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1. Introduction

In this paper, we consider the following parabolic Anderson equation in Itd sense [6]:
1 .
Opu(t,z) = §Au(t,x) +u(t,x)V(x)W(t), (t,z) € (0,00) x R? (1.1)

with initial data u(0,2) = ug(z) a bounded and measurable function. Here V(-) 1= [p, K(- — y)w(dy) is
a Gaussian potential with a deterministic function K > 0 and a centered Brownian sheet w, and W is a
one-dimensional Brownian motion which is independent of V.

Equation (1.1) is a type of stochastic heat equation (SHE). There has been a widespread interest in
Holder continuity for SHE, with several motivations for its study. To analyze hitting probabilities of the
solution, one often requires a priori estimation about Holder continuity (see e.g. [4] and references therein).
Holder exponents are also used to verify the optimality of convergent rate of numerical schemes in stochastic
problems (see e.g. [1]).
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In the existing literatures, most authors concern the Holder continuity for Gaussian noises driving SHE.
Walsh [8] use Green’s function technique to show that the solution of a SHE with Lipschitz coefficients
driven by space-time white noise is spatially (3 — €)- and temporally (4 — €)-Holder continuous. Here and
what follows we denote € by a generic positive and small constant. It is generalized by Sanz-Solé and Sarra
[7] to the case of spatially correlated noise. A different approach is established by Hu et al. [5]. They derive
the Holder continuity for a SHE with fractional noise in terms of Feynman—Kac formula.

Our present work concentrates on the spatial and temporal Hélder continuity of the mild solution w of
(1.1) driven by the non-Gaussian noise VW. To this end, we first present the global existence, unique-
ness and uniform boundedness of u, which generalizes the local existence result in [6]. Then we prove the
(min(a, ) — €)- and (3 min(a, 8) — €)-Holder continuity for u in space and time respectively, provided that
up is a-Holder continuous and V' is S-Holder continuous in mean square sense (see (3.1) in Section 3). In
particular, the Holder exponents of u coincide with that of space—time white noise driving SHE ([8]) when
V' is a Brownian sheet.

As (1.1) involves a non-Gaussian noise, the classical Green’s function approaches ([7,8]) and Feynman—Kac
representation methods ([5]) are not available. To overcome this difficulty, we transform the estimations for
Green’s function into the estimations for V' and u. Then Gronwall’s inequality combined with the uniform
boundedness of u is used to yield the spatial and temporal regularity of w.

The rest of the paper is organized as follows. In Section 2, we prove the global existence and uniqueness
of the mild solution of (1.1), and obtain the uniform boundedness of the mild solution. In Section 3, we
derive the spatial and temporal Holder continuity of the mild solution.

In the remainder of the article, C is a generic constant whose value may vary in different occurrences.

2. The existence and uniqueness of mild solution

Let (W (t)):>0 be a Brownian motion on a probability space (€1, F1,P;1) and (w(x)),ere be a Brownian
sheet on another probability space (Qga, F2,P2). We denote the product space (21 ® Qa, F1 @ Fo2,P; @ P2)
by (Q, F,P). Fix a positive and finite constant T" and define

H,, :={Y is predictable : sup sup [|Y(t,2)|z, ) < oo} (2.1)
te[0,T] zeR

Then H,, equipped with the norm [|Y'||3, = sup;c, 7] Supgera [|Y (£, )| 1, () is @ Banach space.
In this section, we show the existence and uniqueness of mild solution of (1.1) in H,. Recall that a random
field u is called a mild solution of (1.1) if for any (¢,z) € [0,7T] x R¢,

u(t,x) = pexuo(x) + [ [ pr—s(@ —y)uls,y)V(y)dydW(s) a.s., (2.2)
/]

=2

where p,(z) = (2rt)~2e~ 2t is the heat kernel of 3A on R%

Theorem 2.1. Assume that [, K*(z)dz < 400. There exists a unique mild solution u of (1.1), and for all
p>2andT >0,

sup sup (E, @ Ey |u(t, z)|") < oo. (2.3)
te[0,T) zeR4

Proof. For each u € H, with p > 2, define
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Pu)(t, z) = pr * uo(z) + / /ptfs(w = y)V(y)uls,y)dydW (s), (t,2) € [0,T] x R".

We first show that P(u) € H,. Since ug is bounded and measurable,

lpe * woll#, = sup sup |ps * uo(x)| < [Juol/Lee. (2.4)
t€[0,T] zeR

For general p € [2,00), applying Burkholder-Davis—Gundy inequality and Minkowski inequality, we derive
that

p

E, @ Ew //ptfs(rc —y)V(y)u(s,y)dydW (s)

0 Rd
' 2 5
S Cp]Ew & IEVV / /ptfs(w - y)V(y)u(S7y)dy ds
0 |Rd
t p % 5
<G, / E, @ Ew /pt_s(x =)V (y)u(s,y)dy ds
0 Rd
t p % 5
<q, / Ew ©E, / / P — YK (y — 2)u(s, y)dyw(dz)| | ds
0 Rd R4
py 2 5
t 2 2 P
<c? / Ew ®E. / / Prs(@ — YK (y — 2)u(s,y)dy| dz| | ds
Re |Rd

Here C), is the usual constant appeared in Burkholder-Davis-Gundy inequality (Theorem 4.37 [2]). Due to
Holder inequality and the property f]Rd pi—s(r —y)dy = 1 for any z € R?, the above integrand to dz has the
following estimate:

2

/ptfs(x — YKy —2)uls,y)dy| < /pH(ﬂc — ) K (y — 2)u (s, y)dy.
R4 R4

Thus, we conclude that

¢ P
E, ® Ew //pt,s(:v — )V (y)u(s,y)dydW (s)
0 Rd
py 2 5
t 5 P
< Cf; / E, ® Ew //ptfs(x — ) K2 (y — 2)u?(s, y)dydz ds
0 d Rd
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t 5 £
<G, ///pt-s(x —y)K*(y — 2) (Ew ® EwIU(&z;)I”) dydzds
0 Rd R4
t 2 5
e/ <sudeEw ®Ew|u(s,y>|p> [pmste—yay | as | 11
0 yeR Rd
¢ 5
2
< 2K, /sup (Bo @ Evy [u(s, y)|?) o ds | (2.5)
yeRd
Combining (2.4) and (2.5), we obtain
[P ()24,
t p %
< lpe % wolla, + sup sup | E, © By / / P& — )V (y)uls, y)dydW (s)
te[0,T] z€R4 0 pa
2 1
< luolle + (Cp)» T2 | K| 12 [[wl|34,, (2.6)

which implies that the mapping P is well-defined for general p € [2, 00).
Next we show that P is a contraction operator. To this end, we introduce a new norm |[-[|, , defined by

llull . = sup (exp(—)\t) sup (E, ® ]EW|u(t,x)p);’> . A>0, u€eH,
’ t€[0,T) zERY

which is equivalent to the Hp-norm. Assume that ui,us € H,. As P is a linear operator, similar to the
proof of (2.6), we obtain

sup (B, @ Euy |P(u) () — Pluz)(t )P

t

< (CF K] [ sup (B o B ur(s.) ~ uals o)) s
yeR

t
< (Cp)E K s flur — wsll / exp(2As)ds

0
) — 1
= ()3 K2 s — w2, SR =L
= 2
from which we have
2 4 2 1 —exp(=2AT) 2
[ P(u1) — Puz)|lx . < (Cp)? [ K72 —n Jur — uzly . -

Take A > %(Cp)% ||K||2L2 Then the mapping P is a contraction with respect to |||, ,-norm. By the
contraction mapping principle, there exists a unique fixed point u € H, which is the unique mild solution
of (1.1). Moreover, by Gronwall’s inequality, (2.4) and (2.5) yield that there exists a positive constant C'
such that
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sup sup (E, ® Ew|u(t, z)?) < Cluol|}~ exp (CT),
te[0,T] zeR?

which shows the uniform boundedness of the p-th moment for u. O
3. The spatial and temporal Holder continuity

Assume that the Gaussian field V' is §-Holder continuous with 8 € (0,1) in mean square sense:

Eu|V(z) = V(y)l* = / K (2 — ) = K(z —y)[dz < Cla —y*". (3.1)

Theorem 3.1. Suppose that [, K?(z)dx < 400, ug is a-Hélder continuous and V satisfies (3.1). Forp > 2,
there exists a positive constant C = C(K,T,p) such that

. 1 .
(B, ® Eyy|u(ts, 21) — u(ts, 22)[P)7 < C(|z1 — 22| ™0@F) 4|ty — ¢,z min(@A)

for every ti,ta € [0,T], 71,22 € R As a consequence, u is spatially (min(a, ) — €)- and temporally

(2 min(a, B) — €)-Hélder continuous.

Proof. It is well-known that (see e.g. Theorem 2.1 [7]) for any t1,t5 € [0,7] and z1,z2 € R?,
[Pty * o (1) = iy % uo(w2)| < C(ltz — 11| % + w2 — 21]"). (3:2)

We only need to consider

mea@ﬁ://ﬁhgx—wvwmwmem«ﬁ

0 Rd

Similar to the proof of Theorem 2.1, applying Burkholder-Davis—Gundy inequality and Minkowski inequal-
ity, we obtain

(Eo ® Ew |P(u)(t,21) — P(u)(t, 2)[7) 7

=|E,  Ew //(pt,s(wg —y) — pr—s(z1 — y))u(s,y)/K(y — 2)w(dz)dydW (s)
0 Rd Rd
<C // E, ® Ew /(pt_s(azg —y) —pi—s(x1 — y))u(s,y) K(y — 2)dy dzds
0 Rd Rd
=C // E, ® Ew /pt_s(v)[u(s,xl —0)K(z1 —v—2) —u(s,z2 —v)K(x2 — v — 2)]dv dzds
0 Rd R4

< C’(/t//pt_s(v)(Ew ® Eywlu(s, 21 — v)|P)? |K (x1 — v — 2) — K (22 — v — 2)|*dvdzds

0 Rd R4

+ /t//pt_s(fu)(Ew ® Ew|u(s, 21 — v) — u(s, z2 — 0)[")? | K (z2 — v — z)|2dvdzds> B

0 Rd Rd



J. Cui et al. / J. Math. Anal. Appl. 441 (2016) 684-691 689

By the assumptions (3.1) and [, K*(x)dz < 400, we have
(B ® Bw | P(u) (¢, 21) = Pu)(t, 22)|7)>

1
<O\ |z — 582|/3 + //pt,s(v)(Ew @ Ew|u(s,z1 —v) — u(s,z2 — v)|")? dvds

0 Rd
The above inequality and (3.2) yield

(Eo @ By |u(t, z1) — u(t, 2)[7) 7

< (Ew @ Ew |ps * uo(z1) — e * u0(932)|p)% + (B @ By |P(u)(t, z1) — P(u)(t,x2)|p)%

t
. 1
<C||x1— a:2|mm(a’6) + / /pt_s(v)(]Ew @ By |u(s,z1 — v) — u(s, z2 — v)|")? dvds

0 R4

Substituting x; by 1 — m and z2 by 2 — m, we obtain
(E, @ Ew|u(s,x1 —m) — u(s,x9 — m)|p)%

¢
<Clzy — x1|min(a’6) + C’//pt_s(v)(sup E, ® Ewlu(s,x1 —m —v) —u(s, 2o —m — U)|p)%d1}d8
vER?
0 Rd

t

< Clag — xﬂmin(aﬁ) + C/(sup E, @ Ewlu(s,zy — m —v) —u(s,zo — m — v)|p)%d5.
vERC

Taking supremum for m on both sides of above inequality, we get the spatial regularity by Gronwall’s
inequality,
@w®Ewm@xﬂ—u@wﬁPﬁf§@?Ew®Ewmwﬂq—nﬁ—u@w2—mﬂﬂ%
< Clag — o™ exp(CT).
Now we prove the temporal regularity of u, which can be transformed to the spatial regularity. Due

o (3.2),

(Eo ® By |u(ts, z) — u(ts, z)P)»
< (Ew ® Ew |pg, * uo(x) — py, * U0($)|p)% + (Eu ® ]EW|P )t P(u )(t2, 2)[P)

T =

1
P

2
g@m—nﬁ+-Ew®Ev//fw4x—wM&w y)dydW (s
t1 Rd

+ (B 0 Ew / / <ptH<x—y>—ptﬂ(x—y))u(s,y>V<y>dydW<s>

0 R4

=: Clty — t,|? + II + III.



690 J. Cui et al. / J. Math. Anal. Appl. 441 (2016) 684691

Term [T can be estimated by the same procedure as the proof of Theorem 2.1, so we have IT < Clta — t4| 7,
Then it remains to estimate term [II. According to Burkholder-Davis—-Gundy inequality and Fubini’s the-
orem,

P\ 2 2

n<c // E, ® Ew / (ptrs(w —y) — Puy—s(x — y))U(S, Y)K(y — 2)dy dzds

0 Rd Rd

§C<?/<Ew®ﬂiw' / ptl—s(ﬂc—y)ptz—tl(y—w)(U(S,w)K(w—Z)

0 Rd (Rd)®2

P\ 2 2
—u(s,y)K(y — z))dydw ) dzds) ,
where in the last step we used the fact

/mrxxfwMawK@Awmy

Rd

=/ /mrwwwWWﬁw—w@ uls, w) K (w - 2)dw.

Rd d

Denoting
fl = (Ew ® EW|U(S, w)K(w - Z) - u(s,y)K(y - Z)|p)%’

by Minkowski inequality and Hoélder inequality, we have

< c // / Dty —s(@ — Y)Pty—t, (¥ — w) f1(z)dydwdzds

0 Rd Rd)®2
ty
2
=¢ </ / Doy —s(& = Y)pry 1, (y = w) (Byy @ By [u(s, w)[")? | K (w — 2) — K (y — 2)[*dydwdzds

+ / / Prr—s(@ = YDty 2 (y — w)(Eey @ Bapuls, w) — u(s, y)[")? K2(y — Z)dydwdzd8>
0 (R4)®3

Let y — w := (t3 — t1)2 2. According to the spatial regularity of u(t,z), we obtain

m<c ///mls Dpta—tn (9 — w)(ly — w2 + [y — w*)dwdyds

0 Rd Rd

///mls PPt (2 = ta]" + 12 2 — 1)) dzdyds

0 Rd Rd

< C |t2 _ t]_‘% min(a,3) )

N[
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It follows that
(E., ® By (uty, ) — ults, 2))P)7 < Clts — t1]2 ™D 4 Oty — 1] .

With a simple triangle inequality, the theorem is finished. By Kolmogorov’s continuity criterion theorem,
u is spatially (min(a, §) — €)- and temporally (% min(cq, 8) — €)-Holder continuous. O

Remark 3.1. In the proof of Theorem 3.1, the estimates of the Green’s function p;(x — y) cannot be applied
to the term

2
P\ »

t
// E, ® Ew /(pt_s(xz —y) = pi—s(x1 — y))u(s,y)K(y — z)dy dzds
0 Rd R4
or
t1 P %
[ ] |eemw / (Pra—a(& — 9) = Prs oz — ), ) K (y — 2)dy| | deds.
0 Rd Rd

This is the main difference in the proofs between the cases of Gaussian noise and non-Gaussian noise.

Remark 3.2. The sharpness of the solutions’ Holder exponents for SPDEs is very important. To our
knowledge, only [3] considers this problem for stochastic wave equation with additive Gaussian noise. The
sharpness of the Holder exponents for our problem remains open.

We finish this section by giving some examples about K such that Gaussian potential V is S-Holder
continuous in mean square sense, i.e., (3.1) holds.

Example 3.1. 1) For any fixed z = (21, ,24)7 € RY, we define K(z — y) 1= Ijg4,1(y1) - - Ij0,0,] (ya) for
y = (y1, - ,ya)" € R% where Ijg ;) = —I[z, 0] if ; < 0. Then V() is the d-dimensional Brownian sheet
w(x), which is %—H(’jlder continuous in mean square sense, i.e., 5 = %
(% — €)- and temporally (i — €)-Holder continuous provided that a =
space—time white noise driving SHE [8].

2) K(z) = |z| exp(—|z|®), z € R for 0OV (1 — £) < ¢ < 1, g2 > 0. Then V/(z) is ¢;-Holder continuous
in mean square sense, i.e., § = q1.

In this case, the solution u is spatially

1

5, which is similar to the case of
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