset K ⊂⊂ Ω and m ≥ 1,

lim
t↑∞
‖u(t)− u∞‖Cm(K) = 0. (1.12)

Remark 1.7 (i) We would like to remark that if Theorem 1.1 has been proved for any compact

Riemannian manifold N without boundary, then Theorem 1.3, Theorem 1.5, and Corollary 1.6

would be true for any compact Riemannian manifold N without boundary.
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(ii) With slight modifications of the proofs, Theorem 1.1, Theorem 1.3, Theorem 1.5, and Corollary

1.6 remain to be true, if Ω is replaced by a compact Riemannian manifold M with boundary ∂M .

(iii) If Ω is replaced by a compact or complete, non-compact Riemannian manifold M with ∂M = ∅
then Theorem 1.1, Theorem 1.3, Theorem 1.5, and Corollary 1.6 remain to be true for the Cauchy

problem (1.3). In fact, the proof is slightly simpler than the one here, since we don’t need to use

the Hardy inequalities.

(iv) Schoen [35] proved convexity of the Dirichlet energy for harmonic maps into N with nonpositive

sectional curvature. The convexity for harmonic maps into any compact manifold N with small

renormalized energy was proved by [14]. In §3 below, we will show the convexity for biharmonic

maps with small renormalized E2-energy. Theorem 1.5 seems to be the first convexity result for the

heat flow of biharmonic maps – a higher-order geometric evolution equation.

(v) In general, it is a difficult question to ask whether the unique limit at t =∞ holds for geometric

evolution equations. Simon in his celebrated work [36] showed the unique limit at t =∞ for smooth

solutions to the heat flow of harmonic maps into a real analytic manifold (N,h). Corollary 1.6

seems to be first result on the unique limit at time infinity for the heat flow of biharmonic maps.

A natural class of weak solutions satisfying the smallness condition (1.9) are Serrin’s (p, q)-

solutions. We say a weak solution u ∈W 1,2
2 (Ω× [0, T ], N) to (1.2) is a Serrin’s (p, q)-solution if, in

addition, ∇2u ∈ LqtL
p
x(Ω× [0, T ]) for some p ≥ n

2 and q ≤ ∞ satisfying

n

p
+

4

q
= 2. (1.13)

In §5, we will prove that if u is a Serrin’s (p, q)-solution of (1.2), with p > n
2 , q <∞ and an initial

and boundary data u0 ∈ W 2,r(Ω, N) for some r > n
2 , then u satisfies (1.9) for some p0 > 1. Thus,

for N = SL, the regularity and uniqueness properties for Serrin’s (p, q)-solutions to (1.2) with

p > n
2 , q <∞ follow from Theorem 1.1 and Theorem 1.3.

For a compact Riemannian manifold N without boundary, the regularity and uniqueness prop-

erties for Serrin’s (p, q)-solutions to (1.2) need to be proven by different arguments. We have

Theorem 1.8 For n ≥ 4 and 0 < T ≤ ∞, let u1, u2 ∈ W 1,2
2 (Ω × [0, T ], N) be weak solutions to

(1.2), with the same initial and boundary value u0 ∈ W 2,2(Ω, N). If, in addition, ∇2u1,∇2u2 ∈
LqtL

p
x(Ω × [0, T ]) for some p > n

2 and q < ∞ satisfying (1.13), then u1, u2 ∈ C∞(Ω × (0, T ), N),

and u1 ≡ u2 in Ω× [0, T ].

Remark 1.9 (i) It is a very interesting question whether Theorem 1.8 holds for Serrin’s (p, q)-

solutions to (1.2) in the end-point case p = n
2 and q =∞.

(ii) If u0 ∈W 2,r(M,N) for some r > n
2 , then the local existence of Serrin’s (p, q)-solutions to (1.2),

for some p > n
2 and q <∞, can be shown by the fixed point argument (see, e.g. [8] §4).

In dimension n = 4, by applying Theorem 5.2 (with p = 2 (= n
2 ) and q = ∞) and the second

half of the proof of Theorem 1.3, we obtain the following uniqueness result.
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Corollary 1.10 For n = 4 and 0 < T ≤ ∞, there exists ε1 > 0 such that if u1 and u2 ∈W 1,2
2 (Ω×

[0, T ], N) are weak solutions of (1.2), under the same initial and boundary value u0 ∈W 2,2(Ω, N),

satisfying

lim sup
t↓t+0

E2(ui(t)) ≤ E2(ui(t0)) + ε1, ∀ t0 ∈ [0, T ), (1.14)

for i = 1, 2. Then u1 ≡ u2 in Ω × [0, T ). In particular, the uniqueness holds among the class of

weak solutions of (1.2), whose E2-energy is monotone decreasing for t ≥ 0.

We would like to point out that for the Cauchy problem (1.3) of heat flow of biharmonic maps

on a compact 4-dimensional Riemannian manifold M without boundary, Corollary 1.10 has been

recently proven by Rupflin [32] through a different argument.

Concerning convexity and unique limit of (1.2) at t =∞ in dimension n = 4, we have

Corollary 1.11 For n = 4, there exist ε2 > 0 and T1 > 0 such that if u ∈ W 1,2
2 (Ω × (0,+∞), N)

is a weak solution of (1.2), with the initial-boundary value u0 ∈W 2,2(Ω, N), satisfying

E2(u(t)) ≤ ε22, ∀ t ≥ 0, (1.15)

then (i) E2(u(t)) is monotone decreasing for t ≥ T1;

(ii) for t2 ≥ t1 ≥ T2, it holds∫
Ω
|∇2(u(t1)− u(t2))|2 ≤ C (E2(u(t1))− E2(u(t2)))

for some C = C(ε2) > 0; and

(iii) there exists a biharmonic map u∞ ∈ C∞ ∩W 2,2(Ω, N), with (u∞,
∂u∞
∂ν

) = (u0,
∂u0

∂ν
) on ∂Ω,

such that lim
t→∞
‖u(t)− u∞‖W 2,2(Ω) = 0, and for any m ≥ 1, K ⊂⊂ Ω, lim

t→∞
‖u(t)− u∞‖Cm(K) = 0.

It is easy to see that the condition (1.15) holds for any solution u ∈ W 1,2
2 (Ω × [0,∞), N) to

(1.2), if E2(u(t)) ≤ E2(u0) for t ≥ 0 (e.g. the solution constructed by [9] and [44]) and E2(u0) ≤ ε22.

The paper is written as follows. In §2, we will prove the ε-regularity Theorem 1.1 for weak

solutions to (1.2) under the assumption (1.5). In §3, we will show both convexity and uniqueness

property for biharmonic maps with small E2-energy. In §4, we will prove the uniqueness Theorem

1.3, the convexity Theorem 1.5, and the unique limit Theorem 1.6. In §5, we will discuss Serrin’s

(p, q)-solutions to (1.2). We will prove Theorem 1.8 on both regularity and uniqueness of Serrin’s

solutions, Corollary 1.10, and Corollary 1.11. In §6 Appendix, we will sketch a proof for the

higher-order regularity of heat flow of biharmonic maps.

2 ε-regularity

This section is devoted to the proof of Theorem 1.1, i.e. the regularity of heat flow of biharmonic

maps to SL under the smallness condition (1.5). The idea is motivated by that of [4] on the

regularity theorem of stationary biharmonic maps to SL.
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The first step is to rewrite (1.4) into the form where nonlinear terms are of divergence structures,

analogous to the equation of biharmonic maps to SL discovered by [4]. There are four types of

nonlinearities with divergence structures appearing in (1.4):

T1 =
(
uαj ∆uβ(uβ − cβ)

)
j

or
(

(uα − cα)uβi u
β
ij

)
j

T2 = ∆
(

(uα − cα)|∇uβ|2
)
, ∆

(
(uβ − cβ)∆uβ

)
, or ∆

(
uα(uβ − cβ)∆uβ

)
T3 =

(
(uβ − cβ)uβj

)
jii

T4 =
(
uαuβt − uβuαt

)(
uβ − cβ

)
,

(2.1)

where the upper index α, β, etc, denotes the component of a vector function, the lower index i, j,

etc, denotes the differentiation in the direction xi, xj , etc, and cα ∈ RL+1 is a bounded constant.

Lemma 2.1 The equation of heat flow of biharmonic maps (1.4) is equivalent to

ut + ∆2u = F(T1, T2, T3, T4) := a linear combination of terms of T1, T2, T3 and T4, (2.2)

whose coefficients can be bounded independent of u.

Proof. To prove (2.2), we follow [4] Proposition 1.2 closely. First, by Lemma 1.3 of [4], we have

that, for every fixed α,

cα∆
(
|∇uβ|2

)
and

(
uαj |∇uβ|2

)
j

are linear combination of terms of T1, T2, T3. (2.3)

Set

S1 = uα|∆uβ|2, S2 = 2uαuβj

(
∆uβ

)
j
, S3 = uα∆

(
|∇uβ|2

)
. (2.4)

Differentiation of |u| = 1 gives

uαuαj = 0, uβ∆uβ + |∇uβ|2 = 0. (2.5)

By (1.2), we have

uα∆2uβ + uαuβt = uβ∆2uα + uβuαt . (2.6)

It follows from (2.5) and (2.6) that

S2

2
=uαuβj (∆uβ)j

=uβj

(
uα(∆uβ)j − uβ (∆uα)j

)
=uβj

(
uα(∆uβ)j − uβ (∆uα)j − u

α
j ∆uβ + uβj ∆uα

)
+ uβj

(
uαj ∆uβ − uβj ∆uα

)
=
{(
uβ − cβ

)(
uα(∆uβ)j − uβ (∆uα)j − u

α
j ∆uβ + uβj ∆uα

)}
j

+
(
uβ − cβ

)(
uαuβt − uβuαt

)
+ uβj

(
uαj ∆uβ − uβj ∆uα

)
=
{(
uβ − cβ

)(
uα∆uβ − uβ∆uα

)}
jj
−
{
uβj

(
uα∆uβ − uβ∆uα

)}
j

− 2
{(
uβ − cβ

)(
uαj ∆uβ − uβj ∆uα

)}
j

+ uβj

(
uαj ∆uβ − uβj ∆uα

)
+ T4

=−
{
uβj

(
uα∆uβ − uβ∆uα

)}
j

+ uβj

(
uαj ∆uβ − uβj ∆uα

)
+ T1 + T2 + T4 terms.

(2.7)
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By (2.3) and (2.5), we have

S3 = (uα − cα) ∆
(
|∇uβ|2

)
+ cα∆

(
|∇uβ|2

)
=∆

(
(uα − cα) |∇uβ|2

)
− 2uαj

(
|∇uβ|2

)
j
−∆uα|∇uβ|2 +

3∑
l=1

Tl terms

=− 2
(
uαj |∇uβ|2

)
j

+ ∆uα|∇uβ|2 +
3∑
l=1

Tl terms

=−∆uαuβ∆uβ +
3∑
l=1

Tl terms.

(2.8)

By (2.8), the definition of S1, and (2.7), we have

S1 + S3 =
(
uα∆uβ − uβ∆uα

)
∆uβ +

3∑
l=1

Tl terms

=
{(
uα∆uβ − uβ∆uα

)
uβj

}
j
−
(
uαj ∆uβ − uβj ∆uα

)
uβj

−
(
uα∆uβj − u

β∆uαj

)
uβj +

3∑
l=1

Tl terms

=− S2

2
− S2

2
+

3∑
l=1

Tl terms.

(2.9)

Therefore we obtain

S1 + S2 + S3 = a linear combination of T1, T2, T3, T4 terms.

This completes the proof. 2

Next we recall some basic properties of the heat kernel for ∆2 in Rn and the notion of Riesz

potentials on Rn+1. Let b(x, t) be the fundamental solution of

(∂t + ∆2)v = 0 in Rn+1
+ .

Then we have (see [20] §2.2):

b(x, t) = t−
n
4 g

(
x

t
1
4

)
,

where

g(ξ) = (2π)−
n
2

∫
Rn
eiξη−|η|

4
, ξ ∈ Rn,

and the estimates: ∣∣∣∇mb(x, t)∣∣∣ ≤ C (|t| 14 + |x|
)−n−m

, ∀ (x, t) ∈ Rn+1
+ , ∀ m ≥ 1. (2.10)

To study (1.2), we equip Rn+1 with the parabolic distance δ:

δ((x, t), (y, s)) = |t− s|
1
4 + |x− y|, (x, t), (y, s) ∈ Rn+1.

9



We define the Riesz potential of order α in Rn+1 with respect to δ, for 0 ≤ α ≤ n+ 4, by

Iα(f)(x, t) =

∫
Rn+1

(
|t− s|

1
4 + |x− y|

)α−n−4
|f |(y, s), (x, t) ∈ Rn+1. (2.11)

Now we are ready to prove the ε-regularity property for heat flow of biharmonic maps to SL.

Proposition 2.2 For any 1 < p ≤ 2, there exists εp > 0 such that if u : P4 → SL is a weak solution

of (1.4) and satisfies

sup
(x,t)∈P2,0<r≤2

r2p−n−4

∫
Pr(x,t)

(
|∇2u|p + r2p|∂tu|p

)
≤ εpp, (2.12)

then u ∈ C∞(P 1
2
,SL), and ∥∥∥∇mu∥∥∥

C0(P 1
2

)
≤ C(p, n,m), ∀ m ≥ 1. (2.13)

Proof. We first establish Hölder continuity of u in P 3
4
. It is based on the decay estimate:

Claim. There exist εp > 0, q > 1, and θ0 ∈ (0, 1
2) such that for any z0 = (x0, t0) ∈ P1 and 0 < r ≤ 1,

−
∫
Pθ0r(z0)

|u− uPθ0r(z0)|q ≤
1

2
−
∫
Pr(z0)

|u− uPr(z0)|q, (2.14)

where uPr(z0) = −
∫
Pr(z0)

u, 0 < r ≤ 1, denotes the average of u over Pr(z0).

By translation and scaling, it suffices to show (2.14) for z0 = (0, 0) and r = 2. First, we need

to extend u from P1 to Rn+1. Let the extension, still denoted by u, be such that

|u| ≤ 2 in Rn+1, u = 0 outisde P2,

and ∫
Rn+1

|∇2u|p + |∂tu|p .
∫
P2

|∇2u|p + |∂tu|p.

For 1 ≤ l ≤ 4, let wl : Rn+1
+ → RL+1 be the solution to the equation:

∂twl + ∆2wl =Tl in Rn+1
+

wl =0 on Rn × {0}.
(2.15)

Define v : P1 → RL+1 by

v = u−F(w1, w2, w3, w4).

Here F is the linear combination of w1, . . . , w4 given by Lemma 2.1. By (2.2) we have

∂tv + ∆2v = 0 in P1. (2.16)

It follows from (2.15) and the Duhamel formula that for 1 ≤ l ≤ 4,

wl(x, t) =

∫
Rn×[0,t]

b(x− y, t− s)Tl(y, s), (x, t) ∈ Rn+1
+ . (2.17)
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Set cα = uαP2
in (2.1). Considering T1 =

(
(uα − uαP2

)uβi u
β
ij

)
j

(other forms of T1 can be handled

similarly), we obtain

|w1(x, t)| =

∣∣∣∣∣
∫
Rn×[0,t]

∇jb(x− y, t− s)(uα − uαP2
)uβi u

β
ij(y, s)

∣∣∣∣∣
.
∫
Rn+1

(
|t− s|

1
4 + |x− y|

)−n−1
|u− uP2 ||∇u||∇2u|(y, s)

.I3

(
χP2 |u− uP2 ||∇u||∇2u|

)
(x, t),

(2.18)

where χP2 is the characteristic function of P2.

By the estimates of Riesz potentials in Lq-spaces (see also §5 below), we have that for any

f ∈ Lq, 1 < q < +∞, Iα(f) ∈ Lq̃, where 1
q̃ = 1

q −
α
n+4 . If q̃1, q1 > 1 satisfy

1

q̃1
=

1

p
+

1

2p
+

1

q1
− 3

n+ 4
,

then ∥∥∥w1

∥∥∥
Lq̃1 (P2)

≤ C
∥∥∥u− uP2

∥∥∥
Lq1 (P2)

∥∥∥∇u∥∥∥
L2p(P2)

∥∥∥∇2u
∥∥∥
Lp(P2)

≤ Cεp
∥∥∥u− uP2

∥∥∥
Lq1 (P2)

. (2.19)

For T2 = ∆
(
(uα − uαP2

)|∇uβ|2
)

(other forms of T2 can be handled similarly), we obtain

|w2(x, t)| =

∣∣∣∣∣
∫
Rn×[0,t]

∆b(x− y, t− s)(uα − uαP2
)|∇uβ|2(y, s)

∣∣∣∣∣
.
∫
Rn+1

(
|t− s|

1
4 + |x− y|

)−n−2
|u− uP2 ||∇u|2(y, s)

.I2

(
χP2 |u− uP2 ||∇u|2

)
(x, t).

(2.20)

If q̃2, q2 > 1 satisfy
1

q̃2
=

1

p
+

1

q2
− 2

n+ 4
,

then ∥∥∥w2

∥∥∥
Lq̃2 (P2)

≤ C
∥∥∥u− uP2

∥∥∥
Lq2 (P2)

∥∥∥|∇u|2∥∥∥
Lp(P2)

≤ Cεp
∥∥∥u− uP2

∥∥∥
Lq2 (P2)

. (2.21)

For T3 =
(

(uβ − uβP2
)uβj

)
jii

, we obtain

|w3(x, t)| =

∣∣∣∣∣
∫
Rn×[0,t]

∆bj(x− y, t− s)(uβ − uβP2
)uβj (y, s)

∣∣∣∣∣
.
∫
Rn+1

(
|t− s|

1
4 + |x− y|

)−n−3
|u− uP2 ||∇u|(y, s)

.I1 (χP2 |u− uP2 ||∇u|) .

(2.22)

If q̃3, q3 > 1 satisfy
1

q̃3
=

1

2p
+

1

q3
− 1

n+ 4
,
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then ∥∥∥w3

∥∥∥
Lq̃3 (P2)

≤ C
∥∥∥u− uP2

∥∥∥
Lq3 (P2)

∥∥∥∇u∥∥∥
L2p(P2)

≤ Cεp
∥∥∥u− uP2

∥∥∥
Lq3 (P2)

. (2.23)

For T4, we have

∂tw4 + ∆2w4 =
(
uαuβt − uβuαt

)(
uβ − uβP2

)
. (2.24)

Multiplying (2.24) by w4, integrating over Rn and using the Hölder inequality, we obtain

sup
−24≤t≤0

∫
Rn
|w4|2 +

∫
Rn×[−24,0]

|∇2w4|2 ≤ C
∥∥∥∂tu∥∥∥

Lp(P2)

∥∥∥u− uP2

∥∥∥
Lq4 (P2)

∥∥∥w4

∥∥∥
L

2(n+4)
n (P2)

, (2.25)

where
1

p
+

1

q4
+

n

2(n+ 4)
= 1.

By interpolation and the Sobolev’s inequality, we have∥∥∥w4

∥∥∥2

L
2(n+4)
n (P2)

≤ C

(
sup

−24≤t≤0

∫
Rn
|w4|2 +

∫
Rn×[−24,0]

|∇2w4|2
)
. (2.26)

Combining (2.26) with (2.25), we obtain∥∥∥w4

∥∥∥
L

2(n+4)
n (P2)

≤ C
∥∥∥∂tu∥∥∥

Lp(P2)

∥∥∥u− uP2

∥∥∥
Lq4 (P2)

≤ Cεp
∥∥∥u− uP2

∥∥∥
Lq4 (P2)

. (2.27)

Let

q = max {q1, q2, q3, q4} > 1 and q̃ = min {q̃1, q̃2, q̃3, q̃4} > 1.

By (2.19), (2.21), (2.23) and (2.27), we have∑
1≤l≤4

∥∥∥wl∥∥∥
Lq̃(P2)

≤ Cεp
∥∥∥u− uP2

∥∥∥
Lq(P2)

. (2.28)

On the other hand, by the standard estimate on v, we have that for any 0 < θ < 1,

(
−
∫
Pθ

|v − vPθ |
q̃

) 1
q̃

≤ Cθ
(
−
∫
P1

|v − vP1 |q̃
) 1
q̃

≤ Cθ

(
−
∫
P1

|u− uP2 |q̃ +
4∑
l=1

|wl|q̃
) 1

q̃

. (2.29)

Adding (2.28) and (2.29) together, we obtain(
−
∫
Pθ

|u− uPθ |
q̃

) 1
q̃

≤C
(
θ
−n+4

q̃ εp + θ
)(
−
∫
P2

|u− uP2 |q
) 1
q

≤1

2

(
−
∫
P2

|u− uP2 |q
) 1
q

,

(2.30)

where we have chosen θ and εp so that

C
(
θ
−n+4

q̃ εp + θ
)
≤ 1

2
.

It follows from (2.12) that u ∈ BMO(P2) and

[u]BMO(P2) :=
{
−
∫
Pr(z)

|u− uPr(z)| : Pr(z) ⊂ P2

}
≤ Cεp. (2.31)
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Hence, by the John-Nirenberg inequality (see [18]), we have that for any 0 < r < 1,(
−
∫
Pr

|u− uPr |q
) 1
q

≤ C(εp, q, q̃)

(
−
∫
Pr

|u− uPr |q̃
) 1
q̃

. (2.32)

Combining (2.32) with (2.30) completes the proof of the Claim.

It is standard that iterating (2.14) yields the Hölder continuity of u by using the Campanato

theory [3]. The higher-order regularity then follows from the hole-filling type argument and the

bootstrap argument, which will be sketched in Proposition 6.1 of §6 Appendix. After this, we have

that u ∈ C∞(P 1
2
,SL) and the estimate (2.13) holds. 2

Proof of Theorem 1.1. By the definition of Morrey spaces, for z0 = (x0, t0) ∈ Ω × (0, T ) and

R0 ≤ 1
2 min{d(x0, ∂Ω),

√
t0}, we have

sup
z=(x,t)∈PR0

2

(z0), r≤R0
2

r2p−(n+4)

∫
Pr(z)

(|∇2u|p + r2p|∂tu|p) ≤ εpp. (2.33)

Consider v(x, t) = u(x0 + R0
8 x, t0 +(R0

8 )4t) : P4 → SL. It is easy to check that v is a weak solution of

(1.4) and satisfies (2.12). Hence Proposition 2.2 implies that v ∈ C∞(P 1
2
, SL) and satisfies (2.13).

After rescaling, we see that u ∈ C∞(PR0
16

(z0), SL) and the estimate (1.6) holds. 2

Since biharmonic maps are steady solutions of the heat flow of biharmonic maps, as a direct

consequence of Theorem 1.1 we have the following ε-regularity for biharmonic maps to SL.

Theorem 2.3 For 1 < p ≤ 2, there exist εp > 0 and r0 > 0 such that if u ∈W 2,p(Ω,SL) is a weak

solution of (1.1) and satisfies

sup
x∈Ω

sup
0<r≤min{r0,d(x,∂Ω)}

r2p−n
∫
Br(x)

|∇2u|p ≤ εpp, (2.34)

then u ∈ C∞(Ω, SL), and

|∇mu(x)| ≤ Cεp
( 1

rm0
+

1

dm(x, ∂Ω)

)
, ∀ m ≥ 1. (2.35)

Remark 2.4 For p = 2, Theorem 2.3 was first proved by Chang-Wang-Yang [4]. For biharmonic

maps into any compact Riemannian manifold N without boundary, Theorem 2.3 was proved by

[41, 43] for p = 2.

3 Convexity and uniqueness of biharmonic maps

We will outline the convexity and uniqueness properties for biharmonic maps with small energy,

which are the second-order extensions of the corresponding theorems on harmonic maps with small

energy by Struwe [37], Moser [26], and Huang-Wang [14].
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Consider the Dirichlet boundary value problem for a biharmonic map u ∈W 2,2(Ω, N): ∆2u =Nbh[u] in Ω(
u,
∂u

∂ν

)
=
(
u0,

∂u0

∂ν

)
on ∂Ω.

(3.1)

where u0 ∈W 2,2(Ω, N) given.

We recall the higher-order Hardy inequality.

Lemma 3.1 There is C > 0 depending only on n and Ω such that if f ∈W 2,2
0 (Ω), then∫

Ω

|f(x)|2

d4(x, ∂Ω)
≤ C

∫
Ω
|∇2f(x)|2. (3.2)

Proof. For simplicity, we indicate a proof for the case Ω = B1 – the unit ball in Rn. The

interested readers can refer to [5] for a proof of general domains. By approximation, we may

assume f ∈ C∞0 (B1). Writing the left side of (3.2) in spherical coordinates, integrating over B1,

and using the Hölder inequality, we obtain∫
B1

|f(x)|2

(1− |x|)4
=

∫ 1

0

∫
Sn−1

|f |2(r, θ)

(1− r)4
rn−1 dHn−1(θ)dr

=−
∫ 1

0

∫
Sn−1

1

3(1− r)3

(
2ffrr

n−1 + |f |2(n− 1)rn−2
)
dHn−1(θ)dr

≤−
∫ 1

0

∫
Sn−1

2

3(1− r)3
ffrr

n−1 dHn−1(θ)dr

≤C
∫ 1

0

∫
Sn−1

|f ||fr|rn−1

(1− r)3
dHn−1(θ)dr

≤C
∫
B1

|f(x)||∇f(x)|
(1− |x|)3

≤C
(∫

B1

|f(x)|2

(1− |x|)4

) 1
2
(∫

B1

|∇f(x)|2

(1− |x|)2

) 1
2

.

(3.3)

Thus, by using the first-order Hardy inequality, we obtain∫
B1

|f(x)|2

(1− |x|)4
≤ C

∫
B1

|∇f(x)|2

(1− |x|)2
≤ C

∫
B1

|∇2f(x)|2. (3.4)

This yields (3.2). 2

Now we introduce the Morrey spaces in Rn. For 1 ≤ l < +∞, 0 < λ ≤ n, and 0 < R ≤ +∞,

f ∈M l,λ
R (Ω) if and only if f ∈ Llloc(Ω) satisfies

‖f‖l
M l,λ
R (Ω)

:= sup
x∈Ω

sup
0<r≤min{R,d(x,∂Ω)}

{
rλ−n

∫
Br(x)

|f |l
}
< +∞.

We have the convexity property of biharmonic maps with small energy.
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Theorem 3.2 For n ≥ 4, δ ∈ (0, 1), and 1 < p ≤ 2, there exist εp = ε(p, δ) > 0 and Rp = R(p, δ) >

0 such that if u ∈W 2,2(Ω, N) is a biharmonic map satisfying either

(i) ‖∇2u‖
M2,4
R2

(Ω)
≤ ε2, when N is a compact Riemannian manifold without boundary, or

(ii) ‖∇2u‖
Mp,2p
Rp

(Ω)
≤ εp, when N = SL,

then ∫
Ω
|∆v|2 ≥

∫
Ω
|∆u|2 + (1− δ)

∫
Ω
|∇2(v − u)|2 (3.5)

holds for any v ∈W 2,2(Ω, N) with

(
v,
∂v

∂ν

)
=

(
u,
∂u

∂ν

)
on ∂Ω.

Proof. First, it follows from Theorem 2.3 for N = SL or the regularity theorem by Wang [43]

that if εp > 0 is sufficiently small then u ∈ C∞(Ω, N), and

|∇mu(x)| ≤ Cεp
(

1

Rmp
+

1

dm(x, ∂Ω)

)
, ∀ x ∈ Ω, ∀ m ≥ 1. (3.6)

For y ∈ N , let P⊥(y) : RL+1 → (TyN)⊥ denote the orthogonal projection map from RL+1 to the

normal space of N at y. Since N is compact, a simple geometric argument implies that there exists

C > 0 depending on N such that∣∣∣P⊥(y)(z − y)
∣∣∣ ≤ C|z − y|2, ∀z ∈ N. (3.7)

Since

Nbh[u] ⊥ TuN,

it follows from (3.7) that multiplying (1.1) by (u− v) and integrating over Ω yields∫
Ω

∆u ·∆(u− v) =

∫
Ω
Nbh[u] · (u− v)

.
∫

Ω
[|∇u|2|∇2u|+ |∇2u|2 + |∇u||∇3u|]|u− v|2

. ε4p

∫
Ω

|u− v|2

R4
p

+
|u− v|2

d4(x, ∂Ω)

. εp

∫
Ω
|∇2(u− v)|2, (3.8)

where we choose Rp ≥ εp, and use (3.6), the Poincaré inequality, and the Hardy inequality (3.2)

during the last two steps.

It follows from (3.8) that∫
Ω
|∆v|2 −

∫
Ω
|∆u|2 −

∫
Ω
|∆u−∆v|2 = 2

∫
Ω

∆u ·∆(v − u) ≥ −Cεp
∫

Ω
|∇2(u− v)|2. (3.9)

Since (u− v) ∈W 2,2
0 (Ω), we have∫

Ω
|∆u−∆v|2 =

∫
Ω
|∇2(u− v)|2,
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and hence ∫
Ω
|∆v|2 −

∫
Ω
|∆u|2 ≥ (1− Cεp)

∫
Ω
|∇2(u− v)|2.

This yields (3.5), if εp > 0 is chosen so that Cεp ≤ δ. 2

Corollary 3.3 For n ≥ 2 and 1 < p ≤ 2, there exist εp > 0 and Rp > 0 such that if u1, u2 ∈
W 2,2(Ω, N) are biharmonic maps, with u1 − u2 ∈W 2,2

0 (Ω,RL+1), satisfying either

(i) max
i=1,2

‖∇2ui‖M2,4
R2

(Ω)
≤ ε2, when N is a compact Riemannian manifold without boundary, or

(ii) max
i=1,2

‖∇2ui‖Mp,2p
Rp

(Ω)
≤ εp, when N = SL,

then u1 ≡ u2 in Ω.

Proof. Choose δ = 1
2 , apply Theorem 3.2 to u1 and u2 by choosing sufficiently small εp > 0 and

Rp > 0. We have ∫
Ω
|∆u2|2 ≥

∫
Ω
|∆u1|2 +

1

2

∫
Ω
|∇2(u2 − u1)|2,

and ∫
Ω
|∆u1|2 ≥

∫
Ω
|∆u2|2 +

1

2

∫
Ω
|∇2(u1 − u2)|2.

Adding these two inequalities together yields

∫
Ω
|∇2(u1−u2)|2 = 0. This, combined with u1−u2 ∈

W 2,2
0 (Ω), implies u1 ≡ u2 in Ω. 2

4 Uniqueness and convexity of heat flow of biharmonic maps

This section is devoted to the proof of uniqueness, convexity, and unique limit at t = ∞ for (1.2)

of the heat flow of biharmonic maps, i.e. Theorem 1.3, Theorem 1.5, and Corollary 1.6.

Proof of Theorem 1.3. First, by Theorem 1.1, we have that for i = 1, 2, ui ∈ C∞(Ω× (0, T ),SL),

and ∣∣∣∇mui(x, t)∣∣∣ ≤ Cεp( 1

Rmp
+

1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀(x, t) ∈ Ω× (0, T ), ∀ m ≥ 1. (4.1)

Set w = u1 − u2. Then w satisfies
∂tw + ∆2w = Nbh[u1]−Nbh[u2] in Ω× (0, T )

w = 0 on ∂p(Ω× (0, T ))

∂w
∂ν = 0 on ∂Ω× (0, T ).

(4.2)

Multiplying (4.2) by w and integrating over Ω, we get, by (3.7), (4.1), the Poincaré inequality and
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the Hardy inequality (3.2), that

d

dt

∫
Ω
|w|2 + 2

∫
Ω
|∇2w|2 = 2

∫
Ω

(Nbh[u1]−Nbh[u2]) · w

.
2∑
i=1

∫
Ω

(|∇ui|2|∇2ui|+ |∇2ui|2 + |∇ui||∇3ui|)|w|2

. ε4p

∫
Ω

|w(x, t)|2

R4
p

+
|w(x, t)|2

d4(x, ∂Ω)
+
|w(x, t)|2

t

. εp

∫
Ω
|∇2w|2 +

εp
t

∫
Ω
|w|2.

If we choose εp > 0 sufficiently small and Rp ≥ εp, then it holds

d

dt

∫
Ω
|w|2 ≤ Cεp

t

∫
Ω
|w|2. (4.3)

It follows from (4.3 that

d

dt

(
t−

1
2

∫
Ω
|w|2

)
= t−

1
2
d

dt

∫
Ω
|w|2 − 1

2
t−

3
2

∫
Ω
|w|2

≤ (Cε− 1

2
)t−

3
2

∫
Ω
|w|2 ≤ 0. (4.4)

Integrating this inequality from 0 to t yields

t−
1
2

∫
Ω
|w|2 ≤ lim

t↓0+
t−

1
2

∫
Ω
|w|2. (4.5)

Since w(·, 0) = 0, we have

w(x, t) =

∫ t

0
wt(x, τ) dτ, a.e. x ∈ Ω,

and so, by the Hölder inequality,

t−
1
2

∫
Ω
|w(x, t)|2 ≤ t

1
2

∫ t

0

∫
Ω
|wt|2(x, τ) dxdτ ≤ Ct

1
2 → 0, as t ↓ 0+.

This, combined with (4.5), implies w ≡ 0 in Ω× [0, T ]. Hence u1 ≡ u2. The proof is complete. 2

Now we want to prove Theorem 1.5 and Corollary 1.6. To do so, we need:

Lemma 4.1 Under the same assumptions as in Theorem 1.5, there exists T0 > 0 such that∫
Ω |∂tu(t)|2 is monotone decreasing for t ≥ T0:∫

Ω
|∂tu|2(t2) + C

∫
Ω×[t1,t2]

|∇2∂tu|2 ≤
∫

Ω
|∂tu|2(t1), T0 ≤ t1 ≤ t2 ≤ T. (4.6)

Proof. For any sufficiently small h > 0, set

uh(x, t) =
u(x, t+ h)− u(x, t)

h
, (x, t) ∈ Ω× (0, T − h).
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Then uh ∈ L2([0, T − h],W 2,2
0 (Ω)), ∂tu ∈ L2(Ω × [0, T − h]) and lim

h↓0+
‖uh − ∂tu‖L2(Ω×[0,T−h]) = 0.

Since u satisfies (1.2), we obtain

∂tu
h + ∆2uh =

1

h

(
Nbh[u(t+ h)]−Nbh[u(t)]

)
. (4.7)

Multiplying (4.7) by uh, applying (3.7), integrating over Ω, and applying (4.1), we have

d

dt

∫
Ω
|uh|2 + 2

∫
Ω
|∆uh|2 .

∫
Ω

(
|Nbh[u(t+ h)]|+ |Nbh[u(t)]|

)
|uh|2

.
∫

Ω

(
|∇2u|2 + |∇u||∇3u|+ |∇u|2|∇2u||

)
(t+ h)|uh|2

+

∫
Ω

(
|∇2u|2 + |∇u||∇3u|+ |∇u|2|∇2u||

)
(t)|uh|2

. ε4p

∫
Ω

|uh|2

R4
p

+
|uh|2

d4(x, ∂Ω)
+
|uh|2

T0

. εp

∫
Ω
|∇2uh|2

provided that we choose Rp ≥ εp and T0 ≥ εp. Since∫
Ω
|∇2uh|2 =

∫
Ω
|∆uh|2,

this implies
d

dt

∫
Ω
|uh|2 + 2

∫
Ω
|∇2uh|2 ≤

(
1

2
+ Cεp

)∫
Ω
|∇2uh|2. (4.8)

Choosing εp > 0 so that Cεp ≤ 1
2 , integrating on T0 ≤ t1 ≤ t2 ≤ T , we have∫

Ω
|uh|2(t2) + C

∫ t2

t1

∫
Ω
|∇2uh|2 ≤

∫
Ω
|uh|2(t1). (4.9)

Sending h→ 0 yields (4.6). 2

Now we can show the monotonicity of E2-energy for heat flow of biharmonic maps for t ≥ T0.

Lemma 4.2 Under the same assumptions as in Theorem 1.5, there is T0 > 0 such that

∫
Ω
|∆u(t)|2

is monotone decreasing for t ≥ T0:∫
Ω
|∆u|2(t2) + 2

∫
Ω×[t1,t2]

|∂tu|2 ≤
∫

Ω
|∆u|2(t1), T0 ≤ t1 ≤ t2 ≤ T. (4.10)

Proof. For δ > 0, let ηδ ∈ C∞0 (Ω) be such that

0 ≤ ηδ ≤ 1, ηδ ≡ 1 for x ∈ Ω \ Ωδ, and |∇mηδ| ≤ Cδ−m.

Here Ωδ = {x ∈ Ω : d(x, ∂Ω) ≤ δ}. Multiplying (1.2) by ∂tuη
2
δ and integrating over Ω× [t1, t2], we

obtain ∫
Ω
|∆u(t2)|2η2

δ −
∫

Ω
|∆u(t1)|2η2

δ + 2

∫ t2

t1

∫
Ω
|∂tu|2η2

δ

=− 4

∫ t2

t1

∫
Ω

∆u · ∂tu
(
|∇ηδ|2 + ηδ∆ηδ

)
− 8

∫ t2

t1

∫
Ω

∆u · ∇∂tuηδ∇ηδ.
(4.11)
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It suffices to show the right-hand side of the above identity tends to 0 as δ → 0+. By Lemma 4.1,

we have that ∂tu ∈ L2([T0, T ],W 2,2
0 (Ω)) so that∫ t2

t1

∫
Ω
|∇∂tu|2|∇ηδ|2 + |∂tu|2

(
|∇ηδ|4 + |∆ηδ|2

)
.δ−2

∫ t2

t1

∫
Ωδ

|∇∂tu|2 + δ−2|∂tu|2

.
∫ t2

t1

∫
Ωδ

|∇2∂tu|2 → 0, as δ → 0.

(4.12)

This, combined with the Hölder inequality, implies that for t2 ≥ t1 ≥ T0,

−4

∫ t2

t1

∫
Ω

∆u · ∂tu
(
|∇ηδ|2 + ηδ∆ηδ

)
− 8

∫ t2

t1

∫
Ω

∆u · ∇∂tuηδ∇ηδ → 0, as δ → 0+.

Thus (4.10) holds and the proof is complete. 2

Proof of Theorem 1.5. First, by Theorem 1.1, we have that u ∈ C∞(Ω× (0, T ], SL), and∣∣∣∇mu(x, t)
∣∣∣ ≤ Cεp( 1

Rmp
+

1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀ (x, t) ∈ Ω× (0, T ), ∀ m ≥ 1. (4.13)

For t2 > t1 ≥ T0, we have∫
Ω
|∆u(t1)|2 −

∫
Ω
|∆u(t2)|2 −

∫
Ω
|∆u(t1)−∆u(t2)|2

=2

∫
Ω

(∆u(t1)−∆u(t2)) ∆u(t2)

=− 2

∫
Ω

(u(t1)− u(t2))ut(t2)

+

∫
Ω
Nbh[u(t2)] · (u(t1)− u(t2))

=I + II.

(4.14)

For II, applying (3.7), we obtain

|Nbh[u(t2)] · (u(t1)− u(t2))| . |Nbh[u(t2)]||u(t1)− u(t2)|2.

Hence, by (4.13), the Hardy inequality and the Poincaré inequality, we have

|II| .ε4p
∫

Ω

(
1

R4
p

+
1

d4(x, ∂Ω)
+

1

T0

)
|u(t1)− u(t2)|2

≤Cεp
∫

Ω
|∇2(u(t1)− u(t2))|2.

(4.15)

For I, by Lemma 4.1, we have∥∥∥∂tu(t2)
∥∥∥2

L2(Ω)
≤ 1

t2 − t1

∫ t2

t1

∫
Ω
|∂tu|2. (4.16)
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By the Hölder inequality and (4.10), this implies

|I| .
∫

Ω
|∂tu(t2)||u(t1)− u(t2)|

. ‖∂tu(t2)‖L2(Ω) ‖u(t1)− u(t2)‖L2(Ω)

≤
√
t2 − t1 ‖∂tu(t2)‖L2(Ω)

(∫
Ω×[t1,t2]

|∂tu|2
) 1

2

≤
∫

Ω×[t1,t2]
|∂tu|2 ≤

1

2

[∫
Ω
|∆u(t1)|2 −

∫
Ω
|∆u(t2)|2

]
.

(4.17)

Putting (4.17) and (4.15) into (4.14) implies (1.10). This completes the proof. 2

Proof of Corollary 1.6. It follows from Lemma 4.2 that

∫
Ω
|∆u(t)|2 is monotone decreasing for

t ≥ T0. Hence

c = lim
t→∞

∫
Ω
|∆u(t)|2

exists and is finite. Let {ti} be any increasing sequence such that lim
i→∞

ti = +∞. Then (1.10)

implies that∫
Ω

∣∣∣∇2(u(ti+j)− u(ti))
∣∣∣2 ≤ C[ ∫

Ω
|∆u(ti+j)|2 −

∫
Ω
|∆u(ti)|2

]
→ 0, as i→∞,

for all j ≥ 1. Thus there exists a map u∞ ∈W 2,2(Ω, SL), with (u∞,
∂u∞
∂ν

) = (u0,
∂u0

∂ν
) on ∂Ω, such

that

lim
t→∞

∥∥∥u(t)− u∞
∥∥∥
W 2,2(Ω)

= 0.

Since (4.10) implies that there exists a sequence ti →∞, such that

lim
i→∞

∥∥∥∂tu(ti)
∥∥∥
W 2,2(Ω)

= 0.

Thus u∞ ∈W 2,2(Ω, SL) is a biharmonic map. Since it also holds, for any m ≥ 1, and any compact

subset K ⊂⊂ Ω, that ∥∥∥u(t)
∥∥∥
Cm(K)

≤ C(n,m,K), ∀t ≥ 1,

we conclude

lim
t→∞

∥∥∥u(t)− u∞
∥∥∥
Cm(K)

= 0,

and u∞ ∈ C∞(Ω,SL). This completes the proof. 2

5 Regularity and uniqueness of Serrin’s (p, q)-solutions

In this section, we will prove Theorem 1.8 that asserts both smoothness and uniqueness for Serrin’s

(p, q)-solution to (1.2). First, we would like to verify
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Proposition 5.1 For n ≥ 4, 0 < T < +∞, suppose u ∈ W 1,2
2 (Ω × [0, T ], N) is a weak solution

to (1.2), with the initial and boundary value u0 ∈ W 2,r(Ω, N) for some n
2 < r < +∞, such that

∇2u ∈ LqtL
p
x(M × [0, T ]) for some p > n

2 and q <∞ satisfying (1.13). Then

(i) ∂tu ∈ L
q
2
t L

p
2
x (Ω× [0, T ]); and

(ii) for any ε > 0, there exists R = R(u, ε) > 0 such that for any 1 < s < min{p2 ,
q
2},

sup
{
r2s−(n+4)

∫
Pr(x,t)∩(Ω×[0,T ])

(|∇2u|s + r2s|∂tu|s) | (x, t) ∈ Ω× [0, T ], 0 < r ≤ R
}
≤ εs. (5.1)

Proof. For simplicity, we will sketch the proof for Ω = Rn. By the Duhamel’s formula, we have

that u(x, t) = u1(x, t) + u2(x, t), where

u1(x, t) =

∫
Rn
b(x− y, t)u0(y), (5.2)

u2(x, t) =

∫ t

0

∫
Rn
b(x− y, t− s)Nbh[u](y, s)

=

∫ t

0

∫
Rn
b(x− y, t− s)[∇ · (∇(A(u)(∇u,∇u)) + 2∆u · ∇(P (u)))−∆u ·∆(P (u))](y, s).

(5.3)

We proceed with two claims.

Claim 1. ∇3u ∈ L
2q
3
t L

2p
3
x (Rn × [0, T ]).

For u1, we have

∇3u1(x, t) =

∫
Rn
∇xb(x− y, t)∇2u0(y). (5.4)

Direct calculations, using the property of the kernel function b, yield∥∥∥∇3u
∥∥∥
L

2q
3
t L

2p
3
x (Rn×[0,T ])

. T
1
4

(2−n
r

)
∥∥∥∇2u0

∥∥∥
Lr(Rn)

. (5.5)

For u2, we have

∇3u2(x, t) =

∫ t

0

∫
Rn
∇4
xb(x− y, t− s)

[
∇(A(u)(∇u,∇u)) + 2∆u · ∇(P (u))

]
−
∫ t

0

∫
Rn
∇3
xb(x− y, t− s)∆u ·∆(P (u))(y, s)

= M1 +M2. (5.6)

By the Nirenberg interpolation inequality, we have ∇u ∈ L2q
t L

2p
x (Rn × [0, T ]). By the Hölder

inequality, we then have ∇(A(u)(∇u,∇u)) + 2∆u · ∇(P (u))) ∈ L
3q
2
t L

3p
2
x (Rn× [0, T ]). Hence, by the

Calderon-Zygmund Lq̃tL
p̃
x-theory, we have∥∥∥M1

∥∥∥
L

2p
3
t L

2q
3
x (Rn×[0,T ])

.
∥∥∥∇(A(u)(∇u,∇u)) + 2∆u · ∇(P (u))

∥∥∥
L

2p
3
t L

2q
3
x (Rn×[0,T ])

.
∥∥∥∇u∥∥∥

L2p
t L

2q
x (Rn×[0,T ])

∥∥∥∇2u
∥∥∥
LptL

q
x(Rn×[0,T ])

.1 +
∥∥∥∇2u

∥∥∥2

LptL
q
x(Rn×[0,T ])

.

(5.7)
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For M2, we have

|M2|(x, t) . I1

(
|∇2u|2 + |∇u|4

)
(x, t), (x, t) ∈ Rn × [0, T ].

Recall the following estimate of I1(·) (see, for example, [8] §4):∥∥∥I1(f)
∥∥∥
L
s2
t L

r2
x (Rn×[0,T ])

.
∥∥∥f∥∥∥

L
s1
t L

r1
x (Rn×[0,T ])

, (5.8)

where s2 ≥ s1 and r2 ≥ r1 satisfy

n

r1
+

4

s1
≤ n

r2
+

4

s2
+ 1. (5.9)

Applying (5.8) to M2, we see that M2 ∈ L
2p
3
t L

2q
3
x (Rn × [0, T ]), and∥∥∥M2

∥∥∥
L

2p
3
t L

2q
3
x (Rn×[0,T ])

. 1 +
∥∥∥∇2u

∥∥∥2

LptL
q
x(Rn×[0,T ])

. (5.10)

Combining these estimates on ∇3u1,M1, and M2 yields Claim 1.

Claim 2. ∇4u ∈ L
q
2
t L

p
2
x (Rn × [0, T ]). It follows from Claim 1 that

Nbh[u] = [∆(A(u)(∇u,∇u)) + 2∆u · ∇(P (u)))−∆u ·∆(P (u))] ∈ L
q
2
t L

p
2
x (Rn × [0, T ]).

Since

∇4u2(x, t) =

∫ t

0

∫
Rn
∇4
xb(x− y, t− s)Nbh[u](y, s),

we can apply the Calderon-Zygmund Lq̃tL
p̃
x-theory again to conclude that∇4u2 ∈ L

q
2
t L

p
2
x (Rn×[0, T ]).

For u1, we have

∇4u1(x, t) =

∫
Rn
∇2
xb(x− y, t)∇2u0(y).

Hence, by direct calculations, we have∥∥∥∇4u1

∥∥∥
L
q
2
t L

p
2
x (Rn×[0,T ])

. T
1
4

(2−n
r

)
∥∥∥∇2u0

∥∥∥
Lr(Rn)

.

Combining these two estimates yields Claim 2.

By (1.2), it is easy to see that ∂tu ∈ L
q
2
t L

p
2
x (Rn × [0, T ]). In fact, we have∥∥∥∂tu∥∥∥

L
p
2
t L

q
2
x (Rn×[0,T ])

.
∥∥∥Nbh[u]−∆2u

∥∥∥
L
p
2
t L

q
2
x (Rn×[0,T ])

.1 +
∥∥∥∇2u

∥∥∥2

LptL
q
x(Rn×[0,T ])

+ T
1
4

(2−n
r

)
∥∥∥∇2u0

∥∥∥
Lr(Rn)

.
(5.11)

This implies (i).

(ii) follows from (i) and the Hölder inequality. In fact, for any 1 < s < min{p2 ,
q
2}, it holds(

r2s−(n+4)

∫
Pr(x,t)∩(Ω×[0,T ])

|∇2u|s
) 1
s ≤

∥∥∥∇2u
∥∥∥
LqtL

p
x(Pr(x,t)∩(Ω×[0,T ]))

,
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and (
r4s−(n+4)

∫
Pr(x,t)∩(M×[0,T ])

|∂tu|s
) 1
s ≤

∥∥∥∂tu∥∥∥
L
q
2
t L

p
2
x (Pr(x,t)∩(Ω×[0,T ]))

.

These two inequalities clearly imply (5.1), provided that R = R(u, ε) > 0 is chosen sufficiently

small. 2

Now we prove the ε-regularity property for Serrin’s (p, q)-solutions to (1.2).

Theorem 5.2 There exists ε0 > 0 such that if u ∈ W 1,2
2 (P1, N), with ∇2u ∈ LqtL

p
x(P1) for some

q ≥ n
2 and p ≤ ∞ satisfying (1.13), is a weak solution of (1.2) and satisfies∥∥∥∇2u

∥∥∥
LqtL

p
x(P1)

≤ ε0, (5.12)

then u ∈ C∞(P 1
2
, N) and

‖∇mu‖C0(P 1
2

) ≤ C(m, p, q, n)‖∇2u‖LqtLpx(P1), ∀ m ≥ 1. (5.13)

Before proving this theorem, we recall the Serrin type inequalities and the Adams’ type estimates

of Riesz potential between Morrey spaces in (Rn+1, δ).

Lemma 5.3 Assume p ≥ n
2 and q ≤ ∞ satisfies (1.13). For any f ∈ LqtL

p
x(Ω × [0, T ]), g ∈

L2
tW

2,2
x (Ω× [0, T ]), and h ∈ L2

tW
1,2
x (Ω× [0, T ]), we have

∫
Ω×[0,T ]

|f ||g||h| . ‖h‖L2(Ω×[0,T ])‖g‖
n
2p

L2
tW

2,2
x (Ω×[0,T ])

(∫ T

0
‖f‖qLp(Ω)‖g‖

2
L2(Ω)

) 1
q

, (5.14)

and ∫
Ω×[0,T ]

|f ||∇g||h| . ‖h‖
L2
tW

1,2
x (Ω×[0,T ])

‖g‖
n
2p

L2
tW

2,2
x (Ω×[0,T ])

(∫ T

0
‖f‖qLp(Ω)‖g‖

2
L2(Ω)

) 1
q

. (5.15)

Proof. For convenience, we sketch the proof here. By the Hölder inequality, we have∫
Ω
|f ||g||h| ≤ ‖f‖Lp(Ω)‖g‖Lr(Ω)‖h‖L2(Ω), (5.16)

where
1

p
+

1

r
=

1

2
. It follows from (1.13) that 2 ≤ r ≤ 2n

n−4 . Hence by the Sobolev inequality we

have

‖g‖Lr(Ω) ≤ ‖g‖
2
q

L2(Ω)
‖g‖

2n
p

L
2n
n−4 (Ω)

. ‖g‖
2
q

L2(Ω)
‖g‖

n
2p

W 2,2(Ω)
. (5.17)

Putting (5.17) into (5.16) yields∫
Ω
|f ||g||h| . ‖f‖Lp(Ω)‖g‖

2
q

L2(Ω)
‖g‖

n
2p

W 2,2(Ω)
‖h‖L2(Ω). (5.18)

Since
1

q
+

n

4p
+

1

2
= 1, (5.14) follows by integrating on [0, T ] and the Hölder inequality.
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To see (5.15), note that the Hölder inequality implies∫
Ω
|f ||∇g||h| ≤ ‖f‖Lp(Ω)‖∇g‖Ls(Ω)‖h‖

L
2n
n−2 (Ω)

(5.19)

where
1

p
+

1

s
+
n− 2

2n
= 1.

Since
1

s
=

1

n
+

n

2p

(
1

2
− 2

n

)
+

(
1− n

2p

)
1

2
, the Nirenberg interpolation inequality implies

‖∇g‖Ls(Ω) . ‖g‖
2
q

L2(Ω)
‖g‖

n
2p

W 2,2(Ω)
. (5.20)

Putting (5.20) into (5.19) and using the Sobolev inequality, we obtain∫
Ω
|f ||∇g||h| . ‖f‖Lp(Ω)‖g‖

2
q

L2(Ω)
‖g‖

n
2p

W 2,2(Ω)
‖h‖W 1,2(Ω). (5.21)

Since
1

q
+

n

4p
+

1

2
= 1, (5.15) follows by integration on [0, T ] and the Hölder inequality. 2

Now we state the Adams’ estimate for the Riesz potentials on (Rn+1, δ). Since its proof can be

done exactly by the same argument as in Huang-Wang ([15] Theorem 3.1), we skip it here.

Proposition 5.4 (i) For any β > 0, 0 < λ ≤ n + 4, 1 < p < λ
β , if f ∈ Lp(Rn+1) ∩Mp,λ(Rn+1),

then Iβ(f) ∈ Lp̃(Rn+1) ∩M p̃,λ(Rn+1), where p̃ = pλ
λ−pβ . Moreover,

‖Iβ(f)‖Lp̃(Rn+1) ≤ C‖f‖
βp
λ

Mp,λ(Rn+1)
‖f‖1−

βp
λ

Lp(Rn+1)
(5.22)

‖Iβ(f)‖M p̃,λ(Rn+1) ≤ C‖f‖Mp,λ(Rn+1). (5.23)

(ii) For any 0 < β < λ ≤ n + 4, if f ∈ L1(Rn+1) ∩ M1,λ(Rn+1), then f ∈ L
λ

λ−β ,∗(Rn+1) ∩

M
λ

λ−β ,λ
∗ (Rn+1). Moreover,

‖Iβ(f)‖
L

λ
λ−β ,∗(Rn+1)

≤ C‖f‖
β
λ

M1,λ(Rn+1)
‖f‖1−

β
λ

L1(Rn+1)
(5.24)

‖Iβ(f)‖
M

λ
λ−β ,λ
∗ (Rn+1)

≤ C‖f‖M1,λ(Rn+1). (5.25)

Proof of Theorem 5.2. The proof is based on three claims.

Claim 1. For any 0 < α < 1, we have that ∇2u ∈M2,4−4α(P 3
4
), and∥∥∥∇2u

∥∥∥
M2,4−4α(P 3

4
)
≤ C

∥∥∥∇2u
∥∥∥
LqtL

p
x(P1)

. (5.26)

For any 0 < r ≤ 1
4 and z0 = (x0, t0) ∈ P 3

4
, by (5.12) we have

‖∇2u‖LqtLpx(Pr(z0)) ≤ ε. (5.27)

24



Let v : Pr(z0)→ RL+1 solve
vt + ∆2v =0 in Pr(z0)

v =u on ∂pPr(z0)

∂v

∂ν
=
∂u

∂ν
on ∂Br(x0)× (t0 − r4, t0].

(5.28)

Set w = u−v. Multiplying (5.28) and (1.2) by w, subtracting the resulting equations and integrating

over Pr(z0), we obtain

sup
t0−r4≤t≤t0

∫
Br(x0)

|w|2(t) + 2

∫
Pr(z0)

|∇2w|2

=|
∫
Pr(z0)

Nbh[u] · w|

=|
∫
Pr(z0)

−∇(A(u)(∇u,∇u))∇w − 〈∆u,∆(P (u))〉w − 2 〈∆u,∇(P (u))〉∇w|

.
∫
Pr(z0)

|∇2u|2|w|+
∫
Pr(z0)

|∇u||∇2u||∇w|

=I + II.

(5.29)

For I, we can apply (5.14) to get

|I| . ‖∇2u‖L2(Pr(z0))‖w‖
n
2p

L2
tW

2,2
x (Pr(z0))

(∫ t0

t0−r4
‖∇2u‖qLp(Br(x0))‖w‖

2
L2(Br(x0))

) 1
q

. (5.30)

For II, by (5.15), we have

|II| . ‖∇u‖
L2
tW

1,2
x (Pr(z0)

‖w‖
n
2p

L2
tW

2,2
x (Pr(z0))

(∫ t0

t0−r4
‖∇2u‖qLp(Br(x))‖w‖

2
L2(Br(x0))

) 1
q

. (5.31)

Putting (5.30) and (5.31) into (5.29) and applying the Poincaré inequality, we obtain

sup
t0−r4≤t≤t0

∫
Br(x0)

|w|2(t) + 2

∫
Pr(z0)

|∇2w|2

.

‖∇u‖L2
tW

1,2
x (Pr(z0))

‖∇2w‖
n
2p

L2(Pr(z0))

(∫ t0
t0−r4 ‖∇

2u‖qLp(Br(x0))‖w‖
2
L2(Br(x0))

) 1
q
, q <∞,

‖∇u‖
L2
tW

1,2
x (Pr(z0))

‖∇2w‖L2(Pr(z0))‖∇2u‖
L∞t L

n
2
x (Br(x0))

, q =∞.

(5.32)

Since ‖∇2u‖LqtLpx(Pr(z0)) ≤ ε, we obtain, by the Young inequality,

sup
t0−r4≤t≤t0

∫
Br(x0) |w|

2(t) + 2
∫
Pr(z0) |∇

2w|2

≤


‖∇2w‖2L2(Pr(z0)) + ε‖∇u‖2

L2
tW

1,2
x (Pr(z0))

+ Cε
p
2 sup
t0−r4≤t≤t0

‖w‖2L2(Br(x0)), q <∞,

‖∇2w‖2L2(Pr(z0)) + C‖∇2u‖2
L∞t L

n
2
x (Br(x0))

‖∇u‖2
L2
tW

1,2
x (Pr(z0))

, q =∞.
(5.33)
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By choosing ε > 0 sufficiently small, this implies∫
Pr(z0)

|∇2w|2 . ε

∫
Pr(z0)

|∇u|2 + |∇2u|2. (5.34)

Since N is compact and u maps into N , |u| ≤ CN . Hence, by the Nirenberg interpolation inequality,

we have ∫
Pr(z0)

|∇u|2 .
∫
Pr(z0)

|∇2u|2 + rn+4. (5.35)

Combining (5.35) with (5.34), we have∫
Pr(z0)

|∇2w|2 . ε

∫
Pr(z0)

|∇2u|2 + εrn+4. (5.36)

By the standard estimate on v, we have

(θr)−n
∫
Pθr(z0)

|∇2v|2 . θ4r−n
∫
Pr(z0)

|∇2v|2, ∀ θ ∈ (0, 1). (5.37)

Combining (5.36) with (5.37), we obtain

(θr)−n
∫
Pθr(z0)

|∇2u|2 ≤ C
(
θ4 + θ−nε

)
r−n

∫
Pr(z0

|∇2u|2 + Cεθ−nr4, ∀ θ ∈ (0, 1). (5.38)

For any 0 < α < 1, choose 0 < θ < 1 and ε such that

Cθ4 ≤ 1

2
θ4α and ε ≤ min

{(
1

2C

) 2
p

,
θ4α+n

2C

}
.

Therefore, for any (z0) ∈ P 3
4

and 0 < r ≤ 1
4 ,

(θr)−n
∫
Pθr(x,t)

|∇2u|2 ≤ θ4αr−n
∫
Pr(x,t)

|∇2u|2 + θ4αr4. (5.39)

It is standard that iterating (5.39) implies

r−n
∫
Pr(z0)

|∇2u|2 ≤ Cr4α

(∫
P1

|∇2u|2 + 1

)
(5.40)

for any z0 ∈ P 3
4

and 0 < r ≤ 1
4 . (5.40) implies that ∇2u ∈ M2,4−4α(P 3

4
), and (5.26) holds. This

proves Claim 1.

Claim 2. For any 1 < β < +∞, ∇2u ∈ Lβ(P 9
16

), and∥∥∥∇2u
∥∥∥
Lβ(P 9

16
)
.
∥∥∥∇2u

∥∥∥2

LqtL
p
x(P1)

. (5.41)

This can be proven by utilizing estimates of Riesz potentials between Morrey spaces. To do so, let

η ∈ C∞0 (P1) be such that

0 ≤ η ≤ 1, η ≡ 1 in P 5
8
, |ηt|+

4∑
m=1

|∇mη| ≤ C.
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Let Q : Rn × [−1,∞]→ RL+1 solve

∂tQ+ ∆2Q = ∇ ·
(
η2∇(A(u)(∇u,∇u)) + 2η2〈∆u,∇(P (u))〉

)
− η2〈∆u,∆(P (u))〉 (5.42)

Q
∣∣∣
t=−1

= 0.

Set

J1 = ∇ ·
(
η2∇(A(u)(∇u,∇u)) + 2η2〈∆u,∇(P (u))〉

)
and J2 = −η2〈∆u,∆(P (u))〉.

By the Duhamel formula, we have, for (x, t) ∈ Rn × (−1,∞),

∇2Q(x, t) =

∫
Rn×[−1,t]

∇2
xb(x− y, t− s) (J1 + J2) (y, s)

=

∫
Rn×[−1,t]

∇3
xb(x− y, t− s)

(
η2∇(A(u)(∇u,∇u)) + 2η2〈∆u,∇(P (u))〉

)
(y, s)

−
∫
Rn×[−1,t]

∇2
xb(x− y, t− s)η2〈∆u,∆(P (u))〉(y, s)

=K1(x, t) +K2(x, t).

(5.43)

It is clear that for (x, t) ∈ Rn × (−1,∞),

|K1|(x, t) . I1

(
η2(|∇u|3 + |∇u||∇2u|)

)
(x, t), |K2|(x, t) ≤ I2

(
η2(|∇2u|2 + |∇u|4)

)
(x, t).

It follows from (5.26) and the Nirenberg interpolation inequality that ∇u ∈M4,4−4α(P 3
4
) and∥∥∥∇u∥∥∥

M4,4−4α(P 3
4

)
.
∥∥∥∇2u

∥∥∥
LqtL

p
x(P1)

. (5.44)

Hence, by the Hölder inequality, we have that for any 0 < α1, α2 < 1,

η2(|∇u|3 + |∇u||∇2u|) ∈M
4
3
,4−4α1(Rn+1) and η2(|∇2u|2 + |∇u|4) ∈M1,4−4α2(Rn+1),

and ∥∥∥η2(|∇u|3 + |∇u||∇2u|)
∥∥∥
M

4
3 ,4−4α1 (Rn+1)

.
∥∥∥∇u∥∥∥

M4,4−4α1 (P 3
4

)

∥∥∥∇2u
∥∥∥
M2,4−4α1 (P 3

4
)

.
∥∥∥∇2u

∥∥∥2

LqtL
p
x(P1)

, (5.45)

∥∥∥η2(|∇2u|2 + |∇u|4)
∥∥∥
M1,4−4α2 (Rn+1)

.
∥∥∥∇u∥∥∥

M4,4−4α2 (P 3
4

)
+
∥∥∥∇2u

∥∥∥
M2,4−4α2 (P 3

4
)

.
∥∥∥∇2u

∥∥∥2

LqtL
p
x(P1)

. (5.46)

Now applying Proposition 5.4, we conclude that

K1 ∈M
4−4α1
2−3α1

,4−4α1 ∩ L
4−4α1
2−3α1 (Rn+1), K2 ∈M

2−2α2
1−2α2

,4−4α2

∗ ∩ L
2−2α2
1−2α2

,∗
(Rn+1),
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and ∥∥∥K1

∥∥∥
M

4−4α1
2−3α1

,4−4α1 (Rn+1)
+
∥∥∥K2

∥∥∥
M

2−2α2
1−2α2

,4−4α2
∗ (Rn+1)

.
∥∥∥∇2u

∥∥∥2

LqtL
p
x(P1)

. (5.47)

Sending α1 ↑ 2
3 and α2 ↑ 1

2 , we obtain that for any 1 < β < +∞, K1,K2 ∈ Lβ(Rn+1), and

‖K1‖Lβ(Rn+1) + ‖K2‖Lβ(Rn+1) .
∥∥∥∇2u

∥∥∥2

LqtL
p
x(P1)

. (5.48)

This implies that for any 1 < β < +∞, ∇2Q ∈ Lβ(Rn+1), and∥∥∥∇2Q
∥∥∥
Lβ(Rn+1)

.
∥∥∥∇2u

∥∥∥2

LqtL
p
x(P1)

. (5.49)

Since (u−Q) solves (
∂t + ∆2

)
(u−Q) = 0 in P 5

8
,

it follows that for any 1 < β < +∞, ∇2u ∈ Lβ(P 9
16

), and∥∥∥∇2u
∥∥∥
Lβ(P 9

16
)
.
∥∥∥∇2u

∥∥∥2

LqtL
p
x(P1)

. (5.50)

This implies (5.49) and Claim 2 is proven.

Claim 3. u ∈ C∞(P 1
2
, N) and (5.13) holds. It follows from (5.49) that for any 1 < β < +∞, there

exist f, g ∈ Lβ(P 9
16

) such that (1.2) can be written as

(∂t + ∆2)u = ∇ · f + g.

Thus, by the Lp-theory of higher-order parabolic equations, we conclude that ∇3u ∈ Lβ(P 17
32

).

Applying the Lp-theory again, we would obtain that ∂tu,∇4u ∈ Lβ(P 33
64

). Taking derivatives of the

equation (1.2) and repeating this argument, we can conclude that u ∈ C∞(P 1
2
, N), and the estimate

(5.13) holds. Combining together these three claims, the proof of Theorem 5.2 is complete. 2

Proof of Theorem 1.8. Let ε0 > 0 be given by Theorem 5.2. Since p > n
2 and q < ∞, there

exists T0 > 0 such that

max
i=1,2

‖∇2ui‖LqtLpx(Ω×[0,T0]) ≤ ε0. (5.51)

This implies that for any x0 ∈ Ω and 0 < t0 ≤ T0, if R0 = min{d(x0, ∂Ω), t
1
4
0 } > 0, then (5.51)

implies

max
i=1,2

‖∇2ui‖LqtLpx(PR0
(z0)) ≤ ε0. (5.52)

Hence by suitable scalings of the estimate of Theorem 5.2, we have that for i = 1, 2, ui ∈
C∞(PR0

2

(z0), N) and ∣∣∣∇mui∣∣∣(x0, t0) . ε0

(
1

dm(x0, ∂Ω)
+

1

t
m
4

0

)
. (5.53)

Using (5.53), the same proof of Theorem 1.3 implies that u1 ≡ u2 in Ω × [0, T0]. Repeating this

argument on the interval [T0, T ], we can show u1 ≡ u2 in Ω× [0, T ]. 2
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Proof of Corollary 1.10. Let ε0 > 0 be given by Theorem 5.2. Since u0 ∈ W 2,2(Ω, N), by the

absolute continuity of

∫
|∇2u0|2 there exists r0 > 0 such that

max
x∈Ω

∫
Br0 (x)∩Ω

|∇2u0|2 ≤
ε20
2
. (5.54)

Choosing ε1 ≤
ε20
2 and applying (1.14), we conclude that there exists 0 < t0 ≤ r4

0 such that

max
x∈Ω,0≤t≤t0

∫
Br0 (x)∩Ω

|∇2ui(t)|2 ≤ ε20, for i = 1, 2. (5.55)

Set R0 = min{r0, t
1
4
0 } = t

1
4
0 > 0. Then it is easy to see that (5.55) gives

max
z=(x,t)∈Ω×[0,t0]

∥∥∥∇2ui

∥∥∥
L∞t L

2
x(PR0

(z)∩(Ω×[0,t0]))
≤ ε0, for i = 1, 2. (5.56)

This implies that u1 and u2 satisfy (5.12) of Theorem 5.2 (with p = 2 and q = ∞) on Pr(z), for

any z ∈ Ω× [0, t0] and r = min{R0, d(x, ∂Ω), t
1
4 } > 0. Hence by suitable scalings of the estimate of

Theorem 5.2, we have

max
i,2

∣∣∣∇mui(x, t)∣∣∣ . ε0

(
1

Rm0
+

1

dm(x, ∂Ω)
+

1

t
m
4

)
. ε0

(
1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀ m ≥ 1, (5.57)

for any (x, t) ∈ Ω× [0, t0]. Here we have used R0 ≥ t
1
4 in the last inequality. Applying (5.57) and

the proof of Theorem 1.3, we can conclude that u1 ≡ u2 in Ω × [0, t0]. Continuing this argument

on the interval [t0, T ] shows u1 ≡ u2 in Ω× [0, T ]. 2

Proof of Corollary 1.11. Let ε2 > 0 be given by Theorem 5.2. Then (1.15) yields∥∥∥∇2u
∥∥∥
L∞t L

2
x(Ω×[0,∞))

≤ ε2. (5.58)

Hence by suitable scalings of the estimate of Theorem 5.2, we have u ∈ C∞(Ω × (0,∞), N) and

there exists T1 > 0 such that∣∣∣∇mu(x, t)
∣∣∣ . ε2

(
1

dm(x, ∂Ω)
+

1

t
m
4

)
, ∀ m ≥ 1, (5.59)

holds for all x ∈ Ω and t ≥ T1. Now we can apply the same arguments as in the proof of Theorem

1.5 and Corollary 1.6 to prove the conclusions of Corollary 1.11. 2

6 Appendix: Higher-order regularity

It is known, at least to experts, that higher-order regularity holds for any Hölder continuous solution

to (1.2) of the heat flow of biharmonic maps . However, we can’t find a complete proof of this fact

in the literature. For the completeness, we will sketch, in this appendix, a proof that is based on

the parabolic-type hole-filling argument.
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Proposition 6.1 For 0 < α < 1, if u ∈ W 1,2
2 ∩ Cα(P2, N) is a weak solution to (1.2), then

u ∈ C∞(P1, N), and ∥∥∥∇mu∥∥∥
C0(P1)

.
[
u
]
Cα(P2)

+
∥∥∥u∥∥∥

L2
tW

2,2
x (P2)

, ∀ m ≥ 1. (6.1)

Proof. By Claim 2 and Claim 3 in the proof of Theorem 5.2, it suffices to establish that ∇2u ∈
M2,4−4α̃(P 3

2
) for some 2

3 < α̃ < 1, and∥∥∥∇2u
∥∥∥
M2,4−4α̃(P 3

2
)
.
[
u
]
Cα(P2)

+
∥∥∥∇2u

∥∥∥
L2(P2)

. (6.2)

This will be achieved by the following hole-filling argument. For any fixed z0 = (x0, t0) ∈ P 3
2

and

0 < r ≤ 1
4 , let φ ∈ C∞0 (Rn) be a cut-off function of Br(x0), i.e.

0 ≤ φ ≤ 1, φ ≡ 1 in Br(x0), φ ≡ 0 outside B2r(x0), |∇mφ| ≤ Cr−m, ∀ m ≥ 1.

Set c := −
∫
Pr(z0)

u ∈ RL+1. Multiplying (1.2) by (u− c)φ4 and integrating over Rn, we obtain

d

dt

∫
Rn
|u− c|2φ4 + 2

∫
Rn

∆(u− c) ·∆((u− c)φ4) = 2

∫
Rn
Nbh[u] · (u− c)φ4

.
∫
Rn
|∇2u|2|u− c|φ4 +

∫
Rn
|∇u||∇2u||∇((u− c)φ4)|. (6.3)

For the second term in the left hand side of (6.3), we have

2

∫
Rn

∆(u− c) ·∆((u− c)φ4) = 2

∫
Rn
∇2(u− c) · ∇2((u− c)φ4)

≥ 2

∫
Br(z0)

|∇2u|2 − C
∫
Rn
|u− c|2(|∇2φ|2 + |∇φ|4) + φ2|∇φ|2|∇u|2. (6.4)

Substituting (6.4) into (6.3) and integrating over t ∈ [t0 − r4, t0], we obtain∫
Pr(z0)

|∇2u|2 ≤
∫
B2r(x0)×{t0−r4}

|u− c|2 +
(

2−(n+4) + CoscP2r(z0)u
)∫

P2r(z0)
|∇2u|2

+Crn
(
oscP2r(z0)u

)2
+ C

[
1 + (oscP2r(z0)u)2

]
r−2

∫
P2r(z0)

φ2|∇u|2

+C

∫
P2r(z0)

|∇u|4φ4 (6.5)

By integration by parts and the Hölder inequality, we have

r−2

∫
P2r(z0)

φ2|∇u|2 ≤ Cr−2
(
oscP2r(z0)u

) ∫
P2r(z0)

|∇2u|+ Crn
(
oscP2r(z0)u

)2
,

and

C

∫
P2r(z0)

φ4|∇u|4 ≤ 2−(n+4)

∫
P2r(z0)

|∇2u|2 + Crn
(
oscP2r(z0)u

)4
+ C

(
oscP2r(z0)u

)2 ∫
P2r(z0)

|∇2u|2.
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Putting these two inequalities into (6.5) and using

oscP2r(z0)u ≤ Crα,

we get∫
Pr(z0)

|∇2u|2 ≤
(

2−(n+3) + Crα
)∫

P2r(z0)
|∇2u|2 + Crn+2α + C(1 + r2α)rα−2

∫
P2r(z0)

|∇2u|

≤
(

2−(n+2) + Crα
)∫

P2r(z0)
|∇2u|2 + Crn+2α, (6.6)

where we have used the following inequality in the last step:

C(1 + r2α)rα−2

∫
P2r(z0)

|∇2u| ≤ 2−(n+3)

∫
P2r(z0)

|∇2u|2 + Crn+2α.

Choosing r > 0 so small that Crα ≤ 2−(n+3), we see that (6.6) implies

r−n
∫
Pr(z0)

|∇2u|2 ≤ 1

2
(2r)−n

∫
P2r(z0)

|∇2u|2 + Cr2α. (6.7)

It is clear that iterating (6.7) implies that there is α0 ∈ (0, 1) such that ∇2u ∈M2,4−2α0(P 3
2
) and∥∥∥∇2u

∥∥∥
M2,4−2α0 (P 3

2
)
.
[
u
]
Cα(P2)

+
∥∥∥∇2u

∥∥∥
L2(P2)

. (6.8)

We can apply the estimate (6.8) and repeat the above argument to show that ∇2u ∈M2,4−4α0(P 3
2
)

and (6.8) holds with α0 replaced by 2α0. Repeating these argument again and again until there

exists α̃ ∈ (2
3 , 1) such that ∇2u ∈M2,4−4α̃(P 3

2
) and the estimate (6.2) holds. The remaining parts

of the proof can be done by following the same arguments as Claim 2 and Claim 3 of the proof of

Theorem 5.2. This completes the proof. 2
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