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NUMERICAL ANALYSIS ON ERGODIC LIMIT
OF APPROXIMATIONS FOR STOCHASTIC

NLS EQUATION VIA MULTI-SYMPLECTIC SCHEME⇤

JIALIN HONG† , XU WANG‡ , AND LIYING ZHANG§

Abstract. We consider a finite dimensional approximation of the stochastic nonlinear
Schrödinger equation driven by multiplicative noise, which is derived by applying a symplectic
method to the original equation in spatial direction. Both the unique ergodicity and the charge
conservation law for this finite dimensional approximation are obtained on the unit sphere. To simu-
late the ergodic limit over long time for the finite dimensional approximation, we discretize it further
in the temporal direction to obtain a fully discrete scheme, which inherits not only the stochastic
multi-symplecticity and charge conservation law of the original equation but also the unique ergod-
icity of the finite dimensional approximation. The temporal average of the fully discrete numerical
solution is proved to converge to the ergodic limit with order 1 with respect to the time step for
a fixed spatial step. Numerical experiments verify our theoretical results on charge conservation,
ergodicity, and weak convergence.
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1. Introduction. For the stochastic nonlinear Schrödinger (NLS) equation with
a multiplicative noise in Stratonovich sense,

(1)

8
><

>:

du = i
�
�u+ �|u|2u

�
dt+ iu � dW,

u(t, 0) = u(t, 1) = 0, t � 0,

u(0, x) = u0(x), x 2 [0, 1]

with � = ±1, we consider the case that W is a real valued Q-Wiener process on a fil-
tered probability space (⌦,F , (F

t

)
t�0,P) with paths in H1

0 := H1
0 (0, 1) with Dirichlet

boundary condition. The Karhunen–Loève expansion of W is as follows:

W (t, x,!) =
1X

k=0

�
k

(t,!)Q
1
2 e

k

(x), t � 0, x 2 [0, 1], ! 2 ⌦,

where (e
k

=
p
2 sin(k⇡x))

k�1 is an eigenbasis of the Dirichlet Laplacian � in L2 :=
L2(0, 1) and (�

k

)
k�1 is a sequence of independent real valued Brownian motions

⇤Received by the editors June 8, 2016; accepted for publication (in revised form) November 8,
2016; published electronically February 15, 2017.

http://www.siam.org/journals/sinum/55-1/M107909.html
Funding: The work of the first and second authors was supported by the National Natural

Science Foundation of China (91530118, 91130003, 11021101, and 11290142). The work of the third
author was supported by the National Natural Science Foundation of China (11601514).

†Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of
Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, People’s Republic
of China (hjl@lsec.cc.ac.cn).

‡Corresponding author. Institute of Computational Mathematics and Scientific/Engineering
Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing
100190, People’s Republic of China (wangxu@lsec.cc.ac.cn).

§Department of Mathematics, College of Sciences, China University of Mining and Technology,
Beijing 100083, People’s Republic of China (lyzhang@lsec.cc.ac.cn).

305

D
ow

nl
oa

de
d 

02
/1

5/
17

 to
 1

24
.1

6.
14

8.
9.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp

http://www.siam.org/journals/sinum/55-1/M107909.html
mailto:hjl@lsec.cc.ac.cn
mailto:wangxu@lsec.cc.ac.cn
mailto:lyzhang@lsec.cc.ac.cn


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

306 JIALIN HONG, XU WANG, AND LIYING ZHANG

associated with the filtration (F
t

)
t�0. In addition, the covariance operator Q is as-

sumed to commute with the Laplacian and satisfies

Qe
k

= ⌘
k

e
k

, ⌘
k

> 0, 8k 2 N, ⌘ :=
1X

k=1

⌘
k

< 1.

We refer to [9] for additional assumptions on the well-posedness of (1). It is shown
that (1) is a Hamiltonian system with stochastic multi-symplectic structure and charge
conservation law (see [6, 9, 11] and references therein). Structure-preserving numerical
schemes have remarkable superiority over conventional schemes to numerically solve
Hamiltonian systems over long time. As another kind of long-time behavior, the
ergodicity for this kind of conservative system is an important and di�cult problem
which is still open. Motivated by [10], we study the ergodicity for a finite dimensional
approximation (FDA) of the original equation instead.

In this paper, we investigate the ergodicity for a symplectic FDA of (1) and
approximate its ergodic limit via a multi-symplectic and ergodic scheme. As we show
that the FDA is charge conserved, without loss of generality, we consider the ergodicity
in the finite dimensional unit sphere S. There have been some papers considering the
additive noise case with dissipative assumptions, and also some papers requiring a
uniformly elliptic assumption on the whole space to ensure unique ergodicity (see,
e.g., [3, 12, 13, 15, 16]). A conservative FDA with linear multiplicative noise has
an uncertain nondegeneracy, which relies heavily on the solution. To overcome this
di�culty, we construct an invariant control set M0 ⇢ S, in which the FDA is shown to
be nondegenerate. Together with the Krylov–Bogoliubov theorem and the Hörmander
condition, we prove that the solution U possesses a unique invariant measure µ

h

(i.e.,
U is uniquely ergodic) with

lim
T!1

1

T

Z
T

0
Ef(U(t))dt =

Z

M0

fdµ
h

=

Z

S
fdµ

h

.

For many physical applications, the approximation of the invariant measure is
of fundamental importance, especially when the invariant measure is unknown (see,
e.g., [1, 3, 4, 5, 7, 13, 14, 15, 16]). Some papers construct numerical schemes which
also possess unique invariant measures, and then show the approximate error between
invariant measures. For example, [7, 15] work with dissipative systems driven by ad-
ditive noise, and [16] considers elliptic stochastic di↵erential equations (SDEs) with
bounded coe�cients and dissipative type condition. There is also some work con-
centrating on the approximation of the invariant measure, i.e., the approximation of
the ergodic limit

R
S fdµ

h

, in which case the numerical schemes may not be uniquely
ergodic. For instance, [3] approximates the invariant measure of stochastic partial dif-
ferential equations with an additive noise based on Kolmogorov equation. Reference
[13] gives error estimates for time-averaging estimators of numerical schemes based on
the associated Poisson equation and the assumption of local weak convergence order.
Authors in [14] calculate the ergodic limit for Langevin equations with dissipations
via quasi-symplectic integrators. There have been few results on constructing con-
servative and uniquely ergodic schemes to calculate the ergodic limit for conservative
systems, to our knowledge. We focus on the approximation of the ergodic limit via
a multi-symplectic scheme, which is also shown to be uniquely ergodic. For a fixed
spacial dimension, the local weak error of this fully discrete scheme (FDS) in temporal
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direction is of order 2, which yields order 1 for the approximate error of the ergodic
limit based on the associated Poisson equation (see also [4, 13]) and a priori estimates
of the numerical solutions. That is,

�����E
"
1

N

N�1X

n=0

f(Un)�
Z

S
fdµ

h

#�����  C
h

✓
1

T
+ ⌧

◆
.

The paper is organized as follows. In section 2, we apply a symplectic semidiscrete
scheme to the original equation to get the FDA, and show the unique ergodicity as well
as the charge conservation law for the FDA. In section 3, we present a multi-symplectic
and ergodic FDS to approximate the ergodic limit, and show the approximate error
based on a priori estimates and local weak error. In section 4, the discrete charge
evolution compared with those of the Euler–Maruyama scheme and implicit Euler
scheme, the ergodic limit, and global weak convergence order are tested numerically.
Section 5 is the appendix containing proofs of some a priori estimates.

2. Unique ergodicity. In this section, we first apply the central finite di↵erence
scheme to (1) in the spatial direction to obtain a FDA, which is also a Hamiltonian
system. To investigate the ergodicity of this conservative system, we then construct
an invariant control set M0 ⇢ S with respect to a control function introduced in
section 2.2. The FDA is proved to be ergodic in M0 based on the Krylov–Bogoliubov
theorem and the Hörmander condition.

2.1. Finite dimensional approximation (FDA). Based on the central fi-
nite di↵erence scheme and the notation u

j

:= u
j

(t), j = 1, . . . ,M , we consider the
following spatial semidiscretization:

du
j

= i


u
j+1 � 2u

j

+ u
j�1

h2
+ �|u

j

|2u
j

�
dt+ iu

j

KX

k=1

p
⌘
k

e
k

(x
j

) � d�
k

(t)

with a truncated noise
P

K

k=1
p
⌘
k

e
k

(x)�
k

(t), K 2 N, a given uniform step size h =
1

M+1 for some M  K, and x
j

= jh, j = 1, . . . ,M . The condition M  K here
ensures the existence of the solution for the control function. Denoting vectors U :=
U(t) = (u1, . . . , uM

)T 2 CM , �(t) = (�1(t), . . . ,�K

(t))T 2 RK , and matrices F (U) =
diag{|u1|2, . . . , |uM

|2}, E
k

= diag{e
k

(x1), . . . , ek(xM

)}, ⇤ = diag{p⌘1, . . . ,
p
⌘
K

},
Z(U) = diag{u1, . . . , uM

}E
MK

⇤,

A =

0

BBB@

�2 1
1 �2 1

. . .
. . .

. . .
1 �2

1

CCCA
2 RM⇥M , E

MK

=

0

B@
e1(x1) · · · e

K

(x1)
...

...
e1(xM

) · · · e
K

(x
M

)

1

CA

M⇥K

,

then the FDA is in the following form:

(2)

8
><

>:

dU = i


1

h2
AU + �F (U)U

�
dt+ iZ(U) � d�(t),

U(0) = c⇤ (u0(x1), . . . , u0(xM

))T ,

where c⇤ is a normalized constant. The noise term in (2) has an equivalent Itô form

iZ(U) � d�(t) = i
KX

k=1

p
⌘
k

E
k

U � d�
k

(t) = �1

2

KX

k=1

⌘
k

E2
k

Udt+ i
KX

k=1

p
⌘
k

E
k

Ud�
k

(t)
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=:� ÊUdt+ i
KX

k=1

p
⌘
k

E
k

Ud�
k

(t)(3)

with Ê = 1
2

P
K

k=1 ⌘kE
2
k

. In the following, k · k denotes the 2-norm for both matrices
and vectors, which satisfies kBV k  kBkkV k for any matrices B 2 Cm⇥n and vectors
V 2 Cn, m,n 2 N. It is then easy to show that kAk  4, which is independent of the
dimension M .

Proposition 2.1. The FDA (2) possesses the charge conservation law, i.e.,

kU(t)k2 = kU(0)k2, 8 t � 0, P-a.s.

where kU(t)k = (kP (t)k2 + kQ(t)k2) 1
2 =

�P
M

m=1(|pm(t)|2 + |q
m

(t)|2)
� 1

2 , and P (t) =
(p1(t), . . . , pM (t))T and Q(t) = (q1(t), . . . , qM (t))T are the real and imaginary parts
of U(t) respectively.

Proof. Noticing that matrices A and F (U) are symmetric and the linear function
Z(U) satisfies

U
T

Z(U) = (u1, . . . , uM

)

0

B@
u1

. . .
u
M

1

CAE
MK

0

B@

p
⌘1

. . . p
⌘
K

1

CA

= (|u1|2, . . . , |uM

|2)E
MK

0

B@

p
⌘1

. . . p
⌘
K

1

CA 2 RK ,(4)

where U denotes the conjugate of U , we multiply (2) by U
T

, take the real part, and
then get the charge conservation law for U .

In the following, without pointing out, all equations hold in the sense P-a.s.
Remark 2.2. Equation. (1) can be rewritten into an infinite dimensional Hamil-

tonian system (see [11]). It is easy to verify that the central finite di↵erence scheme
(2) applied to (1) is equivalent to the symplectic Euler scheme applied to the infinite
dimensional Hamiltonian form of (1), which implies the symplecticity of (2).

2.2. Unique ergodicity. As the charge of (2) is conserved shown in Proposition
2.1, without loss of generality, we assume that U(0) 2 S and investigate the unique
ergodicity of (2) on S. As the nondegeneracy for (2) relies on the solution U as a
result of the multiplicative noise, the standard procedure to show the irreducibility
and strong Feller property on the whole S do not apply. So we need to construct an
invariant control set.

Definition 2.3. (see, e.g., [2]) A subset M 6= ; of S is called an invariant control
set for the control system

(5) d� = i


1

h2
A�+ �F (�)�

�
dt+ iZ(�)d (t)

of (2) with a di↵erentiable deterministic function  , if O+(x) = M, 8x 2 M, and M
is maximal with respect to inclusion, where O+(x) denotes the set of points reachable
from x (i.e., connected with x) in any finite time and M denotes the closure of M.
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We state one of our main results in the following theorem.

Theorem 2.4. The FDA (2) possesses a unique invariant probability measure µ
h

on an invariant control set M0, which implies the unique ergodicity of (2). Moreover,

supp(µ
h

) = S and µ
h

(S) = µ
h

(M0) = 1.

Proof.
Step 1. Existence of invariant measures.
From Proposition 2.1, we find ⇡

t

(U(0),S) = 1, 8 t � 0, where ⇡
t

(U(0), ·) denotes
the transition probability (probability kernel) of U(t). As the finite dimensional unit
sphere S is tight, the family of measures ⇡

t

(U(0), ·) is tight, which implies the existence
of invariant measures by the Krylov–Bogoliubov theorem [8].

Step 2. Invariant control set.
Denoting U = P + iQ with P and Q being the real and imaginary parts of U

respectively, we first consider the following subset of S:

S1 = {U = P + iQ 2 S : P > 0}.

For any t > 0, y, z 2 S1, there exists a di↵erentiable function � satisfying �(s) =
(�1(s), . . . ,�M

(s))T 2 S1, s 2 [0, t], �(0) = y, and �(t) = z by polynomial inter-
polation argument. As rank(Z(�(s))) = M for �(s) 2 S1 and M  K, the linear
equations

Z(�(s))X = �i�0(s)�

1

h2
A�(s) + �F (�(s))�(s)

�

possess a solutionX 2 CM . As, in addition, Z(�(s)) = diag{�1(s), . . . ,�M

(s)}E
MK

⇤,
where diag{�1(s), . . . ,�M

(s)} is invertible for �(s) 2 S1, the solution X depends con-
tinuously on s and is denoted by X(s). Thus, there exists a di↵erentiable function
 (·) :=

R ·
0 X(s)ds which, together with � defined above, satisfies the control function

(5) with initial data  (0) = 0. That is, for any y, z 2 S1, y and z are connected,
denoted by y $ z. The above argument also holds for the following subsets:

S2 = {U = P + iQ 2 S : P < 0},
S3 = {U = P + iQ 2 S : Q > 0},
S4 = {U = P + iQ 2 S : Q < 0}.

For any y 2 S
i

, z 2 S
j

with i 6= j and i, j 2 {1, 2, 3, 4}, there must exist S
l

, r
i

, and
r
j

, satisfying r
i

2 S
i

\ S
l

6= ; and r
j

2 S
j

\ S
l

6= ; for some l 2 {1, 2, 3, 4}, such that
y $ r

i

$ r
j

$ z. Thus,

M0 := S1 [ S2 [ S3 [ S4 = {U = P + iQ 2 S : P 6= 0 or Q 6= 0},

with M0 = S, is an invariant control set for (5).
Step 3. Uniqueness of the invariant measure.
We rewrite (2) with P and Q according to its equivalent form in the Itô sense

and obtain

d

✓
P
Q

◆
=

✓
�Ê � 1

h

2A� �F (P,Q)
1
h

2A+ �F (P,Q) �Ê

◆✓
P
Q

◆
dt

+
KX

k=1

p
⌘
k

✓
0 �E

k

E
k

0

◆✓
P
Q

◆
d�

k

(t)
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=: X0(P,Q)dt+
KX

k=1

X
k

(P,Q)d�
k

(t).(6)

To derive the uniqueness of the invariant measure, we consider the Lie algebra gener-
ated by the di↵usions of (6),

L(X0, X1, . . . , XK

) = span

⇢
X

l

, [X
i

, X
j

], [X
l

, [X
i

, X
j

]] , . . . , 0  l, i, j  K

�
.

Choosing p⇤ = 0 and q⇤ = �1p
M

(1, . . . , 1)T such that z⇤ := p⇤ + iq⇤ 2 S4 ⇢ M0, we

derive that the vectors

X
k

(p⇤, q⇤) =
r

⌘
k

M

0

BBBBBBBB@

e
k

(x1)
...

e
k

(x
M

)
0
...
0

1

CCCCCCCCA

, [X0, Xk

](p⇤, q⇤) =
r

⌘
k

M

0

BBBBBBBB@

�Ê

0

B@
e
k

(x1)
...

e
k

(x
M

)

1

CA

( 1
h

2A+ 1
M

I)

0

B@
e
k

(x1)
...

e
k

(x
M

)

1

CA

1

CCCCCCCCA

are independent of each other for k = 1, . . . ,M , which hence implies the following
Hörmander condition:

dimL(X0, X1, . . . , XK

)(z⇤) = 2M.

Then there is at most one invariant measure with supp(µ
h

) = S according to [2].
Actually, according to the above procedure, we obtain that the Hörmander condition
holds uniformly for any z 2 M0.

Combining the three steps above, we conclude that there exists a unique invariant
measure µ

h

on M0 for the FDA, with µ
h

(S) = µ
h

(M0) = 1.

From the theorem above, we can find out that for some other nonlinearities, e.g.,
iF (x, |u|)u with F being some potential function, such that the equation still possesses
the charge conservation law, we can still get the ergodicity of the finite dimensional
approximation of the original equation through the procedure above. The procedure
could also applied to higher dimensional Schrödinger equations with proper well-posed
assumptions, but it may be more technical to verify the Hörmander condition.

Remark 2.5. According to the ergodicity of (2), we have

lim
T!1

1

T

Z
T

0
Ef(U(t))dt =

Z

S
fdµ

h

, 8 f 2 B
b

(S), in L2(S, µ
h

),

where B
b

(S) denotes the set of bounded and measurable functions and
R
S fdµ

h

is
known as the ergodic limit with respect to the invariant measure µ

h

.
For more details, we refer to [8] and references therein.

3. Approximation of ergodic limit. A fully discrete scheme (FDS) with the
discrete multi-symplectic structure and the discrete charge conservation law is con-
structed in this section, which could also inherit the unique ergodicity of the FDA.
In addition, we prove that the time average of the FDS can approximate the ergodic
limit

R
S fdµ

h

with order 1 with respect to the time step.
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3.1. Fully discrete scheme (FDS). We apply the midpoint scheme to (2),
and obtain the following FDS:

(7)

8
<

:
Un+1 � Un = i

⌧

h2
AUn+ 1

2 + i�⌧F (Un+ 1
2 )Un+ 1

2 + iZ(Un+ 1
2 )�

n+1�,

U0 = U(0) 2 S,

where ⌧ denotes the uniform time step, t
n

= n⌧ , Un = (un

1 , . . . , u
n

M

) 2 CM , Un+ 1
2 =

U

n+1+U

n

2 , and �
n+1� = �(t

n+1) � �(t
n

). For the FDS (7), which is implicit in
both deterministic and stochastic terms, its well-posedness is stated in the following
proposition.

Proposition 3.1. For any initial value U0 = U(0) 2 S, there exists a unique
solution (Un)

n2N of (7), and it possesses the discrete charge conservation law, i.e.,

kUn+1k2 = kUnk2 = 1, 8 n 2 N.

Proof. We multiply both sides of (7) by Un+ 1
2 , take the real part, and obtain the

existence of the numerical solution by the Brouwer fixed-point theorem as well as the
discrete charge conservation law.

For the uniqueness, we assume that X = (X1, . . . , XM

)T and Y = (Y1, . . . , YM

)T

are two solutions of (7) with Un = z = (z1, . . . , zM )T 2 S. It follows that X,Y 2 S
and

(8) X � Y = i
⌧

h2
A
X � Y

2
+

i�⌧

8
H(X,Y, z) + iZ

✓
X � Y

2

◆
�
n+1�,

where

H(X,Y, z) =

0

B@
|X1 + z1|2(X1 + z1)� |Y1 + z1|2(Y1 + z1)

...
|X

M

+ z
M

|2(X
M

+ z
M

)� |Y
M

+ z
M

|2(Y
M

+ z
M

)

1

CA .

Based on the fact that |a|2a � |b|2b = |a|2(a � b) + |b|2(a � b) + ab(a � b) for any
a, b 2 C, we have

=
⇥
(X � Y )TH(X,Y, z)

⇤
= =

"
MX

m=1

(X
m

+ z
m

)(Y
m

+ z
m

)(X
m

� Y
m

)2
#

with =[V ] denoting the imaginary part of V . Multiplying (8) by (X�Y )T and taking
the real part, we get

kX � Y k2 = ��⌧

8
=
⇥
(X � Y )TH(X,Y, z)

⇤

 ⌧

8

✓
max

1mM

|X
m

+ z
m

||Y
m

+ z
m

|
◆
kX � Y k2  ⌧

2
kX � Y k2,

where we have used the fact X,Y, z 2 S and (4). For ⌧ < 1, we get X = Y and
complete the proof.

The proposition above shows that (7) possesses the discrete charge conservation
law. Furthermore, (7) also inherits the unique ergodicity of the FDA and the stochas-
tic multi-symplecticity of the original equation, which are stated in the following two
theorems.

D
ow

nl
oa

de
d 

02
/1

5/
17

 to
 1

24
.1

6.
14

8.
9.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

312 JIALIN HONG, XU WANG, AND LIYING ZHANG

Theorem 3.2. The FDS (7) is also ergodic with a unique invariant measure µ⌧

h

on the control set M0, such that µ⌧

h

(S) = µ⌧

h

(M0) = 1. Also,

lim
N!1

1

N

N�1X

n=0

f(Un) =

Z

S
fdµ⌧

h

, 8 f 2 B
b

(S), in L2(S, µ⌧

h

).

Proof. Based on the charge conservation law for {Un}
n�1, we obtain the existence

of the invariant measure similar to the proof of Theorem 2.4.
To obtain the uniqueness of the invariant measure, we show that the Markov chain

{U3n}
n�1 satisfies the minorization condition (see, e.g., [12]). First, Proposition 3.1

implies that for a given Un 2 S, solution Un+1 can be defined through a continuous
function Un+1 = (Un, �

n+1�). As �
n+1� has a C1 density, we get a jointly continu-

ous density for Un+1. Second, similar to Theorem 2.4, for any given y, z 2 M0, there
must exist i, j, k 2 {1, 2, 3, 4} and r

i

, r
j

2 M0, such that y 2 S
i

, z 2 S
j

, r
i

2 S
i

\ S
k

,
and r

j

2 S
j

\ S
k

. As y+ri

2 2 S
i

and Z(y+ri

2 ) is invertible, �3n+1� can be chosen to
ensure that

r
i

� y = i
⌧

h2
A
y + r

i

2
+ i�⌧F (

y + r
i

2
)
y + r

i

2
+ iZ(

y + r
i

2
)�3n+1�

holds, i.e., r
i

= (y, �3n+1�). Similarly, based on the fact ri+rj

2 2 S
k

and rj+z

2 2 S
j

,
we have r

j

= (r
i

, �3n+2�) and z = (r
j

, �3n+3�). That is, for any given y, z 2 M0,
�3n+1�, �3n+2�, �3n+3� can be chosen to ensure that U3n = y and U3(n+1) = z.
Finally we obtain that, for any � > 0,

P3 (y,B(z, �)) := P
�
U3 2 B(z, �)

��U0 = y
�
> 0,

where B(z, �) denotes the open ball of radius � centered at z.

The infinite dimensional system (1) has been shown to preserve the stochastic
multi-symplectic conservation law locally (see, i.e., [11]):

d
t

(dp ^ dq)� @
x

(dp ^ dv + dq ^ dw)dt = 0,

with p, q denoting the real and imaginary parts of solution u respectively and v = p
x

,
w = q

x

being the derivatives of p and q with respect to variable x. We now show
that this ergodic FDS (7) not only possesses the discrete charge conservation law as
shown in Proposition 3.1 but also preserves the discrete stochastic multi-symplectic
structure.

Theorem 3.3. The implicit FDS (7) preserves the discrete multi-symplectic
structure

1

⌧
(dpn+1

j

^ dqn+1
j

� dpn
j

^ dqn
j

)� 1

h
(dp

n+ 1
2

j

^ dv
n+ 1

2
j+1 � dp

n+ 1
2

j�1 ^ dv
n+ 1

2
j

)

� 1

h
(dq

n+ 1
2

j

^ dw
n+ 1

2
j+1 � dq

n+ 1
2

j�1 ^ dw
n+ 1

2
j

) = 0,

where pn
j

, qn
j

denote the real and imaginary parts of un

j

, v
j

= 1
h

(pn
j

� pn
j�1), and

w
j

= 1
h

(qn
j

� qn
j�1).
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Proof. Rewriting (7) with the real and imaginary parts of the components un

j

of
Un, we get
(9)8
>>>>>>>>><

>>>>>>>>>:

1

⌧
(qn+1

j

� qn
j

)� 1

h
(v

n+ 1
2

j+1 � v
n+ 1

2
j

) =
⇣
(p

n+ 1
2

j

)2 + (q
n+ 1

2
j

)2
⌘
p
n+ 1

2
j

+ p
n+ 1

2
j

⇣K
j

,

�1

⌧
(pn+1

j

� pn
j

)� 1

h
(w

n+ 1
2

j+1 � w
n+ 1

2
j

) =
⇣
(p

n+ 1
2

j

)2 + (q
n+ 1

2
j

)2
⌘
q
n+ 1

2
j

+ q
n+ 1

2
j

⇣K
j

,

1

h
(p

n+ 1
2

j

� p
n+ 1

2
j�1 ) = v

n+ 1
2

j

,

1

h
(q

n+ 1
2

j

� q
n+ 1

2
j�1 ) = w

n+ 1
2

j

,

where ⇣K
j

=
P

K

k=1
p
⌘
k

e
k

(x
j

) � d�
k

(t). Denoting z
n+ 1

2
j

= (p
n+ 1

2
j

, q
n+ 1

2
j

, v
n+ 1

2
j

, w
n+ 1

2
j

)T

and taking the di↵erential in the phase space on both sides of (9), we obtain

1

⌧
d

0

BB@

qn+1
j

� qn
j

�(pn+1
j

� pn
j

)
0
0

1

CCA+
1

h
d

0

BBBB@

�(v
n+ 1

2
j+1 � v

n+ 1
2

j

)

�(w
n+ 1

2
j+1 � w

n+ 1
2

j

)

p
n+ 1

2
j

� p
n+ 1

2
j�1

q
n+ 1

2
j

� q
n+ 1

2
j�1

1

CCCCA

= r2S1(z
n+ 1

2
j

)dz
n+ 1

2
j

+r2S2(z
n+ 1

2
j

)dz
n+ 1

2
j

⇣K
j

,(10)

where

S1(z
n+ 1

2
j

) =
1

4

⇣
(p

n+ 1
2

j

)2 + (q
n+ 1

2
j

)2
⌘2

+
1

2

⇣
v
n+ 1

2
j

⌘2
+

1

2

⇣
w

n+ 1
2

j

⌘2

and

S2(z
n+ 1

2
j

) =
1

2

⇣
p
n+ 1

2
j

⌘2
+

1

2

⇣
q
n+ 1

2
j

⌘2
.

Then the wedge product between dz
n+ 1

2
j

and (10) concludes the proof based on the

symmetry of r2S1 and r2S2.

Before giving the approximate error of the ergodic limit, we give some essential
a priori estimates about the stability of (7) and (2). In the following, C denotes a
generic constant independent of T , N , ⌧ , and h while C

h

denotes a constant depending
also on h, whose value may be di↵erent from line to line.

Lemma 3.4. For any initial value U0 2 S and � � 1, if Q 2 HS(L2, H
3
2� 1

� ),
then there exists a constant C such that the solution (Un)

n2N of (7) satisfies

E
��Un+1 � Un

��2�  C(⌧2�h�4� + ⌧�), 8 n 2 N,

where HS(L�1 , H�2) denotes the space of Hilbert–Schmidt operators from L�1 to H�2 .

Lemma 3.5. For any initial value U(0) 2 S and � � 1, there exists a constant C
such that the solution U(t) of (2) satisfies

EkU(t
n+1)� U(t

n

)k2�  C(⌧2�h�4� + ⌧�), 8 n 2 N.

The proofs of the lemmas above are given in the Appendix for the readers’ con-
venience.
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3.2. Approximation of ergodic limit. To approximate the ergodic limit of
(2) and get the approximate error, we give an estimate of the local weak convergence
between U(⌧) and U1, and the Poisson equation associated with (2) is also used (see
[13]). Recall that the SDE (2) in the Stratonovich sense has an equivalent Itô form

dU =


i
1

h2
AU + i�F (U)U � ÊU

�
dt+ iZ(U)d�(t)

=: b(U)dt+ �(U)d�(t)(11)

based on (3). For any fixed f 2 W 4,1(S), let f̂ :=
R
S fdµ

h

and ' be the unique

solution of the Poisson equation L' = f � f̂ , where

L := b ·r+
1

2
��T : r2

denotes the generator of (11). It is easy to find out that (11) satisfies the hypoelliptic
setting (see, e.g., [13]) according to the Hörmander condition in Theorem 2.4. Thus,
' 2 W 4,1(S) according to Theorem 4.1 in [13]. Based on the well-posedness of the
numerical solution (Un)

n2N and the implicit function theorem, (7) can be rewritten
in the form

Un+1 = Un + ⌧�(Un, ⌧, h, �
n+1�)(12)

for some function �. Denoting by D'(u)�1 and Dk'(u)(�1, . . . ,�k

) the first and kth
order weak derivatives evaluated in the directions �

j

, j = 1, . . . , k, with Dk'(u)(�)k

for shorthand if all the directions are the same in the kth derivatives, then we have

'(Un+1) = '(Un) + ⌧


D'(Un)�n +

1

2
⌧D2'(Un)(�n)2

�
+

1

6
D3'(Un)(⌧�n)3 +R�

n

=: '(Un) + ⌧L�'(Un) +
1

6
D3'(Un)(⌧�n)3 +R�

n

,(13)

where �n := �(Un, ⌧, h, �
n+1�),

L�'(Un) = D'(Un)�n +
1

2
⌧D2'(Un)(�n)2,

and

R�
n

=
1

4!
D4'(✓

n

)(⌧�n)4

for some ✓
n

2 [Un, Un+1] := [un

1 , u
n+1
1 ]⇥ . . .⇥ [un

M

, un+1
M

]. Adding (13) together from
n = 0 to n = N � 1 for some fixed N 2 N, then dividing the result by T = N⌧ , and
noticing that L'(Un) = f(Un)� f̂ , we obtain

'(UN )� '(U0)

N⌧
=

1

N

 
N�1X

n=0

⇥
L�'(Un)� L'(Un)

⇤
+

N�1X

n=0

L'(Un)

+
1

⌧

N�1X

n=0

1

6
D3'(Un)(⌧�n)3 +

1

⌧

N�1X

n=0

R�
n

!

=
1

N

N�1X

n=0

⇥
L�'(Un)� L'(Un) +

1

6⌧
D3'(Un)(⌧�n)3

⇤
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+

 
1

N

N�1X

n=0

f(Un)� f̂

!
+

1

N⌧

N�1X

n=0

R�
n

,

which shows�����E
"
1

N

N�1X

n=0

f(Un)� f̂

#����� 
����
1

N⌧
E
⇥
'(UN )� '(U0)

⇤����+

�����
1

N⌧

N�1X

n=0

ER�
n

�����

+

�����
1

N

N�1X

n=0

E

L�'(Un)� L'(Un) +

1

6⌧
D3'(Un)(⌧�n)3

������ =: I + II + III.(14)

The average 1
N

P
N�1
n=0 f(Un) is regarded as an approximation of f̂ . We next begin to

investigate the approximate error by estimating I, II, and III respectively.
According to the fact that ' 2 W 4,1(S) and Lemma 3.4, we have

I  2k'k0,1
N⌧

 C

T
(15)

and

II  1

N⌧

N�1X

n=0

E
h
k⌧�nk4 kD4'k

L

1

i
 C

N⌧

N�1X

n=0

E
h��Un+1 � Un

��4
i

 C

N⌧

N�1X

n=0

�
⌧4h�8 + ⌧2

�
 C

�
⌧3h�8 + ⌧

�
,(16)

where k'k
�,1 := sup|↵|�,u2S |D↵'(u)|, � 2 N.

It then remains to estimate the term III. To this end, we need the estimate of
the local weak convergence, which is stated in the following theorem. The proof of
the following theorem is also given in the Appendix.

Theorem 3.6. For a fixed spatial approximation (2), and for any initial value

U0 2 S and ' 2 W 4,1(S), it holds under the condition Q 2 HS(L2, H
5
4 ) and ⌧ =

O(h4) that
��E
⇥
'(U(⌧))� '(U1)

⇤��  C
h

⌧2

for some constant C
h

= C(', ⌘, h).

Now we are in the position of showing the approximation error between the time
average of FDS and the ergodic limit of FDA.

Theorem 3.7. Under the assumptions in Theorem 3.6 and for any f 2 W 4,1(S),
there exists a positive constant C

h

= C(f, ⌘, h) such that
�����E
"
1

N

N�1X

n=0

f(Un)� f̂

#�����  C
h

✓
1

T
+ ⌧

◆
.

Proof. Based on (14)–(16), it su�ces to estimate term III. For any f 2 W 4,1(S),
we know from the statement above that the solution to the Poisson equation L' =
f� f̂ satisfies ' 2 W 4,1(S). Based on (13), Lemma 3.4, and the condition ⌧ = O(h4),
we have

'(U1)
E
= '(U0) + ⌧L�'(U0) +

1

6
D3'(U0)(U1 � U0)3 +O(⌧2)

E
= '(U0) + ⌧L�'(U0) +O(⌧2),(17)
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where
E
= means that the equation holds in expectation sense, and in the last step

we have used the fact that

D3'(U0)(U1 � U0)3 = D3'(U0)
⇣
i
⌧

h2
AU

1
2 + i�⌧F (U

1
2 )U

1
2 + iZ(U

1
2 )�1�

⌘3

E
= D3'(U0)

⇣
iZ(U

1
2 )�1�

⌘3
+O(⌧2h�2 + ⌧2)

E
= D3'(U0)

✓
i

2
Z(U1 � U0)�1� + iZ(U0)�1�

◆3

+O(⌧2h�2 + ⌧2)

E
= O(⌧2h�2 + ⌧2)(18)

based on the linearity of Z, Lemma 3.4, and that E
�
iZ(U0)�1�

�3
= 0. We can also

get the following expression similar to (17) based on Taylor expansion and Lemma
3.5:

'(U(⌧))
E
= '(U0) +

Z
⌧

0

✓
D'(U0)b(U(t)) +

1

2
D2'(U0) (�(U(t)))2

◆
dt

+

Z
⌧

0
D'(U0)�(U(t))d�(t) +

1

6
D3'(U0)(U(⌧)� U0)3 +O(⌧2)

E
= '(U0) +

Z
⌧

0
L̃
t

'(U0)dt+O(⌧2),(19)

where

L̃
t

'(U0) := D'(U0)b(U(t)) +
1

2
D2'(U0) (�(U(t)))2

and E
⇥R

⌧

0 D'(U0)�(U(t))d�(t)
⇤
= 0. Thus, subtracting (17) from (19), we derive

����E

⌧L�'(U0)�

Z
⌧

0
L̃
t

'(U0)dt

����� 
��E
⇥
'(U(⌧))� '(U1)

⇤��+ C⌧2.(20)

We notice that
����
Z

⌧

0
E
h
L̃
t

'(U0)� L'(U0)
i
dt

���� 
����
Z

⌧

0
E
⇥
D'(U0)

�
b(U(t))� b(U0)

�⇤
dt

����

+

����
1

2

Z
⌧

0
E
⇥
D2'(U0)

�
�(U(t))� �(U0),�(U(t)) + �(U0)

�⇤
dt

���� ,(21)

in which we have

��E
⇥
D'(U0)

�
b(U(t))� b(U0)

�⇤�� =
���E
h
D2'(U0)

⇣
i
1

h2
A
�
U(t)� U0

�

+ i�
⇣
F (U(t))U(t)� F (U0)U0

⌘
� Ê(U(t)� U0)

⌘i���  C(th�2 + t)

for the first term in (21). In the last step, we have used the fact that g(V ) := F (V )V ,
8 V 2 S, is a continuous di↵erentiable function which satisfies |Dkg(V )|  C for
kV k  1 and k 2 N, and then replaced U(t) � U0 by the integral form of (2) to get
the result. The second term in (21) can be estimated in the same way. Thus, we have

����
Z

⌧

0
E
h
L̃
t

'(U0)� L'(U0)
i
dt

����  C(⌧2h�2 + ⌧2).(22)
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We hence conclude based on (18), (20), (22) and Theorem 3.6 that

III =

�����
1

N

N�1X

n=0

E

L�'(Un)� L'(Un) +

1

6⌧
D3'(Un)(Un+1 � Un)3

������

 1

⌧
sup
U

02S

⇢����E

⌧L�'(U0)�

Z
⌧

0
L̃
t

'(U0)dt

�����+
����
Z

⌧

0
E
h
L̃
t

'(U0)� L'(U0)
i
dt

����

�

+ C(⌧h�2 + ⌧)  C
h

⌧.
(23)

Noticing that ⌧3h�8 = O (⌧) under the condition ⌧ = O(h4), from (15), (16), and
(23), we finally obtain

�����E
"
1

N

N�1X

n=0

f(Un)� f̂

#�����  C
h

✓
1

T
+ ⌧

◆
.

Remark 3.8. Based on the theorem above and the ergodicity of (2), for a fixed h,
we obtain

�����E
"
1

N

N�1X

n=0

f(Un)� 1

T

Z
T

0
f(U(t))dt

#�����  C
h

(B(T ) + ⌧),

which implies that the global weak error is of order 1, i.e.,
���E
h
f(Un)� f(U(t))

i���  C
h

(B̃(t) + ⌧), t 2 [n⌧, (n+ 1)⌧ ],

where B(T ) ! 0 and B̃(T ) ! 0 as T ! 1. On the other hand, a time independent
weak error in turn leads to the result stated in Theorem 3.7.

4. Numerical experiments. In this section, numerical experiments are given
to test several properties of scheme (7) with � = 1, i.e., the focusing case. In the fol-
lowing experiments, we simulate the noise �

n+1� by
p
⌧⇠

n

with ⇠
n

being independent
K-dimensional N(0, 1)-random variables, and choose ⌘

k

= k�4, k = 1, . . . ,K. In ad-
dition, we approximate the expectation by taking averaged value over 500 paths, and
the proposed scheme, which is implicit, is numerically solved utilizing the fixed point
iteration. In the following, we will use the notation kUk�

�

:=
P

M

m=1 (|pm|� + |q
m

|�)
for U 2 CM and � 2 N with P = (p1, . . . , pM )T , and Q = (q1, . . . , pM )T being the
real and imaginary parts of U . Notice that k · k2 = k · k.
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(a) Proposed scheme
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(b) IME scheme
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(c) EM scheme

Fig. 1. Charge evolution EkUnk2 � 1 for (a) the proposed scheme with T = 100 under steps
⌧ = 2�i (i = 4, 5, 6, 7), (b) IME scheme with T = 3 under steps ⌧ = 2�i (i = 4, 5, 6, 7), and (c) EM
scheme with T = 2�5 under steps ⌧ = 2�i (i = 10, 11, 12, 13) (h = 0.05, K = 30).
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We omit the boundary nodes in the simulation; as a result, we may choose the
normalized initial value U0 = c⇤(U0(1), . . . , U0(M))T based on function u0(x) satisfy-
ing U0(m) = u0(mh), m = 1, . . . ,M , in which u0(x) need not to satisfy the boundary
condition in (1). Let u0(x) = 1, and we get the normalized initial value U0 satisfying
kU0k = 1, which is used in Figures 1, 3, and 4. We first simulate the discrete charge for
the proposed scheme compared with the Euler–Maruyama (EM) scheme and implicit
Euler (IE) scheme, respectively. Figure 1 shows that the proposed scheme possesses
the discrete charge conservation law EkUnk2 = 1, which coincides with Proposition
3.1, while both the EM scheme and the IE scheme do not. As the EM scheme is not
stable—its solution will blow up in a short time—we choose the time step ⌧ small
enough for the EM scheme in the experiments.

As the ergodic limit
R
S fdµ

h

is unknown, to verify the ergodicity of the numerical

solution, we simulate the time averages 1
N

P
N

n=1 E[f(Un)] for the proposed scheme
with the bounded function f 2 C

b

(S) being (a) f(U) = kUk33, (b) f(U) = sin(kUk44),
and (c) f(U) = e�kUk4

4 in Figure 2, starting from five di↵erent initial values U0
l

, 1 
l  5. It is known from Theorem 3.2 that, for almost every initial value U0 2 S, the
time averages will converge to the same value, i.e., the ergodic limit. Thus, we choose
five initial values

U0
l

= c⇤(U0
l

(1), . . . , U0
l

(M))T , l = 1, . . . , 5

based on the following five functions:

u0,1(x) =
1p
2
+

ip
2
, u0,2(x) = 1, u0,3(x) = 2x,

u0,4(x) =

 
1�

r
⇡

2
(exp

1

4
� 1)

!
(1� exp (x(1� x))),

u0,5(x) = c⇤sech
✓

xp
2

◆
exp

⇣
i
x

2

⌘

with U0
l

(m) = u0,l(hm), 1  m  M , and c⇤ being normalized constants. The charge
of all the initial functions equals 1, and u0,4(x) even satisfies the boundary condition
in (1). Figure 2 shows that the proposed scheme starting from di↵erent initial values
converges to the same value with error no more than O(⌧) with h = 0.05 and ⌧ = 2�6,
which coincides with Theorem 3.7.
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), T = 20
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Fig. 2. The time averages 1

N

PN
n=1

E[f(Un)] for the proposed scheme with (a) f(U) = kUk3
3

,

(b) f(U) = sin(kUk4
4

), and (c) f(U) = e�kUk

4
4 (⌧ = 2�6, h = 0.05, K = 30).
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(c) f(U) = e�kUk

4
4

Fig. 3. The weak convergence order of |E[f(Un) � f(U(T ))]| with (a) f(U) = kUk3
3

,

(b) f(U) = sin(kUk4
4

), and (c) f(U) = e�kUk

4
4 (⌧ = 2�i, 10  i  13, h = 0.05, T = 2�1,

K = 30).

For a fixed h, Figures 3 and 4 show the weak convergence order in the temporal
direction and the weak error over long time, respectively. Figure 3 shows that the
proposed scheme is of order 1 in the weak sense for (a) f(U) = kUk33, (b) f(U) =

sin(kUk44), and (c) f(U) = e�kUk4
4 , which coincides with the statement in Remark

3.8. Furthermore, based on the ergodicity for both FDS and FDA, the weak error is
supposed to be independent of time interval when time is large enough. To verify this
property, we simulate the weak error over long time in Figure 4 for (a) f(U) = kUk33,
(b) f(U) = sin(kUk44), and (c) f(U) = e�kUk4

4 ; it shows that the weak error for the
proposed scheme would not increase before T = 1000 while the weak error for the EM
scheme would increase with time.
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(c) f(U) = e�kUk
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Fig. 4. The weak error |E[f(Un)� f(U(T ))]| for (a) f(U) = kUk3
3

, (b) f(U) = sin(kUk4
4

), and

(c) f(U) = e�kUk

4
4 (⌧ = 2�12, h = 0.05, T = 103, K = 30).

5. Appendix.

5.1. Proof of Lemma 3.4. As proved in Proposition 3.1 that kUnk = 1, 8 n 2
N, for the nonlinear term, we have

E
���F (Un+ 1

2 )Un+ 1
2

���
2�

= E
MX

m=1

���un+ 1
2

m

���
6�

 E
 

MX

m=1

���un+ 1
2

m

���
2
!3�

 E
���Un+ 1

2

���
6�

 1

by the convexity of S, i.e., kUn+ 1
2 k  1, a.s. The noise term can be estimated as

E
���Z(Un+ 1

2 )�
n+1�

���
2�

= E

0

@
MX

m=1

�����

KX

k=1

u
n+ 1

2
m

e
k

(x
m

)
p
⌘
k

�
n+1�k

�����

2
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A
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E
 
2

MX

m=1

���un+ 1
2

m

���
2 ⇣ KX

k=1

p
⌘
k

|�
n+1�k

|
⌘2
!

�

= E
 
2
���Un+ 1

2

���
2 ⇣ KX

k=1

p
⌘
k

|�
n+1�k

|
⌘2
!

�

CE
 

KX

k=1

⌘
1
4
k

⌘
1
4
k

|�
n+1�k

|
!2�

 CE
⇣ KX

k=1

⌘
�

2(2��1)

k

⌘2��1⇣ KX

k=1

⌘
�
2
k

|�
n+1�k

|2�
⌘�

 C⌧�

(24)

by |e
k

(x
m

)| 
p
2 and Hölder’s inequality. In the last step of (24) we notice that, as

Q 2 HS(L2, H
3
2� 1

� ),
P1

k=1 k
3� 2

� ⌘
k

< 1, so ⌘
k

= O(k�(4� 2
� +✏)) for any ✏ > 0. Thus,

1X

k=1

⌘
�

2(2��1)

k

 C
1X

k=1

k�(4� 2
� +✏) �

2(2��1) = C
1X

k=1

k�(1+
✏�

2(2��1) ) < 1.

In conclusion,

E
��Un+1 � Un

��2�

 C

✓
E
���
⌧

h2
AUn+ 1

2

���
2�

+ E
����⌧F (Un+ 1

2 )Un+ 1
2

���
2�

+ E
���Z(Un+ 1

2 )�
n+1�

���
2�
◆

 C⌧2�

h4�
E
���Un+ 1

2

���
2�

+ C⌧2� + C⌧�  C
�
⌧2�h�4� + ⌧�

�
,

where we have used the fact that kAk  4.

5.2. Proof of Lemma 3.5. From (2) and (3), based on Hölder’s inequality, we
obtain

EkU(t
n+1)� U(t

n

)k2�

= E
����
Z

tn+1

tn


i
1

h2
AU + i�F (U)U � ÊU

�
dt+

Z
tn+1

tn

iZ(U)d�(t)

����
2�

 C

 Z
tn+1

tn

E
����i

1

h2
AU + i�F (U)U � ÊU

����
2�

dt

✓Z
tn+1

tn

1
2�

2��1 dt

◆2��1

+ E
����
Z

tn+1

tn

iZ(U)d�(t)

����
2�
!

 C⌧2��1

����
1

h2
A

����
2� Z

tn+1

tn

E kUk2� dt+ C⌧2� + C⌧�

 C(⌧2�h�4� + ⌧�),

where we have used the boundedness of F (U)U in S similar to that in Lemma 3.4.
In the third step of the equation above, we also used
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and

E
����
Z

tn+1

tn

iZ(U)d�(t)

����
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 C

✓Z
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tn

⇣
EkZ(U)k2�HS
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�
dt
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)
p
⌘
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|2
!

�

! 1
�

dt

1

A

�

 C

✓Z
tn+1

tn

⇣
E
�
2⌘kUk2

�
�

⌘ 1
�
dt

◆
�

 C⌧�

according to the Burkholder–Davis–Gundy inequality and the fact that the Hilbert–
Schmidt operater norm kZ(U)kHS = kZ(U)k

F

, with k · k
F

denoting the Frobenius
norm.

5.3. Proof of Theorem 3.6. Based on Taylor expansion and Lemmas 3.4 and
3.5, we obtain

E
⇥
'(U(⌧))� '(U1)

⇤
= E

⇥
D'(U1)

�
U(⌧)� U1

�
+O

�
kU(⌧)� U1k2

�⇤

= E
⇥
D'(U0)

�
U(⌧)� U1

�⇤
+ E

⇥
D2'(U0)(U1 � U0, U(⌧)� U1)
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+O
⇣
E
⇥
kU1 � U0k2kU(⌧)� U1k

⇤
+ EkU(⌧)� U1k2

⌘

=: A+ B + C.

We give the mild solution and discrete mild solution of (2) and (7) respectively:

U(⌧) = ei
1
h2 A⌧U0 +

Z
⌧

0
ei

1
h2 A(⌧�s)

⇣
i�F (U(s))U(s)� ÊU(s)

⌘
ds

+

Z
⌧

0
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1
h2 A(⌧�s)iZ(U(s))d�(s),

U1 =

✓
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2h2
A

◆�1✓
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2h2
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◆
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⇣
U

1
2

⌘
U

1
2

+

✓
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⇣
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2

⌘
�1�.

Estimation of A. Considering the di↵erence between the above equations, we
have
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+ i

Z
⌧

0

✓
I � i⌧

2h2
A

◆�1

Z(U(s)� U0)d�(s)

�
"
i

2

✓
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2h2
A

◆�1

Z(U1 � U0)�1� +

Z
⌧

0
ei

1
h2 A(⌧�s)ÊU(s)ds

#
,

=: a+ b+ c+ d+ e+ f ,

which, together with the fact that E[D'(U0)d] = E[D'(U0)e] = 0, yields that

A = E
⇥
D'(U0)a

⇤
+ E

⇥
D'(U0)b

⇤
+ E

⇥
D'(U0)c

⇤
+ E

⇥
D'(U0)f

⇤

=: A1 +A2 +A3 +A4.

Based on the estimates ex � (1� x

2 )
�1(1 + x

2 ) = O(x3) for kxk < 1, and
����e

i 1
h2 A(⌧�s) � (I � i⌧

2h2
A)�1

����  C
⇣ ⌧

h2
kAk

⌘
 C⌧h�2, 8 s 2 [0, ⌧ ],(25)

we have

|A1|  Ck'k1,1k⌧h�2Ak3EkU0k  C⌧3h�6  C⌧2h�2(26)

under the condition ⌧ = O(h4), and

|A2|  Ck'k1,1
Z

⌧

0
k⌧h�2AkkF (U(s))U(s)kds  C⌧2h�2.(27)

Term A3 can be estimated based on Lemmas 3.4 and 3.5:
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similar to the proof of Lemma 3.5. We rewrite
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!#

=: A4,1 +A4,2 +A4,3 +A4,4,

in which, based on E[G3U0] = 0, A4,3 can be expressed as

1

4
E
"
D'(U0)

✓
I � i⌧

2h2
A

◆�1

G2

✓
i
⌧

h2
AU

1
2 + i⌧�F (U

1
2 )U

1
2 +

i

2
G(U1 � U0)

◆#
.
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Thus, we obtain
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where in the last step we have used the fact that
0

B@

P
K

k=1 e
2
k

(x1)⌘k⌧u0
1

...P
K

k=1 e
2
k

(x
M

)⌘
k

⌧u0
M

1

CA =

Z
⌧

0

0

B@

P
K

k=1 e
2
k

(x1)⌘ku0
1

...P
K

k=1 e
2
k

(x
M

)⌘
k

u0
M

1

CA ds.

Noticing that the first term in (30) vanishes as E(�1�k

)2 = ⌧ and replacing U(s)�U0

by the integral type of (2), then further calculation shows that

|A4,4|  C(⌧2h�2 + ⌧2)(31)

based on (25) and the technique used in (28). We then conclude from (26)–(31) that
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Rewriting Z(U1 �U0)�1� = G
⇣
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◆�

=: B1 +B2 +B3,

where |B1|  C⌧2 according to (37) and Lemma 3.4. Furthermore,

B2 =
1

2
E
"
D2'(U0)

 
i
⌧

h2
AU

1
2 + i⌧�F (U

1
2 )U

1
2 , i

✓
I � i⌧

2h2
A

◆�1

Z(U1 � U0)�1�

!#

+
1

2
E
"
D2'(U0)

 
iZ

✓
U1 � U0

2

◆
�1�, i

✓
I � i⌧

2h2
A

◆�1

Z(U1 � U0)�1�

!#

+
1

2
E
"
D2'(U0)

 
iZ(U0)�1�, i

✓
I � i⌧

2h2
A

◆�1

Z(U1 � U0)�1�

!#

=: B2,1 +B2,2 +B2,3

with |B2,1 +B2,2|  C(⌧2h�2 + ⌧2). Replacing U1 � U0 again by (7), we obtain

|B2,3| 
�����
1

2
E

D2'(U0)

 
iZ(U0)�1�, i

✓
I � i⌧

2h2
A

◆�1

Z
⇣
iZ(U

1
2 )�1�

⌘
�1�

!������

D
ow

nl
oa

de
d 

02
/1

5/
17

 to
 1

24
.1

6.
14

8.
9.

 R
ed

ist
rib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.si

am
.o

rg
/jo

ur
na

ls/
oj

sa
.p

hp



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

326 JIALIN HONG, XU WANG, AND LIYING ZHANG
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
�����
1

2
E

D2'(U0)

 
iZ(U0)�1�, i

✓
I � i⌧

2h2
A

◆�1

Z
�
iZ(U0)�1�

�
�1�

!������

+ C(⌧2h�2 + ⌧2)

= C(⌧2h�2 + ⌧2),

where in the last step we used the fact E[(�1�)3] = 0 and U0 is F0-adapted. Also,

|B3| 
����E

D2'(U0)

✓
i
⌧

h2
AU

1
2 + i⌧�F (U

1
2 )U

1
2 ,

Z
⌧

0
ei

1
h2 A(⌧�s)ÊU(s)ds
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so we finally obtain
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which, together with (32) and (38), completes the proof.
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HIGH ORDER CONFORMAL SYMPLECTIC AND ERGODIC
SCHEMES FOR THE STOCHASTIC LANGEVIN EQUATION VIA

GENERATING FUNCTIONS⇤

JIALIN HONG† , LIYING SUN‡ , AND XU WANG†

Abstract. In this paper, we consider the stochastic Langevin equation with additive noises,
which possesses both conformal symplectic geometric structure and ergodicity. We propose a method-
ology of constructing high weak order conformal symplectic schemes by converting the equation into
an equivalent autonomous stochastic Hamiltonian system and modifying the associated generating
function. To illustrate this approach, we construct a specific second order numerical scheme and
prove that its symplectic form dissipates exponentially. Moreover, for the linear case, the proposed
scheme is also shown to inherit the ergodicity of the original system, and the temporal average of
the numerical solution is a proper approximation of the ergodic limit over long time. Numerical
experiments are given to verify these theoretical results.

Key words. stochastic Langevin equation, conformal symplectic scheme, generating function,
ergodicity, weak convergence
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1. Introduction. A common way to describe dissipative systems which interact
with their environment, especially in the fields of molecular simulations, quantum
systems, cell migrations, chemical interactions, electrical engineering, and finance
(see [8, 10, 20] and references therein), is by means of the stochastic Langevin equation.
The stochastic Langevin equation considered in this paper is a dissipative Hamilto-
nian system, whose phase flow preserves conformal symplectic geometric structure [4]
as an extension of the deterministic case. Namely, its symplectic form dissipates ex-
ponentially. One can also show that the considered stochastic Langevin equation is
ergodic [13, 14, 21] with a unique invariant measure, i.e., the Boltzmann–Gibbs mea-
sure [4, 6]. This dynamical behavior implies that the temporal average of the solution
will converge to its spatial average, which is also known as the ergodic limit, with
respect to the invariant measure over long time.

This work proposes an approach for constructing high weak order conformal sym-
plectic schemes that accurately approximates the exact solution, while preserving both
the geometric structure and the dynamical behavior of the system. We illustrate this
approach by a specific case and show that the proposed scheme for this particular
case inherits the ergodicity of the original system with a unique invariant measure.
The weak convergence error, as well as the approximate error of the ergodic limit, is
proved to be of order two.
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There have been several works concentrating on the construction of numerical
schemes for the stochastic Langevin equation, mainly based on the splitting tech-
nique. For instance, [4] constructs a class of the conformal symplectic integrators to
preserve the conformal symplectic structure, and [18, 19] propose quasi-symplectic
methods which can degenerate into symplectic ones when the system degenerates into
a stochastic Hamiltonian system. The convergence rates of these schemes depend
heavily on the splitting forms. As for the ergodicity, to the best of our knowledge
its numerical analysis in general contains two aspects. The first is to construct nu-
merical schemes that inherit the ergodicity (see, e.g., [13, 21]) and to give the error
between the numerical invariant measure and the original one (see, e.g., [5, 7]). The
other aspect is to approximate the ergodic limit with respect to the original invariant
measure via the numerical temporal averages for some empirical test functions (see,
e.g., [12, 14, 19]). In the latter case, the numerical solutions may not be ergodic.

In this paper, for the considered stochastic Langevin equation, we aim to construct
numerical schemes which are of high weak order and are conformally symplectic. To
achieve these aims without incurring the complexity of the high order splitting tech-
nique, we introduce a transformation from the stochastic Langevin equation to an
autonomous stochastic Hamiltonian system. It then su�ces to construct high order
symplectic schemes for the autonomous Hamiltonian system, which turn out to be
conformal symplectic schemes of the original system based on the inverse transfor-
mation of the phase spaces. The discretization of the modified equations, which are
constructed by modifying the drift and di↵usion functions as polynomials with re-
spect to some time step, represents a powerful tool for obtaining high weak order
schemes. For example, [1] constructs high order stochastic numerical integrators for
general stochastic di↵erential equations (SDEs), but these schemes may not be sym-
plectic when applied to the Hamiltonian systems. Based on the internal properties
of the Hamiltonian systems, [2] proposes a method for constructing high weak order
stochastic symplectic schemes with multiple stochastic Itô integrals, using truncated
generating functions. Based on these schemes, [24] gives their associated modified
equations via generating functions. To reduce the simulation cost and still get high
weak order symplectic schemes, inspired by [1, 2, 24], we modify the generating func-
tion for the equivalent stochastic Hamiltonian system and derive associated symplec-
tic numerical methods by truncating modified generating functions. We would like to
mention that this class of methods reduces the simulation of multiple stochastic Itô
integrals by simulating products of increments of Wiener processes instead. We illus-
trate this approach with the construction of a stochastic numerical scheme that has
weak order two. For the proposed numerical scheme, both the discretized phase vol-
ume and symplectic form dissipate exponentially, which coincides with the behavior
of their exact counterparts in the original stochastic Langevin equation. Furthermore,
the proposed scheme, similar to the original system, is proved to possess a numerical
invariant measure that is unique for the linear case, which implies the ergodicity of
the numerical solution. Finally, we verify that both the weak convergence error of the
numerical scheme and the error of ergodic limit are of order two.

An outline of this paper is as follows. Section 2 gives a review of some basic
properties of the stochastic Langevin equation, as well as the generating function of
the stochastic Hamiltonian system, and also the transformation between the stochastic
Langevin equation and an autonomous stochastic Hamiltonian system. In section 3, a
weakly convergent conformal numerical scheme, which possesses an invariant measure,
is proposed by means of modified generating functions and the transformation of phase
space. In section 4, we show that both the weak convergence rate of the proposed
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scheme and the approximation error of the ergodic limit are of order two, based on
the uniform estimate of the numerical solutions. Finally, we give some numerical tests
to verify the theoretical results in section 5.

2. Stochastic Langevin equations. Let (⌦,F , P) be a probability space, Ft

be the filtration for t � 0, and W (t) =
�
W

1

(t), . . . ,Wm(t)
�> be an m-dimensional

standard Wiener process associated to {Ft}t�0

. Denote the 2-norm for both matrices
and vectors by k · k and the determinant of matrices by |·| , and let C be a generic
constant, independent of h, that may di↵er from line to line.

2.1. Stochastic conformal symplectic structure and ergodicity. In this
section, we focus on the stochastic Langevin equation driven by additive noises with
deterministic initial values P (0) = p 2 Rd and Q(0) = q 2 Rd, of the following form:

dP = �f(Q)dt � vPdt �
mX

r=1

�rdWr(t),

dQ = MPdt, t 2 [0, T ],

(1)

where f 2 C1(Rd, Rd), M 2 Rd⇥d is a positive definite symmetric matrix, v >
0 is the absorption coe�cient, and �r 2 Rd with r 2 {1, . . . ,m}, m � d, and
rank{�

1

, . . . ,�m} = d. In addition, assume that there exists a scalar function F 2
C1(Rd, R) satisfying

fi(Q) =
@F (Q)
@Qi

, i = 1, . . . , d.

To simplify the notation, we will remove any mention of the dependence on ! 2 ⌦
unless it is absolutely necessary to avoid confusion. Note that (1), as well as all the
other SDEs in what follows, holds almost surely with respect to P. It is well known
that if v = 0, (1) turns out to be a separable stochastic Hamiltonian system (SHS)
which possesses stochastic symplectic structure and phase volume preservation [17].
However, when v > 0, the symplectic form of (1) dissipates exponentially, i.e.,

dP (t) ^ dQ(t) = e�vtdp ^ dq 8 t � 0,

which characterizes the long-time tracking of the solutions to (1), as well as the phase
volume Vol(t). Namely, denoting by Dt = Dt(!) ⇢ R2d a random domain which has
finite volume and is independent of Wiener processes W (t) with respect to the system
(1), one can obtain

Vol(t) =
Z

Dt

dP 1 · · · dP ddQ1 · · · dQd

=
Z

D0

����
D(P 1, . . . , P d, Q1, . . . , Qd)
D(p1, . . . , pd, q1, . . . , qd)

���� dp1 · · · dpddq1 · · · dqd,

where the determinant of Jacobian matrix
��D(P 1,...,P d,Q1,...,Qd

)

D(p1,...,pd,q1,...,qd
)

�� = e�vtd with d being
the dimension [16, 17].

As another well-known long-time behavior, the ergodicity of (1) is shown in [13]
by proving that (1) possesses a unique invariant measure µ. Noticing that (1) satisfies
the hypoelliptic setting

span{Ui, [U0

, Uj ], i = 0, . . . ,m, j = 1, . . . ,m} = R2d(2)
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with vector fields U
0

= ((�f(Q) � vP )>, (MP )>)> and Uj = (�>
j , 0)>, j = 1, . . . ,m,

which together with the following assumption yields the ergodicity of (1).

Assumption 2.1 (see [13]). Let F 2 C1(Rd, R) satisfy that

(i) F (u) � 0 for all u 2 Rd
;

(ii) there exist ↵ > 0 and � 2 (0, 1) such that for all u 2 Rd
, it holds

1
2
u>f(u) � �F (u) + v2

�(2 � �)
8(1 � �)

kuk2 � ↵.

Intuitively speaking, the ergodicity of (1) reads that the temporal averages of
P (t) and Q(t) starting from di↵erent initial values will converge almost everywhere
to its spatial average with respect to the invariant measure µ. More precisely,

lim
T!1

1
T

Z T

0

E(p,q) [ (P (t), Q(t))] dt =
Z

R2d

 dµ 8  2 Cb(R2d, R)(3)

in L2(R2d, µ), where E(p,q)[·] denotes the expectation starting from P (0) = p and
Q(0) = q. In the following, we use the notation E instead of E(p,q) to simplify the
notation.

Next, we aim to convert (1) into an equivalent homogenous SHS via a transfor-
mation of phase space, such that one can construct conformal symplectic schemes
for (1) based on symplectic schemes of the homogenous SHS. To this end, denoting
Xi(t) = evtPi(t) and Yi(t) = Qi(t) and applying Itô’s formula to Xi(t) and Yi(t) for
i = 1, . . . , d, one can rewrite (1) as

dXi = �evtfi(Y1

, . . . , Yd)dt � evt
mX

r=1

�rdWr(t), dYi = e�vt
dX

j=1

MijXjdt(4)

with Xi(0) = pi and Yi(0) = qi. It is obvious that (4) is a nonautonomous SHS with
time-dependent Hamiltonian functions

H̃
0

= evtF (Y
1

, . . . , Yd) +
1
2
e�vt

dX

i,j=1

XiMijXj , H̃r = evt
dX

i=1

�i
rYi.

To obtain an autonomous SHS we introduce two new variables Xd+1

2 R and Yd+1

2 R
as the (d + 1)th components of X and Y , respectively, satisfying

dYd+1

= dt, dXd+1

= �@H̃
0

@t
dt �

mX

r=1

@H̃r

@t
� dWr(t)

with Yd+1

(0) = 0 and Xd+1

(0) = F (q
1

, . . . , qd)+ 1

2

Pd
i,j=1

piMijpj +
Pm

r=1

Pd
i=1

�i
rqi.

Here the notation “�” means that the equation holds in the Stratonovich integral
sense. Then (4) becomes the (2d + 2)-dimensional autonomous SHS

dX = �@H
0

@Y
dt �

mX

r=1

@Hr

@Y
� dWr(t), dY =

@H
0

@X
dt +

mX

r=1

@Hr

@X
� dWr(t),(5)

with X(0) = (X
1

(0), . . . ,Xd+1

(0)) 2 Rd+1, Y (0) = (Y
1

(0), . . . , Yd+1

(0)) 2 Rd+1, and
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new Hamiltonian functions

H
0

(X,Y ) = evYd+1F (Y
1

, . . . , Yd) +
1
2
e�vYd+1

dX

i,j=1

XiMijXj + Xd+1

,

Hr(X,Y ) = evYd+1

dX

i=1

�i
rYi.

Here, (5) is called the associated autonomous SHS of (1), and its phase flow preserves
the stochastic symplectic structure. Notice that the motion of the system can be
described by di↵erent kinds of generating functions (see [2, 23] and references therein).
We consider only the first kind of generating function S in this article.

2.2. Generating functions. For convenience, we denote X(0) = x and Y (0) =
y. It is revealed in [22] that the generating function S(X, y, t) related to (5) is the
solution of the following stochastic Hamilton–Jacobi partial di↵erential equation:

dtS(X, y, t) = H
0

✓
X, y +

@S

@X

◆
dt +

mX

r=1

Hr

✓
X, y +

@S

@X

◆
� dWr(t).(6)

Moreover, the mapping (x, y) 7! (X(t), Y (t)) defined by

X(t) = x � @S(X(t), y, t)
@y

, Y (t) = y +
@S(X(t), y, t)

@X
(7)

is the stochastic flow of (5). Based on the Itô representation theorem and stochastic
Taylor–Stratonovich expansion, S(X, y, t) has a series expansion (see, e.g., [2, 3])

S(X, y, t) =
X

↵

G↵(X, y)J t
↵,(8)

where

J t
↵ =

Z t

0

Z sl

0

· · ·
Z s2

0

� dWj1(s1

) � dWj2(s2

) � · · · � dWjl(sl)

with multi-index ↵ = (j
1

, j
2

, . . . , jl) 2 {0, 1, . . . ,m}⌦l, l � 1, and dW
0

(s) := ds.
Before calculating coe�cients G↵(X, y) in (8), we first specify some notation. Let
l(↵) denote the length of ↵, and let ↵� be the multi-index resulting from discarding
the last index of ↵. Define ↵ ⇤ ↵0 = (j

1

, . . . , jl, j0
1

, . . . , j0
l0), where ↵ = (j

1

, . . . , jl) and
↵0 = (j0

1

, . . . , j0
l0). The concatenation “⇤” between a set of multi-indices ⇤ and ↵ is

⇤ ⇤ ↵ = {� ⇤ ↵|� 2 ⇤}. Furthermore, define

⇤↵,↵0 =

8
>>><

>>>:

{(j
1

, j0
1

), (j0
1

, j
1

)} if l = l0 = 1,

{⇤
(j1),↵0� ⇤ (j0

l0),↵
0 ⇤ (j

1

)} if l = 1, l0 6= 1,

{⇤↵�,(j0
1)

⇤ (jl),↵ ⇤ (j0
1

)} if l 6= 1, l0 = 1,

{⇤↵�,↵0 ⇤ (jl),⇤↵,↵0� ⇤ (j0
l0)} if l 6= 1, l0 6= 1.

For k > 2, let ⇤↵1,...,↵k = {⇤�,↵k |� 2 ⇤↵1,...,↵k�1}. We refer the reader to [2] for more
details about this notation. Substituting (8) into (6) and applying Taylor expansions
to Hr (r = 0, 1, . . . ,m) at (X, y), we obtain G↵ = Hr with ↵ = (r) being a single
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index and

G↵ =
l(↵)�1X

i=1

1
i!

d+1X

k1,...,ki=1

@iHjl(X, y)
@yk1 · · · @yki

X

l(↵1) + · · · + l(↵i) = l(↵) � 1

↵� 2 ⇤↵1,...,↵i

@G↵1

@Xk1

· · · @G↵i

@Xki

for any ↵ = (j
1

, j
2

, . . . , jl) with l � 2 (see, e.g., [2, 3]). To make it clear, the simplified
expressions of G↵ are given when l = 2 or 3: G

(j1,j2) =
Pd+1

i=1

@Hj2
@yi

@Hj1
@Xi

and

G
(j1,j2,j3) =

d+1X

i=1

@Hj3

@yi

@G
(j1,j2)

@Xi
+

1
2

d+1X

i,j=1

@2Hj3

@yi@yj

✓
@Hj1

@Xi

@Hj2

@Xj
+
@Hj2

@Xi

@Hj1

@Xj

◆
.

Let C
1

:= evyd+1 and C
2

:= e�vyd+1 . Here yd+1

denotes the (d + 1)th component
of y. Note that y is the initial point of the considered interval; that is, if we consider
the problem on the interval [s, t], then y = Y (s). For r

1

, r
2

, r
3

2 {1, . . . ,m}, we have

G
(r1,r2) = G

(r1,0) = G
(r1,r2,r3) = G

(r1,r2,0) = G
(r1,0,r2) = 0,

G
(0,r1) =

dX

i,j=1

�i
r1

MijXj + vC
1

dX

i=1

�i
r1

qi, G
(0,r1,r2) = C

1

�>
r1

M�r2 ,

G
(0,0) =

dX

i,j=1

fi(y)MijXj + vC
1

F (y) � 1
2
vC

2

dX

i,j=1

XiMijXj .

For a fixed small time step h, using (8) and applying Taylor expansion to @S
@yi

:=
@S
@yi

(X, y, h) and @S
@Xi

:= @S
@Xi

(X, y, h) at point (x, y, h) for i = 1, . . . , d, we obtain

@S

@yi
= C

1

"
mX

r=1

�i
r(J

h
(r) + vJh

(0,r)) + fi(y)
✓

h +
vh2

2

◆#
+

h2

2

dX

j,k=1

@2F (y)
@yi@yj

Mjkxk + R
1

,

@S

@Xi
= C

2

dX

j=1

Mijxj

✓
h � vh2

2

◆
�

dX

j=1

mX

r=1

Mij�
j
rJ

h
(r,0) � h2

2

dX

j=1

Mijfj(y) + R
2

,

where every term in R
1

and R
2

contains the product of multiply stochastic integrals
whose lowest order is at least 5

2

, as do the remainder terms Rl with l = 3, . . . , 7 in
what follows. Furthermore, @S

@Xd+1
(X, y, h) = h and

@S

@yd+1

= vh

 
C

1

F (y) � C
2

2

dX

i,j=1

xiMijxj

!⇣
1 +

vh

2

⌘
+ vC

1

mX

r=1

dX

i=1

�i
ryi(Jh

(r) + vJh
(0,r))

+
dX

i,j=1

mX

r=1

v�i
rMijxjhJh

(r) + vC
1

mX

r1,r2=1

�>
r1

M�r2J
h
(0,r1,r2)

+ v
dX

i,j=1

 
C

2

@F (y)
@yi

Mijxjh
2 � 1

2
C

1

mX

r1,r2=1

�i
r1

Mij�
j
r2

hJh
(r1)

Jh
(r2)

!
+ R

3

,

where @S
@yd+1

takes the value at (X, y, h).
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By truncating the generating function, the weakly convergent stochastic symplec-
tic numerical schemes have been proposed by several authors (see, e.g., [2, 17, 22]).
In these approaches, some techniques are applied to simulate the multiple integrals in
the truncated generating functions and obtain high weak order schemes. To reduce
the simulation of multiple integrals, we introduce a modified generating function to
construct more concise symplectic schemes in section 3, from which conformal sym-
plectic and ergodic schemes for stochastic dynamical systems (1) are deduced by using
the transformation of the phase space.

3. High order conformal symplectic and ergodic schemes. To construct
high order symplectic numerical integrators for (5), we modify the stochastic Hamilto-
nian functions first. Namely, we consider the following (2d+2)-dimensional stochastic
Hamiltonian system:

dXM = �@HM
0

(XM , Y M )
@Y M

dt �
mX

r=1

@HM
r (XM , Y M )
@Y M

� dWr(t), XM (0) = x,

dY M =
@HM

0

(XM , Y M )
@XM

dt +
mX

r=1

@HM
r (XM , Y M )
@XM

� dWr(t), Y M (0) = y,

(9)

where

HM
0

(XM , Y M ) = H
0

(XM , Y M ) + H [1]

0

(XM , Y M )h + · · · + H [⌧ ]

0

(XM , Y M )h⌧ ,

HM
r (XM , Y M ) = Hr(XM , Y M ) + H [1]

r (XM , Y M )h + · · · + H [⌧ ]

r (XM , Y M )h⌧
(10)

with functions H [j]
i , i = 0, . . . r, j = 1, . . . , ⌧, ⌧ 2 N

+

to be determined. Meanwhile,
according to the definition of G↵ in subsection 2.2, we get the associated generating
function of (9), which is called the modified generating function of (5). Our goal is
to choose undetermined functions in (10) such that the proposed scheme is of weak
order k+k0 when approximating (5), even though it is only a kth order approximation
of (9) for some positive integers k and k0. Now we first give a symplectic numerical
approximation to (9) via its generating function, such that this scheme shows weak
order k for (9) without specific choices of H [j]

i (see [2] and references therein). In
detail, we replace the multiple Stratonovich integrals J t

↵ in the modified generating
function by an equivalent linear combination of multiple Itô integrals

It
� :=

Z t

0

Z sl

0

· · ·
Z s2

0

dWi1(s1

)dWi2(s2

) · · · dWil(sl)

with multi-index � = (i
1

, i
2

, . . . , il) 2 {0, 1, . . . ,m}⌦l, l � 1, based on the relation

J t
↵ =

8
><

>:

X

�

C�
↵It

�, l(↵) � 2,

It
↵, l(↵) = 1,

where C�
↵ are certain constants given in [11]. Denote by

SG(XG, y, t) =
X

↵

GG
↵(XG, y)

X

l(�)k

C�
↵It

�(11)
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the truncated modified generating function (see, e.g., [2, 3, 11]), where

GG
↵ =

l(↵)�1X

i=1

1
i!

d+1X

k1,...,ki=1

@iHM
jl

(XG, y)
@yk1 · · · @yki

X

l(↵1) + · · · + l(↵i) = l(↵) � 1

↵� 2 ⇤↵1,...,↵i

@GG
↵1

@XG
k1

· · ·
@GG

↵i

@XG
ki

for l(↵) � 2, and GG
(r) = HM

r for r = 0, 1, . . . ,m. Then we get the following one-step
approximation:

XG = x � @SG(XG, y, h)
@y

, Y G = y +
@SG(XG, y, h)

@XG
,(12)

which preserves symplectic structure and is of weak order k for (9). Notice that
the truncated modified generating function contains undetermined functions H [j]

i ,
i = 0, . . . r, j = 1, . . . , ⌧ in (10). To specify high weak order symplectic schemes, we
need to determine all the terms H [j]

i such that the numerical scheme based on (12)
satisfies

��E�(X(h), Y (h)) � E�(XG, Y G)
�� = O(hk+k0

+1)(13)

for all  times continuously di↵erentiable functions � 2 C
P (R2d+2, R) with polynomial

growth; that is, the numerical scheme based on (12) is of weak order k + k0 for
(5). Conditions on  will be specified later. The detailed approach of choosing the
undetermined functions will be illustrated with the case k = k0 = 1 in the next section.

3.1. Numerical schemes via modified generating function. For k = k0 =
1, it is su�cient to consider ⌧ = 1 in (10). Based on the fact that GG

(r) = HM
r for

r = 0, 1, . . . ,m, we rewrite the truncated generating function (11) as

SG(XG, y, h) =

 
HM

0

(XG, y) +
1
2

mX

r=1

GG
(r,r)(X

G, y)

!
h +

mX

r=1

HM
r (XG, y)Ih

(r),(14)

where

GG
(r,r) = C

1

dX

i=1

�i
r

 
@H [1]

r

@XG
i

+ vyi
@H [1]

r

@XG
d+1

!
h +

d+1X

i=1

@H [1]

r

@yi

@H [1]

r

@XG
i

h2.

According to (14), the one-step approximation (12) turns out to be

XG = x �
 
@HM

0

(XG, y)
@y

+
1
2

mX

r=1

@GG
(r,r)(X

G, y)
@y

!
h �

mX

r=1

@HM
r (XG, y)
@y

Jh
(r),

Y G = y +

 
@HM

0

(XG, y)
@XG

+
1
2

mX

r=1

@GG
(r,r)(X

G, y)
@XG

!
h +

mX

r=1

@HM
r (XG, y)
@XG

Jh
(r).

(15)

In what follows, let @SG

@yj
:= @SG

@yj
(XG, y, h), @SG

@XG
j

:= @SG

@XG
j

(XG, y, h), @H[1]
r

@yj
:= @H[1]

r
@yj

(x, y),
and @H[1]

r
@xj

:= @H[1]
r

@xj
(x, y) for j = 1, . . . , d + 1 and r = 0, 1, . . . ,m. Applying Taylor ex-
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pansion to @SG

@yi
and @SG

@XG
i

at (x, y, h), for i = 1, . . . , d, we obtain

@SG

@XG
i

= C
2

dX

j=1

Mijxjh +
mX

r=1

✓
@H [1]

r

@xi
�

dX

j=1

Mij�
j
r

◆
Ih
(r)h �

dX

j=1

Mijfj(y)h2 +
@H [1]

0

@xi
h2

+
mX

r=1

@2H [1]

r

@xi@xd+1

(XG
d+1

� xd+1

)Ih
(r)h � C

1

mX

r1,r2=1

dX

j=1

@2H [1]

r1

@xi@xj
�j

r2
Ih
(r1)

Ih
(r2)

h

+
1
2
C

1

dX

j=1

mX

r=1

�j
r

 
@2H [1]

r

@xi@xj
+ vyi

@2H [1]

r

@xi@xd+1

!
h2 + R

4

and

@SG

@yi
= C

1

mX

r=1

⇣
�i

rI
h
(r) + fi(y)h

⌘
+

mX

r=1

@H [1]

r

@yi
Ih
(r)h +

mX

r=1

d+1X

j=1

@2H [1]

r

@yi@xj
(XG

j � xj)Ih
(r)h

+

0

@@H [1]

0

@yi
+

C
1

2

mX

r=1

2

4
dX

j=1

�j
r

@2H [1]

r

@yi@xj
+ v�i

r

 
@H [1]

r

@xd+1

+ yi
@2H [1]

r

@xd+1

@yi

!3

5

1

Ah2 + R
5

.

Similarly,

@SG

@XG
d+1

= h +
mX

r=1

@H [1]

r

@xd+1

Ih
(r)h +

d+1X

j=1

@2H [1]

r

@xd+1

@xj

�
XG

j � xj

�
Ih
(r)h +

@H [1]

0

@xd+1

h2

+ C
1

dX

i=1

�i
r

@2H [1]

r

@xi@xd+1

h2 + C
1

dX

i=1

v�i
ryi

@2H [1]

r

@x2

d+1

h2 + R
6

,

and

@SG

@yd+1

= v

0

@C
1

F (y) � 1
2
C

2

dX

i,j=1

xiMijxj

1

Ah + vC
1

mX

r=1

dX

i=1

�i
ryiI

h
(r) +

mX

r=1

@H [1]

r

@yd+1

hIh
(r)

+
dX

i,j=1

mX

r=1

v�i
rMijxjhIh

(r) +
mX

r=1

d+1X

i=1

@2H [1]

r

@yd+1

@xi
(XG

i � xi)hIh
(r) +

@H [1]

0

@yd+1

h2

+
C

1

2

dX

i=1

mX

r=1

�i
r

 
v
@H [1]

r

@xi
+ v2yi

@H [1]

r

@xd+1

+
@2H [1]

r

@xi@yd+1

+ vyi
@2H [1]

r

@xd+1

@yd+1

!
h2

+ v
dX

i,j=1

 
C

2

@F (y)
@yi

Mijxjh
2 � C

1

2

mX

r1,r2=1

�i
r1

Mij�
j
r2

hIh
(r1)

Ih
(r2)

!
+ R

7

.
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Applying Taylor expansion to �(X(h), Y (h)) and �(XG, Y G) at (x, y) and taking
expectations, we have

E�(X(h), Y (h)) � E�(XG, Y G)

=
d+1X

i=1

@�(x, y)
@xi

E
✓
@SG

@yi
� @S

@yi

◆
+

d+1X

i=1

@�(x, y)
@yi

E
✓
@S

@Xi
� @SG

@XG
i

◆

+
1
2

d+1X

i,j=1

@2�(x, y)
@xi@xj

E
✓
@S

@yi

@S

@yj
� @SG

@yi

@SG

@yj

◆

+
d+1X

i,j=1

@2�(x, y)
@yi@xj

E
✓
@SG

@XG
i

@SG

@yj
� @S

@Xi

@S

@yj

◆

+
1
2

d+1X

i,j=1

@2�(x, y)
@yi@yj

E

 
@S

@Xi

@S

@Xj
� @SG

@XG
i

@SG

@XG
j

!
+ · · · .

(16)

To make the symplectic numerical approximation be of higher weak order, we choose
H [j]

i , i = 0, . . . , r, j = 1, . . . , ⌧, such that the terms containing h and h2 in the right-
hand side of (16) vanish. Note that the coe�cients of Jh

(r) and h in @SG

@XG
i

and @SG

@yi
are

the same as those in @S
@Xi

and @S
@yi

with i = 1, . . . , d + 1, respectively. Then we get

E

 
@SG

@XG
d+1

@SG

@yd+1

� @S

@Xd+1

@S

@yd+1

!
=

mX

r=1

dX

i=1

vC
1

�i
ryi

@H [1]

r

@xd+1

h2 + h3e
1

(x, y),

where e
1

(x, y) denotes the coe�cient of the term containing h3 and can be calcu-
lated based on the expression of the partial derivatives of SG and S, as do the other
remainder terms el, l = 2, . . . , 7, in what follows. Thus, we choose @H[1]

r
@xd+1

= 0 for

r = 1, . . . ,m. Substituting @H[1]
r

@xd+1
= 0 into @SG

@XG
d+1

, we have

E

 
@SG

@XG
d+1

� @S

@Xd+1

!
=
@H [1]

0

@xd+1

h2 + E(R
6

) =
@H [1]

0

@xd+1

h2 + h3e
2

(x, y),

which leads us to make @H
[1]
0

@xd+1
= 0. In the same way, using @H[1]

r
@xd+1

= 0 for r = 0, 1, . . . ,m,

we derive

E
✓
@S

@yi

@S

@yj
� @SG

@yi

@SG

@yj

◆
= C

1

mX

r=1

✓
vC

1

�i
r�

j
r � �i

r

@H [1]

r

@yj
� �j

r

@H [1]

r

@yi

◆
h2 + h3e

3

(x, y)

and

E

 
@S

@yi

@S

@Xj
� @SG

@yi

@SG

@XG
j

!
= C

1

mX

r=1

�i
r

 
1
2

dX

k=1

Mjk�
k
r � @H [1]

r

@xj

!
h2 + h3e

4

(x, y)

with i, j = 1, . . . , d, and hence choose

@H [1]

r

@yi
=

1
2
vC

1

�i
r,

@H [1]

r

@xi
=

1
2

dX

j=1

Mij�
j
r , r = 1, . . . ,m.
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The last term in (16) is of order 3 due to the following estimate:

E

 
@S

@Xi

@S

@Xj
� @SG

@XG
i

@SG

@XG
j

!
= h3e

5

(x, y), i, j = 1, . . . , d + 1.

Since both @H[1]
r

@yi
and @H[1]

r
@xi

, with r = 0, 1, . . . ,m, are independent of xi and yi, we
have

E
✓
@S

@yi
� @SG

@yi

◆
=

0

@1
2

dX

j,k=1

@2F (y)
@yi@yj

Mjkxk +
1
2
vC

1

fi(y) � @H [1]

0

@yi

1

Ah2 + h3e
6

(x, y),

E
✓
@S

@Xi
� @SG

@XG
i

◆
=

0

@1
2

dX

j=1

Mijfj(y) � 1
2

dX

j=1

vC
2

Mijxj � @H [1]

0

@xi

1

Ah2 + h3e
7

(x, y)

for i = 1, . . . , d. We choose H [1]

0

such that the above terms containing h2 vanish, i.e.,

@H [1]

0

@yi
=

1
2

dX

j,k=1

@2F (y)
@yi@yj

Mjkxk +
1
2
vC

1

fi(y),

@H [1]

0

@xi
=

1
2

dX

j=1

Mij (fj(y) � vC
2

xj) .

Substituting the above results on the partial derivatives of H [1]

r , r = 0, 1, . . . ,m, into
(15), we have the following scheme of (9):

XG
i = xi �

mX

r=1

evtn�i
rI

h
(r) � evtnfi(y)h � 1

2

mX

r=1

vevtn�i
rhIh

(r)

� 1
2

dX

j,k=1

@2F (y)
@yi@yj

MjkXG
k h2 � 1

2
vevtnfi(y)h2,

Y G
i = yi +

dX

j=1

e�vtnMijX
G
j h +

1
2

mX

r=1

dX

j=1

Mij�
j
rI

h
(r)h

+
1
2

dX

j=1

Mij

�
fj(y) � ve�vtnXG

j

�
h2,

(17)

which is started at time tn = nh for n = 1, . . . , N = T/h. That is, xi = Xi(tn),
yi = Yi(tn) for i = 1, . . . , d, and yd+1

= tn.
To transform scheme (17) into an equivalent scheme of (1), we denote Ph

i [n] :=
e�vtnxi, Qh

i [n] := yi, Ph
i [n + 1] := e�vtn+1XG

i , and Qh
i [n + 1] := Y G

i for i = 1, . . . , d.
Based on the transformation between two phase spaces of (1) and (5), we get

Ph[n + 1] = e�vhPh[n] � h2

2
r2F (Qh[n])MPh[n + 1] � h

⇣
1 +

vh

2

⌘
e�vhf(Qh[n])

�
⇣
1 +

vh

2

⌘
e�vh��n+1

W,

Qh[n + 1] = Qh[n] + h

✓
1 � vh

2

◆
evhMPh[n + 1] +

h2

2
Mf(Qh[n]) +

h

2
M��n+1

W,

(18)
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where � = (�
1

, . . . ,�r) and �n+1

W = W (tn+1

) � W (tn). Notice that �nW can
be simulated by ⇠n

p
h with ⇠n = (⇠n

1

, . . . , ⇠n
d )> being an Ftn -adapted d-dimensional

normal distributed random vector.

Remark 3.1. The proposed scheme (18) also has exponentially dissipative phase
volume. More precisely, denoting D(q) = (Id + h2

2

r2F (q)M)�1, the determinant of
Jacobian matrix

������

@P h
[1]

@p
@P h

[1]

@q

@Qh
[1]

@p
@Qh

[1]

@q

������
=

�����
e�vhD(q) @P h

[1]

@q

h(1 � vh
2

)MD(q) D(q)�> + h(1 � vh
2

)evhM @P h
[1]

@q

�����

= |e�vhId||D(q)||D(q)�>| = e�vhd.

Furthermore, ������

@P h
[n]

@p
@P h

[n]

@q

@Qh
[n]

@p
@Qh

[n]

@q

������
= e�vtnd.

3.2. Conformal symplectic structure and ergodicity. In this subsection,
we prove the conformal symplecticity of the proposed scheme (18) as well as its er-
godicity.

Theorem 3.2. The proposed scheme (18) preserves conformal symplectic struc-

ture, i.e,

dPh[n + 1] ^ dQh[n + 1] = e�vhdPh[n] ^ dQh[n].

Proof. Based on (18), we obtain

dPh[n + 1] ^ dQh[n + 1]

= dPh[n + 1] ^ dQh[n] +
1
2
h2dPh[n + 1] ^ Mr2FdQh[n]

= e�vhdPh[n] ^ dQh[n] � h2

2
d
⇥
r2F (Qh[n])MPh[n + 1]

⇤
^ dQh[n]

+
h2

2
dPh[n + 1] ^ Mr2F (Qh[n])dQh[n].

Denote P̃h := MPh[n + 1]; then the second term becomes

h2

2
d
h
r2F (Qh[n])P̃h

i
^ dQh[n]

=
h2

2

dX

i,j,l=1

@3F

@qi@qj@ql
P̃h

j dQh
l [n] ^ dQh

i [n] � h2

2
r2F (Qh[n])MdPh[n + 1] ^ dQh[n].

Since matrix M is symmetric and the first term in the right-hand side of the above
equation vanishes, we finally get

dPh[n + 1] ^ dQh[n + 1] = e�vhdPh[n] ^ dQh[n].

To show the ergodicity of (18), we first introduce the following conditions which
are su�cient to ensure the existence and uniqueness of the invariant measure (see [13]
and references therein). Then we will show that these conditions are exactly satisfied
by the proposed scheme.
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Condition 3.3. The Markov chain Zn := (Ph[n]>, Qh[n]>)>
with Z

0

= z satis-

fies

(i) for any � � 1, there exists C
2

= C(�) > 0 which is independent of h, such that

EkZ
1

k�  C
2

(1 + kzk�) for all z 2 R2d
;

(ii) there exist C
1

> 0 and ✏ > 0 which are independent of h, such that EkZ(h) �
Z

1

k2  C
1

(1 + kzk2)h✏+2

for all z 2 R2d
, where Z(h) = (P (h)>, Q(h)>)>.

Condition 3.4. For some fixed compact set G 2 B(R2d) with B(R2d) denoting

the Borel �-algebra on R2d
, the Markov chain Zn := (Ph[n]>, Qh[n]>)> 2 Ftn with

transition kernel Pn(z, A) satisfies

(i) for some z⇤ 2 int(G) and for any � > 0, there exists a positive integer n such

that

Pn(z, B�(z⇤)) > 0 8 y 2 G,

where B�(z⇤) denotes the open ball of radius � centered at z⇤
;

(ii) for any n 2 N, the transition kernel Pn(z, A) possesses a density ⇢n(z, w) which

is jointly continuous in (z, w) 2 G ⇥ G.

Theorem 3.5 (see [13, Theorem 7.3]). For some K 2 N, if Conditions 3.3 and 3.4
are satisfied by a Markov chain Zn when sampled at rate K, that is, these conditions

hold for the chain Z̃n := ZnK , then Zn has a unique invariant measure.

Theorem 3.6. Assume that the vector field f is globally Lipschitz. The solution

(Ph[n], Qh[n]) of (18), which is an Ftn-adapted Markov chain, satisfies Condition

3.3 and hence admits an invariant measure µh on R2d
. In addition, if f is a linear

function, then Condition 3.4 is also satisfied and the invariant measure is unique, that

is, (18) is ergodic.

Proof. Step 1. We first show that scheme (18) satisfies Condition 3.3. Denote
Z(t) = (P (t)>, Q(t)>)> 2 R2d, Zn = (Ph[n]>, Qh[n]>)> 2 R2d, � = (�

1

, . . . ,�r) 2
Rd⇥r, W = (W

1

, . . . ,Wr)> 2 Rr, and D(q) = (Id + h2

2

r2F (q)M)�1. We rewrite (18)
as

Ph[1] = D(q)
✓

e�vhp �
⇣
1 +

vh

2

⌘
e�vh��

1

W � h
⇣
1 +

vh

2

⌘
e�vhf(q)

◆
,

Qh[1] = q + h
⇣
1 � vh

2

⌘
evhMPh[1] +

h2

2
Mf(q) +

h

2
M��

1

W

(19)

with z := (P>
0

, Q>
0

)> = (p>, q>)>, which yields

EkPh[1]k� + EkQh[1]k�  C(1 + kpk� + kqk�) + C(1 + kqk� + EkPh[1]k�)(20)
 C(1 + kpk� + kqk�)

based on the fact that vector field f is globally Lipschitz, the matrix I + h2

2

r2F (q)M
is positive definite, and kD(q)k  1 for any q 2 Rd and h 2 (0, 1). As the norm
kZ

1

k = (kPh[1]k2 + kQh[1]k2) 1
2 is equivalent to the norm (kPh[1]k� + kQh[1]k�)

1
� ,

Condition 3.3(i) holds.
Rewrite (1) into the following mild solution form:

P (h) = p �
Z h

0

e�v(h�s)f(Q(s))ds �
Z h

0

e�v(h�s)�dW (s),

Q(h) = q +
Z h

0

MP (s)ds
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with P (0) = p and Q(0) = q. Based on (18), we have

P (h) � Ph[1] =

h
⇣
1 +

vh

2

⌘
e�vhf(q) +

h2

2
r2F (q)MPh[1] �

Z h

0

e�v(h�s)f(Q(s))ds

�

+

"⇣
1 +

vh

2

⌘
e�vh��

1

W �
Z h

0

e�v(h�s)�dW (s)

#

= : I + II,

Q(h) � Qh[1] =

"Z h

0

MP (s)ds � h
⇣
1 � vh

2

⌘
evhMPh[1]

#
�

h

2
M��

1

W +
h2

2
Mf(q)

�

= : III + IV.

Now we estimate terms I, II, III, and IV , respectively:

EkIk2  CE
����

h2

2
r2F (q)Ph[1]

����
2

+ CE

�����

Z h

0

e�v(h�s) (f(Q(s)) � f(q)) ds

�����

2

+ C

�����

Z h

0

e�v(h�s)dsf(q) � h
⇣
1 +

vh

2

⌘
e�vhf(q)

�����

2

 Ch4(1 + kzk2) + C

Z h

0

e�2v(h�s)ds

Z h

0

�
kQ(s) � Qh[1]k2 + kQh[1] � qk2

�
ds

+ C

✓
1 � e�vh

v
� h

⇣
1 +

vh

2

⌘
e�vh

◆
2

(1 + kqk2)

 Ch3(1 + kzk2) + C

Z h

0

kQ(s) � Qh[1]k2ds,(21)

where in the last step we have used (20). For the term II, based on the Itô isometry,

EkIIk2 
Z h

0

✓⇣
1 +

vh

2

⌘
e�vh � e�v(h�s)

◆
2

dsTr
�
��>�  Ch3.(22)

Similarly, we have

EkIIIk2  CE

�����

Z h

0

M
�
P (s) � Ph[1]

�
ds

�����

2

+ CE
����h

✓
1 �

⇣
1 � vh

2

⌘
evh

◆
MPh[1]

����
2

(23)

 C

Z h

0

kP (s) � Ph[1]k2ds + Ch4(1 + kzk2)

and

EkIV k2  Ch3(1 + kqk2).(24)

From (21)–(24), we conclude

EkZ(h) � Z
1

k2  C

Z h

0

EkZ(s) � Z
1

k2ds + Ch3(1 + kzk2),
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which together with Gronwall’s inequality yields Condition 3.3(ii) with ✏ = 1. In this
case, there exist real numbers ↵̃ 2 (0, 1) and �̃ 2 [0,1) such that E[V (Zn+1

)|Ftn ] 
↵̃V (Zn) + �̃ for V (z) = 1

2

kpk2 + F (q) + v
2

p>q + v2

4

kqk2 + 1 with z = (p>, q>)> (see
Theorem 7.2 in [13]). Hence,

E[V (Zn+1

)]  ↵̃E[V (Zn)] + �̃  ↵̃n+1E[V (Z
0

)] + �̃
1 � ↵̃n

1 � ↵̃
 C(Z

0

),

which induces the existence of invariant measures (see Proposition 7.10 in [9]).
Step 2. We now consider the chain Z

2n sampled at rate K = 2 and verify
Condition 3.4 when f is linear with a constant Cf := rf = r2F . Let G :=�
(P>, Q>)> 2 R2d : Q = 0, kPk  1

 
, which is a compact set. For any z = (p>, 0)> 2

G and w = (w>
1

, w>
2

)> 2 B with B 2 B(R2d), we aim to show that �
1

W and �
2

W
can be properly chosen to ensure that Ph[2] = w

1

and Qh[2] = w
2

starting from
(P>

0

, Q>
0

)> = z. Denoting Lh = h(1 � vh
2

)evhM , from (18), we have

w
1

= e�vhPh[1] � h2

2
CfMw

1

� h
⇣
1 +

vh

2

⌘
e�vhf(Qh[1]) �

⇣
1 +

vh

2

⌘
e�vh��

2

W,

(25)

w
2

= Qh[1] + Lhw
1

+
h2

2
Mf(Qh[1]) +

h

2
M��

2

W

(26)

= Qh[1] + Lhw
1

+
h

2

⇣
1 +

vh

2

⌘�1

evhM

✓
e�vhPh[1] � w

1

� h2

2
CfMw

1

◆
,

Ph[1] = e�vhp � h2

2
CfMPh[1] � h

⇣
1 +

vh

2

⌘
e�vhf(0) �

⇣
1 +

vh

2

⌘
e�vh��

1

W,

(27)

Qh[1] = LhPh[1] +
h2

2
Mf(0) +

h

2
M��

1

W

(28)

= LhPh[1] +
h

2

⇣
1 +

vh

2

⌘�1

evhM

✓
e�vhp � Ph[1] � h2

2
CfMPh[1]

◆
.

Notice that (26) and (28) form a linear system, from which we can get the solution
Ph[1] and Qh[1] based on the positive definite coe�cient matrix. Then �

2

W and
�

1

W can be uniquely determined by (25) and (27), respectively. Condition 3.4(i) is
then ensured according to the property that Brownian motions hit a cylinder set with
positive probability. For Condition 3.4(ii), from (19), we can find out that Ph[1] has
a C1 density based on the facts that �

1

W has a C1 density, � is full rank, and D(q)
is positive definite for any q 2 Rd. Thus, Qh[1] also has a C1 density, and Theorem
3.5 is applied to complete the proof.

Remark 3.7. For the nonlinear case, the uniqueness of the invariant measure is
unsolved since both equations in (18) contain the same noise, which is totally di↵erent
from the continuous case and brings essential di�culties when showing the irreducible
property. For higher k and k0, following the same procedure as for the case k = k0 = 1
(see also [1]), choosing undetermined functions such that the error in (13) is of higher
order, we can also get higher weak order symplectic schemes for (5), which turn
out to be high weak order conformal symplectic schemes for the original system (1)
based on the inverse transformation (X,Y ) 7! (P,Q). It is worth mentioning that
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the solvability of undetermined functions, as well as the ergodicity of the schemes, is
unknown for high order cases, as far as we know.

4. Approximation error. In this section, we consider the weak convergence
order of (18) by investigating the local convergence error first. Furthermore, based
on the local convergence error and the hypoelliptic setting (2), we can also get the
approximation error of the ergodic limit. Denote the exact solution of (1) and the
numerical solution by Z(t) = (P (t)>, Q(t)>)> and Zn = (Ph[n]>, Qh[n]>)>, respec-
tively. The next theorem gives that the moments of (1) are uniformly bounded, and
its proof follows the same procedure as that of Lemma 3.3 in [13].

Theorem 4.1. Let Assumption 2.1 hold. Then for any k 2 N
+

, the kth moments

of P (t) and Q(t) are uniformly bounded with respect to t 2 R
+

.

Before proving the main convergence theorem, we first show the boundedness of
the numerical solution to (18) in the following theorem.

Theorem 4.2. Assume that the coe�cient f of (1) is globally Lipschitz and sat-

isfies the linear growth condition, i.e.,

(29) kf(u) � f(w)k  Lku � wk, kf(u)k  Cf (1 + kuk)

for some constants L > 0 and Cf � 0, and any u,w 2 Rd. Then there exists a positive

constant h
0

such that for any h  h
0

, it holds that

sup
n2{1,...,N}

E
⇥
kPh[n]kk + kQh[n]kk

⇤
< 1.

Proof. For any fixed initial value z = (p>, q>)>, random variable ⇠ := ⇠1, and h,
we have based on (18) that

kPh[1] � pk  |e�vh � 1|kpk + h
⇣
1 +

vh

2

⌘
kf(q)k +

p
h
⇣
1 +

vh

2

⌘
k�⇠k

+
h2

2
kr2F (q)kkMkkpk +

h2

2
kr2F (q)kkMkkPh[1] � pk.

Denote Cv := 1 + vh
2

. Using the global Lipschitz condition and mean value theorem,
there exists some ✓ 2 (0, 1) such that

kPh[1] � pk  | � vhe�v✓h|kpk + hCf (1 + kzk) +
p

hCvk�⇠k

+
h2

2
LkMkkzk +

h2

2
LkMkkPh[1] � pk

 C(1 + kzk)(k⇠k
p

h + h) + LkMkkPh[1] � pkh2

2
.

It is obvious that there exists a positive constant h
0

such that for any h  h
0

,

LkMkh2

2
 1

2
.

It then yields

kPh[1] � pk  2C(1 + kzk)(k⇠k
p

h + h).
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On the other hand, for h  h
0

, we have

kE(Ph[1] � p)k


����(e

�vh � 1)p � h2

2
r2F (q)Mp � hCve�vhf(q)

����+
����

h2

2
r2F (q)ME(Ph[1] � p)

����

 vhkpk + hLkMkkpk + hCfCv(1 + kzk) +
h2

2
LkMkkE(Ph[1] � p)k,

which leads to

kE(Ph[1] � p)k  C(1 + kzk)h.

Based on the estimate of Ph[1] � p, similarly, we have

kQh[1] � qk  C(1 + kzk)(k⇠k
p

h + h), kE(Qh[1] � q)k  C(1 + kzk)h.

We can conclude that, for Z
1

= (Ph[1]>, Qh[1]>)>,

kZ
1

� zk  C(k⇠k +
p

h)(1 + kzk)
p

h  C(k⇠k + 1)(1 + kzk)
p

h.(30)

Thus, we complete the proof according to Lemma 9.1 in [15].
Based on the above preliminaries, our result concerning the weak convergence

order of the proposed scheme is as follows.
Theorem 4.3. Under the assumptions in Theorem 4.2, the proposed scheme (18)

is of weak order 2. More precisely,

��E (P (T ), Q(T )) � E 
�
Ph[N ], Qh[N ]

��� = O(h2)

for all  2 C6

P (R2d, R) and T = Nh.

Proof. Without loss of generality, we consider the case of d = 1. Based on Itô’s
formula and Theorems 4.1 and 4.2, we obtain

P (h) = p �
Z h

0

(f(Q(s)) + vP (s)) ds �
mX

r=1

Z h

0

�rdWr(s)

= p �
Z h

0

✓
f(q) +

Z s

0

r2F (Q(✓))MP (✓)d✓
◆

ds �
mX

r=1

Z h

0

�rdWr(s)

� v

Z h

0

 
p �

Z s

0

f(Q(✓))d✓ �
Z s

0

vP (✓)d✓ �
mX

r=1

�rdWr(✓)

!
ds,

which leads to

P (h) = p � f(q)h � vph � 1
2
r2F (q)Mph2 �

mX

r=1

Z h

0

�rdWr(s)

+
1
2
vf(q)h2 +

1
2
v2ph2 + v

mX

r=1

Z h

0

Z s

0

�rdWr(✓)ds + �
1

,

(31)

where Ek�
1

k = O(h3) and Ek�
1

k2 = O(h5). Analogously, it also holds that

Q(h) = q +
Z h

0

M

 
p �

Z s

0

f(Q(✓))d✓ � v

Z s

0

P (✓)d✓ �
mX

r=1

Z s

0

�rdWr(✓)

!
ds

= q + Mph � 1
2
f(q)h2 � 1

2
vMph2 �

mX

r=1

M�r

Z h

0

Z s

0

dWr(✓)ds + �
2

(32)
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with Ek�
2

k = O(h3) and Ek�
2

k2 = O(h5). For (18), applying Taylor expansion to
Ph[1] and Qh[1] at (p, q), we obtain

Ph[1] = p � f(q)h � vph � 1
2
r2F (q)Mph2 �

mX

r=1

�r�1

W

+
1
2
vf(q)h2 +

1
2
v2ph2 +

1
2
v

mX

r=1

�rh�
1

W + �
3

,

(33)

Qh[1] = q + Mph � 1
2
f(q)h2 � 1

2
vMph2 � 1

2

mX

r=1

M�rh�
1

W + �
4

,(34)

where Ek�ik = O(h3) and Ek�ik2 = O(h5) with i = 3, 4. Due to (31) and (33), we
know that

P (h) � Ph[1] = v
mX

r=1

�r

 Z h

0

Z s

0

dWr(✓)ds � 1
2
h�

1

W

!
+ (�

1

� �
3

),

and thus kE(P (h) � Ph[1])k = O(h3). Similarly, based on (32) and (34), we have
kE(Q(h) � Qh[1])k = O(h3). For i = 2, 3, 4, 5, we obtain

��E
⇥
(P (h) � p)i � (Ph[1] � p)i

⇤��  Ch3 + O(h4),
��E

⇥
(Q(h) � q)i � (Qh[1] � q)i

⇤��  Ch3 + O(h4).

Moreover, for i
1

+ i
2

= 2, 3, 4, 5 and i
1

� 1,
��E

⇥
(P (h) � p)i1(Q(h) � q)i2 � (Ph[1] � p)i1(Qh[1] � q)i2

⇤��  Ch3 + O(h4).

By Taylor expansion and the mean value theorem, we obtain

��E
⇥
 (P (h), Q(h)) �  (Ph[1], Qh[1])

⇤��


����
@ 

@p
(p, q)

����
��E(P (h) � Ph[1])

��+
����
@ 

@q
(p, q)

����
��E(Q(h) � Qh[1])

��

+
5X

j=2

jX

i=0

����
@j (p, q)
@pi@qj�i

����
��E[(P (h) � p)i(Q(h) � q)j�i � (Ph[1] � p)i(Qh[1] � q)j�i]

��

+
6X

i=0

E
✓����
@6 (p + ✓

1

P (h), q + ✓
1

Q(h))
@pi@q6�i

����
��(P (h) � p)i(Q(h) � q)6�i

��
◆

+
6X

i=0

E
✓����
@6 (p + ✓

2

Ph[1], q + ✓
2

Qh[1])
@pi@q6�i

����
��(Ph[1] � p)i(Qh[1] � q)6�i

��
◆

(35)

with constants 0  ✓
1

 1 and 0  ✓
2

 1. Here, based on (31)–(34) and Theorems
4.1 and 4.3, we derive

E
✓����
@6 (p + ✓

1

P (h), q + ✓
1

Q(h))
@pi@q6�i

����
��(P (h) � p)i(Q(h) � q)6�i

��
◆

 C
�
E
��(P (h) � p)2i(Q(h) � q)12�2i

��� 1
2  Ch6� i

2 ,
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where we also use the fact that  2 C6

P (R2d, R). Analogously,

E
✓����
@6 (p + ✓

2

Ph[1], q + ✓
2

Qh[1])
@pi@q6�i

����
��(Ph[1] � p)i(Qh[1] � q)6�i

��
◆

= O(h6� i
2 )

for 0  i  6. Finally, we deduce

(36)
��E (P (h), Q(h)) � E (Ph[1], Qh[1])

��  O(h3),

which, together with Theorem 9.1 in [15], yields global weak order two for the proposed
scheme (18).

According to the above theorem and the condition (2), we can get that the tem-
poral average of the proposed scheme (18) is a proper approximation of the ergodic
limit

R
R2d  dµ.

Theorem 4.4. For any  2 C6

b (R2d, R) and any initial values, under assumptions

in Theorems 3.6 and 4.3, the scheme (18) satisfies

�����
1
N

NX

n=1

E (Ph[n], Qh[n]) �
Z

R2d

 dµ

�����  C

✓
h2 +

1
T

◆
.

In fact, one can check that the assumptions in Theorem 5.6 in [14] are satisfied
by (18) and thus deduce this result.

5. Numerical experiments. The first example (section 5.1) tests the numer-
ical approximation by simulating a linear stochastic Langevin equation. In section
5.2, numerical tests of the conformal symplectic scheme for the nonlinear case are
presented. In all of the experiments, the expectation is approximated by taking the
average over 5000 realizations.

5.1. A linear oscillator with damping. Consider the following two-dimensional
stochastic Langevin equation:

dP = �aQdt � vPdt � �dW (t), P (0) = p,

dQ = aPdt, Q(0) = q,
(37)

where a, v > 0 and � 6= 0 are constants and W (t) is a one-dimensional standard
Wiener process. The solution to (37) possesses a unique invariant measure µ

1

:

dµ
1

= ⇢
1

(p, q)dpdq,

where ⇢
1

(p, q) = ⇥ exp (�av(p2
+q2

)

�2 ) is known as the Boltzmann–Gibbs density and

⇥ =
� R

R2 exp
�

� av(p2
+q2

)

�2

�
dpdq

��1

is a renormalization constant. The proposed
scheme applied to (37) yields

Pn+1

= e�vhPn � h2

2
a2Pn+1

� h
⇣
1 +

vh

2

⌘
e�vhQn �

⇣
1 +

vh

2

⌘
e�vh��n+1

W,

Qn+1

= Qn + h
⇣
1 � vh

2

⌘
evhaPn+1

+
h2

2
a2Qn +

h

2
a��n+1

W.

(38)

Based on Theorems 3.2 and 3.6, scheme (38) inherits both the conformal symplecticity
and ergodicity of the original system. To verify these properties numerically, we choose
p = 3 and q = 1.
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Fig. 1. The value Sn exp(vtn)

S0
of two numerical schemes (a = 1 and � = 1).

Figure 1 shows the value Sn exp(vtn)

S0
of the weak Taylor 2 method and the proposed

scheme, with v being di↵erent dissipative scales and Sn being the triangle square at
step n. We choose the original triangle which is produced by three points (�1, 5)>,
(20, 2)>, (0, 30)>. We find out that the discrete phase square of the proposed scheme
exhibits exponential decay, i.e., Sn = exp(�vtn)S

0

with the same dissipative coe�-
cient v as in the continuous case, while the weak Taylor 2 scheme does not.

For ergodicity and weak convergence of the proposed scheme, we have taken
the three di↵erent kinds of test functions (a)  (p, q) = cos(p + q), (b)  (p, q) =
exp (�p2

2

� q2

2

), and (c)  (p, q) = sin(p2 + q2) as the test functions. To verify that
the temporal averages starting from di↵erent initial values will converge to the spatial
average, i.e., the ergodic limit

Z

R2
 (p, q)dµ

1

=
Z

R2
 (p, q)⇢

1

(p, q)dpdq,

we introduce the reference value for a specific test function  to represent the er-
godic limit: since the function  is uniformly bounded and the density function ⇢

1

dissipates exponentially, the integrator is almost zero when p2 + q2 is su�ciently
large. Thus, we choose

R
10

�10

R
10

�10

 (p, q)⇢
1

(p, q)dpdq as the reference value, which
appears as the dashed line in Figure 2. We can tell from Figure 2 that the tempo-
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(a)  (p, q) = cos(p + q).
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(c)  (p, q) = sin(p2 + q2).

Fig. 2. The temporal averages 1

N

PN
n=1

E (Pn, Qn) starting from di↵erent initial values (a =
1, v = 2, � = 0.5, and T = 300).
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ral averages 1

N

PN
n=1

E (Pn, Qn) of the proposed scheme starting from four di↵erent
initial values, initial(1) = (�10, 1)>, initial(2) = (2, 0)>, initial(3) = (0, 3)>, and
initial(4) = (4, 2)>, converge to the reference line with error no more than h2 + 1

T ,
which coincides with Theorem 4.4.
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(c)  (p, q) = sin(p2 + q2).

Fig. 3. Rate of convergence in weak sense (a = 1, v = 2, and � = 0.5).

Figure 3 plots the value ln |E (P (T ), Q(T )) � E (PN , QN )| against lnh for five
di↵erent step sizes h = [2�3, 2�4, 2�5, 2�6, 2�7] at T = 1, where (P (T ), Q(T )) and
(PN , QN ) represent the exact and numerical solutions at time T , respectively. It can
be seen that the weak order of (38) is two, as indicated by the reference line of slope 2.

5.2. A nonlinear oscillator with linear damping. In this section, we con-
sider the following equation:

dP = �(4Q3 � 6Q)dt � vPdt +
p

2��1vdW (t), P (0) = p,

dQ = Pdt, Q(0) = q,
(39)

where v, � > 0 are fixed constants and W (t) denotes a one-dimensional standard
Wiener process. Similarly to (37), [14] shows that the dynamics generated by (39) is
ergodic with the invariant measure µ

2

, which can be characterized by the Boltzmann–
Gibbs density

⇢
2

(p, q) = ⇥ exp
✓

� �

✓
1
2
p2 +

✓
3
2

� q2

◆
2

◆◆

with the renormalization constant ⇥ =
� R

R2 e��(

1
2 p2

+(

3
2 �q2

)

2
)dpdq

��1

. Based on (18),
we get the associated conformal symplectic scheme

Pn+1

= e�vhPn � h2

2
Pn+1

�
12Q2

n � 4
�

� he�vh
⇣
1 +

vh

2

⌘⇣
4Q3

n � 6Qn

⌘

+ e�vh
⇣
1 +

vh

2

⌘p
2��1v�n+1

W,

Qn+1

= Qn + hevh
⇣
1 � vh

2

⌘
Pn+1

+
h2

2

⇣
4Q3

n � 6Qn

⌘
� h

2

p
2��1v�n+1

W.

(40)

Since this nonglobal Lipschitz case is not included in Theorems 3.6 and 4.3, we inves-
tigate its ergodicity and weak convergence order in view of numerical tests.
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Fig. 4. The temporal averages 1

N

PN
n=1

E (Pn, Qn) starting from di↵erent initial values with
T = 300.

Let v = 4, � = 2, and test functions  be the same as those in section 5.1.
Figure 4 shows the temporal averages 1

N

PN
n=1

E (Pn, Qn) of (40) starting from dif-
ferent initial values initial(1) = (�10, 1)>, initial(2) = (2, 7)>, initial(3) = (0, 3)>, and
initial(4) = (4, 6)>. We also use

R
10

�10

R
10

�10

 (p, q)⇢
2

(p, q)dpdq as an approximation of
the reference value, i.e., the ergodic limit

Z

R2
 (p, q)dµ =

Z

R2
 (p, q)⇢

2

(p, q)dpdq.

Figure 4 indicates that the proposed scheme also converges to the reference line when
time goes to infinity.
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Fig. 5. Rate of convergence in weak sense (p = �2 and q = �2).

The value ln |E (P (T ), Q(T )) � E (PN , QN )| against lnh for five di↵erent step
sizes h = [2�4, 2�5, 2�6, 2�7, 2�8] at T = 0.5 is shown in Figure 5, similarly to Figure 3.
Compared with the reference line of slope 2 in Figure 5, it can be seen that (40) has
order two in the sense of weak approximations.

6. Conclusion. In this paper, an approach for constructing high weak order
conformal symplectic schemes for stochastic Langevin equations is developed, moti-
vated by the ideas in [1, 2, 18, 24]. The key points are that the generating function is
applied to ensure that the proposed scheme preserves the geometric structure, while
the modified technique is used to reduce the simulation of multiple integrations. We
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show that, for the case k = k0 = 1, the proposed scheme could inherit both the confor-
mal symplectic geometric structure (under Lipschitz assumption) and the ergodicity
(under linear assumption) of the stochastic Langevin equation. Numerical experi-
ments verify our theoretical results. In addition, the numerical tests of an oscillator
with nonglobal Lipschitz coe�cients indicate that the proposed scheme could also
inherit the internal properties of the original system, which implies that our results
may possibly be extended to the nonglobal Lipschitz case. The theoretical analysis
of this extension is also ongoing.
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for his helpful discussions and suggestions.
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Abstract In order to inherit numerically the ergodicity of the damped stochastic nonlin-
ear Schrödinger equation with additive noise, we propose a fully discrete scheme, whose
spatial direction is based on spectral Galerkin method and temporal direction is based on
a modification of the implicit Euler scheme. We not only prove the unique ergodicity of
the numerical solutions of both spatial semi-discretization and full discretization, but also
present error estimations on invariant measures, which gives order 2 in spatial direction and
order 1

2 in temporal direction under certain hypotheses.

Keywords Stochastic Schrödinger equation · Numerical scheme · Ergodicity · Invariant
measure · Error estimation
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1 Introduction

The ergodicity of stochastic differential equations (SDEs) and stochastic partial differential
equations (SPDEs) characterizes the longtime behavior of the solutions (see [5, 8, 14] and
references therein), and it is natural to construct proper numerical schemes which could
inherit the ergodicity. For ergodic SDEs with bounded or global Lipschitz coefficients,
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the ergodicity of several schemes were studied in [15]. It also gave an error estimation of
invariant measures

e(φ) =
∣∣∣∣

∫
φ(y)dµ(y) −

∫
φ(y)dµ̃(y)

∣∣∣∣

via the exponential decay property of the solution of Kolmogorov equation, where µ and µ̃
denote the original invariant measure and the numerical one respectively. In the local Lip-
schitz case, the ergodicity is inherited by specially constructed implicit discretizations (see
[14] and references therein). For SDEs, there are also various works related to the study of
error e(φ) by assuming the ergodicity of the schemes (see [1] and references therein). For
SPDEs, there have also been some significant results concentrating on invariant laws, e.g.,
[3] studied a semi-implicit Euler scheme in temporal direction with respect to parabolic type
SPDEs with bounded nonlinearity and space-time white noise; [4] studied a full discretiza-
tion for stochastic evolution equations with global Lipschitz nonlinearity and space-time
white noise. Invariant laws of the approximations are, in general, possibly not unique. To
our knowledge, there has been less work on constructing a fully discrete scheme to inherit
the unique ergodicity of SPDEs up to now.

In this paper, we consider an initial-boundary problem of an ergodic one-dimensional
damped stochastic nonlinear Schrödinger equation

⎧
⎪⎨

⎪⎩

du =
(
i"u − αu+ iλ|u|2u

)
dt +Q

1
2 dW

u(t, 0) = u(t, 1) = 0, t ≥ 0

u(0, x) = u0(x), x ∈ [0, 1],
(1.1)

where α > 0, λ = ±1 and the solution u is a complex valued (C-valued) random field on a
probability space (%,F , P ). The noise term involves a cylindrical Wiener processW and a
symmetric, positive, trace class operatorQ such that the noise is colored in space and white
in time. The operator Q is supposed to commute with Laplacian ", and the noise has the
following Karhunen-Loeve expansion

Q
1
2 dW =

∞∑

m=1

√
ηmem(x)dβm(t), ηm ∈ R+ and η :=

∞∑

m=1

ηm < ∞,

where {βm(t)}m≥1, associated to a filtration {Ft }t≥0, is a family of independent and identi-
cally distributed C-valued Wiener processes and {em}m≥1 is the eigenbasis of the Dirichlet
Laplacian. This model has many applications in statistical physics and has been studied by
many authors. For instance, it can describe the transmission of the signal along the fiber
line with signal loss (see [11, 12] and references therein). The ergodicity for Eq. 1.1 with
λ = 1 has been studied in [8] based on a coupling method, Foias-Prodi type estimates and a
priori estimates for a modified HamiltonianH = 1

2∥ · ∥21 − 1
4∥ · ∥4L4 + c0∥ · ∥60. The authors

showed that (1.1) possesses a unique invariant measure µ assuming that the noise is non-
degenerate in the low modes, i.e., ηm > 0, m ≤ N∗ for some sufficiently large N∗. In the
same procedure, one can also show the ergodicity for the cases λ = 0 and λ = −1 by set-
tingH = 1

2∥ · ∥21 − λ
4∥ · ∥4

L4 + c0∥ · ∥60. Note that the damped term (α > 0) is necessary for
both linear and nonlinear Schrödinger equation to be ergodic.

Our work mainly focuses on the construction of a fully discrete and uniquely ergodic
numerical scheme (i.e., whose numerical solution possesses a unique invariant measure).
Moreover, the estimation of error between the original invariant measure and the numerical
one is also considered based on the weak error of solutions.

Author's personal copy
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In order to obtain a scheme whose noise remains in an explicit expression, we apply
spectral Galerkin method in spatial direction to obtain a N -dimensional SDE

duN =
(
i"uN − αuN + iλπN

(
|uN |2uN

) )
dt + πNQ

1
2 dW (1.2)

with πN being a projection operator. Here the spectral Galerkin method also ensures that the
semigroup operator is the same as the one of Eq. 1.1, which simplifies the error estimate in
spatial direction. We find a Lyapunov function by proving the uniform boundedness of uN
in L2-norm. It ensures the existence of the invariant measure of Eq. 1.2. We show that the
solution uN(t) is a strong Feller and irreducible process via the non-degeneracy of the noise
term in Eq. 1.2. Hence, uN(t) possesses a unique invariant measure µN , which implies the
ergodicity of uN(t). We would like to emphasize that the noise in the original equation do
not need to be non-degenerate. Our method is also available under the same assumption in
[8], that is ηm > 0, m < N∗ for some sufficiently large N∗. Here N and N∗ need to satisfy
the condition N < N∗ to ensure the non-degeneracy for the truncated noise and obtain
the ergodicity for numerical solutions. The error between invariant measures µN and µ is
transferred into the weak error of the solutions, which is required to be independent of time
t . Different from conservative equations, the damped term in Eqs. 1.1 and 1.2 contributes
to an exponential estimate on the difference between semigroup operators S(t) and S(t)πN ,
where S(t) is generated by the linear operator i" − α. Therefore, we achieve the time-
independent weak error of solutions directly which, together with the ergodicity of u and
uN , deduces the error between invariant measures µN and µ.

For the temporal discretization of Eq. 1.2, we propose a new scheme

ukN − e−ατuk−1
N =

(

i"ukN + iλπN

(
|ukN |2 + |e−ατuk−1

N |2
2

ukN

))

τ + πNQ
1
2 δWk, (1.3)

which is a modification of the implicit Euler scheme. In order to analyze the effect of the
time discretization, we investigate both the ergodicity of ukN and the weak error between
uN and ukN . The fully discrete scheme (1.3) is specially constructed to ensure the uniform
boundedness of ukN in L2-, Ḣ 1- and Ḣ 2-norms, which is essential to obtain the existance of
the invariant measure as well as the time-independence of the weak error. Together with the
Brouwer fixed point theorem and properties of homogeneous Markov chains, we prove that
ukN is uniquely ergodic. For the weak error, it is usually analyzed in a finite time interval
[0, T ] and depends on T (see e.g. [7, 9]). In our cases, however, the weak error between
uN(T ) and uMN (T ) is required to be independent of time T and stepM . Thus, some technical
estimates are given to obtain the exponential decay of the difference between non-global
Lipschitz nonlinear terms and between S(t) and Sτ . Based on the time-independency of the
weak error of the solutions, we show that the error of invariant measures has at least the
same order as the weak error of the solutions.

This paper is organized as follows. In Section 2, some notations and definitions about
ergodicity are introduced. In Section 3, we apply spectral Galerkin method to Eq. 1.1 and
prove the ergodicity of the spatial semi-discrete scheme. The time-independent weak error
of the solutions, together with the error between invariant measures, is given. Section 4
is devoted to the proof of ergodicity of the fully discrete scheme. Moreover, we give the
approximation error of invariant measure in temporal direction via the time-independent
weak error. In Section 5, numerical experiments are given to verify the time independence
of the weak error as well as the weak order in temporal direction for the linear case. The
last section is the appendix of some proofs.

Author's personal copy
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2 Preliminaries

In this section, we present some notations and the definition of ergodicity. Moreover, we
introduce a sufficient condition for a stochastic process to be ergodic, which will be used in
our proof on ergodicity of the numerical solution.

2.1 Notations

We set the linear operator A := −i" + α, and the semigroup S(t) := e−tA = et(i"−α) is
generated by A. The mild solution of Eq. 1.1 exists globally and can be written as

u(t) = S(t)u0 + iλ
∫ t

0
S(t − s)|u(s)|2u(s)ds +

∫ t

0
S(t − s)Q

1
2 dW(s).

It is obvious that {λn}n∈N :=
{
i(nπ)2 + α

}
n∈N is a sequence of eigenvalues of A with

1 ≤ |λn| → +∞ and {en}n∈N :=
{√

2 sin nπx
}
n∈N is the associated eigenbasis of A with

Dirichlet boundary condition. Denoting L2
0(0, 1) as the space L2(0, 1) with homogenous

Dirichlet boundary condition, then {en}n∈N is an orthonormal basis of L2
0(0, 1).

Definition 1 For all s ∈ N, we define the normed linear space

Ḣ s := D(A
s
2 ) =

{
u
∣∣∣u =

∞∑

n=1

(u, en)en ∈ L2
0(0, 1) s.t.

∞∑

n=1

∣∣(u, en)
∣∣2|λn|s < ∞

}
,

endowed with the s-norm

∥u∥s :=
( ∞∑

n=1

∣∣ (u, en)
∣∣2 |λn|s

) 1
2

,

where the inner product in the complex Hilbert space L2(0, 1) is defined by

(u, v) =
∫ 1

0
u(x)v(x)dx, ∀ u, v ∈ L2(0, 1).

In particular, ∥u∥0 = ∥u∥L2 ,∀ u ∈ Ḣ 0.

In the sequel, we use notations L2 := L2(0, 1) and Hs := Hs(0, 1). It’s easy to check
that the above norms satisfy ∥u∥r ≤ ∥u∥s(∀ 0 ≤ r ≤ s) and ∥u∥s ∼= ∥u∥Hs (s = 0, 1, 2) for
any u ∈ Ḣ s .

The operator norm is defined as

∥B∥L(Ḣ s ,Ḣ r ) = sup
u∈Ḣ s

∥Bu∥r
∥u∥s

, ∀ r, s ∈ N,

hence, for 0 ≤ r ≤ s,

∥S(t)∥L(Ḣ s ,Ḣ r ) = sup
u∈Ḣ s

(∑∞
n=1

∣∣ (et(i"−α)u, en
) ∣∣2 |λn|r

) 1
2

∥u∥s
= sup

u∈Ḣ s

e−αt∥u∥r
∥u∥s

≤ e−αt .
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We needQ
1
2 to be a Hilbert-Schmidt operator from L2 to Ḣ s with norm

∥Q 1
2 ∥2HS(L2,Ḣ s )

:=
∞∑

m=1

∥Q 1
2 em∥2s =

∞∑

m=1

|λm|sηm < ∞.

Assumptions on s will be given below.

2.2 Ergodicity

Let Pt be the Markov transition semigroup with an invariant measure µ and V be a Hilbert
space. The Von Neumann theorem ensures that the limit

lim
T→∞

1
T

∫ T

0
Ptφ(y)dt, φ ∈ L2(V , µ)

always exists in L2(V , µ), where y denotes the initial value of the stochastic process.

Definition 2 (see e.g. [5]) If Pt has an invariant measure µ, and in addition it happens that

lim
T→∞

1
T

∫ T

0
Ptφ(y)dt =

∫

V
φdµ in L2(V , µ) (2.1)

for all φ ∈ L2(V , µ). Then Pt is said to be ergodic.

Remark 1 In the following sections, we choose Ptφ(u0) = E[φ(u(t))|u(0) = u0] for any
deterministic initial value u0, and take expectation of both sides of Eq. 2.1 to obtain

lim
T→∞

1
T

∫ T

0
E[φ(u)]dt =

∫

V
φdµ in R. (2.2)

The sufficient conditions for a stochastic process to be ergodic are stated in the following
theorem.

Theorem 2.1 (see e.g. [5]) Let F : V → [0,∞] be a Borel function (Lyapunov function)
whose level sets

La := {x ∈ V : F(x) ≤ a}
are compact for any a > 0. Assume that there exists y ∈ V and C(y) > 0 such that

E
[
F
(
u(t; y)

)]
≤ C(y) f or all t ∈ R+,

where u(t; y) denotes a stochastic process whose start point is y. Then u has at least one
invariant measure.

If in addition the associated semigroup Pt is strong Feller and irreducible, then u
possesses a unique invariant measure. Thus, u is ergodic.

For Eq. 1.1, it is ergodic with a unique invariant measure.

Theorem 2.2 (see [8]) There exists a unique stationary probability measure µ of {Pt }t∈R+

on H 1
0 (0, 1). Moreover, for any p ∈ N\{0}, µ satisfies

∫

H 1
0 (0,1)

∥u∥2p1 dµ < ∞.
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3 Spatial Semi-discretization

We apply spectral Galerkin method to problem (1.1) to get a spatial semi-discrete scheme
which is a finite-dimensional SDE. We show that the solution uN of Eq. 3.1 possesses a
unique invariant measure µN , which leads to the ergodicity of uN . Furthermore, we prove
that the weak error of the spatial semi-discrete scheme does not depend on the time interval,
which implies that µN converges to µ in at least the same rate.

3.1 Spectral Galerkin Method

The finite-dimensional spectral space is defined as

VN := span{em}Nm=1.

Let πN : Ḣ 0 → VN be a projection operator, which is defined as

πNu =
N∑

m=1

(u, em)em, ∀ u =
∞∑

m=1

(u, em)em ∈ Ḣ 0.

We use uN as an approximation to the original solution u, and the spatial semi-discrete
scheme is expressed as

⎧
⎨

⎩
duN =

(
i"uN − αuN + iλπN

(
|uN |2uN

) )
dt + πNQ

1
2 dW

uN(0, x) = πNu0(x),
(3.1)

where πNQ
1
2 dW = ∑N

m=1
√

ηmem(x)dβm(t), and the projection operator πN is bounded

∥πN∥L(Ḣ s ,L2) ≤ 1, ∀ s ∈ N.

3.2 Ergodicity of Spatial Semi-discrete Scheme

Theorem 3.1 Let uN(t, x) be the solution of Eq. 3.1, then uN possesses a unique invariant
measure, denoted by µN . Thus, uN is ergodic.

Proof Following from Theorem 2.1, we need to show three properties of uN ,“strong Feller”,
“irreducibility” and “Lyapunov condition”, in order to show the ergodicity of uN . Thus the
proof is divided into three parts as follows.

Part 1. Strong Feller. We transform (3.1) into its equivalent finite-dimensional SDE
form. Denote am(t) =

(
uN(t, x), em(x)

)
and we have

uN(t, x) =
N∑

m=1

am(t)em(x).

Applying the Itô’s formula to am(t) leads to

dam(t) =
[
−λmam(t)+

(
iλπN

(
|uN |2uN

)
, em

) ]
dt+√

ηmdβm(t), 1 ≤ m ≤ N. (3.2)

We decompose the above equation into its real and imaginary parts by denoting am =
a1m + ia2m, λm = λ1m + iλ2m and βm = β1

m + iβ2
m, where {βi

m}1≤m≤N,i=1,2 is a family
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of independent R-valued Wiener processes and the superscripts 1 and 2 mean the real and
imaginary parts of a complex number, respectively, and obtain

⎧
⎪⎨

⎪⎩

da1m =
[

− λ1ma
1
m + λ2ma

2
m + Re

(
iλπN

(
|uN |2uN

)
, em

) ]
dt + √

ηmdβ1
m(t),

da2m =
[

− λ2ma
1
m − λ1ma

2
m + Im

(
iλπN

(
|uN |2uN

)
, em

) ]
dt + √

ηmdβ2
m(t).

With notations X(t) = (a11(t), a
2
1(t), · · · , a1N(t), a2N(t))T , β = (β1

1 ,β
2
1 , · · · ,β1

N,β
2
N)

T ∈
R2N , F = diag{+1, · · · ,+N },

+i =
( −λ1i λ2i

−λ2i −λ1i

)
, G(X(t)) =

⎛

⎜⎜⎜⎜⎜⎝

Re
(
iλπN

(
|uN |2uN

)
, e1

)

Im
(
iλπN

(
|uN |2uN

)
, e1

)

...

Re
(
iλπN

(
|uN |2uN

)
, eN

)

Im
(
iλπN

(
|uN |2uN

)
, eN

)

⎞

⎟⎟⎟⎟⎟⎠

and

Z =

⎛

⎜⎜⎜⎜⎜⎝

√
η1 √

η1
. . . √

ηN √
ηN

⎞

⎟⎟⎟⎟⎟⎠
:= (Z1

1, Z
2
1 · · · , Z1

N,Z
2
N),

we get an equivalent form of Eq. 3.1

dX(t) =
[
FX(t)+G

(
X(t)

)]
dt +

N∑

m=1

2∑

i=1

Zi
mdβi

m := Y (X(t)) dt +
N∑

m=1

2∑

i=1

Zi
mdβi

m.

It is obvious that

span{Z1
1, Z

2
1, · · · , Z1

N,Z
2
N } = R2N,

which means the Hörmander’s condition holds. According to the Hörmander theorem [13],
X(t) is a strong Feller process.

Part 2. Irreducibility. By using the same notations as above, we have

dX = Y (X)dt + Zdβ, (3.3)

with X = X(t) ∈ R2N, X(0) = y and Z being invertible. Using a similar technique as
[14], we consider the associated control problem

dX = Y (X)dt + ZdU, (3.4)

with X = X(t) and a smooth control function U ∈ C1(0, T ). For any fixed T > 0,
y ∈ R2N and y+ ∈ R2N , using polynomial interpolation, we derive a continuous function(
X(t), t ∈ [0, T ]

)
such that X(0) = y and X(T ) = y+. Hence,

dU = Z−1(dX − Y (X)dt
)
,
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and we get the control function U such that (3.4) is satisfied with X(0) = y, X(T ) = y+

and U(0) = 0. We subtract the resulting Eqs. 3.3 and 3.4, and achieve

X(t) − X(t) =
∫ t

0
Y (X(s)) − Y (X(s))ds + Z(β(t) − U(t)), t ∈ [0, T ].

According to the properties of Brownian motion,

P

(

sup
0≤t≤T

∣∣β(t) − U(t)
∣∣ ≤ ϵ

)

> 0, ∀ ϵ > 0.

Note that Y is locally Lipschitz because of its continuous differentiability, and the ranges of
X(t) and X(t) (t ∈ [0, T ]) are both compact sets. Thus, it holds

P

(∣∣X(t) − X(t)
∣∣≤

∫ t

0
C1

∣∣X(s) − X(s)
∣∣ds + C2ϵ, ∀ t ∈ [0, T ]

)
> 0, ∀ ϵ > 0

with C1 and C2 are positive constants independent of ϵ. Then the Grönwall’s inequality
yields

P

(∣∣X(t) − X(t)
∣∣ ≤ C2(1+ eC1t )ϵ, ∀ t ∈ [0, T ]

)
> 0, ∀ ϵ > 0.

For any δ > 0, choosing t = T and ϵ = δ/C2(1+ eC1T ) > 0, we finally obtain

P
(
|X(T ) − y+| < δ

)
> 0.

In other words, X(T ) hits B(y+, δ) with positive probability. The irreducibility has been
proved.

The above two conditions ensure the uniqueness of the invariant measure of X(t). It
suffices to show the existence of invariant measures in the following.

Part 3. Lyapunov condition.A useful tool for proving existence of invariant measures is
provided by Lyapunov functions, which is introduced in Theorem 2.1. Itô’s formula applied
to ∥uN(t)∥20 implies that

d∥uN(t)∥20 = −2α∥uN(t)∥20dt + 2Re
∫ 1

0
uN(t)πNQ

1
2 dxdW(t)+ 2

N∑

m=1

ηmdt, (3.5)

where we have used the fact that

Re

[

iλ
∫ 1

0
πN(|uN |2uN)uNdx

]

= Re

[

iλ
∫ 1

0

(
|uN |4 − (Id − πN)(|uN |2uN)uN

)
dx

]

= −λIm
(
(Id − πN)(|uN |2uN), uN

)
= 0.

Taking expectation on both sides of Eq. 3.5, we get
d

dt
E∥uN(t)∥20 = −2αE∥uN(t)∥20 + CN,

where CN = 2
∑N

m=1 ηm ≤ 2η. It is solved as

E∥uN(t)∥20 = e−2αt
(∫ t

0
CNe

2αsds + E∥uN(0)∥20
)

≤ e−2αtE∥uN(0)∥20 + C, ∀ t > 0.

On the other hand,

∥uN(t)∥20 =
∫ 1

0

∣∣∣
N∑

m=1

am(t)em(x)
∣∣∣
2
dx = ∥X(t)∥2

l2(R2N )
.
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Define F = ∥ · ∥l2(R2N ) : R2N → [0,+∞]. The level sets of F are tight by Heine-Borel
theorem. Therefore, X(t) is ergodic. We mention that the ergodicity ofX(t) is equivalent to
the existence of a random variable ξ = (ξ11 , ξ

2
1 , · · · , ξ1N, ξ2N) such that

lim
t→∞X(t) = ξ, i.e., lim

t→∞ aim(t) = ξ im, ∀ m = 1, · · · , N, i = 1, 2.

It leads to

lim
t→∞ uN(t) =

N∑

m=1

(
ξ1m + iξ2m

)
em,

which shows the ergodicity of uN(t).

According to the proof of Lyapunov condition, we have the following uniform bounded-
ness for 0-norm. Moreover, 1-norm and 2-norm are also uniformly bounded, which is stated
in the following proposition. Its proof is given in Appendix “The Proof of Proposition 3.1”
for readers’ convenience. In sequel, all the constants C are independent of the end point T
of time interval and may be different from line to line.

Proposition 3.1 Assume that u0 ∈ Ḣ 1, ∥Q 1
2 ∥HS(L2,Ḣ 1) < ∞ and p ≥ 1. There exists

positive constants c0 and C = C(α, p, u0, c0,Q), such that for any t > 0,

i) E∥uN(t)∥2p0 ≤ e−2αptE∥uN(0)∥2p0 + C ≤ C,

ii) EH(uN(t))
p ≤ e−αptEH(uN(0))p + C ≤ C,

where H(uN(t)) = 1
2∥∇uN(t)∥20 − λ

4∥uN(t)∥4L4 + c0∥uN(t)∥60. In addition, if we assume

further u0 ∈ Ḣ 2 and ∥Q 1
2 ∥HS(L2,Ḣ 2) < ∞, we also have

iii) E∥uN(t)∥22 ≤ C.

Remark 2 The uniform boundedness of the original solution u can also be obtained in the
same procedure as Proposition 3.1 or [8]. As the Ḣ 2-regularity for both the original solution
and numerical solutions are essential to obtain the time-independent weak error, we need
the assumption u0 ∈ Ḣ 2 and ∥Q 1

2 ∥HS(L2,Ḣ 2) < ∞ in the error analysis.

3.3 Weak Error between Solutions u and uN

Weak convergence is established for the spatial semi-discretization (3.1) in this section
utilizing a transformation of uN(t) and the corresponding Kolmogorov equation.

Theorem 3.2 Assume that u0 ∈ Ḣ 2 and ∥Q 1
2 ∥HS(L2,Ḣ 2) < ∞. For any φ ∈ C2

b (L
2), there

exists a constant C = C(u0,φ,Q) independent of T, such that for any T > 0,
∣∣∣∣E

[
φ
(
uN(T )

)]
− E

[
φ
(
u(T )

)]∣∣∣∣ ≤ CN−2.

Before the proof of Theorem 3.2, we give a useful lemma.
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Lemma 1 Assume that S(t) and πN are defined as before. We have the following estimation

∥S(t) − S(t)πN∥L(Ḣ s ,L2) ≤ Ce−αtN−s .

Proof For any u ∈ Ḣ s , we have

∥S(t)u − S(t)πNu∥0 = e−αt∥u − πNu∥0 = e−αt

⎛

⎝
∞∑

n=N+1

|(u, en)|2
⎞

⎠

1
2

≤ e−αt |λN |−
s
2

⎛

⎝
∞∑

n=N+1

|λn|s |(u, en)|2
⎞

⎠

1
2

≤ Ce−αtN−s∥u∥s .

Proof of Theorem 3.2 We split the proof in three steps.

Step 1. Calculation of E [φ(u(T ))].

To eliminate the unbounded Laplacian operator, we consider the modified process
Y (t) = S(T − t)u(t), t ∈ [0, T ], which is the solution of the following SPDE

dY (t) = iλS(T − t)
[
|S(t − T )Y (t)|2S(t − T )Y (t)

]
dt + S(T − t)Q

1
2 dW

:= H(Y(t))dt + S(T − t)Q
1
2 dW.

Denote v(T − t, y) := E[φ(Y (T ))|Y (t) = y] and it follows easily
∂v(T − t, y)

∂t
= −

(
Dv(T−t, y),H(y)

)
−1
2
T r

[
(S(T−t)Q

1
2 )∗D2v(T−t, y)S(T−t)Q

1
2

]
.

Note that the mild solution of u has the expression u(T ) = S(T − t)u(t) + iλ
∫ T
t S(T −

s)|u|2uds +
∫ T
t S(T − s)Q

1
2 dW . Thus, we have

v(T − t, y) = E[φ(Y (T ))|Y (t) = y] = E[φ(u(T ))|u(t) = S(t − T )y]

= E

[
φ

(
y + iλ

∫ T

t
S(T − s)|u(s)|2u(s)ds +

∫ T

t
S(T − s)Q

1
2 dW

)]
.

For any h ∈ L2, similar to [7] (Lemma 5.13), we have

(Dv(T − t, y), h) = E

[(
Dφ

(
y + iλ

∫ T

t
S(T − s)|u(s)|2u(s)ds +

∫ T

t
S(T − s)Q

1
2 dW

)
,χh(t)

)]

with χh(t) = h+ iλ
∫ T
t S(T − s)

(
2|u(s)|2χh(s)+ u2(s)χh(s)

)
ds. It’s easy to obtain that

∥χh(t)∥0 ≤ ∥h∥0 + C

∫ T

t
e−α(T−s)∥u(s)∥21∥χh(s)∥0ds. (3.6)

To show the uniform boundedness of E∥χh(t)∥0, we define a family of subsets

Km :=
{

ω ∈ %
∣∣∣ sup
t≤s≤T

∥u(s)∥1 > m(T + 1 − t)
1
2

}

, m ∈ N
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for any t ≤ T . We claim that E
(
supt≤s≤T ∥u(s)∥21

)
≤ C + C(T − t). In fact, we can

deduce

dH(u(t)) ≤ −3
2
αH(u(t))+ Cdt + dM∗(t)

similar to Proposition 3.1 or [8], which implies

H(u(s)) ≤ e− 3
2α(s−t)H(u(t))+

∫ s

t
Ce− 3

2α(s−r)dr +
∫ s

t
e− 3

2α(s−r)dM∗(r)

with dM∗ := 6c0∥u∥40Re
(
u,Q

1
2 dW

)
− Re

(
"u+ λ|u|2u,Q 1

2 dW
)
and EH(u(t)) ≤ C.

Taking supremum and expectation, we get

E

[

sup
t≤s≤T

H(u(s))

]

≤ EH(u(t))+ C(T − t)+ E

[

sup
t≤s≤T

∫ s

t
e− 3

2α(s−r)dM∗(r)

]

≤ C + C(T − t),

where in the last step we have used the Doob’s inequality for convolution integrals (see [16],
Theorem 2). This complete the proof of the claim. Then the Chebyshev’s inequality (see
e.g. [10]) yields that

P (Km) ≤ E
(
supt≤s≤T ∥u(s)∥21

)

m2(T + 1 − t)
≤ C + C(T − t)

m2(T + 1 − t)
≤ C

m2 , ∀ t ≤ T .

As
∞∑

m=1
P(Km) ≤

∞∑
m=1

C
m2 < ∞, we get P(∩∞

n=1∪∞
m=nKm) = 0 based on the Borel-Cantelli

Lemma (see e.g. [10]). It implies that there exists a constant M∗ ∈ N, for any m ≥ M∗,
∥u(t)∥1 ≤ sup

t≤s≤T
∥u(s)∥1 ≤ m(T + 1 − t)

1
2 almost surely. Then the backward Grönwall’s

inequality applied to Eq. 3.6 yields E∥χh(t)∥0 ≤ C∥h∥0 thanks to the exponential decay
factor, and it holds

|(Dv(T − t, y), h)| ≤ ∥φ∥C1
b
E∥χh(t)∥0 ≤ C∥φ∥C1

b
∥h∥0. (3.7)

Similarly, we also have
∣∣∣
( (

D2v(T − t, y), h
)
, h

)∣∣∣ ≤ C∥φ∥C2
b
∥h∥20. (3.8)

The Itô’s formula gives that

dv(T − t, Y (t)) = ∂v

∂t
(T − t, Y (t))dt +

(
Dv (T − t, Y (t)) ,H (Y (t)) dt

+S(T − t)Q
1
2 dW(t)

)

+1
2
T r

[
(S(T − t)Q

1
2 )∗D2v (T − t, Y (t)) S(T − t)Q

1
2

]
dt

=
(
Dv(T − t, Y (t)), S(T − t)Q

1
2 dW(t)

)
.

Therefore,

v(0, Y (T )) = v(T , Y (0))+
∫ T

0

(
Dv(T − s, Y (s)), S(T − s)Q

1
2 dW(s)

)
. (3.9)
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Noticing that Y (0) = S(T )u0 and Y (T ) = u(T ), we recall v(T − t, y) =
E[φ(Y (T ))|Y (t) = y] to derive

v(0, Y (T )) = E [φ(u(T ))|Y (T ) = u(T )]

and

v(T , Y (0)) = E [φ(Y (T ))|Y (0) = S(T )u0]

= E

[
φ
(
S(T )u0 +

∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)∣∣∣Y (0) = S(T )u0

]
.

Take expectation of both sides of Eq. 3.9 and we have

E[φ(u(T ))] = E

[
φ
(
S(T )u0 +

∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)]
. (3.10)

Step 2. Calculation of E [φ(uN(T ))].

The mild solution of Eq. 3.1 is

uN(t) = S(t)πNu0 + iλ
∫ t

0
S(t − s)πN

(
|uN(s)|2uN(s)

)
ds +

∫ t

0
S(t − s)πNQ

1
2 dW(s).

Using similar argument as above, we consider the following stochastic process:

YN(t) = S(T − t)uN(t).

The relevant SDE is

dYN(t) = iλS(T − t)πN

[
|S(t − T )YN(t)|2S(t − T )YN(t)

]
dt + S(T − t)πNQ

1
2 dW

:= HN(YN(t))dt + S(T − t)πNQ
1
2 dW(t).

Apply Itô’s formula to t → v(T − t, YN(t)) and we get

dv(T − t, YN(t)) = ∂v

∂t
(T − t, YN(t))dt

+
(
Dv(T − t, YN(t)),HN(YN(t))dt + S(T − t)πNQ

1
2 dW(t)

)

+1
2
T r

[
(S(T − t)πNQ

1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]
dt

=
(
Dv(T − t, YN(t)), S(T − t)πNQ

1
2 dW(t)

)

+
(
Dv(T − t, YN(t)),HN (YN(t)) − H (YN(t))

)
dt

−1
2
T r

[
(S(T − t)Q

1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

]
dt

+1
2
T r

[
(S(T − t)πNQ

1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]
dt.
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Therefore,

v(0, YN(T )) = v(T , YN(0))+
∫ T

0

(
Dv(T − s, YN(s)), S(T − s)πNQ

1
2 dW(s)

)

+
∫ T

0

(
Dv

(
T − t, YN(t)

)
, HN

(
YN(t)

)
− H

(
YN(t)

))
dt

+1
2

∫ T

0
T r

[
(S(T − t)πNQ

1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]
dt

−1
2

∫ T

0
T r

[
(S(T − t)Q

1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

]
dt. (3.11)

By the construction of YN , we can check that

YN(0) = S(T )πNu0 and YN(T ) = uN(T ).

According to the representation of v, we have

v(0, YN(T )) = E [φ(Y (T ))|Y (T ) = YN(T )] = E [φ(uN(T ))|Y (T ) = YN(T )]

and

v(T , YN(0)) = E [φ(Y (T ))|Y (0) = S(T )πNu0]

= E
[
φ
(
S(T )πNu0 +

∫ T

0
H(Y(t))dt

+S(T − t)Q
1
2 dW(t)

)∣∣∣Y (0) = S(T )πNu0

]
.

Take expectation of the two sides of Eq. 3.11 and we get

E [φ(uN(T ))] = E

[
φ
(
S(T )πNu0 +

∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)]

+E

∫ T

0

(
Dv

(
T − t, YN(t)

)
, HN

(
YN(t)

)
− H

(
YN(t)

))
dt

+1
2
E

∫ T

0

{
T r

[
(S(T − t)πNQ

1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]

−T r
[
(S(T − t)Q

1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

] }
dt. (3.12)

Step 3. Weak error of the solutions.
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Subtracting the resulting Eqs. 3.10 and 3.12 leads to

E [φ(uN(T ))] − E [φ(u(T ))]

= E

[
φ
(
S(T )πNu0 +

∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)

−φ
(
S(T )u0 +

∫ T

0
H(Y(t))dt + S(T − t)Q

1
2 dW(t)

)]

+E

∫ T

0

(
Dv

(
T − t, YN(t)

)
, HN

(
YN(t)

)
− H

(
YN(t)

))
dt

+1
2
E

∫ T

0

{
T r

[
(S(T − t)πNQ

1
2 )∗D2v(T − t, YN(t))S(T − t)πNQ

1
2

]

−T r
[
(S(T − t)Q

1
2 )∗D2v(T − t, YN(t))S(T − t)Q

1
2

] }
dt

:= I + II + III. (3.13)

Due to Lemma 1, terms I and II can be estimated as

|I | ≤ C ∥φ∥C1
b
E ∥S(T )u0 − S(T )πNu0∥0 ≤ Ce−αT ∥φ∥C1

b
E∥u0∥2N−2 ≤ Ce−αT N−2,

(3.14)
and

|II | ≤ CE

∫ T

0
∥φ∥C1

b
∥HN(YN(t)) − H(YN(t))∥0dt

= CE

∫ T

0
∥φ∥C1

b
∥iλS(T − t)(Id − πN)

(
|uN(t)|2uN(t)

)
∥0dt

≤ |λ|C
∫ T

0
e−α(T−t)∥φ∥C1

b
E
[
∥uN(t)∥21∥uN(t)∥2

]
N−2dt

≤ |λ|C
α
N−2 (3.15)

based on Lemma 1, Proposition 3.1 and the embedding H 1 ↪→ L∞ in R. In the first step of
Eq. 3.15, we have used the fact (3.7).

Let us now estimate term III . As (S(T − t)πN − S(T − t))Q
1
2 is a bounded linear

operator and so is D2v shown in Eq. 3.8, we have
∣∣∣∣T r

[
(S(T − t)πNQ

1
2 )∗D2v(T − t, YN (t))S(T − t)πNQ

1
2

]

−T r
[
(S(T − t)Q

1
2 )∗D2v(T − t, YN (t))S(T − t)Q

1
2

] ∣∣∣∣

=
∣∣∣T r

[
((S(T − t)πN − S(T − t))Q

1
2 )∗D2v(T − t, YN (t))(S(T − t)πN + S(T − t))Q

1
2

]∣∣∣

≤ C∥S(T − t)πN − S(T − t)∥L(Ḣ 2,L2)∥Q
1
2 ∥HS(L2,Ḣ 2)∥φ∥C2

b
∥S(T − t)∥L(L2,L2)∥Q

1
2 ∥HS(L2,L2)

≤ Ce−α(T−t)N−2.

Hence, integrating above equation leads to

|III | ≤ C

α
N−2. (3.16)
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Plugging (3.14), (3.15) and (3.16) into (3.13), we get

∣∣∣∣E
[
φ
(
uN(T )

)]
− E

[
φ
(
u(T )

)]∣∣∣∣ ≤ C(e−αT + 1
α
)N−2 ≤ CN−2, (3.17)

in which, C is independent of time T .

3.4 Convergence Order between Invariant Measures µ and µN

Based on the ergodicity of stochastic processes u and uN , for any deterministic u0 ∈ Ḣ 2,
we have the following two equations

lim
T→∞

1
T

∫ T

0
Eφ

(
u(t)

)
dt =

∫

L2
φ(y)dµ(y),

lim
T→∞

1
T

∫ T

0
Eφ

(
uN(t)

)
dt =

∫

VN

φ(y)dµN(y)

for any φ ∈ C2
b (L

2). Due to the time-independence of the weak error in Theorem 3.2, it
turns out for any fixed α and N ,

∣∣∣∣

∫

L2
φ(y)dµ(y) −

∫

VN

φ(y)dµN(y)

∣∣∣∣ =
∣∣∣∣ lim
T→∞

1
T

∫ T

0
Eφ

(
u(t)

)
− Eφ

(
uN(t)

)
dt

∣∣∣∣

≤ lim
T→∞

1
T

∫ T

0

∣∣Eφ
(
u(t)

)
− Eφ

(
uN(t)

)∣∣ dt ≤ lim
T→∞

1
T

∫ T

0
C(e−αt + 1

α
)N−2dt ≤ C

α
N−2,

which implies thatµN is a proper approximation ofµ. Thus, we give the following theorem.

Theorem 3.3 Assume that u0 ∈ Ḣ 2 and ∥Q 1
2 ∥HS(L2,Ḣ 3) < ∞. The error between

invariant measures µ and µN is of order 2, i.e.,

∣∣∣∣

∫

L2
φ(y)dµ(y) −

∫

VN

φ(y)dµN(y)

∣∣∣∣ <
C

α
N−2.

Remark 3 Although the time-independent weak error between u and uN is obtained
under the assumption ∥Q 1

2 ∥HS(L2,Ḣ 2) < ∞, it is necessary to assume in addition

∥Q 1
2 ∥HS(L2,Ḣ 3) < ∞ in order to get the unique ergodicity of u (see [8]).

4 Full Discretization

In this section, we discretize (3.1) in temporal direction by a modification of the implicit
Euler scheme to get a fully discrete scheme. We prove the ergodicity of the numerical solu-
tion ukN of the fully discrete scheme, and get weak order 1

2 of ukN in temporal direction.
Thus, we achieve at least the same order as the weak error for the error of invariant measure,
as a result of the time-independency of the weak error and the ergodicity of the solution.

Author's personal copy



338 C. Chen et al.

4.1 Fully Discrete Scheme

We use a modified implicit Euler scheme to approximate (3.1), and obtain the following
scheme

⎧
⎪⎪⎨

⎪⎪⎩

ukN − e−ατuk−1
N =

(

i"ukN + iλπN

(
|ukN |2 + |e−ατuk−1

N |2
2

ukN

))

τ + πNQ
1
2 δWk

u0N = πNu0(x),
(4.1)

where ukN is an approximation of uN(tk), τ represents the uniform time step, tk = kτ , and
δWk = W(tk) − W(tk−1).

The well-posedness of scheme (4.1), together with the uniform boundedness of the
numerical solution, is stated in the following proposition. The time step τ is assumed to
satisfy ατ ∈ [0, 1] in sequel.

Proposition 4.1 Assume u0 ∈ Ḣ 0. For sufficiently small τ , there uniquely exists a family of
VN -valued and {Ftk }k∈N-adapted solutions {ukN }k∈N of Eq. 4.1, which satisfies that for any
integer p ≥ 2, there exists a constant C = C(p,α, u0N) > 0, such that

E∥ukN∥p0 ≤ C, ∀ k ∈ N.

Proof Step 1. Existence and uniqueness of solution.
Similar to [6], we fix a family {gk}k∈N of deterministic functions in VN . We also fix

ũk−1
N ∈ VN , the existence of solution ũkN ∈ VN of

ũkN − e−ατ ũk−1
N = iτ"ũkN + iλτπN

(
|ũkN |2 + |e−ατ ũk−1

N |2
2

ũkN

)

+ √
τgk (4.2)

can be proved by using Brouwer fixed point theorem. Indeed, multiplying (4.2) by ũ
k

N ,
integrating with respect to x and taking the real part, we get

∥ũkN∥20 + ∥ũkN − e−ατ ũk−1
N ∥20 − e−2ατ∥ũk−1

N ∥20

= 2
√

τRe

[∫ 1

0
(ũ

k

N − e−ατ ũ
k−1
N )gkdx +

∫ 1

0
(e−ατ ũ

k−1
N )gkdx

]

≤ ∥ũkN − e−ατ ũk−1
N ∥20 + e−2ατ∥ũk−1

N ∥20 + 2τ∥gk∥20,
i.e.,

∥ũkN∥20 ≤ 2e−2ατ∥ũk−1
N ∥20 + 2τ∥gk∥20. (4.3)

Define

+ : VN × VN → P(L2),

(ũk−1
N , gk) 0→ {ũkN |ũkN are solutions of (42)},

where P(L2) is the power set of L2. Equation 4.3 implies that + is continuous, and its
graph is closed by the closed graph theorem. When the spaces are endowed with their Borel
σ -algebras, there is a measurable continuous function κ : VN × VN → L2 such that

κ(u, g) ∈ +(u, g), ∀ (u, g) ∈ VN × VN.
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Assume that uk−1
N ∈ VN is a Ftk−1 -measurable random variable, then ukN =

κ(uk−1
N , πNQ

1
2 δWk√
τ

) is an L2-valued solution of Eq. 4.1. Moreover,

(1 − i"τ )ukN = e−ατuk−1
N + iλτπN

(
|ukN |2 + |e−ατuk−1

N |2
2

ukN

)

+ πNQ
1
2 δWk ∈ VN.

Hence, ukN is actually a VN -valued solution of Eq. 4.1.
For any given uk−1

N and sufficiently small time step τ , the solution ukN is unique, which
can be proved in a similar procedure as [2]. This fact will be used in proving the ergodicity of
the numerical solution {ukN }k∈N, and it can be found in Appendix “The Proof of Uniqueness
of the Solution for Eq. 4.1”.

Step 2. Boundedness of the p-moments.

The constants C below may be different, but do not depend on time.

i) p = 2. To show the boundedness, we multiply (4.1) by ukN , integrate in [0,1] with
respect to the space variable, take expectation and take the real part,

E∥ukN∥20 + E∥ukN − e−ατuk−1
N ∥20 − e−2ατE∥uk−1

N ∥20 = 2ReE
∫ 1

0
ukNπNQ

1
2 δWkdx

= 2ReE
∫ 1

0

(
ukN − e−ατuk−1

N

)
πNQ

1
2 δWkdx ≤ E∥ukN − e−ατuk−1

N ∥20 + E∥πNQ
1
2 δWk∥20.

It derives

E∥ukN∥20 ≤ e−2ατE∥uk−1
N ∥20 + Cτ ≤ e−2ατkE∥u0N∥20 + Cτ (1+ e−2ατ + · · · + e−2ατ (k−1))

≤ e−2αtkE∥u0N∥20 +
Cτ

1 − e−2ατ
≤ E∥u0N∥20 +

C

e−12α

for τ < 1
α , where we have used e−2ατ < 1 − e−12ατ for τ < 1

α .
ii) p = 4. In the case when p=2, without taking expectation, we have

∥ukN∥20 − e−2ατ∥uk−1
N ∥20 + ∥ukN − e−ατuk−1

N ∥20 = 2Re
∫ 1

0
ukNπNQ

1
2 δWkdx.

Multiply both sides by ∥ukN∥20, take expectation and take the real part and we get

(LHS) = E∥ukN∥40 − e−2ατE∥uk−1
N ∥20∥ukN∥20 + E

[
∥ukN − e−ατuk−1

N ∥20∥ukN∥20
]

= 1
2

(
E∥ukN∥40 − e−4ατE∥uk−1

N ∥40
)
+ 1

2
E
(
∥ukN∥20 − e−2ατ∥uk−1

N ∥20
)2

+E
[
∥ukN − e−2ατuk−1

N ∥20∥ukN∥20
]
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and

(RHS) = 2ReE
∫ 1

0
∥ukN∥20ukNπNQ

1
2 δWkdx

= 2ReE
∫ 1

0

(
∥ukN∥20

(
ukN − e−ατuk−1

N

))
πNQ

1
2 δWkdx

+2ReE
∫ 1

0

((
∥ukN∥20 − e−2ατ∥uk−1

N ∥20
)
e−ατuk−1

N

)
πNQ

1
2 δWkdx

≤ E
[
∥ukN − e−ατuk−1

N ∥20∥ukN∥20
]
+ E

(
∥ukN∥20∥πNQ

1
2 δWk∥20

)

+1
4
E
(
∥ukN∥20 − e−2ατ∥uk−1

N ∥20
)2

+ 4e−2ατE∥uk−1
N πNQ

1
2 δWk∥20

≤ E
[
∥ukN − e−ατuk−1

N ∥20∥ukN∥20
]
+ 1

2
E
(
∥ukN∥20 − e−2ατ∥uk−1

N ∥20
)2

+ Cτ.

Compare (LHS) with (RHS), we obtain

E∥ukN∥40 ≤ e−4ατE∥uk−1
N ∥40 + Cτ ≤ C.

iii) p = 3. Using 1) and 2), it is easy to check that the following holds true

E∥ukN∥30 ≤ E
∥ukN∥20 + ∥ukN∥40

2
≤ C.

iv) p > 4. By repeating above procedure, we complete the proof.

Before showing the weak error between uN(t) and ukN , we need some a priori estimates
on ∥ukN∥1 and ∥ukN∥2.

Proposition 4.2 Assume that λ = 0 or −1, u0 ∈ Ḣ 1, u0N = πNu0 and ∥Q 1
2 ∥HS(L2,Ḣ 1) <

∞. Then for any p ≥ 1, there exists a constant C = C(α, u0, p) independent of N and tk ,
such that

EHp
k ≤ C, ∀ k ∈ N,

whereHk := ∥∇ukN∥20 − λ
2∥ukN∥4

L4 .

Proof The proof for λ = 0 is in the same procedure as that for λ = −1 and is much easier.
Here we only give the proof for λ = −1

ukN − e−ατuk−1
N =

(

i"ukN − iπN

(
|ukN |2 + |e−ατuk−1

N |2
2

ukN

))

τ + πNQ
1
2 δWk. (4.4)

i) p = 1. Multiplying (4.4) by ukN − e−ατuk−1
N , integrating with respect to x, taking the

imaginary part and using the fact
(
(Id − πN)v, vN

)
= 0, ∀ v ∈ Ḣ 0, vN ∈ VN, we
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have

∥∇ukN∥20 + ∥∇(ukN − e−ατuk−1
N )∥20 − e−2ατ∥∇uk−1

N ∥20

= −Re

∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
)
ukN(u

k
N − e−ατuk−1

N )dx

+ 2
τ
Im

∫ 1

0
πNQ

1
2 δWk(u

k
N − e−ατuk−1

N )dx

=: A+ B.

Simple computations yield

A = −Re

[∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
)(ukN + e−ατuk−1

N

2
+ ukN − e−ατuk−1

N

2

)
(ukN − e−ατuk−1

N )dx

]

≤ − 1
2
∥ukN∥4

L4 +
1
2
e−4ατ ∥uk−1

N ∥4
L4 ≤ − 1

2
∥ukN∥4

L4 +
1
2
e−2ατ ∥uk−1

N ∥4
L4

and

B = 2
τ
Im

[∫ 1

0
πNQ

1
2 δWk

[
− iτ"ukN + iτ

|ukN |2 + |e−ατuk−1
N |2

2
ukN + πNQ

1
2 δWk

]
dx

]

= 2Re

[∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(
ukN − e−ατuk−1

N

)
dx

]

+ 2Re

[∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(
e−ατuk−1

N

)
dx

]

+Re

[∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
)
ukN · πNQ

1
2 δWkdx

]

≤ 1
4
∥∇(ukN − e−ατuk−1

N )∥20 + C∥∇(πNQ
1
2 δWk)∥20 + 2Re

[∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(
e−ατuk−1

N

)
dx

]

+Re

[∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
)
ukN · πNQ

1
2 δWkdx

]

.

DenoteHk = ∥∇ukN∥20 + 1
2∥ukN∥4

L4 , then

EHk +
3
4
E∥∇(ukN − e−ατuk−1

N )∥20
≤ e−2ατEHk−1 + Cτ (4.5)

+ReE

[∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
)
ukN · πNQ

1
2 δWkdx

]

. (4.6)

Based on the formula

(|a|2+|b|2)a = a|a−b|2+b(a−b)2+3|b|2(a−b)+b|a−b|2+(b)2(a−b)+2|b|2b,
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the last term on the right hand side can be rewritten as

ReE

[∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
)
ukN · πNQ

1
2 δWkdx

]

= ReE

∫ 1

0
ukN

∣∣∣ukN − e−ατuk−1
N

∣∣∣
2
πNQ

1
2 δWkdx + ReE

∫ 1

0
e−ατuk−1

N

(
ukN − e−ατuk−1

N

)2
πNQ

1
2 δWkdx

+3ReE
∫ 1

0
|e−ατuk−1

N |2
(
ukN − e−ατuk−1

N

)
πNQ

1
2 δWkdx

+ReE

∫ 1

0
e−ατuk−1

N

∣∣∣ukN − e−ατuk−1
N

∣∣∣
2
πNQ

1
2 δWkdx

+ReE

∫ 1

0
(e−ατuk−1

N )2(ukN − e−ατuk−1
N )πNQ

1
2 δWkdx + 2ReE

∫ 1

0
|e−ατuk−1

N |2e−ατuk−1
N πNQ

1
2 δWkdx

=: a + b + c + d + e + f.

Noting that f = 0, it suffices to estimate the other five terms

a + b + d ≤ E
[
∥ukN∥0∥ukN − e−ατuk−1

N ∥2
L4∥πNQ

1
2 δWk∥L∞

+2∥e−ατuk−1
N ∥0∥ukN − e−ατuk−1

N ∥2
L4∥πNQ

1
2 δWk∥L∞

]

≤ E

[(
∥ukN∥0 + 2∥e−ατuk−1

N ∥0
)
∥∇(ukN − e−ατuk−1

N )∥
1
2
0 ∥ukN − e−ατuk−1

N ∥
3
2
0 ∥πNQ

1
2 δWk∥L∞

]

≤ 1
4
E

[
∥∇(ukN − e−ατuk−1

N )∥0∥ukN − e−ατuk−1
N ∥0

]

+CE
[(

∥ukN∥20 + ∥e−ατuk−1
N ∥20

)
∥ukN − e−ατuk−1

N ∥20∥πNQ
1
2 δWk∥2L∞

]

≤ 1
4
E∥∇(ukN − e−ατuk−1

N )∥20 + CE
(
τ

1
2

(
∥ukN∥20 + ∥e−ατuk−1

N ∥20
)
∥ukN − e−ατuk−1

N ∥20
)2

+CE
(
τ− 1

2 ∥πNQ
1
2 δWk∥2L∞

)2

≤ 1
4
E∥∇(ukN − e−ατuk−1

N )∥20 + Cτ,

where in the last step we have used Proposition 4.1,

c + e ≤ 4E
[
∥e−ατuk−1

N ∥2
L4∥ukN − e−ατuk−1

N ∥0∥πNQ
1
2 δWk∥L∞

]

≤ 1
2
E∥ukN − e−ατuk−1

N ∥20 + 8ητe−4ατE∥uk−1
N ∥4

L4

≤ 1
2
E∥ukN − e−ατuk−1

N ∥20 + 2E
[(√

ατ
1
2 e−ατ ∥∇uk−1

N ∥0
)(

C

2
√

α
8ητ

1
2 e−3ατ ∥uk−1

N ∥30
)]

≤ 1
2
E∥ukN − e−ατuk−1

N ∥20 + ατe−2ατE∥∇uk−1
N ∥20 + Cτ.

Then (4.5) turns to be

EHk ≤ (1+ ατ )e−2ατEHk−1 + Cτ ≤ e−ατEHk−1 + Cτ.

We finally obtain that

EHk ≤ C.
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ii) p = 2. From the case p = 1, by ∥ · ∥4
L4 ≤ ∥∇ · ∥0∥ · ∥30, we get

Hk − e−2ατHk−1 ≤ C∥∇(πNQ
1
2 δWk)∥20

+CRe

[∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(
e−ατuk−1

N

)
dx

]

+C
(
τ

1
2

(
∥ukN∥20 + ∥e−ατuk−1

N ∥20
)
∥ukN − e−ατuk−1

N ∥20
)2

+C
(
τ− 1

2 ∥πNQ
1
2 δWk∥2L∞

)2
+ ατe−2ατHk−1

+Cτ−1∥uk−1
N ∥60∥πNQ

1
2 δWk∥4L∞ .

Multiplying above formula byHk , we have

H2
k + (Hk − e−2ατHk−1)

2 − e−4ατH2
k−1

≤ CHk∥∇(πNQ
1
2 δWk)∥20 + CHkRe

[∫ 1

0
∇(πNQ

1
2 δWk) · ∇

(
e−ατuk−1

N

)
dx

]

+CτHk

(
∥ukN∥20 + ∥e−ατuk−1

N ∥20
)2

∥ukN − e−ατuk−1
N ∥40

+CHk

(
τ− 1

2 ∥πNQ
1
2 δWk∥2L∞

)2
+ ατe−2ατHkHk−1

+Cτ−1Hk∥uk−1
N ∥60∥πNQ

1
2 δWk∥4L∞

=: a′ + b′ + c′ + d ′ + e′ + f ′,

where

E[a′ + b′ + c′ + d ′] ≤ 1
4
E(Hk − e−2ατHk−1)

2 + Cτ

+Cτe−2ατE

[
Hk−1

(
∥ukN∥20 + ∥e−ατuk−1

N ∥20
)2

∥ukN − e−ατuk−1
N ∥40

]

≤ 1
4
E(Hk − e−2ατHk−1)

2 + 1
2
τe−4ατEH2

k−1 + Cτ,

E[e′] ≤ 1
2
E

(
Hk − e−2ατHk−1

)2
+ (

1
2
α2τ 2 + ατ )e−4ατEH2

k−1

≤ 1
2
E

(
Hk − e−2ατHk−1

)2
+ 3

2
ατe−4ατEH2

k−1

and

E[f ′] ≤ 1
4
E

(
Hk − e−2ατHk−1

)2
+ Cτ−2E

[
∥uk−1

N ∥120 ∥πNQ
1
2 δWk∥8L∞

]

+ατe−4ατEH2
k−1 + Cτ−3E

[
∥uk−1

N ∥120 ∥πNQ
1
2 δWk∥8L∞

]

≤ 1
4
E

(
Hk − e−2ατHk−1

)2
+ ατe−4ατEH2

k−1 + Cτ.

Then we conclude

EH2
k ≤ (1+ 3ατ )e−4ατEH2

k−1 + Cτ ≤ e−ατEH2
k−1 + Cτ ≤ C,
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where we have used (1+ 3ατ )e−3ατ ≤ 1 for ατ < 1.

iii) For p = 2l , l ∈ N, the result can be proved by above procedure. So it also holds for
any p ∈ N.

Corollary 1 Under the assumptions in Proposition 4.2, we have

E∥ukN − e−ατuk−1
N ∥2p0 ≤ Cτp,

where constant C is independent of N and tk .

Proof It is easy to check this by multiplying ukN − e−ατuk−1
N to both sides of Eq. 4.4,

integrating with respect to x and taking expectation,

E∥ukN − e−ατuk−1
N ∥2p0

= E

[
τIm

∫ 1

0
∇ukN∇(ukN − e−ατuk−1

N )dx + Re

∫ 1

0
πNQ

1
2 δWk

(
ukN − e−ατuk−1

N

)
dx

+τ

4
Im

∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
) (

ukN + e−ατuk−1
N

) (
ukN − e−ατuk−1

N

)
dx

]p

≤ CE

[
τp∥∇ukN∥p0 ∥∇

(
ukN − e−ατuk−1

N

)
∥p0

+τp
(
∥ukN∥2p1 + ∥uk−1

N ∥2p1
) (

∥ukN∥2p0 + ∥uk−1
N ∥2p0

) ]

+CE∥πNQ
1
2 δWk∥2p0 + 1

2
E∥ukN − e−ατuk−1

N ∥2p0

≤ 1
2
E∥ukN − e−ατuk−1

N ∥2p0 + Cτp.

Then we complete the proof by Proposition 4.2.

Proposition 4.3 Under the assumptions λ = 0 or −1, u0 ∈ Ḣ 2 and ∥Q 1
2 ∥HS(L2,Ḣ 2) < ∞,

we also have the uniform boundedness of 2-norm as follows

E∥ukN∥22 ≤ C, ∀ k ∈ N,
where C is also independent of N and tk .

Proof We also give the proof for λ = −1 only. Multiply (4.4) by "(ukN − e−ατuk−1
N ),

integrating with respect to x, and then taking the imaginary part, we obtain

∥"ukN∥20 + ∥"(ukN − e−ατuk−1
N )∥20 − e−2ατ∥"uk−1

N ∥20

= Re

∫ 1

0

(
|ukN |2 + |e−ατuk−1

N |2
)
ukN"(ukN − e−ατuk−1

N )dx

− 2
τ
Im

∫ 1

0
πNQ

1
2 δWk"(ukN − e−ατuk−1

N )dx

=: A′ + B ′.
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According to the uniform boundedness of any order of 0-norm and 1-norm, we have the
following estimations.

E[A′] = ReE

∫ 1

0
|ukN |2ukN"(ukN − e−ατuk−1

N )dx

+e−3ατReE

∫ 1

0
|uk−1

N |2uk−1
N "(ukN − e−ατuk−1

N )dx

+e−2ατReE

∫ 1

0
|uk−1

N |2(ukN − e−ατuk−1
N )"(ukN − e−ατuk−1

N )dx

= ReE

∫ 1

0
|ukN |2ukN"ukNdx − e−4ατReE

∫ 1

0
|uk−1

N |2uk−1
N "uk−1

N dx

+e−2ατReE

∫ 1

0
|uk−1

N |2(ukN − e−ατuk−1
N )"(ukN − e−ατuk−1

N )dx

+ReE

∫ 1

0
ukN"ukN |ukN − e−ατuk−1

N |2dx

+2ReE
∫ 1

0
ukN(∇ukN)

2(ukN − e−ατuk−1
N )dx

+4ReE
∫ 1

0
ukN |∇ukN |2(ukN − e−ατuk−1

N )dx

+ReE

∫ 1

0
(ukN − e−ατuk−1

N )"ukN

(
|ukN |2 − |e−ατuk−1

N |2
)
dx

=: Ak
a − e−4ατAk−1

a + Ab + Ac + Ad + Ae + Af .

We estimate above terms repectively and obtain

−e−4ατAk−1
a = −e−2ατAk−1

a + e−2ατ (1 − e−2ατ )Ak−1
a

≤ −e−2ατAk−1
a + CτE∥uk−1

N ∥41 ≤ −e−2ατAk−1
a + Cτ,

Ab ≤ e−2ατE
[
∥uk−1

N ∥2L∞∥ukN − e−ατuk−1
N ∥0∥"(ukN − e−ατuk−1

N )∥0
]

≤ 1
6
E∥"(ukN − e−ατuk−1

N )∥20 + CτE∥uk−1
N ∥81 + Cτ−1E∥ukN − e−ατuk−1

N ∥40

≤ 1
6
E∥"(ukN − e−ατuk−1

N )∥20 + Cτ,

Ac ≤ E
[
∥ukN − e−ατuk−1

N ∥2
L4∥ukN∥L∞∥"ukN∥0

]

≤ Cτ−1E
[
∥∇(ukN − e−ατuk−1

N )∥0∥ukN − e−ατuk−1
N ∥30∥ukN∥21

]
+ 1

8
ατE∥"ukN∥20

≤ 1
6
E∥"(ukN − e−ατuk−1

N )∥20 + Cτ−5E∥ukN − e−ατuk−1
N ∥120

+CτE∥ukN∥81 +
1
8
ατE∥"ukN∥20

≤ 1
6
E∥"(ukN − e−ατuk−1

N )∥20 +
1
8
ατE∥"ukN∥20 + Cτ,
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Ad = 2ReE
∫ 1

0
ukN(∇ukN)

2
[

− iτ"ukN + iτπN

( |ukN |2 + |e−ατuk−1
N |2

2
ukN

)

+πNQ
1
2 δWk

]
dx

≤ 1
16

ατE∥"ukN∥20 + Cτ + 2ReE
∫ 1

0
ukN(∇ukN)

2πNQ
1
2 δWkdx

≤ 1
16

ατE∥"ukN∥20 + Cτ + 2ReE
∫ 1

0
(ukN − e−ατuk−1

N )(∇ukN)
2πNQ

1
2 δWkdx

+2ReE
∫ 1

0
e−ατuk−1

N

(
(∇ukN)

2 − (e−ατ∇uk−1
N )2

)
πNQ

1
2 δWkdx

≤ 1
16

ατE∥"ukN∥20 + Cτ + CE
[
∥ukN − e−ατuk−1

N ∥0∥∇ukN∥2
L4∥πNQ

1
2 δWk∥L∞

]

+CE
[
∥∇(ukN − e−ατuk−1

N )∥0
(
∥uk−1

N ∥1∥ukN∥1 + ∥uk−1
N ∥21

)
∥πNQ

1
2 δWk∥L∞

]

≤ 1
6
E∥"(ukN − e−ατuk−1

N )∥20 +
1
8
ατE∥"ukN∥20 + Cτ,

and

Af = ReE

∫ 1

0
(ukN − e−ατuk−1

N )"ukNRe
[ (

ukN − e−ατuk−1
N

)
(ukN + e−ατuk−1

N )
]
dx

≤ E
[
∥ukN − e−ατuk−1

N ∥2
L4(∥ukN∥L∞ + ∥uk−1

N ∥L∞)∥"ukN∥0
]

≤ 1
6
E∥"(ukN − e−ατuk−1

N )∥20 +
1
8
ατE∥"ukN∥20 + Cτ,

where Ae has an same estimation as Ad and we have used that ∥∇ · ∥0 ∼= ∥ · ∥1 ≤ ∥ · ∥2 ∼=
∥" · ∥0. So we obtain

E[A′] ≤ 5
6
E∥"(ukN − e−ατuk−1

N )∥20 +
1
2
ατE∥"ukN∥20 + Cτ.

For term B ′, we have

E[B ′] = − 2
τ
ImE

∫ 1

0
"

(
πNQ

1
2 δWk

)(

−iτ"ukN + iπN

(
|ukN |2 + |e−ατuk−1

N |2
2

ukN

)

τ + πNQ
1
2 δWk

)

dx

= 2ReE
∫ 1

0
"

(
πNQ

1
2 δWk

)
"(ukN − e−ατuk−1

N )dx

−ReE

∫ 1

0
"

(
πNQ

1
2 δWk

) (
|ukN |2ukN − |e−ατuk−1

N |2e−ατuk−1
N

)
dx

−ReE

∫ 1

0
"

(
πNQ

1
2 δWk

)
|e−ατuk−1

N |2(ukN − e−ατuk−1
N )dx

≤ 1
6
E∥"(ukN − e−ατuk−1

N )∥20 + Cτ.

Denoting Kk := ∥"ukN∥20 − Re
∫ 1
0 |ukN |2ukN"ukNdx, then E∥"ukN∥20 ≤ EKk + C and

EKk − e−2ατEKk−1 ≤ 1
2
ατE∥"ukN∥20 + Cτ ≤ 1

2
ατEKk + Cτ.
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Finally,

EKk ≤ (1 − 1
2
ατ )−1e−2ατEKk−1 + Cτ ≤ C,

where we have used (1 − 1
2ατ )−1e−2ατ ≤ e−ατ for ατ < 1.

4.2 Ergodicity of the Fully Discrete Scheme

To prove the ergodicity of the scheme (4.1), we will use the discrete form of Theorem 2.1.
We give some existing results before our theorem.

Assumption 1 (Minorization condition in [14]) The Markov chain (xn)n∈N with transition
kernel Pn(x,G) = P(xn ∈ G|x0 = x) satisfies, for some fixed compact set C ∈ B(Rd), the
following:

i) for some y∗ ∈ int (C) there is, for any δ > 0, a t1 = t1(δ) ∈ N such that

Pt1(x, Bδ(y
∗)) > 0 ∀x ∈ C;

ii) the transition kernel possesses a density pn(x, y), more precisely

Pn(x,G) =
∫

G
pn(x, y)dy ∀x ∈ C, G ∈ B(Rd) ∩ B(C)

and pn(x, y) is jointly continuous in (x, y) ∈ C × C.

Assumption 2 (Lyapunov condition in [14]) There is a function F : Rd → [1,∞), with
lim|x|→∞ F(x) = ∞, real numbers θ ∈ (0, 1), and γ ∈ [0,∞) such that

E[F(xn+1)|Fn] ≤ θF(xn)+ γ .

Definition 3 We say that function F is essentially quadratic if there exist constants Ci >

0, i = 1, 2, 3, such that

C1(1+ ∥x∥2) ≤ F(x) ≤ C2(1+ ∥x∥2), |∇F(x)| ≤ C3(1+ ∥x∥).

Theorem 4.1 ([14]) Assume that a Markov chain (xn)n∈N satisfies Assumptions 1 and 2
with an essentially quadratic F , then the chain possesses a unique invariant measure.

Based on the preliminaries above and the theory of Markov chains, we prove the
following theorem.

Theorem 4.2 For all τ sufficiently small, the solution (ukN)k∈N of scheme (4.1) has a unique
invariant measure µτ

N . Thus, it is ergodic.

Proof i) Lyapunov condition. Based on Proposition 4.1, we can take essentially quadratic
function F(·) = 1+∥ ·∥20 as the Lyapunov function, and the Lyapunov condition holds.
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ii) Minorization condition. In scheme (4.1), it gives

P k
N = e−ατP k−1

N − τ

(
"Qk

N + λ

2
πN

( (
|P k

N |2 + |Qk
N |2 + |e−ατP k−1

N |2 + |e−ατQk−1
N |2

)
Qk

N

))

+
N∑

m=1

√
ηmemδkβ

1
m, (4.7)

Qk
N = e−ατQk−1

N + τ

(
"P k

N + λ

2
πN

( (
|P k

N |2 + |Qk
N |2 + |e−ατP k−1

N |2 + |e−ατQk−1
N |2

)
P k
N

))

+
N∑

m=1

√
ηmemδkβ

2
m, (4.8)

where P k
N and Qk

N denote the real and imaginary part of ukN respectively, that is ukN =
P k
N + iQk

N . Also, πNQ
1
2 δWk =

∑N
m=1

√
ηmem

(
δkβ

1
m + iδkβ2

m

)
, where δkβ

1
m and δkβ

2
m

are the real and imaginary part of δWk respectively.
For any y1 = a1 + ib1, y2 = a2 + ib2 ∈ VN with ai and bi denoting the

real and imaginary part of yi (i = 1, 2) respectively, as {em}Nm=1 is a basis of VN ,
{δkβ1

m, δkβ
2
m}Nm=1 can be uniquely determined to ensure that (P k−1

N ,Qk−1
N ) = (a1, b1)

and (P k
N ,Q

k
N) = (a2, b2), which implies the irreducibility of ukN .

As stated in Proposition 4.1, the Ftk -measurable solution {ukN }k∈N is defined

through a unique continuous function: ukN = κ(uk−1
N , πNQ

1
2 δWk√
τ

), where δWk has a

C∞ density. Thus, the transition kernel P1(x,G), G ∈ B(VN) possesses a jointly
continuous density p1(x, y). Furthermore, densities pk(x, y) are achieved by the
time-homogeneous property of Markov chain {ukN }k∈N.

With above conditions, based on Theorem 4.1, we prove that ukN possesses a unique
invariant measure.

4.3 Weak Error between Solutions uN and ukN

We still use modified processes to calculate the weak error of the fully discrete
scheme in temporal direction. Denote Sτ = (Id − iτ")−1e−ατ , then scheme (4.1) is
rewritten as

ukN = Sτu
k−1
N + iλτeατSτ πN

(
|ukN |2 + |e−ατuk−1

N |2
2

ukN

)

+ eατSτ πNQ
1
2 δWk

= Skτ u
0
N + iλτeατ

k∑

l=1

Sk+1−l
τ πN

(
|ulN |2 + |e−ατul−1

N |2
2

ulN

)

+ eατ
k∑

l=1

Sk+1−l
τ πNQ

1
2 δWl (4.9)

Lemma 2 For any k ∈ N and sufficiently small τ , we have the following estimates,

i) ∥Skτ − S(t)∥L(Ḣ 2,L2) ≤ C(t + τ )
1
2 e−αtτ

1
2 , t ∈ [tk−1, tk+1],

ii) ∥Skτ − S(t)∥L(Ḣ 1,Ḣ 1) ≤ Ce−αt , t ∈ [tk−1, tk+1],
where the constant C = C(α) is independent of k and τ .
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Proof Step 1. If t = tk . As S(t) is the operator semigroup of equation du(t) =
(i"−α)u(t)dt, u(0) = u0 ∈ Ḣ 2, and Sτ is the corresponding discrete operator semigroup,
we have

Skτ u(0) = uk = e−ατuk−1 + iτ"uk, (4.10)

S(tk)u(0) = u(tk) = e−ατu(tk−1)+
∫ tk

tk−1

ie−α(tk−s)"u(s)ds. (4.11)

Denote ek = uk − u(tk) =
(
Skτ − S(tk)

)
u(0) with e0 = 0, then

ek = e−ατ ek−1 + iτ"ek + i
∫ tk

tk−1

[
"u(tk) − e−α(tk−s)"u(s)

]
ds.

Multiply ek to above formula, integrate with respect to x, take the real part, and we get

1
2

[
∥ek∥20 + ∥ek − e−ατ ek−1∥20 − e−2ατ∥ek−1∥20

]

= Re

[

i
∫ 1

0

∫ tk

tk−1

"ek

∫ tk

s
ie−α(tk−r)"u(r)drdsdx

]

≤ C

∫ tk

tk−1

∫ tk

s
∥"uk − "u(tk)∥0∥"u(r)∥0drds

≤ Ce−2αtk∥"u(0)∥20τ 2,

where we have used the fact that ∥"uk∥20 ≤ e−2αtk∥"u0∥20 and ∥"u(t)∥0 ≤
Ce−αt∥"u(0)∥0. In fact, multiplying "uk − e−ατ"uk−1 to Eq. 4.10, integrating in space
and taking the imaginary part, we obtain

∥"uk∥20 ≤ e−2ατ∥"uk−1∥20 ≤ e−2αtk∥"u0∥20.

Then it’s easy to check that

∥ek∥20 ≤ e−2ατ∥ek−1∥20 + Ce−2αtk∥"u(0)∥20τ 2

leads to

∥ek∥20 ≤ Ctke
−2αtk∥"u(0)∥20τ, (4.12)

which finally yields ∥Skτ − S(tk)∥L(Ḣ 2,L2) ≤ Ct
1
2
k e

−αtkτ
1
2 in i).

For ii), we have

∥
(
Skτ − S(tk)

)
u(0)∥21 =

∞∑

n=1

∣∣∣e−αtk
(
(1+ n2π2)−k − e−n2π2tk

)
(u(0), en)

∣∣∣
2
|λn|

≤ 4e−2αtk
∞∑

n=1

|(u(0), en)|2 |λn| = 4e−2αtk∥u(0)∥21.
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In the following two steps, we only give the proof of i), and ii) can be proved in a same
procedure. We use the notation ∥ · ∥ = ∥ · ∥L(Ḣ 2,L2), which is an operator norm defined at
the beginning of this paper.

Step 2. If t ∈ [tk−1, tk],

∥Skτ − S(t)∥ ≤ ∥Skτ − S(tk)∥ + ∥S(tk) − S(t)∥ ≤ Ct
1
2
k e

−αtkτ
1
2

+e−αt |e−α(tk−t) − 1|

≤ Ct
1
2
k e

−αtkτ
1
2 + e−αt

∞∑

n=1

1
n! (ατ )n ≤ Ct

1
2
k e

−αtkτ
1
2

+e−αtατ
eατ − 1

ατ

≤ C(t + τ )
1
2 e−αtτ

1
2 .

We have used the fact that eατ −1
ατ is uniformly bounded for ατ ∈ [0, 1].

Step 3. If t ∈ [tk, tk+1],

∥Skτ − S(t)∥ ≤ ∥Skτ − S(tk)∥ + ∥S(tk) − S(t)∥ ≤ Ct
1
2
k e

−αtkτ
1
2

+e−αt |e−α(tk−t) − 1|

≤ Ct
1
2
k e

−αt eα(t−tk)τ
1
2 + e−αtατ

eατ−1

ατ
≤ C(t + τ )

1
2 e−αtτ

1
2 .

We have used the fact eα(t−tk) ≤ eατ ≤ e.

Remark 4 From Eq. 4.10, we can also prove that

∥Skτ ∥L(L2,L2) ≤ Ce−αt ,

where k and t satisfying t ∈ [tk−1, tk+1].

Next theorem gives the time-independent weak error of the solutions for different cases.

Theorem 4.3 Assume that u0 ∈ Ḣ 2, u0N = uN(0) = πNu0 and ∥Q 1
2 ∥2HS(L2,Ḣ 2)

< ∞. For

the cases λ = 0 or −1, the weak errors are independent of time and of order 1
2 . That is, for

any φ ∈ C2
b (L

2), there exists a constant C = C(u0,φ) independent of N, T and M , such
that for any T = Mτ ,

∣∣∣E[φ(uN(T ))] − E[φ(uMN )]
∣∣∣ ≤ Cτ

1
2 .

Corollary 2 Under above assumptions, for any t ∈ [(M − 1)τ, (M + 1)τ ], it also holds
∣∣∣E[φ(uN(t))] − E[φ(uMN )]

∣∣∣ ≤ Cτ
1
2 .

Proof Let T = Mτ . As
∣∣∣E[φ(uN(t))]−E[φ(uMN )]

∣∣∣ =
∣∣∣E[φ(uN(T ))]−E[φ(uN(t))]

∣∣∣+
∣∣∣E[φ(uN(T ))]−E[φ(uMN )]

∣∣∣
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and ∣∣∣E[φ(uN(T ))] − E[φ(uN(t))]
∣∣∣ ≤ ∥φ∥C1

b
E∥uN(T ) − uN(t)∥0

≤ ∥φ∥C1
b
(T − t) sup

t≥0

[
E∥uN(t)∥2 + E∥uN(t)∥0 + E∥uN(t)∥21∥uN(t)∥0

]

+∥φ∥C1
b
E∥πNQ

1
2
(
W(T ) − W(t)

)
∥0 ≤ Cτ

1
2 ,

we then complete the proof according to Theorem 4.3.

Proof of Theorem 4.3 We split it into several steps.

Step 1. Calculation of E[φ(uN(T ))].
Recall the process we constructed in the proof of Theorem 3.2,

dYN(t) = HN(YN(t))dt + S(T − t)πNQ
1
2 dW(t).

Now we denote vN(T − t, y) = E[φ(YN(T ))|YN(t) = y], then

vN(0, YN(T )) = vN(T , YN(0))+
∫ T

0

(
DvN(T − t, YN(t)), S(T − t)πNQ

1
2 dW(t)

)
,

(4.13)
where

vN(0, YN(T )) = E[φ(uN(T ))|YN(T ) = uN(T )],
vN(T , YN(0)) = E[φ(YN(T ))|YN(0) = S(T )uN(0)]

= E

[
φ

(
S(T )uN(0)+

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)∣∣∣∣YN (4.14)

= S(T )uN(0)
]
.

The expectation of Eq. 4.13 implies,

E[φ(uN(T ))] = E

[
φ

(
S(T )uN(0)+

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]
.

(4.15)

Step 2. Calculation of E[φ(uMN )].
Similar to [9], we define a discrete modified process

Y k
N := SM−k

τ ukN

= SMτ u0N + iλτeατ
k∑

l=1

SM+1−l
τ πN

(
|ulN |2 + |e−ατul−1

N |2
2

ulN

)

(4.16)

+eατ
k∑

l=1

SM+1−l
τ πNQ

1
2 δWl

= SMτ u0N + iλτeατ
k∑

l=1

SM+1−l
τ πN

(
|Sl−M

τ Y l
N |2 + |e−ατSl−1−M

τ Y l−1
N |2

2
Sl−M

τ Y l
N

)

(4.17)

+eατ
k∑

l=1

SM+1−l
τ πNQ

1
2 δWl.
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Consider the following time continuous interpolation of Y k
N , which is also VN -valued and

{Ft }t≥0-adaped,

ỸN (t) := SMτ u0N + iλeατ

∫ t

0

M∑

l=1

SM+1−l
τ πN

(
|Sl−M

τ Y l
N |2 + |e−ατSl−1−M

τ Y l−1
N |2

2
Sl−M

τ Y l
N

)

1l (s)ds

+eατ

∫ t

0

M∑

l=1

SM+1−l
τ πNQ

1
2 1l (s)dW(s)

=: SMτ u0N +
∫ t

0
Hτ (Y

M
N , s)ds + eατ

∫ t

0

M∑

l=1

SM+1−l
τ πNQ

1
2 1l (s)dW(s).

In particular for t ∈ [tl−1, tl],

ỸN (t) = Y l−1
N + iλeατSM+1−l

τ πN

( |Sl−M
τ Y l

N |2 + |e−ατSl−1−M
τ Y l−1

N |2
2

Sl−M
τ Y l

N

)
(t − tl−1)

+eατSM+1−l
τ πNQ

1
2

(
W(t) − W(tl−1)

)
, (4.18)

or equivalently,

ỸN (t) = Y l
N + iλeατSM+1−l

τ πN

( |Sl−M
τ Y l

N |2 + |e−ατSl−1−M
τ Y l−1

N |2
2

Sl−M
τ Y l

N

)
(t − tl )

+eατSM+1−l
τ πNQ

1
2

(
W(t) − W(tl)

)
. (4.19)

Apply Itô’s formula to t 0→ vN(T − t, ỸN (t)),

dvN(T − t, ỸN (t))

= ∂vN

∂t
(T − t, ỸN (t))dt +

(
DvN,Hτ (Y

M
N , t)dt + eατ

M∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)dW(t)

)

+1
2
T r

⎡

⎣
(

eατ
M∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)

)∗

D2vN

(

eατ
M∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)

)⎤

⎦ dt

=
(
DvN,Hτ (Y

M
N , t) − HN(ỸN(t))

)
dt +

(

DvN, e
ατ

M∑

l=1

SM+1−l
τ πNQ

1
2 1l (t)dW(t)

)

+1
2

M∑

l=1

T r
[(

eατSM+1−l
τ πNQ

1
2

)∗
D2vN

(
eατSM+1−l

τ πNQ
1
2

)]
1l (t)dt

−1
2

M∑

l=1

T r
[(

S(T − t)πNQ
1
2

)∗
D2vN

(
S(T − t)πNQ

1
2

)]
1l (t)dt,

where DvN and D2vN are evaluated at (T − t, ỸN (t)).
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The same as before, integrate the formula above from 0 to T, and take expectation based
on the fact that

vN(0, ỸN (T )) = E[φ(YN(T ))|YN(T ) = ỸN (T )] = E[φ(uMN )|YN(T ) = uMN ],
vN(T , ỸN (0)) = E[φ(YN(T ))|YN(0) = ỸN (0)]

= E

[
φ

(
SMτ uN(0)+

∫ T

0
HN(YN(s))ds

+
∫ T

0
S(T − s)πNQ

1
2 dW

) ∣∣∣∣YN(0) = SMτ uN(0)
]
,

we get

E[φ(uMN )] = E

[
φ

(
SMτ uN(0)+

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]

+ E

∫ T

0

(
DvN,Hτ (Y

M
N , t) − HN(ỸN(t))

)
dt

+ 1
2

M∑

l=1

E

∫ T

0
T r

[ (
eατSM+1−l

τ πNQ
1
2

)∗
D2vN

(
eατSM+1−l

τ πNQ
1
2

)

−
(
S(T − t)πNQ

1
2

)∗
D2vN

(
S(T − t)πNQ

1
2

) ]
1l (t)dt. (4.20)

Step 3. Weak convergence order.

Subtracting (4.15) from (4.20), we derive

E[φ(uMN )] − E[φ(uN(T ))]

= E

[
φ

(
SMτ uN(0)+

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)

−φ

(
S(T )uN(0)+

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]

+E

∫ T

0

(
DvN,Hτ (Y

M
N , t) − HN(ỸN(t))

)
dt

+1
2

M∑

l=1

E

∫ T

0
T r

[ (
eατSM+1−l

τ πNQ
1
2

)∗
D2vN

(
eατSM+1−l

τ πNQ
1
2

)

−
(
S(T − t)πNQ

1
2

)∗
D2vN

(
S(T − t)πNQ

1
2

) ]
1l (t)dt.

=: I + II + III.
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Now we estimate I , II , and III separately. The constants C below may be different but are
all independent of T and τ .

|I | =
∣∣∣∣E

[
φ

(
SMτ uN(0)+

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)]

−E

[
φ

(
S(T )uN(0)+

∫ T

0
HN(YN(s))ds +

∫ T

0
S(T − s)πNQ

1
2 dW

)] ∣∣∣∣

≤ C∥φ∥C1
b
∥SMτ uN(0) − S(T )uN(0)∥0

≤ C∥φ∥C1
b
∥SMτ − S(T )∥L(Ḣ 2,L2)∥uN(0)∥2

≤ C(T + τ )
1
2 e−αT τ

1
2 , (4.21)

where we have used Lemma 2 and uN(0) = πNu0 ∈ Ḣ 2.
Noticing II = 0 for λ = 0, now we consider the nonlinear term II for λ = −1. By using

the notation al := Sl−M
τ Y l

N = ulN and Eqs. 4.18 and 4.19, we can define bl in two ways,

bl := S(t − T )ỸN (t)1l (t)

= S(t − T )SM+1−l
τ ul−1

N + eατS(t − T )SM+1−l
τ

(
iλπN

(
|e−ατul−1

N |2 + |ulN |2
2

ulN

)

(t − tl−1)

+πNQ
1
2 (W(t) − W(tl−1))

)
,

or equivalently,

bl := S(t − T )ỸN (t)1l (t)

= S(t − T )SM−l
τ ulN + eατS(t − T )SM+1−l

τ

(
iλπN

(
|e−ατul−1

N |2 + |ulN |2
2

ulN

)

(t − tl)

+πNQ
1
2 (W(t) − W(tl))

)
.

Hence, we have

al−1 − bl

=
(
Id − S(t − T )SM+1−l

τ

)
ul−1
N

−eατS(t − T )SM+1−l
τ

(

iλπN

(
|e−ατul−1

N |2 + |ulN |2
2

ulN

)

(t − tl−1)

+πNQ
1
2 (W(t) − W(tl−1))

)

and

al − bl =
(
Id − S(t − T )SM−l

τ

)
ulN

−eατS(t − T )SM+1−l
τ

(

iλπN

(
|e−ατul−1

N |2 + |ulN |2
2

ulN

)

+πNQ
1
2 (W(t) − W(tl))

)
,
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where ∥S(t − T )SM+1−l
τ ∥L(L2,L2) ≤ C and

∥Id−S(t−T )SM−l
τ ∥L(Ḣ 2,L2) ≤ ∥S(t−T )∥L(L2,L2)∥S(T−t)−SM−l

τ ∥L(Ḣ 2,L2) ≤ C(T−t+τ )
1
2 τ

1
2

according to Lemma 2s. Thus, we have the following estimate

∥al−bl∥0 ≤ C
[
(T −t+τ )

1
2 τ

1
2 ∥ulN∥2+τ

(
∥ul−1

N ∥21+∥ulN∥21
)
∥ulN∥0+∥πNQ

1
2 (W(t)−W(tl))∥0

]
.

Also, ∥al−1 − bl∥0 can be estimated in the same way. Thus, based on Eq. 3.7, we have

|II | =
∣∣∣∣E

∫ T

0

(
DvN,Hτ (Y

M
N , t) − HN(ỸN (t))

)
dt

∣∣∣∣ ≤ C∥φ∥C1
b

∫ T

0
E∥Hτ (Y

M
N , t)−HN(ỸN (t))∥0dt,

(4.22)

where

Hτ (Y
M
N , t) − HN(ỸN(t))

=
M∑

l=1

[

eατSM+1−l
τ πN

(

iλ
|e−ατal−1|2 + |al |2

2
al

)

− S(T − t)πN

(
iλ|bl |2bl

)]

1l (t)

= λ

2
i

M∑

l=1

[
eατ

(
SM+1−l

τ − S(T − t)
)
πN

(
|e−ατal−1|2al

)

+(e−ατ − 1)S(T − t)πN

(
|al−1|2al

)

+S(T − t)πN

(
|al−1|2al − |bl |2bl

) ]
1l (t)

+λ

2
i

M∑

l=1

[
eατ

(
SM+1−l

τ − S(T − t)
)
πN

(
|al |2al

)
+ (eατ − 1)S(T − t)πN

(
|al |2al

)

+S(T − t)πN

(
|al |2al − |bl |2bl

) ]
1l (t)

= λ

2
i
[ M∑

l=1

eατ
(
SM+1−l

τ − S(T − t)
)
πN

(
|e−ατal−1|2al

)
1l (t)

+
M∑

l=1

S(T − t)πN

(
|al−1|2 (al − bl)

)
1l (t)

+
M∑

l=1

S(T − t)πN

(
|bl |2(al−1 − bl)

)
1l (t)+

M∑

l=1

S(T − t)πN

(
al−1bl(al−1 − bl)

)
1l (t)

+
M∑

l=1

(e−ατ − 1)S(T − t)πN

(
|al−1|2al

)
1l (t)

+
M∑

l=1

eατ
(
SM+1−l

τ − S(T − t)
)
πN

(
|al |2al

)
1l (t)
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+
M∑

l=1

S(T − t)πN

(
|al |2 (al − bl)

)
1l (t)+

M∑

l=1

S(T − t)πN

(
|bl |2(al − bl)

)
1l (t)

+
M∑

l=1

S(T − t)πN

(
albl(al − bl)

)
1l (t)

]
+

M∑

l=1

(eατ − 1)S(T − t)πN

(
|al |2al

)
1l (t)

:= λ

2
i
[
II l−1

1 + II l−1
2 + II l−1

3 + II l−1
4 + II l−1

5 + II l1 + II l2 + II l3 + II l4 + II l5

]
.

If λ = −1, thanks to the uniform estimations of 0-norm, 1-norm and 2-norm of ukN , we
have the following estimates.

By the embedding H 1 ↪→ L∞ in R1, we have following exponential estimates

E∥II l−1
1 ∥0 ≤ 1

2

M∑

l=1

∥SM+1−l
τ − S(T − t)∥L(Ḣ 2,L2)E

∥∥∥πN

(
|e−ατul−1

N |2ulN
) ∥∥∥

2
1l (t)

≤ C

M∑

l=1

∥SM+1−l
τ − S(T − t)∥L(Ḣ 2,L2)E

[
∥ul−1

N ∥41 + ∥ulN∥22
]
1l (t)

≤ C(T − t + τ )
1
2 e−α(T−t)τ

1
2 ,

E∥II l−1
2 ∥0 ≤ Ce−α(T−t)E

M∑

l=1

∥al−1∥21∥al − bl∥01l (t)

≤ Ce−α(T−t)E

M∑

l=1

∥ul−1
N ∥21

[
C(T − t + τ )

1
2 τ

1
2 ∥ulN∥2

+C
[(

∥ul−1
N ∥21 + ∥ulN∥21

)
∥ulN∥0τ + ∥πNQ

1
2 (W(t) − W(tl))∥0

] ]
1l (t)

≤ C(T − t + 1)
1
2 e−α(T−t)τ

1
2 ,

E∥II l−1
5 ∥0 ≤ e−α(T−t)(1 − e−ατ )E

[
∥ul−1

N ∥21∥ulN∥0
]

≤ Ce−α(T−t)τ,

and their integrals are also of order 1
2 . II

l
1, II

l
2 and II l5 can also be estimated in the same

way, where we have used the fact that for any T > 0, the integral
∫ T
0 (T −t+τ )

1
2 e−α(T−t)dt

is bounded and
∑M

l=1 1l (t) = 1.
Other terms are proved in the same procedure by using the fact that

∥bl∥2L∞ ≤ C∥S(t − T )SM−l
τ ∥2L(Ḣ 1,Ḣ 1)

[∥ulN∥41 + ∥ul−1
N ∥41 + ∥πNQ

1
2 δWl∥21]

and ∥albl∥L∞ ≤ 1
2 [∥al∥2L∞ + ∥bl∥2L∞ ]. Finally, we have

|II | ≤ Cτ
1
2 . (4.23)
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Next is the estimate of III , which is similar to the same part in the proof of Theorem 3.2.

III = 1
2

M∑

l=1

E

∫ T

0
T r

[ (
eατSM+1−l

τ πNQ
1
2

)∗
D2vN

(
eατSM+1−l

τ πNQ
1
2

)

−
(
S(T − t)πNQ

1
2

)∗
D2vN

(
S(T − t)πNQ

1
2

) ]
1l (t)dt

= 1
2

M∑

l=1

E

∫ T

0
T r

[ ((
eατSM+1−l

τ − S(T − t)
)

πNQ
1
2

)∗
D2vN

((
eατSM+1−l

τ − S(T − t)
)

πNQ
1
2

) ]

+2T r
[ ((

eατSM+1−l
τ − S(T − t)

)
πNQ

1
2

)∗
D2vN

(
S(T − t)πNQ

1
2

) ]
1l (t)dt

= 1
2

M∑

l=1

E

∫ T

0
T r

[
e2ατ

((
SM+1−l

τ − S(T − t)
)

πNQ
1
2

)∗
D2vN

((
SM+1−l

τ − S(T − t)
)

πNQ
1
2

)

+2e2ατ
((

SM+1−l
τ − S(T − t)

)
πNQ

1
2

)∗
D2vN

(
S(T − t)πNQ

1
2

)

+(e2ατ − 1)
(
S(T − t)πNQ

1
2

)∗
D2vN

(
S(T − t)πNQ

1
2

) ]
1l (t)dt

:= 1
2

M∑

l=1

E

∫ T

0
(Al + 2Bl + Cl)1l (t)dt,

where Al , Bl and Cl satisfy

E|Al | ≤ C∥SM+1−l
τ − S(T − t))∥2L(Ḣ 2,L2)

∥πNQ
1
2 ∥2L(L2,Ḣ 2)

∥φ∥C2
b

≤ C(T − t + τ )e−2α(T−t)τ,

E|Bl | ≤ C∥SM+1−l
τ − S(T − t))∥L(Ḣ 2,L2)∥πNQ

1
2 ∥2L(L2,Ḣ 2)

∥φ∥C2
b
∥S(T − t)∥L(L2,L2)

≤ C(T − t + τ )
1
2 e−2α(T−t)τ

1
2

and

E|Cl | ≤ Cτ∥πNQ
1
2 ∥2L(L2,L2)

∥φ∥C2
b
∥S(T − t)∥2L(L2,L2)

≤ Ce−2α(T−t)τ.

It follows

|III | ≤ Cτ
1
2 . (4.24)

We can conclude from Eqs. 4.21, 4.23 and 4.24 that,
∣∣∣E [φ(uN(T ))] − E

[
φ(uMN )

] ∣∣∣ ≤ Cτ
1
2 ,

where C is independent of T , M and N .

Remark 5 For the linear case (λ = 0), as the weak convergence order depends heavily on the
regularity of the solution, which depend only on the regularity of the initial value and noise,
we can achieve higher order by increasing the regularity of the initial value and the noise.
For example, the weak order turns out to be 1 if we assume u0 ∈ Ḣ 4 and ∥Q 1

2 ∥HS(L2,Ḣ 4) <

∞. However, for the nonlinear case (λ = ±1), it is too technical to obtain the uniform higher
regularity under proper assumptions, as a result, we work under the assumptions u0 ∈ Ḣ 2

and ∥Q 1
2 ∥HS(L2,Ḣ 2) < ∞ and derive order 1

2 .
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4.4 Convergence Order between Invariant Measures µN and µτ
N

Theorem 4.4 For λ = 0 or −1, assume that u0 ∈ Ḣ 2 and ∥Q 1
2 ∥HS(L2,Ḣ 2) < ∞, the error

between invariant measures µN and µτ
N is of order 1

2 , i.e.,∣∣∣∣

∫

VN

φ(y)dµN(y) −
∫

VN

φ(y)dµτ
N(y)

∣∣∣∣ < Cτ
1
2 , ∀ φ ∈ C2

b (L
2).

Proof By the ergodicity of stochastic processes uN and ukN , we have

lim
T→∞

1
T

∫ T

0
Eφ

(
uN(t)

)
dt =

∫

VN

φ(y)dµN(y), (4.25)

lim
M→∞

1
M

M−1∑

k=0

Eφ(ukN) =
∫

VN

φ(y)dµτ
N(y) (4.26)

for any φ ∈ C2
b (L

2). As the weak error is proved to be independent of step k and time t in
Theorem 4.3, it turns out that for a fixed τ ,

∣∣∣∣

∫

VN

φ(y)dµN(y) −
∫

VN

φ(y)dµτ
N(y)

∣∣∣∣

≤ lim
M→∞,

T=Mτ→∞

1
T

M−1∑

k=0

∫ tk+1

tk

∣∣∣Eφ
(
uN(t)

)
− Eφ(ukN)

∣∣∣ dt ≤ Cτ
1
2 .

Remark 6 For the case λ = 1, if the 1-norm and 2-norm of ukN is also uniformly bounded,
we can also get order 1

2 for both time-independent weak error and error between invariant
measures. If not, based on the fact ∥·∥s+1 ≤ N∥·∥s , we can get the weak error depend onN

∣∣∣E[φ(uN(T ))] − E[φ(uMN )]
∣∣∣ ≤ CN4τ

1
2 ,

as well as the error between invariant measures.

5 Numerical Experiments

This section provides numerical experiments to test the longtime behavior of scheme
(4.1) for the case λ = 0. Based on the spatial semi-discretization in stochastic ordinary
differential equation form Eq. 3.2

dam(t) = −i(mπ)2am(t)dt − αam(t)dt +
√

ηmdβm(t), 1 ≤ m ≤ N,

we derive an equivalent form of the full discretization (4.1) as

a⃗k − e−ατ a⃗k−1 = −iτπ2

⎛

⎜⎝
1
. . .

N2

⎞

⎟⎠ a⃗k +

⎛

⎜⎝

√
η1δkβ1
...√

ηNδkβN

⎞

⎟⎠ ,

where a⃗k := (ak1 , · · · , akN )T is an approximation of a⃗(t) := (a1(t), · · · , aN(t))T and
δkβm = βm(tk) − βm(tk−1) for 1 ≤ m ≤ N . In the sequel, we take α = 1, N = 100.
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Fig. 1 The temporal averages 1
M+1

∑M
k=0 E[φ(a⃗k)] started from different initial values (τ = 2−6, T = 300)

Fig. 2 The weak error E[φ(a⃗(tk)) − φ(a⃗k)] for different φ and step size τ with tk = kτ ∈ [0, T ] and
T = 103
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Fig. 3 The strong and weak orders for noise in L2, Ḣ 2 and Ḣ 4, i.e., ηm = m−1,m−3,m−5. (T = 1
2 ,

τ ∈ {2−i , 5 ≤ i ≤ 9})

In Fig. 1, the temporal averages 1
M+1

∑M
k=1 E[φ(a⃗k)] of the fully

discrete scheme started from five different initial values initial(1) =
(1, 0, · · · , 0)T , initial(2) = (0.0003i, 0, · · · , 0)T , initial(3) =(
sin

(
1

101π
)
, sin

(
2
101π

)
, · · · , sin

(
100
101π

))T
, initial(4) =

(
2+i
20

)
(1, 2, · · · , 100)T and

initial(5) =
(
exp

(
− i

50

)
, exp

(
− 2i

50

)
, · · · , exp

(
− 100i

50

))T
will converge to the same

value with error τ
1
2 before time T , where τ = 2−6 and T = 300. This result verifies the

ergodicity of the numerical solution: the temporal averages converge to the spatial average,
which is a constant, for almost every initial values in the whole space. We choose 500
realizations to approximate the expectations in Figs. 1 and 2, and choose 1000 realizations
in Fig. 3.

In Figs. 2 and 3, we fix the initial value u0(x) as
√
2 sin(πx), such that am(0) = (u0, em)

and a⃗0 = a⃗(0) = (1, 0, · · · , 0)T . Figure 2 displays the weak error E[φ(a⃗(tk)) − φ(a⃗k)]
over long time T = 103 for different time step sizes and test functions: (a) τ = 2−4,
φ(a⃗) = exp(−∥a⃗∥2

l2
) (b) τ = 2−6, φ(a⃗) = exp(−∥a⃗∥2

l2
), (c) τ = 2−4, φ(a⃗) = sin(∥a⃗∥l2)

and (d) τ = 2−6, φ(a⃗) = sin(∥a⃗∥l2). The reference values are generated for the time step
size τ = 2−8, and the noise is chosen in Ḣ 2, i.e., ηm = m−3. Figure 2 shows that the
weak error is independent of time interval and can be controlled by Cτ

1
2 , which coincides

with our theoretical results. Figure 3 displays both (a) the strong convergence order and
the rates of weak convergence for (b) φ(a⃗) = exp(−∥a⃗∥2

l2
) or (c) φ(a⃗) = sin(∥a⃗∥l2).

The reference values are generated for the time step size τ = 2−14. As the initial value
u0(x) =

√
2 sin(πx) is regular enough, both the strong and weak convergence order depend

heavily on the regularity of the noise for the linear case. It shows in Fig. 3 that the orders
slightly increase as the noise from L2 via Ḣ 2 to Ḣ 4 (i.e., ηm from m−1 via m−3 to m−5),
which verifies Remark 5. Noticing that the orders are a little bit better than the theoretical
results, because the truncation of the noise makes the noise more regular than it should be,
which increases the orders slightly. Numerical tests also shows that the weak convergence
order is almost the same as the strong convergence order, which is similar to the statement
in [7] (Remark 5.11).
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Appendix

The Proof of Proposition 3.1

i) As it is proved in Part 3 of Theorem 3.1 that E∥uN(t)∥20 < C, we assume further that

E∥uN(t)∥2n0 < C, ∀ n = 1, · · · , p − 1. Denoting dM1 := 2Re
(
uN,πNQ

1
2 dW

)
,

then Itô’s formula and Eq. 3.5 yields

d∥uN(t)∥2p0 = p∥uN(t)∥2(p−1)
0 d∥uN(t)∥20 +

1
2
p(p − 1)∥uN(t)∥2(p−2)

0 d⟨M1⟩

≤ −2αp∥uN(t)∥2p0 dt + p∥uN(t)∥2(p−1)
0 dM1(t)

+2p(2p − 1)
N∑

m=1

ηm∥uN(t)∥2(p−1)
0 dt,

where ⟨·⟩ denotes the quadratic variation process and in the last step we used the fact

d⟨M1⟩ = 4

〈

Re

N∑

m=1

∫ 1

0
uN(s)

√
ηmem(x)dx(dβm,1 + idβm,2)

〉

= 4
N∑

m=1

⎡

⎣
(

Re

∫ 1

0
uN(t, x)

√
ηmem(x)dx

)2

+
(

Im

∫ 1

0
uN(t, x)

√
ηmem(x)dx

)2
⎤

⎦ dt

≤ 8
N∑

m=1

ηm∥uN(t)∥20dt.

Taking expectation on both sides of above equation, we obtain

d

dt
E∥uN(t)∥2p0 ≤ −2αpE∥uN(t)∥2p0 + 2p(2p − 1)

N∑

m=1

ηmE∥uN(t)∥2(p−1)
0

≤ −2αpE∥uN(t)∥2p0 + C

by induction. Then multiplying e2αpt to both sides of above equation yields the result.
ii) The proof in this part is similar to the proof of Lemma 2.5 in [8]. According to the

Gagliardo-Nirenberg interpolation inequality, there exists a positive constant c0, such
that

5
8
λ∥uN(t)∥4L4 ≤ ∥uN(t)∥4L4 ≤ 1

4
∥∇uN(t)∥20 +

1
2
c0∥uN(t)∥60. (1)

Thus,

0 ≤ H(uN(t)) := 1
2
∥∇uN(t)∥20 − λ

4
∥uN(t)∥4L4 + c0∥uN(t)∥60

≤ 2
3

(
∥∇uN(t)∥20 − λ∥uN(t)∥4L4 + 2c0∥uN(t)∥60

)
. (2)
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Applying Itô’s formula toH(uN(t)), it leads to

dH(uN(t)) =
[

− α∥∇uN(t)∥20 + αλ∥uN(t)∥4L4 − 6αc0∥uN(t)∥60

−2λ
∫ 1

0
|uN |2

N∑

m=1

ηm|em|2dx

+
N∑

m=1

m2ηm + 6c0∥uN(t)∥40
N∑

m=1

ηm

+12c0∥uN(t)∥20∥πNQ
1
2 uN(t)∥20

]
dt

+6c0∥uN(t)∥40Re
(
uN,πNQ

1
2 dW

)

−Re
(
"uN(t)+ λ|uN(t)|2uN(t),πNQ

1
2 dW

)
,

where we have used the fact ((Id − πN)v, vN) = 0, ∀ v ∈ Ḣ 0, vN ∈ VN . By the
following estimates

−2λ
∫ 1

0
|uN |2

N∑

m=1

ηm|em|2dx ≤ 0,

6c0∥uN(t)∥40
N∑

m=1

ηm + 12c0∥uN(t)∥20∥πNQ
1
2 uN(t)∥20 ≤ 4αc0∥uN(t)∥60 + C

and Eq. 1, we have

dH(uN(t)) ≤
[

− α∥∇uN(t)∥20 + αλ∥uN(t)∥4L4 (3)

−2αc0∥uN(t)∥60 +
N∑

m=1

m2ηm + C

]
dt

+6c0∥uN(t)∥40Re
(
uN(t),πNQ

1
2 dW(t)

)
(4)

−Re
(
"uN(t)+ λ|uN(t)|2uN(t),πNQ

1
2 dW

)

≤ −3
2
αH(uN(t))dt + Cdt + dM2, (5)

where

dM2 := 6c0∥uN∥40Re
(
uN,πNQ

1
2 dW

)
− Re

(
"uN + λ|uN |2uN,πNQ

1
2 dW

)
.

Taking expectation, we derive

dEH(uN(t)) ≤ −3
2
αEH(uN(t))dt + Cdt.

Hence, by multiplying e
3
2αt to both sides of the equation above and then taking inte-

gral from 0 to t , we get the uniform boundedness for p = 1. By induction, we assume
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that the results hold for p − 1. Then, based on the following estimates (see [8])
〈
6∥uN∥40Re

(
uN,πNQ

1
2 dW

)〉2
≤ C∥Q 1

2 ∥2HS(L2,L2)
∥uN∥100 dt,

〈
Re

(
"uN + λ|uN |2uN,πNQ

1
2 dW

)〉2
≤ C∥Q 1

2 ∥2HS(L2,Ḣ 1)

(
∥∇uN∥20 + ∥uN∥100

)
dt

and Eq. 5, we have

dH(uN(t))
p = pH(uN(t))

p−1dH(uN(t))+
1
2
p(p − 1)H(uN(t))

p−2d⟨M2⟩

≤ −3
2
αpH(uN(t))

pdt + CpH(uN(t))
p−1dt + pH(uN(t))

p−1dM2

+Cp(p − 1)H(uN(t))
p−2

(
∥∇uN(t)∥20 + ∥uN(t)∥100

)
dt. (6)

From Eq. 1, we deduce that

H(uN(t)) ≥

⎧
⎪⎨

⎪⎩

1
2
∥∇uN(t)∥20 + c0∥uN(t)∥60, λ = 0 or − 1,

7
16

∥∇uN(t)∥20 +
7
8
c0∥uN(t)∥60, λ = 1.

As a result, the last term in Eq. 6 can be estimated as

Cp(p − 1)H(uN (t))
p−2

(
∥∇uN(t)∥20 + ∥uN(t)∥100

)

≤
(
CH(uN (t))+ CH(uN (t))

5
3

)
H(uN (t))

p−2 ≤ CH(uN (t))
p−1 + 1

2
αpH(uN (t))

p, (7)

where in the last step we used the inequality of arithmetic and geometric means

C(H(uN(t))
2·H(uN(t))

2·H(uN(t)))
1
3 ≤

3
4αpH(uN(t))

2 + 3
4αpH(uN(t))

2 + CH(uN(t))

3
.

Gethering Eqs. 6 and 7 and taking expectation, we obtain

dEH(uN(t))
p ≤ −αpEH(uN(t))

pdt + Cdt

by induction, which complete the proof by multiplying eαpt on both sides of above
equation.

iii) We define a functional

f (u) =
∫ 1

0
|"u|2dx + λRe

∫ 1

0
("u)|u|2udx,

which satisfies
∥"u∥20 ≤ 2f (u)+ C∥u∥61 (8)

based on the continuous embedding H 1 ↪→ L6 and
∣∣∣λRe

∫ 1
0 "u|u|2udx

∣∣∣ ≤
1
2∥"u∥20 + 1

2∥u∥6
L6 ≤ 1

2∥"u∥20 + C∥u∥61. The Itô’s formula applied to f (uN) yields

df (uN) = Df (uN)
( (

i"uN + iλ|uN |2uN − αuN

)
dt

)
+Df (uN)

(
πNQ

1
2 dW

)

+1
2
D2f (uN)(πNQ

1
2 dW,πNQ

1
2 dW)

=: A+ B + C, (9)
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where

Df (u)(ϕ) = Re

∫ 1

0

[
2"u"ϕ + 2λ("u)uRe(uϕ)+ λ("u)|u|2ϕ

+λ("(|u|2u))ϕ
]
dx,

D2f (u)(ϕ,ψ) = Re

∫ 1

0

[
2"ϕ"ψ + 2λ("u)uRe(ϕψ)+ 2λ("u)ϕRe(uψ)

+2λ("ϕ)uRe(uψ)

+2λ("u)ψRe(ϕu)+ 2λ("ψ)uRe(uϕ)+ λ("ϕ)|u|2ψ
+λ("ψ)|u|2ϕ

]
dx

and E[B] = 0. Now we estimate A and C respectively.

E[A] = −2αE[f (uN)]dt + ReE

∫ 1

0

[
4λi("uN)uN |∇uN |2

+2λi("uN)uN(∇uN)
2
]
dxdt

+ReE

∫ 1

0

[
λ2i("uN)|uN |4 − 4αλ("uN)uN |uN |2

]
dxdt

+ReE

∫ 1

0

[
− 4αλ|uN |2|∇uN |2 − 2αλ(∇uN)

2u2N

]
dxdt

=: −2αE[f (uN)]dt +A1dt +A2dt +A3dt,

where we have used the fact "(|u|2u) = 2|u|2"u+4u|∇u|2+2u(∇u)2+u2"u and
A1,A2 andA3 are estimated as follows.

|A1| :=
∣∣∣∣∣ReE

∫ 1

0

[
4λi("uN)uN |∇uN |2 + 2λi("uN)uN(∇uN)

2
]
dx

∣∣∣∣∣

≤ α

16
E∥"uN∥20 + CE

[
∥uN∥2L∞∥∇uN∥2

L4

]

≤ α

16
E∥"uN∥20 + CE

[
∥uN∥4L∞ + ∥"uN∥0∥∇uN∥30

]

≤ α

8
E∥"uN∥20 + CE

[
∥uN∥41 + ∥uN∥61

]

≤ α

8
E∥"uN∥20 + C,

where we have used the uniform boundedness of ∥uN∥2p1 for p ≥ 1 in ii), the contin-
uous embedding H 1 ↪→ L∞ for R1 and the interpolation of L4 between L2 and H 1.
Similarly, based on the continuous embedding H 1 ↪→ L6 and H 1 ↪→ L8, we have

|A2| :=
∣∣∣∣∣ReE

∫ 1

0

[
λ2i("uN)|uN |4 − 4αλ("uN)uN |uN |2

]
dx

∣∣∣∣∣

≤ α

8
E∥"uN∥20 + CE[∥uN∥8

L8 + ∥uN∥6
L6 ] ≤ α

8
E∥"uN∥20 + C

and

|A3| :=
∣∣∣∣∣ReE

∫ 1

0

[
− 4αλ|uN |2|∇uN |2 − 2αλ(∇uN)

2u2N

]
dx

∣∣∣∣∣ ≤ CE∥uN∥41 ≤ C.
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Thus, we obtain

E[A] ≤ −2αE[f (uN)]dt +
α

4
E∥"uN∥20 + C.

The estimate of C is similar with that of A, and we derive E[C] ≤ α
4E∥"uN∥20 + C.

Taking expectation on both sides of Eq. 9 yields

dEf (uN)+ 2αEf (uN)dt ≤ α

2
E∥"uN∥20dt + Cdt ≤ αEf (uN)dt + Cdt.

Multiplying both sides of above equation by eαt and taking integral from 0 to t , we
conclude the uniform boundedness of Ef (uN(t))

Ef (uN(t)) ≤ e−αtEf (uN(0))+
C

α
(1 − e−αt ),

which yields the uniform boundedness of E∥"uN∥20 based on Eq. 8. As the norm
∥uN∥2 is equivalent to ∥"uN∥0 under Dirichlet boundary condition, we complete the
proof.

The Proof of Uniqueness of the Solution for Eq. 4.1

Suppose that U andW are two solutions of the scheme, then it follows

U − W = iτ"
(
U − W

)
+ iλ

τ

2
πN

[(
|U |2U − |W |2W

)
+ |e−ατuk−1

N |2(U − W)
]
.

Multiply the equation above by U − W , integrate in space and take the real and imaginary
part respectively, we have

∥U − W∥20 ≤ τ

2
∥f (U) − f (W)∥

L
4
3
∥U − W∥L4 ,

∥∇(U − W)∥20 ≤ 1
2
∥f (U) − f (W)∥

L
4
3
∥U − W∥L4 + λ

2
∥e−ατuk−1

N ∥2
L4∥U − W∥2

L4 ,

where f (U) := |U |2U and

∥f (U) − f (W)∥
L

4
3

=
(∫ 1

0

∣∣∣|U |2U − |W |2W
∣∣∣
4
3
dx

) 3
4

=
(∫ 1

0

∣∣∣|U |2(U − W)+ |W |2(U − W)+ UW(U − W)
∣∣∣
4
3
dx

) 3
4

≤
(∫ 1

0

∣∣∣|U |2 + |W |2 + |UW |
∣∣∣
2
dx

) 1
2
(∫ 1

0
|U − W |4dx

) 1
4

≤
∥∥|U | + |W |

∥∥2
L4∥U − W∥L4 .
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Since

∥U − W∥4
L4 ≤ ∥U − W∥30∥∇(U − W)∥0

≤
( τ

2
∥f (U) − f (W)∥

L
4
3
∥U − W∥L4

) 3
2
(
1
2
∥f (U) − f (W)∥

L
4
3
∥U − W∥L4

+|λ|
2

∥e−ατuk−1
N ∥2

L4∥U − W∥2
L4

) 1
2

≤ 1
4
τ

3
2
∥∥|U | + |W |

∥∥3
L4

(∥∥|U | + |W |
∥∥2
L4 + |λ|∥uk−1

N ∥2
L4

) 1
2 ∥U − W∥4

L4

≤ 1
4
τ

3
2

(∥∥|U | + |W |
∥∥4
L4 + |λ|

∥∥|U | + |W |
∥∥3
L4∥uk−1

N ∥L4

)
∥U − W∥4

L4 ,

if U ̸= W , then

1 ≤ 1
4
τ

3
2

(∥∥|U | + |W |
∥∥4
L4 + |λ|

∥∥|U | + |W |
∥∥3
L4∥uk−1

N ∥L4

)

≤ C0τ
3
2

(∥∥|U | + |W |
∥∥4
L4 + |λ|

∥∥|U | + |W |
∥∥6
L4 + |λ|∥uk−1

N ∥2
L4

)
.

For cases λ = 0 or −1, the L4-norm of the solutions are uniformly bounded. So C0τ
3
2 >

1, which do not hold when τ is sufficiently small. For case λ = 1, according to the fact that
∥∥|U | + |W |

∥∥6
L4 ≤

∥∥|U | + |W |
∥∥

3
2
0

∥∥∇(|U | + |W |)
∥∥

9
2
0 ≤ N

9
2
∥∥|U | + |W |

∥∥6
0,

we have C0N
9
2 τ

3
2 > 1, which is also a contradiction when τ is sufficiently small.

Thus, the numerical solution for Eq. 4.1 is unique.
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