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ABSTRACT. Let (R™,dx) be a Carnot-Carathéodory metric space generated by a family
of smooth vector fields {X;}7, satisfying Hormander’s finite rank condition, and Hx =
{(z,3°7"  a; X;(z)) |z € R™, (a;)™, € R™} be the horizontal tangent bundle generated by
{X;}™ . Assume that H = H(z,p) € C*(Hx) is quasiconvex in p-variable. We prove that
any absolute minimizer u € Wy (Q) to Fi (v, Q) = ess sup,cqH (z, Xv(z)) is a viscosity

solution of the Aronsson equation

A ] := X (H (2, Xu(z))) - Hy(z, Xu(z)) =0, in Q.

§1. Introduction

For 1 < m,n,let {X;}™, C C*°(R",R") be a family of smooth vector fields satisfying
Hormander’s finite rank condition, i.e., there is an integer 7 > 1 such that {X;}™, and

their commutators up to order r» span R™ everywhere. For z € R", let
H(z) = span{Xi(x),- -, X;m(x)}
be the horizontal tangent space at x. Let
Hx = {(z,H(x)) |x € R"}

be the subbundle of the tangent bundle TR"™ generated by {X;}",, called a horizontal
tangent bundle. Endow an inner product on R™ such that {X;}™; be an orthonormal set.
Recall that an absolutely continuous curve £ : [0, 7] — R™ is a horizontal curve, if there
are measurable functions a;(t) : [0,7] — R, 1 < i < m, such that

(1.1) Y ait) =1, &) =D _ai(t)Xi(£(t)) for a. e. z €[0,T].

=1 =1
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It is readily seen from (1.1) that ¢ € [0,T] is the arclength parameter of £, whose length
is T. Since {X;}™, satisfies Hormander’s condition, it is well-known (cf. Nagel-Stein-
Wainger [NSW]) that there exists at least one horizontal curve joining any pair of points
in R™. Hence we can introduce the Carnot-Carathéodory distance (cf. [NSW]):
(1.2)

dx(z,y) =inf{T > 0 | 3 a horizontal curve £ : [0,7] — R" with £(0) = z,£{(T) = y}

for any =,y € R". Moreover, for any compact set K C R", there exists Cx > 0 such that
_ 1
(1.3) Cx'llz =yl < dx(z,y) < Ckllz —yl|7, Va,y € K,

where || - || is the Euclidean distance on R"™.

Typical examples of Carnot-Carathéodory metric spaces include (i) the Euclidean
space (R™, || -||) generated by {a%i ?_,, and (ii) the Heisenberg group H" = C™ x R, the
simplest Carnot group of step two, endowed with the group law:

(z.1)- (2 ) = (214 24, 2 + 2o t+ '+ 2Im()  2i2)), V(2,1), (¢,) € C" x R,
=1

whose Lie algebra h = Vi + V5 with Vi = span{X,,Y;}1<i<p, and Vo = span{T'}, where

:33 —o Vi ol 1<i<n, T=40
€Ty

Xi ot’ Dy; ot o

For any bounded domain Q@ C R™ and u : Q — R, denote by Xu := (Xyu, -+, X,u)
the horizontal gradient of u. The horizontal Sobolev space, W}(’OO (), is defined by

W)l(,oo(Q) = {?,L :O—=R | ||’U,||W}1(,oo(9) = HU”LOO(Q) + HXuHLoo(Q) < +OO},
and the horizontal Lipschitz space is defined by

, u(z) —u(y
Lipx(2) :={u: Q= R | ”u“LipX(Q) = sup [u(z) = uly)| < +o00}.

It is known (cf. Garofalo-Nieu [GN], Franchi-Serapioni-Serra [FSS]) that u € Wy () iff
u € Lip x (2).

Definition 1.1. For a continuous function H € C(Hx), define the L*°-functional
Foo(v,Q) = esssup, o H (2, Xv(x)), Yo € Wx™(Q).
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A function u : Q@ — R is an absolute minimizer of H if, for any U cC Q, u € W™ (U)

and
(1.4) Foo(u,U) < Foo(0,U), Yo € W™ (U), v =u on dU.

Formal calculations yield that an absolute minimizer u : 2 — R of H satisfies the

(subelliptic) Aronsson equation:

(1.5) AX[u) = 3" Xi(Hz, Xu(2))) - Hy, (2, Xu(z)) = 0, in €.
=1
Let 8™ be the set of symmetric m x m matrices, equiped with the usual order. Note
that the Aronsson operator AX : QO x R™ x 8™ — R given by

AX(aj,p, M) = Z H, i(x’p)Hpj (xvp)Mij + Z XiH(xﬂp)HPi (J?,p)
ij=1 i=1
is degenerately elliptic, i.e. for any (x,p) € Q x R™,
(1.6) AX(z,p, M) < AX(2,p,N), VM, N € S™, with M < N.

Therefore we can adapt the notion of viscosity solutions by Crandall-Lions [CL] (cf. also
[CIL]) to define

Definition 1.2. A function v € C(Q2) is a viscosity subsolution (or supersolution, resp.)
of (1.5), if for any (xq, ¢) € Q x C%(£2) such that

0= (¢ —u)(wo) < (or 2)(¢ —u)(x), V& € Q,

then AX[¢](z9) > (or <)0. A function u € C(f) is a viscosity solution of (1.5) if it is
both a viscosity subsolution and a viscosity supersolution of (1.5).

Definition 1.3. A function f: R™ — R is quasiconvex if
(1.7) {p € R™ | f(p) < A} is convex, for any A € R,

or equivalently,

(1.8) fp+ (1 —1t)q) <max{f(p), f(¢q)}, for any p,q € R™ and t € [0,1].

A typical quasiconvex function f, which may not be convex, can be constructed by letting
f(p) = g o h(p), where g : R — R is a monotone function and h : R™ — R is a convex

function.



The second author has proved in Wang [W] that any absolute minimizer u : Q — R of
H is a viscosity solution to the Aronsson equation (1.5), provided that (i) H = H(x,p) €
C?(Hx) is quasiconvez in p-variable, and (ii) H,(0,0) = 0 and H(x,-) is homogeneous of
degree a > 1. See Bieske [B1,2] and Bieske-Capogna [BC] for earlier works on absolutely

manimal horizontally Lipschitz extensions on Carnot groups.

Since equation (1.5) is defined for H € C'(Hx), it is a very natural question to ask
whether the above result by [W] remains true if we weaken H € C*(Hx).

In this paper we answer this question affirmatively by proving the following theorem.

Theorem 1.4. For any family of vector fields {X;}™ , satisfying Hormander’s finite rank
condition, if H = H(x,p) € CY(Hx) is quasiconver in p-variable for any x € Q, then any
absolute minimizer u : Q — R is a viscosity solution of the Aronsson equation (1.5).

The study of absolute minimizers was initiated by Aronsson [A1,2,3] in dimension one.
Jensen established in his seminal paper [J] the equivalence between infinity harmonic func-
tions and absolute minimizing Lipschitz extensions, and their uniqueness as well. Later,
Juutinen [Jp] extended the main theorem of [J] to Riemannian manifold settings. In the
Euclidean setting, Barron-Jensen-Wang [BJW] provided a general study on absolute mini-
mizers and established that any absolute minimizer for suitable H (p, z, z) € C?*(R" xR x)

is a viscosity solution of the Aronsson equation:
(1.9) H,(Vu,u,z) - (H(Vu,u,z)); =0.

Subsequently, Crandall [C] gave a simpler proof of this result of [BJW] under weaker
hypotheses. The techniques employed by [BJW] and [C] rely crucially on H € C?(R" x
R x Q), because of the construction of local, C? solutions to the Hamilton-Jacobi equation
H(Vi,1¢,z) = k. Very recently, Crandall-Wang-Yu [CWY] found a new proof of this
theorem even for H € C1(R™ x R x ). The new observation made by [CWY] is to use
global, viscosity solutions to the Hamilton-Jacobi equation associated with H € C*(R"™ x

R x Q) as comparison functions to absolute minimizers.

Bieske-Capogna [BC] extended the idea of [C] to derive the subelliptic infinity Laplace
equation for an absolute minimizing horizontal Lipschitz extension on Carnot groups.
Wang [W] made a new observation based on [C] to derive the Aronsson equation for
any absolute minimizer of H € C?(Hx) associated with any family of Hormander’s vector
fields. Here we aim to modify and extend the observation made in [CWY] to the Carnot-
Carathéodory space (R™,dx). Roughly speaking, if ¢ € C?(Q) is a upper test function

for an absolute minimizer u € W}(’OO (Q), at g, then we show in §3 below that there exists
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x, # x¢ such that

1.10 ) — ¢(xg) > max s Paypy(x, — z0)-
(1.10) ¢(zr) — P(w0) > {peﬂ(mo)ﬂ(mo7p)SH($07X¢($O)}<P H(zo) (Tr — T0)) 2 (20)

This turns out to be sufficient to show that u is a viscosity subsolution of the Aronsson
equation (1.5).

We would like to point out that Crandall-Evans-Gariepy [CEG] has shown that an
absolute minimizing Lipschitz extension can also be characterized by the comparison prin-
ciple with cones, which has been subsequently extended by Gariepy-Wang-Yu [GWY] to
absolute minimizers to quasiconvex Hamiltonians. This characterization for absolute min-
imizers in term of comparison principle with cone type functions has also been obtained
for some non-Euclidean spaces including Grushin spaces by [B2], Finsler metric spaces
by Champion-De Pascale [CD], and metric-measure spaces by Juutinen-Shanmugalingam
[JP].

The paper is organized as follows. In §2, we establish some preliminary properties of

absolute minimizers. In §3, we give a proof of theorem 1.4.

62. Some preliminary results

This section is devoted to some basic facts on absolute minimizer and the construction

of viscosity solutions to Hamilton-Jacobi equation H(z, Xv) = k.

Let dx be the Carnot-Carathéodory distance given by §1, and define subelliptic balls
B, (19) = {x € R" | dx(z,20) <1}, Br(x0) = {y € R" | dx(x, 1) <7}

First we have

Proposition 2.1. Let H = H(x,p) € C(Hx) be quasiconvex in p-variable. Let U CC )

be a bounded open set.

(a) Suppose (o, $) € U x CH(U), and v € Lipx (U). If ¢ touches v at o from above, i.e.

(2.1) 0=(¢—v)(xo) < (¢—v)(x), Ve €U
then
(2.2) H(zg, Xp(x0)) < lrlg)l eSSSUPR, (5o) H (T, Xv(T)).
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(b) Let u be an absolute minimizer for H in Q. Assume that xo € U and w € Lipx(U)

satisfy

(2.3) (w—u)(zo) <0< (w—u)(x), Ve € U,

then

(2.4) lrlﬁ)l esssupp, (zo)H (2, Xu(z)) < esssupy H(z, Xw(x)).

Proof. First observe that, by continuity of H, we have

(2.5) lr%l esssup g, (40)H (7, Xv(z)) = lr%l esssuUp g, (50)H (70, Xv(2)).

By replacing ¢ by ¢(x) + ||z — x0]|2, we may assume that for » > 0 small,

(2.6) 0= (¢—v)(x0) < (¢—v)(x) Vz € B(x0) \ {m0}.

For 0 < e < %, let ve(z) = [Ra ne(x —y)v(y) dy € C®(Bg (o)) be a standard modification
of v and z. € By () satisfy

(¢ —ve)(we) = min (¢ —v)(w).

weﬁg (zo)

By (2.6), we have lim.j o z. = z¢. Hence, for small ¢, we have X ¢(z.) = Xvc(z,), and

(2.7) H(ze, XP(x)) = H(xe, X (ve)(xe)).
We claim
(2.8) [ X (ve) (we) = (Xv)e(ze)| < CllX e, @op [l (5, (20))« ()

where w(r) denotes the modular of continuity of dx with respect to || - ||.

To see (2.8), let Xi(x) = >0, aij(x)a%]_ for z € R™ and 1 < i < m, with (a;;) €
C>®(R™,R™"). Then, for 1 <i <m and z € Br (o), we have

(Xiv)e(r) — Xi(ve) (x)

_ / nne(x—y><_zaﬁ<y>a%>{v<y> ~u(a)} dy
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This implies

|[(Xiv)e(z) — Xi(ve) (2)
< C max HVa”HLoo(B (mo))/ {ne(z — y)[v(y) — v(z)]

1<5<n
+lly = =[[[Vie(z = y)l[o(y) — v(z)[} dy
< CHXiHC“(BT(a:o))HUHLle(B (20)) |1, 3||X<T dx (y, )

< CllXiller @, o Lip . (5. ooy (")

and hence (2.8) follows. Since |[(Xv)cl|zo(By (20)) < | X || (B, (o)), it follows from (2.8)
that for small 7 > 0, |(Xve)(ze)| < || Xv|| £ (B, (20)) + 1. Hence

H(ze, X (ve)(we))
< H(ze, (Xv)e(zc))
max max H,(x, X(ve)(xe) — (Xv)e(xe
:ceBr(:co){|p|S||Xv||Loo<Br<m>>+1}{| p(2, || X (ve) (ze) — (Xv)e(xe)[}
< H(ze, (Xv)e(zc)) + Cw(r)
< H(zg, (Xv + max V.H(x, r+ Cuw(r
< Hiwo, (Xo)el(ze)) +1 23 z€B, (370){|p|<”X'U”L°°(Br(zo))+1}| H(wp)l) r)
(2.9) < esssup,ep, (40)H (0, Xv(x)) + C(r + w(r))
where we have used the quasiconvexity of H(xg,p) in p-variable:

H(zg, (Xv)e(ze)) < esssupB%(m)H(xO,Xve(x)) < esssupBr(wO)H(a:O,Xv(a:)).

Taking 7 into zero and noting lim, o w(r) = 0, (2.9) and (2.7) imply (2.2).
To prove (b). Set, for small € > 0,6 > 0,

we 5(7) = w(z) + €|lv — 30||* = 5, z € U.
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Then u(xo) — we,5(z9) > 0 > 0, and, for x € U,
— wes(z) < u(r) — w(r) — emin ||z — ]| + 6 < § — € min ||z — x|
u(x) — wes(z) < u(z) —w(x) ergbnﬂx zo||* +6 < € min |z — xol|* <0
provided that we choose ¢ and d such that

2.1 § — e mi —zo|? < 0.
(2.10) € min o — zof|” <0

Hence there exists another open connected component V of {z € U | u(x) — we s5(x) > 0}
such that xg € V and V CC U. Since u = w5 on OV, the absolute minimality of v implies
that

esSSUD g, (40)H (2, Xu(7)) < esssupp, (,0)H (2, Xwe 5(z))
< esssupy H (z, Xwe 5(x))
< esssupy H (z, Xwe 5(x)).

By sending r | 0 and then €,0 | 0, (2.3) then follows. [ |

Similar to [CWY], the second observation is that we may assume

(2.11) H(x,p) = +oc uniformly for = € Q.

lim
{pet (2):||pll—=+o0}

In fact, as in [CWY] §2, let u € W™ (Q) be the absolute minimizer of H under consider-

ation and
(2.12) R=|Xullp=@) +1,M = min{H(z,p) | z € Q,p € H(z), with |]p|| < R},

and define

A

(213) H(CE,p) = maX{H(xap)a ||p - PR(p)H + M}a V(l',p) € HXa
where Pr : R™ — R™ is given by

Pgr(p) = p, pl| < R,
p

=R—, |lp| > R.
ol

It is easy to see that His quasiconvex in p-variable and satisfies (2.11), H < H , and
H(z, Xu(z)) = H(z, Xu(z)) for a. e. z € Q.
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Thus v is also an absolute minimizer for H. Finally, if ¢ € C1(Q) touches u from above
at o, then proposition 2.1(a) implies that |X¢|(zo) < R and hence H,(xo, Xp(x0))(=
Hy(zo, X Pp(x0)) exists.

Now we indicate how to construct viscosity solutions of the Hamiltonian-Jacobi equa-
tion H(z, X®(x)) = k. Let Py, : R" — H(z), x € R", be the orthogonal projection
map. For k € R, z € B,.(z¢) and p € R", define

2.14 L(z,p, k)= max s Py z)-
(2.14) (z,p, k) {qEH(m)IH(m,q)gk}<q 2(2) (D)) 2(2)

Set,

(2.15) ko(r) = max min H(z,q).
z€B, (z0) 4€H (=)

Notice that by (2.11), ko(r) < +00.

For L(z,p, k), we have
Proposition 2.2. If H = H(z,p) € C(Hx) is quasiconvex in p-variable and satisfies the
coercivity condition (2.11). Then, for any x € B,.(xo), p € R™ and k > ko(r), we have
(1) x — L(x,p, k) is upper-semicontinuous,

(2) p — L(z,p, k) is Lipschitz continuous with respect to the Euclidean distance || - ||, and

its Lipschitz constant depends only on k,

(3) p — L(x,p, k) is convex, positively 1-homogeneous, and L(xz,p,k) = 0 for any p L
H(x),

(4) If M > 0, then there is kpyr > 0 such that for any k > knr, L(x,p, k) > M|Pyq)(p)]
for any (z,p) € R™ x R,

(5) k — L(z,p, k) is nondecreasing and continuous from the right.

Proof. In view of (1.7) and (2.11), the proof is straightforward. We leave the detail to

readers. [ ]

Definition 2.3. For r > 0 and = € B,.(x¢), a horizontal path from ¢ to = in B, (z) is a
horizontal curve € : [0,T] — B,(zo) such that £(0) = z and &(T) = z. The set of such
horizontal paths is denoted by

hp(z,r) := {horizontal paths ¢ from zg to x in B, (xq)}.

Now we define, for k > ko(r) and z € B,.(z¢),
T
(2.16) Clon (1, 70) = inf{ /O LEW@), £(8), k) dt | € € hp(z, 1)}
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Notice that Cy ,(x,zo) is well-defined and finite, since (R",dx) is a length space, i.e.,
the distance between any two points can be realized by the length of a horizontal curve
joining the two points. In particular, for any 2 € B, (xg), there exists a horizontal curve
v :10,T] — R"™ joining xg to x such that T' = dx(x,z¢) < r. By Proposition 2.2 (5), we
have k — C}, is nondecreasing. We set

(2.17) Ci—r(x,20) = lliTI}chl’T(x’xO)’ Crtr(x,20) = lliJ,I}chl’r (x, ).

Proposition 2.4. Under the assumptions as in proposition 2.2. For any k > ko(r), we
have (i) Ci r(z0,20) <0, (i) Ck o2r(v2,20) < Ck (1, 20) + Ck r(z2, 1) for any x1,22 €
By (w0), and (iii) Cy, . (x,20) € W™ (B, (0)).

Proof. Since L(z,0,k) = 0, Ck »(x0,z0) < 0. To see (ii), for € > 0 be arbitrarily small, let
&1 :[0,T1] — B,(zo) be a horizontal curve connecting z¢ to 1 and & : [0, T3] — By(x1)

be another horizontal curve connecting z; to x5 such that

T1 T2
/ L(€1>£17 k) dt S Ck,r(xbl'O) + €, / L(€2’§éa k) dt S Ck,r('r?a 1’1) + €.
0 0

If we define &3 : [0,Ty + T2] — Bay(xo) by letting &3(t) = &1(t) for 0 < ¢t < Ty and
&3(t) = &t —Th) for Ty <t < Ty + Ty. Then &3 is a horizontal curve connecting xg to xa,

and

T +T>
Chi,2r (T2, %0) S/ L(&s, &5, k) dt
0
T1 T2
- [(ragnas [ Legha
0 0
< Ckyr(iﬂl, 230) + Ckyr(iﬂg, 231) + 2e.

This implies (ii). To see (iii), for y,z € B,.(x¢), let n:[0,S] — B,(xo) another horizontal

curve connecting y to z such that dx(z,y) = S. Define

K = max max lq]-
2E B, (m0) 1€H(@):H (w,q) <k

Then, similar to (ii), we have
S
Ck,r (Z> J;O) S Ck,r (ya J;O) + / L(ﬂ» 77,7 k) dt
0

S
< Cir(y, o) + K/ ' (t)| dt
0

=Cr,(y,x0) + KS = Ci »(y,20) + Kdx (y, 2).
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This implies that Cy . (y, zo) is Lipschitz continuous in B, (x¢) with respect to dx. [ |

It follows from proposition 2.4 and Rademacher’s theorem on (R",dx) (cf. [GN])
that XCy »(z, o) exists for a.e. x € B,(x).

The main result of this section is

Proposition 2.5. Under the same assumptions as in proposition 2.2. For any k > ko(r),

Ch,r 15 a viscosity solution of
(2.18) H(z,XCy,(x,20)) =k in By(xo) \ {zo}-

In particular, H(x, XCy (z,z0)) = k for a.e. x € B,(xy).

Proof. For any z1 € B,.(z)\ {20}, Let ¢ € C(B,(x¢) touch Cy ,(z, o) at z1 from above.
Let £ € C1([0,T],R™) N hp(z1,7). For 0 < to < T, we have

/ (XPE()), &' () r(ewy) dt = P(w1) — ¢(E(t0)) < Chp(21,20) — Cr,r(E(f0), 20)

to

T
(2.19) gck,%(:cl,g(to))g/ L(&(t),&(t), k) dt.

to

Dividing (2.19) by T — t¢, taking to 1 T, and applying proposition 2.2(4), we obtain

(220)  (X9@).& Muiey < Len N0 = max (0.8

This and the quasiconvexity of H(z1,-) imply H(z1, X¢(x1)) < k, i.e., Ck, is a viscosity
subsolution of (2.18).

To prove that Cj . is a viscosity supersolution of (2.18), let 1 € C*(B,(x¢) touch Cj,
from below at x1 € B, (zo) \ {zo}. Let £ € C([0,T],R™) N hp(x1,7) be such that

T
(2.21) Cron (1, 0) = /0 L(EW), €/ (8), k) dt.

Then, for any ¢y € (0,7), we have

[<Xwam4ﬁ»mw»w=w@n—w@%»

> Cy,r(x1,70) — C,r(&(t0), T0)

zﬂluammmmw—ﬁ L(EW), (1), k) di
T T
a/meﬂmmm=/ (9, €(8)) suceqon .

max
to to {peﬂ(g(t))vH(g(t)vp)Sk}
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This implies that there exist ¢, 1 T such that &’(¢,) exist, and

2.22 X t), & (t, > max (¢, .
(2.22) (Xp(E(tr)), & (tr)) 2etr) {pEH(“;‘(tr)),H(ﬁ(tr),p)gk}<p5( D H(E )

Since (£'(t,), & (tr))2e@,)) = 1, we assume that there is ¢ € H(z1) with (¢, ¢) () = 1
such that lim¢ 47 &' (¢,) = ¢q. Taking t, T T, (2.22) implies

2.23 X¢p(x1), z,) = max , .
(2.23) (Xd(71), @) (2r) {pemml):H(wl,p)Sk}@ O H (1)

Hence we conclude H(z1, Xt (x1)) > k. The proof is complete. |

63. Proof of Theorem 1.4

In this section, we prove theorem 1.4. We begin with some lemmas. For zy € €2, let
r > 0 be such that B,.(zo) C Q and let ¢ € C*(B,.(z0)) be such that

(3.1) 0= (¢—u)(zo) < (¢ —u)(x) for z € B.(x0) \ {xo}-

For ko(r) give by (2.15), define

(3.2) kr =inf{k | k > ko(r), u(z) < u(zo) + Ckr(z,20) for z € B, (x0)}.

Notice that it follows from Proposition 2.2 (iv) that for any M > 0 we have
Cir(x,x0) > Mr for z € 0B, (xo)

provided that k > 0 is sufficiently large. This implies that the quantity k, is well-defined.

Lemma 3.1. Let H = H(z,p) € C(Hx) be quasiconver in p-variable and satisfy (2.11).
Ifu e W)l(’oo(Q) be an absolute minimizer of H, then H(xo, X p(x0)) < k.

Proof. For any k > k,, let w(z) = u(zg) + Ck,r(x,2z9). Then it is easy to see that
u(xg) > w(zo) and

(3.3) u(z) < w(z) for x € IB(x0),
Hence, by proposition 2.1(b), we have

H(zo, X¢(z0)) < 1if51€SSSUPBS(xO)H($,XU(J?))
(3.4) < esssupBr(wO)H(x, XCrr(x,20)) = k.
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Taking k | k,, this yields the result. [ |

Notice that if H,(zo, X$(z0)) = 0, then AX(¢)(z0) = 0 and theorem 1.4 is proved.
Hence we assume H,(zo, X¢(z¢)) # 0.

Lemma 3.2. Let H= H(xz,p) € C*(Hx) be quasiconver in p-variable and satisfy (2.11).
Assume Hy(zo, Xp(x0)) # 0, if u € Wy™°(Q) is an absolute minimizer of H, then, for
any sufficiently small r > 0,

(35) H(.’Bo,qu(xo)) > ko(?").

Proof. It follows from H(z¢, X $(x0)) # 0 that there is pg € H(zo) such that H(zo,po) <
H(z9, X¢(x0)). By continuity of H, this implies that for a sufficiently small » > 0 and
any x € B,(z¢), there exists p, € H(z) such that H(z,p,) < H(zo, X¢(z0)). Hence
H(xo, XP(x0)) > ko(r). |

Proof of Theorem 1.4. Denote hg = H(xg, Xp(x0)). For any k < hg < k, and m
sufficiently large, there exist =%, € 9B 1 (z) such that

(3.6) Cr, 1 (T, o) < ulay,) — ulwo).
For k 1 hg, assume xF — x,, € 0B, (7). Then (3.6) yields

(3.7) C— 1 (Tm,x0) < u(Tm) — u(xo).

-1
0’'m
Let €, > 0 be sufficiently small such that u(z,,) — u(zo) + € < é(xm) — ¢(xo). By
definition of Chg,Lv there is &, € C([0, Tn], R™) N hp(zy,, =) such that

(Zm» 20) + €m < u(m) — u(o) + €m

T
| e gn i a<c,
T
(3.8) < Q(xm) — lz0) = /O (XD(&m (), Em ) 2u(en 1)) dt-
Thus there are ¢, € (0,T,,] such that &, (¢,,) exists, and

(3.9) L(Em(tm)s Em(tm)s ho ) < X D(Em(tm), & (tm)) H(em (b)) -

This implies that hg < H({m(tm), Xd(Em(tm))). Assume that ¢, be the largest value of
t € (0,T,,) such that hg < H(&m (), Xp(€m(t))). Then we have H (&, (t), X p(&m(t))) < ho
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for a.e. t € (ty,, Tin] and hence

¢(xm) — d(Em(tm))

¢(€m(Tm)) — ¢(§m (tm))
/t m (Xo(Em(t)), 5471(t)>?-t(£m(t)) dt

T

(3.10) L(Em(t), € (8), by d.

IN

m

Therefore, we have
| HEn®).€00).15) dt < 9(En(tn)) ~ dla0)
(3'11) H($07X¢($O)) < H(&m(tm)aX(ls(gm(tm)))'

Set Y = Em(tm). It is easy to see y,, # xg. By proposition 2.2 (4), we can find ¢(hg) > 0
such that

(3.12) L(&m(1),€,(t), hg ) > c(ho), for all t € [0, t,].
Therefore, (3.11) implies

_ Pm) = d(wo) (= i/o X BEm (1)), En (B ragen, ) ).

(3.13) c(ho)

tm, tm

Set g, = ¥=="0. Since ||y || < 1, we may assume that there exist ¢ € R", with ||¢]] <1,
such that lim,, o ¢m = ¢. Taking m to infinity, (3.13) implies obatin

(314) C(hO) < <X¢(.’1?0), PH(CEQ)(q))H(CUO)’

This implies

(3.15) Xp(xo) # 0, Pray)(q) # 0.

For any 6 > 0, it also follows from (3.11) that

max , P, J—— .
{pE’H(wo):H(acmp)Sho—é}(p (o) (Y 0))#(0)

tm
< max JEL(t dt
N /0 {PE’H(wo)iH(ﬂGo,P)Sho—fs}(p Sm( )>H(m0)

< / " L (1), € (1), by ) dt
(3.16) < ¢(Ym) — d(wo).
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Dividing (3.16) by t,, and sending m — co, we have

3.17 P < (X$(x0), Pry(a .
(3.17) e sy P Do) (D) (o) < (Xb(20), Pri(ao) (0))34(20)
Thus

(3.18) (Ds Pri(0) (@) 1(20) < (X (20), Pry(26)(0)) 3(z0)

holds for any p € H(zo) with H(xo,p) < hg. Notice that (3.18) remains true for any p € C,

where C' is the convex set

C ={p € H(zo) : H(wo,p) < H(z0, XP(20))}-
Since H,(zo, X p(x0)) # 0, we have X ¢(z¢) € C. Hence,(3.18) implies
(XD(20), Pri(o) (9)) #(z0) = Igleaox@v Pyi(20) (@) #(w0)-
Therefore, by the Lagrange multiple theorem, we have

(3.19) Py(z0)(q) = AH (20, X (0))

for some A > 0.

Since H(z, X¢(z)) € C1(B,(xg)), we have

H(Ym, X$(ym)) — H (0, Xp(w0))
tm

(3.20) = (X (H (2, X$(2)))lo=z0: Pri(o) (4m))#(a0) + (1)

0<

Sending m — oo and using (3.19) lead to

A [g](wo) = MX (H (2, X$(2)))la=ao, Hp(20, X $(20)))34(20) 2 0.

Since A > 0, we have AX[¢](x9) > 0 and u is a viscosity subsolution of (1.5). Similarly,
one can prove that u is also a viscosity supersolution. This completes the proof of theorem
1.4. |
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