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Abstract. We consider a finite dimensional approximation of the stochastic nonlinear
Schrodinger equation driven by multiplicative noise, which is derived by applying a symplectic
method to the original equation in spatial direction. Both the unique ergodicity and the charge
conservation law for this finite dimensional approximation are obtained on the unit sphere. To simu-
late the ergodic limit over long time for the finite dimensional approximation, we discretize it further
in the temporal direction to obtain a fully discrete scheme, which inherits not only the stochastic
multi-symplecticity and charge conservation law of the original equation but also the unique ergod-
icity of the finite dimensional approximation. The temporal average of the fully discrete numerical
solution is proved to converge to the ergodic limit with order 1 with respect to the time step for
a fixed spatial step. Numerical experiments verify our theoretical results on charge conservation,
ergodicity, and weak convergence.
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1. Introduction. For the stochastic nonlinear Schrédinger (NLS) equation with
a multiplicative noise in Stratonovich sense,

du = i(Au+ Mu|*u)dt + iu o dW,
(1) u(t,0) =u(t,1) =0, t >0,
uw(0,z) = uo(x), x € 0,1]

with A = £1, we consider the case that W is a real valued Q-Wiener process on a fil-
tered probability space (€2, F, (F¢)t>0, P) with paths in Hj := H}(0,1) with Dirichlet
boundary condition. The Karhunen-Loéve expansion of W is as follows:

W(t,x,w):Zﬂk(t,w)Q%ek(x), t>0, z€[0,1], weq,
k=0

where (e, = v/2sin(kmz))x>1 is an eigenbasis of the Dirichlet Laplacian A in L? :=
L?(0,1) and (B)k>1 is a sequence of independent real valued Brownian motions
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associated with the filtration (F;);>o. In addition, the covariance operator @ is as-
sumed to commute with the Laplacian and satisfies

Qe = nrer, nx >0, VkeN, 771:277k<00~
=1

We refer to [9] for additional assumptions on the well-posedness of (1). It is shown
that (1) is a Hamiltonian system with stochastic multi-symplectic structure and charge
conservation law (see [6, 9, 11] and references therein). Structure-preserving numerical
schemes have remarkable superiority over conventional schemes to numerically solve
Hamiltonian systems over long time. As another kind of long-time behavior, the
ergodicity for this kind of conservative system is an important and difficult problem
which is still open. Motivated by [10], we study the ergodicity for a finite dimensional
approximation (FDA) of the original equation instead.

In this paper, we investigate the ergodicity for a symplectic FDA of (1) and
approximate its ergodic limit via a multi-symplectic and ergodic scheme. As we show
that the FDA is charge conserved, without loss of generality, we consider the ergodicity
in the finite dimensional unit sphere §. There have been some papers considering the
additive noise case with dissipative assumptions, and also some papers requiring a
uniformly elliptic assumption on the whole space to ensure unique ergodicity (see,
e.g., [3, 12, 13, 15, 16]). A conservative FDA with linear multiplicative noise has
an uncertain nondegeneracy, which relies heavily on the solution. To overcome this
difficulty, we construct an invariant control set My C S, in which the FDA is shown to
be nondegenerate. Together with the Krylov-Bogoliubov theorem and the Hérmander
condition, we prove that the solution U possesses a unique invariant measure py, (i.e.,
U is uniquely ergodic) with

1 7
Jim /O BAU )= [ i = /S Fdun.

For many physical applications, the approximation of the invariant measure is
of fundamental importance, especially when the invariant measure is unknown (see,
e.g., [1,3,4,5, 7, 13, 14, 15, 16]). Some papers construct numerical schemes which
also possess unique invariant measures, and then show the approximate error between
invariant measures. For example, [7, 15] work with dissipative systems driven by ad-
ditive noise, and [16] considers elliptic stochastic differential equations (SDEs) with
bounded coefficients and dissipative type condition. There is also some work con-
centrating on the approximation of the invariant measure, i.e., the approximation of
the ergodic limit f s fdpp, in which case the numerical schemes may not be uniquely
ergodic. For instance, [3] approximates the invariant measure of stochastic partial dif-
ferential equations with an additive noise based on Kolmogorov equation. Reference
[13] gives error estimates for time-averaging estimators of numerical schemes based on
the associated Poisson equation and the assumption of local weak convergence order.
Authors in [14] calculate the ergodic limit for Langevin equations with dissipations
via quasi-symplectic integrators. There have been few results on constructing con-
servative and uniquely ergodic schemes to calculate the ergodic limit for conservative
systems, to our knowledge. We focus on the approximation of the ergodic limit via
a multi-symplectic scheme, which is also shown to be uniquely ergodic. For a fixed
spacial dimension, the local weak error of this fully discrete scheme (FDS) in temporal
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direction is of order 2, which yields order 1 for the approximate error of the ergodic
limit based on the associated Poisson equation (see also [4, 13]) and a priori estimates
of the numerical solutions. That is,
1
§ Ch T +7).

1N71 .
ROMCERY R

The paper is organized as follows. In section 2, we apply a symplectic semidiscrete
scheme to the original equation to get the FDA | and show the unique ergodicity as well
as the charge conservation law for the FDA. In section 3, we present a multi-symplectic
and ergodic FDS to approximate the ergodic limit, and show the approximate error
based on a priori estimates and local weak error. In section 4, the discrete charge
evolution compared with those of the Euler-Maruyama scheme and implicit Euler
scheme, the ergodic limit, and global weak convergence order are tested numerically.
Section 5 is the appendix containing proofs of some a priori estimates.

E

2. Unique ergodicity. In this section, we first apply the central finite difference
scheme to (1) in the spatial direction to obtain a FDA, which is also a Hamiltonian
system. To investigate the ergodicity of this conservative system, we then construct
an invariant control set My C S with respect to a control function introduced in
section 2.2. The FDA is proved to be ergodic in M based on the Krylov—Bogoliubov
theorem and the Hormander condition.

2.1. Finite dimensional approximation (FDA). Based on the central fi-
nite difference scheme and the notation u; := u;(t), 7 = 1,..., M, we consider the
following spatial semidiscretization:

K
Clui —2u; Hug— .
du; =1 e h2j EEL /\uj|2uj} dt + iu; Z Vker(z;) o dBi(t)
k=1

with a truncated noise Zszl veer(x)Br(t), K € N, a given uniform step size h =

ﬁ for some M < K, and z; = jh, 7 = 1,..., M. The condition M < K here

ensures the existence of the solution for the control function. Denoting vectors U :=
Ut) = (us,...,un)T € CM B(t) = (Bi(t),. .., Bx ()T € RX, and matrices F(U) =

diag{|u1|?, ..., |lup|?}, Ex = diag{ex(x1),...,ex(zprr)}, A = diag{\/n*l,...,m},
Z(U) = diag{ul, e ,uM}EMKA,

1 9 1 er(z1) -+ ex(x1)
A= | R Bae= | z ,

1 _9 er(en) o ex(@m)/) ok

then the FDA is in the following form:
1

@) dU =i {hQAUntAF(U)U} dt +iZ(U) o df(t),

U(0) = ¢, (uo(21), - - s uo(zar)”

where ¢, is a normalized constant. The noise term in (2) has an equivalent It form

K K

K
iZ(U)odB(t) =1 \/meExU o dBi(t) = —% > mERUdL+1) /iR EyUdB(t)
k=1

k=1 k=1
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K
(3) =~ BUdt +1) _ /ixExUdB(t)

k=1
with £ = %Zszl nkE}. In the following, | - || denotes the 2-norm for both matrices

and vectors, which satisfies || BV|| < || B||||V]| for any matrices B € C™*™ and vectors
V € C", m,n € N. It is then easy to show that || A|| < 4, which is independent of the
dimension M.

PROPOSITION 2.1. The FDA (2) possesses the charge conservation law, i.e.,

@I =1U©O|? Vvt>0, Pas.

where U] = (JPOI2 + Q012 = (SX_, (1w (D12 + g (8)[2))*, and P(t) =
(p1(t), ..., o ()T and Q(t) = (q1(t),-..,qu(t))T are the real and imaginary parts
of U(t) respectively.

Proof. Noticing that matrices A and F(U) are symmetric and the linear function
Z(U) satisfies

U1 v
UTZ(U)z(qu,.,.,TM) Evk
UN VK
NN

(4) = (lus]?,..., Junt ) Enviic € R,

VK

where U denotes the conjugate of U, we multiply (2) by UT, take the real part, and
then get the charge conservation law for U. ]

In the following, without pointing out, all equations hold in the sense P-a.s.

Remark 2.2. Equation. (1) can be rewritten into an infinite dimensional Hamil-
tonian system (see [11]). It is easy to verify that the central finite difference scheme
(2) applied to (1) is equivalent to the symplectic Euler scheme applied to the infinite
dimensional Hamiltonian form of (1), which implies the symplecticity of (2).

2.2. Unique ergodicity. As the charge of (2) is conserved shown in Proposition
2.1, without loss of generality, we assume that U(0) € S and investigate the unique
ergodicity of (2) on S. As the nondegeneracy for (2) relies on the solution U as a
result of the multiplicative noise, the standard procedure to show the irreducibility
and strong Feller property on the whole S do not apply. So we need to construct an
invariant control set.

DEFINITION 2.3. (see, e.g., [2]) A subset M # 0 of S is called an invariant control
set for the control system

(5) do =i [thAqS + )\F(qﬁ)qb] dt +iZ(¢)d¥(t)

of (2) with a differentiable deterministic function ¥, if Ot (x) = M, Yo € M, and M
is maximal with respect to inclusion, where O (x) denotes the set of points reachable
from x (i.e., connected with x) in any finite time and M denotes the closure of M.
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We state one of our main results in the following theorem.

THEOREM 2.4. The FDA (2) possesses a unique invariant probability measure pp,
on an invariant control set Mo, which implies the unique ergodicity of (2). Moreover,

supp(pn) = S and i, (S) = pn(Mo) = 1.

Proof.

Step 1. Existence of invariant measures.

From Proposition 2.1, we find m(U(0),S) = 1,Vt > 0, where m(U(0), ) denotes
the transition probability (probability kernel) of U(t). As the finite dimensional unit
sphere S is tight, the family of measures m¢(U(0), -) is tight, which implies the existence
of invariant measures by the Krylov-Bogoliubov theorem [8].

Step 2. Invariant control set.

Denoting U = P + iQ) with P and @ being the real and imaginary parts of U
respectively, we first consider the following subset of S:

S$={U=P+iQeS: P >0}

For any t > 0, y,z € 81, there exists a differentiable function ¢ satisfying ¢(s) =
(61(8),..., 00 (s)T € 81, s € [0,1], ¢(0) = y, and ¢(t) = z by polynomial inter-
polation argument. As rank(Z(¢(s))) = M for ¢(s) € S; and M < K, the linear
equations

Z(¢(s)X = —i¢/(s) — %fhb(&) + AF(¢(s))o(s)

possess a solution X € CM. As, in addition, Z(é(s)) = diag{¢1(s), ..., dn(s)}Ermk A,
where diag{¢1(s),...,drn(s)} is invertible for ¢(s) € Sy, the solution X depends con-
tinuously on s and is denoted by X(s). Thus, there exists a differentiable function
W(-) := [, X(s)ds which, together with ¢ defined above, satisfies the control function
(5) with initial data ¥(0) = 0. That is, for any y,z € Si, y and z are connected,
denoted by y <> z. The above argument also holds for the following subsets:

S={U=P+iQeS: P <0},

S3={U=P+iQeS: Q>0},

S, ={U=P+iQeS: Q <0}
For any y € S;, z € §; with @ # j and 4,5 € {1,2,3,4}, there must exist S, r;, and
r;, satisfying 7, € S;NS; # 0 and r; € S; NSy # 0 for some | € {1,2, 3,4}, such that
Y <> 1y &> 15 < 2. Thus,

./\/lo3281U82U83U84:{UZP—FiQGS:P?éOOI‘Q#O},

with My = S, is an invariant control set for (5).
Step 3. Uniqueness of the invariant measure.
We rewrite (2) with P and @ according to its equivalent form in the Itd sense

and Obtail’l
( ) < : : h12 >\A ( ’ )> ( ) !
Q 72 A+ /\F(P, Q) E Q

Sl B (5)ano
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K
(6) =: Xo(P,Q)dt + > X (P, Q)dBx(t).

k=1

To derive the uniqueness of the invariant measure, we consider the Lie algebra gener-
ated by the diffusions of (6),

L(X(),Xl, - ,XK) = spcm{Xl, [Xi,Xj], [Xl, [X“XJ]] geee 7O S l,i,j S K}
Choosing p, = 0 and ¢, = J—%(l,...,l)T such that z, := p, +ig. € S4 C My, we
derive that the vectors

er(z1) er(z1)
: ~E :
X (o 4) = M | er(@ar) [Xo, Xx](pe, ) = Nk ex(zar)
k\Px5 4« M 0 y 0y Ak [\Pxy dx M ek(xl)
(= A+ 371)
0 ex(Tar)
are independent of each other for £k = 1,..., M, which hence implies the following

Hormander condition:
dim L(Xo, X1,...,XK)(2s) = 2M.

Then there is at most one invariant measure with supp(pn,) = S according to [2].
Actually, according to the above procedure, we obtain that the Héormander condition
holds uniformly for any z € M.

Combining the three steps above, we conclude that there exists a unique invariant
measure pp on Mg for the FDA, with pp(S) = pp(Mgp) = 1. 1]

From the theorem above, we can find out that for some other nonlinearities, e.g.,
1F(z, |u])u with F' being some potential function, such that the equation still possesses
the charge conservation law, we can still get the ergodicity of the finite dimensional
approximation of the original equation through the procedure above. The procedure
could also applied to higher dimensional Schrodinger equations with proper well-posed
assumptions, but it may be more technical to verify the Hormander condition.

Remark 2.5. According to the ergodicity of (2), we have

T
i [ EFU®N = [ S V7B, in FHSm)

where By(S) denotes the set of bounded and measurable functions and [ fdpuy is
known as the ergodic limit with respect to the invariant measure py,.
For more details, we refer to [8] and references therein.

3. Approximation of ergodic limit. A fully discrete scheme (FDS) with the
discrete multi-symplectic structure and the discrete charge conservation law is con-
structed in this section, which could also inherit the unique ergodicity of the FDA.
In addition, we prove that the time average of the FDS can approximate the ergodic
limit fs fduy, with order 1 with respect to the time step.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/15/17 to 124.16.148.9. Redistribution subject to SIAM license or copyright; see http://www .siam.org/journals/ojsa.php

ANALYSIS ON ERGODICITY VIA MULTI-SYMPLECTIC SCHEME 311

3.1. Fully discrete scheme (FDS). We apply the midpoint scheme to (2),
and obtain the following FDS:

- Urtt —pn = i%AUH% FIANTF (U™ ) U™ +1Z(U™3)6,415,
U’ =U(0) €S,
where 7 denotes the uniform time step, ¢, = n7, U™ = (u},...,u%,) € CM, Unts =

U AU and 6,418 = B(tws1) — B(tn). For the FDS (7), which is implicit in
both deterministic and stochastic terms, its well-posedness is stated in the following

proposition.

PROPOSITION 3.1. For any initial value U° = U(0) € S, there exists a unique
solution (U™)nen of (7), and it possesses the discrete charge conservation law, i.e.,

U™ Y2 = |U™)|> =1, VneN.

Proof. We multiply both sides of (7) by U "‘*‘%, take the real part, and obtain the
existence of the numerical solution by the Brouwer fixed-point theorem as well as the
discrete charge conservation law.

For the uniqueness, we assume that X = (Xy,..., Xy)T and Y = (Y1,...,Yu)T
are two solutions of (7) with U" = z = (z1,...,2xm)T € S. Tt follows that X,Y € S
and

T X-Y i\r . X-Y
(8) X-Y = lﬁA 9 + ?I{(){7 Y, Z) + iz (2) 5’”-&-16’
where
X1+ 212Xy +21) — Vi + 212 (Y1 + 21)
H(X,Y,z)= :

| X+ 2 P(Xar + 20) — [Yar + 20 2 (Yor + 200)

Based on the fact that |al?a — |b|?b = |al?(a — b) + |b|?(a — b) + ab(@ — b) for any
a,b € C, we have

M
S[(X-Y)'H(X,Y,2)] =S [Z (X =+ 2m) Yon 4 20m) (X — Yo )?

m=1

with 3[V] denoting the imaginary part of V. Multiplying (8) by (X —Y)? and taking
the real part, we get

X~ ¥I? = =278 [(X - V)T H(X,Y, )]

< 5 ((amas, 1+ 2nll¥o 2] ) 1 = YIP < T - VP

8 \1<m<m 2

where we have used the fact X,Y,z € § and (4). For 7 < 1, we get X = Y and
complete the proof. ]

The proposition above shows that (7) possesses the discrete charge conservation
law. Furthermore, (7) also inherits the unique ergodicity of the FDA and the stochas-
tic multi-symplecticity of the original equation, which are stated in the following two
theorems.
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THEOREM 3.2. The FDS (7) is also ergodic with a unique invariant measure uj,
on the control set My, such that pj,(S) = pj(Mo) = 1. Also,

1 N—-1
fim 5 4" = [ fdui. Ve BS). in LS.
n=0

N—oco N

Proof. Based on the charge conservation law for {U™},,>1, we obtain the existence
of the invariant measure similar to the proof of Theorem 2.4.

To obtain the uniqueness of the invariant measure, we show that the Markov chain
{U3"},,>1 satisfies the minorization condition (see, e.g., [12]). First, Proposition 3.1
implies that for a given U™ € S, solution U™ can be defined through a continuous
function U™+ = k(U"™, §,,418). As 6,410 has a C* density, we get a jointly continu-
ous density for U1, Second, similar to Theorem 2.4, for any given y, 2 € My, there
must exist 4,7,k € {1,2,3,4} and r;,r; € My, such that y € S;,z € Sj,r; € §; N Sy,
and 7; € S; N Sk. As % € S; and Z(%) is invertible, d3,+108 can be chosen to
ensure that

T Yt

. Y+
ri—yzlﬁA 5

2

y+7“i)y+7“i

iIANTF
+IT(2 5

+iZ( )03n+1/

holds, i.e., r; = k(y,03n+10). Similarly, based on the fact % € S and TJ;FZ €S,
we have r; = k(r;, 03p428) and z = k(rj, d3n,435). That is, for any given y,z € Mo,
030410, 03n120, 03n13f can be chosen to ensure that U?" = y and U3+ = 2
Finally we obtain that, for any ¢ > 0,

P (y, B(z,0)) :=P (U® € B(2,6)|U" = y) > 0,

where B(z, ) denotes the open ball of radius ¢ centered at z. a0

The infinite dimensional system (1) has been shown to preserve the stochastic
multi-symplectic conservation law locally (see, i.e., [11]):

di(dp A dq) — Oy (dp A dv + dg A dw)dt = 0,

with p, ¢ denoting the real and imaginary parts of solution u respectively and v = p,,
w = ¢, being the derivatives of p and g with respect to variable z. We now show
that this ergodic FDS (7) not only possesses the discrete charge conservation law as
shown in Proposition 3.1 but also preserves the discrete stochastic multi-symplectic
structure.

THEOREM 3.3. The implicit FDS (7) preserves the discrete multi-symplectic
structure

1 1 1 1 1 1
;(dp;”r1 A dq?+1 —dp} Ndgj') — E(dp;H_2 A dv;ff - dp;tff’ A dqf,H'Q)

1 nt 1 n+i n+ i nt1
- E(dqj P Adw; P —dg;_F Ndw; %) =0,
where p}.q; denote the real and imaginary parts of uj, v; = %(p? —pj_1), and

w; = (7 —q},).
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Proof. Rewriting (7) with the real and imaginary parts of the components u! of
U™, we get

9)

Lt g - @ =t = (0 ) A,
) -t ety = (@ @) g g,
Loyt - = ot
LG gt =,

1 1 1 1 1
where (X = S0, \/en () 0 dBy(t). Denoting 2/ % = (pI 7%, ¢/ 2 Wit Wl )T
and taking the differential in the phase space on both sides of (9), we obtain

1 1
qr.LJrl — qn _(U;L:IZ - ’U;’L+2)
1 Jn+1 jn 1 nt3 n+3
d —(pj pj) +=d _(ijrll wjl )
T n+3 o n+3
D; j—1
0 qn+% n+i
J Jj—1
1 1 1 1
(10) = V281 (2] "2)de) T 4+ V2Sy (2 )z T (K
where
1 1 1 1.\2 1 1\2 1 12
s =36 ) 4 ()
and

1 1 1\2 1 1\ 2
=367 36

Then the wedge product between dz;wr% and (10) concludes the proof based on the
symmetry of V25; and V2Ss. 0

Before giving the approximate error of the ergodic limit, we give some essential
a priori estimates about the stability of (7) and (2). In the following, C' denotes a
generic constant independent of 7', N, 7, and h while C}, denotes a constant depending
also on h, whose value may be different from line to line.

LEMMA 3.4. For any initial value U° € S and v > 1, if Q € HS(L2,H%7%),
then there exists a constant C' such that the solution (U™)nen of (7) satisfies

E|[ U — U < O R +77), VneN,

where HS(L", H"?) denotes the space of Hilbert—Schmidt operators from L7 to HY2.

LEMMA 3.5. For any initial value U(0) € S and v > 1, there exists a constant C
such that the solution U(t) of (2) satisfies

E|U(tpy1) = Ult,)|* < C(rPh™ +77), VneN.

The proofs of the lemmas above are given in the Appendix for the readers’ con-
venience.
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3.2. Approximation of ergodic limit. To approximate the ergodic limit of
(2) and get the approximate error, we give an estimate of the local weak convergence
between U(7) and U!, and the Poisson equation associated with (2) is also used (see
[13]). Recall that the SDE (2) in the Stratonovich sense has an equivalent It6 form

dU = %AU +iINF(U)U — EU | dt +iz(U)dB(t)
(11) =: b(U)dt + o (U)dB(t)

based on (3). For any fixed f € W4>(S), let f= fs fdun, and ¢ be the unique
solution of the Poisson equation Lo = f — f, where

£:=b~V+%UUT:V2

denotes the generator of (11). It is easy to find out that (11) satisfies the hypoelliptic
setting (see, e.g., [13]) according to the Hérmander condition in Theorem 2.4. Thus,
¢ € WH(8) according to Theorem 4.1 in [13]. Based on the well-posedness of the
numerical solution (U™),en and the implicit function theorem, (7) can be rewritten
in the form

(12) Ut =U" + 7®(U", 1, h, 6 413)

for some function ®. Denoting by Dp(u)®; and D¥o(u)(®1, ..., ®x) the first and kth
order weak derivatives evaluated in the directions ®;, j = 1,..., k, with D*¢(u)(®)*
for shorthand if all the directions are the same in the kth derivatives, then we have

1 1
P(U"T) = p(U™) + 7 | Dp(UM)@" + 57 D*p(U™)(2")*| + § DY (U)(72")* + Ry

(13)

n?

1
(U™ +7LY9(U™) + 6D3<P(U”)(T‘I’n) + Ry
where ®" := ®(U"™, 7, h,dp4+15),
1
LIp(U™) = Dp(U™)P" + SrD2p(U™)(®")?,

and

1
Ry = D' (0n)(rom)!
for some 6,, € [U™, U] = [uf, uf ™) x ... x [ul,uy!]. Adding (13) together from
n=0ton=N —1 for some fixed N € N then dividing the result by T'= N, and

noticing that Lo(U™) = f(U™) — f, we obtain

Ny 0 N-1

NT n=0
132
3 n n D
+ - Z D o(U™) (10" ZO R )
1 = 1
L — Lo(U") + o= D*o(U™)(r")*]
n:O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 02/15/17 to 124.16.148.9. Redistribution subject to SIAM license or copyright; see http://www .siam.org/journals/ojsa.php

ANALYSIS ON ERGODICITY VIA MULTI-SYMPLECTIC SCHEME 315

1J\/'—l 1 N-1
n ¢ P

which shows

E L\ o) — Fl| < | ——E [po™ U° 1N71ER‘I’
§ 2 S0 || = | B [0 o] + | 3 R
1 N—-1 1
(14)  + NZE[C‘%(U”)—E@(U”)Jr6TD390(U")(T<I>”)3] = I+ II+1III.
n=0

The average + 271:/:—01 f(U™) is regarded as an approximation of f. We next begin to
investigate the approximate error by estimating I, I1, and III respectively.
According to the fact that ¢ € W4°°(S) and Lemma 3.4, we have

2”90”0,00 g
(15) I<=N: =7
and
1 N-—1 4 C N-1 4
L n 4 ~ n+l _ yrn
1< SB[l 10 ls] < i S E[jom - 0]
C N—-1
(16) < (t*h 8+ 7)) < C (PR 8 +7),

I
=)

n

where H@H%OO = SUP|g|<y,ueS |Da<p(u)|7 Y e N.

It then remains to estimate the term I71. To this end, we need the estimate of
the local weak convergence, which is stated in the following theorem. The proof of
the following theorem is also given in the Appendix.

THEOREM 3.6. For a fized spatial approzimation (2), and for any initial value
UY € S and o € W(S), it holds under the condition Q € HS(L?, H%) and 7 =
O(h*) that

[E [o(U(r)) = o(UM)]] < Ch7?
for some constant Cp, = C(p,n, h).

Now we are in the position of showing the approximation error between the time
average of FDS and the ergodic limit of FDA.

THEOREM 3.7. Under the assumptions in Theorem 3.6 and for any f € W4>(S),
there exists a positive constant Cy, = C(f,n,h) such that

1= . 1
¥ 2 e f|| <oz er).

Proof. Based on (14)—(16), it suffices to estimate term IT1. For any f € W4°°(S),
we know from the statement above that the solution to the Poisson equation Ly =
f— f satisfies p € W*°°(S). Based on (13), Lemma 3.4, and the condition 7 = O(h*),

we have

E

P(U) £ (U°) + 7L (U%) + £ D¥p(U)(U" ~ U)° + O(r?)

(17) = p(U°) + 7L2p(U°) + O(7),
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where = means that the equation holds in expectation sense, and in the last step
we have used the fact that

D3p(U°) (U — U°)? = D3p(U°) ('lAU% FINFURUE 4+ iZ(U%)élﬂ)g

(18) 2 O(r*h?

based on the linearity of Z, Lemma 3.4, and that E (iZ(UO)§16)3 = 0. We can also
get the following expression similar to (17) based on Taylor expansion and Lemma
3.5:

AU) E o)+ [ (DU WU 0) + 30000 (U O)) ) at
0
+ [ De)oU)aste) + G DOV () ~ U +0()

19 Ee)+ [ L+ o),
0
Lip(U) == Dp(U)b(U (1)) + %D%(UO) (o(U(1)))*
and E [ [ Dp(U%)o(U(t))dB(t)] = 0. Thus, subtracting (17) from (19), we derive

(20) ‘IE [Tﬁ%(UO)—/OTZt@(UO)dtH < |E[p(U(7)) — o(UY]]| + CT°.

We notice that

/ CE[£p(U") - £o(U) dt‘ <
0

/0 "B [Dp(U°) (MU (1)) - b(U°))] dt‘

1

(21) + ’2 /OT E [D*o(U°) (o(U(t)) = a(U"),a(U(1)) + o(U"))] dt‘ :

in which we have
.1
[E [De(U®) (w(U 1) — b(U")]| = [E[D2e(V°) (i34 (U(1) - U°)
+ iA(F(U(t))U(t) - F(UO)UO) —B(U(t) - UO))] ‘ < O(th™2 +1)
for the first term in (21). In the last step, we have used the fact that g(V') := F(V)V,
YV V € 8, is a continuous differentiable function which satisfies |[D¥g(V)| < C for

[V]| <1 and k € N, and then replaced U(t) — U° by the integral form of (2) to get
the result. The second term in (21) can be estimated in the same way. Thus, we have

(22)

/oT E [Lup(U°) - Lp(U°)] dt‘ < C(rh? 4 72).
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We hence conclude based on (18), (20), (22) and Theorem 3.6 that

N-1

111 = |;f nz:% E {/L%(U") —Lo(U™) + %D%(U")(U”*1 - U”)B]
< %55155 {‘IE {Tc%(UO) _ /OT ﬁtcp(Uo)dt} ‘ + /O E [ﬁtw(UO) . @(UO)} dt’}

(23)

+C(th™2 4+ 1) < Cpr.
Noticing that 73h=% = O (7) under the condition 7 = O(h%), from (15), (16), and
(23), we finally obtain

N-1

1 a
v [ = f

n=0

E

1

Remark 3.8. Based on the theorem above and the ergodicity of (2), for a fixed h,
we obtain

S Ch(B(T) + T)7

1 Nl 1 [T
E [N IECORS. / f(U(t))dt]
which implies that the global weak error is of order 1, i.e.,

B[ fU@®)]| < Cu(BEO + 7).t lnr(n+ D7),

where B(T) — 0 and B(T) — 0 as T — oc. On the other hand, a time independent
weak error in turn leads to the result stated in Theorem 3.7.

4. Numerical experiments. In this section, numerical experiments are given
to test several properties of scheme (7) with A = 1, i.e., the focusing case. In the fol-
lowing experiments, we simulate the noise §,,118 by /7&, with &, being independent
K-dimensional N (0, 1)-random variables, and choose n, = k=%, k= 1,..., K. In ad-
dition, we approximate the expectation by taking averaged value over 500 paths, and
the proposed scheme, which is implicit, is numerically solved utilizing the fixed point
iteration. In the following, we will use the notation ||U||] := an\le (Ipm|” + lgm|™)
for U € CM and v € N with P = (p1,...,pm)7, and Q = (q1,...,pa)T being the

real and imaginary parts of U. Notice that || - |2 = || - ||
—tau=2" o —tau=2"
—tau=2"| —tau=2"|
tau=2" o tau=2"%
—tau=2"| 0s —tau=2"|
2 E] EN
w w o w o2
o ” —tau=2""
—tau=2""!
"‘ o tau=2"12
o8 o8 —tau=2""

0w w0 w W % % w0 05 T g 2 25 a 3 o1 o0
t t t

(a) Proposed scheme (b) IME scheme (¢) EM scheme

FiG. 1. Charge evolution E||U™||2 — 1 for (a) the proposed scheme with T = 100 under steps
T=27"(i=4,5,6,7), (b) IME scheme with T = 3 under steps 7 = 27" (i = 4,5,6,7), and (c) EM
scheme with T = 27° under steps T = 27% (i = 10,11,12,13) (h = 0.05, K = 30).
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We omit the boundary nodes in the simulation; as a result, we may choose the
normalized initial value U° = ¢, (U%(1),...,U%(M))T based on function ug(z) satisfy-
ing U%(m) = up(mh), m =1,..., M, in which uy(z) need not to satisfy the boundary
condition in (1). Let ug(z) = 1, and we get the normalized initial value U satisfying
|U°]| = 1, which is used in Figures 1, 3, and 4. We first simulate the discrete charge for
the proposed scheme compared with the Euler-Maruyama (EM) scheme and implicit
Euler (IE) scheme, respectively. Figure 1 shows that the proposed scheme possesses
the discrete charge conservation law E||U"||? = 1, which coincides with Proposition
3.1, while both the EM scheme and the IE scheme do not. As the EM scheme is not
stable—its solution will blow up in a short time—we choose the time step 7 small
enough for the EM scheme in the experiments.

As the ergodic limit |, s fdup is unknown, to verify the ergodicity of the numerical

solution, we simulate the time averages 4 Zﬁ:l E[f(U™)] for the proposed scheme
with the bounded function f € Cy(S) being (a) f(U) = ||U||3, (b) f(U) = sin(|U|}),
and (c) f(U) = e~ IVIi in Figure 2, starting from five different initial values U?, 1 <
I < 5. It is known from Theorem 3.2 that, for almost every initial value U° € S, the
time averages will converge to the same value, i.e., the ergodic limit. Thus, we choose

five initial values
U =c,(U2),...,U00(M)", 1=1,...,5
based on the following five functions:

1
U —
0,1( 5

-2+
woal < (exp - 1)) (1 = exp (a(1 - 2))),

o 5(x )—c*sech<ﬁ) exp( g)

with U?(m) = ug(hm), 1 <m < M, and ¢, being normalized constants. The charge
of all the initial functions equals 1, and wug 4(x) even satisfies the boundary condition
in (1). Figure 2 shows that the proposed scheme starting from different initial values
converges to the same value with error no more than O(7) with h = 0.05 and 7 = 276,
which coincides with Theorem 3.7.

’LLO 2( ) 1, U073($) = 233,

o 3 Eﬁ‘“

f(U)=IIUII§ f(U)=sin(luIL) ,(u)=e-lluuj

Time average
Time average
Time average

o0 k
D R TR T I R R %0 £ o ® w0
t t t

() FU) = U3 T=20  (b) f(U) =sin(JU[I4), T=20 () F(U) = e IVIE, 7= 140

Fi1G. 2. The time averages % ijzl E[f(U™)] for the proposed scheme with (a) f(U) = ||U|13,
(b) f(U) =sin(||U||3), and (c) f(U) = e~ IUlg (r=27% h =005 K = 30).
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Global Weak Order . Global Weak Order - Global Weak Order
=
— S — - —
— - 0
tau o tau m! tau
. _ 4
(a) F(U) = IUII3 (b) f(U) =sin(|UI3) (c) fF(U) = eIVl
Fic. 3. The weak convergence order of [E[f(U™) — f(U(T))]| with (a) f(U) = |U|3,

(b) f(U) = sin([U|4), and (c) f(U) = e~ IUIi (z = 271,10 < i < 13, h = 0.05, T = 271,
K = 30).

For a fixed h, Figures 3 and 4 show the weak convergence order in the temporal
direction and the weak error over long time, respectively. Figure 3 shows that the
proposed scheme is of order 1 in the weak sense for (a) f(U) = ||U||3, (b) f(U) =
sin(||U||4), and (¢) f(U) = eIVl which coincides with the statement in Remark
3.8. Furthermore, based on the ergodicity for both FDS and FDA, the weak error is
supposed to be independent of time interval when time is large enough. To verify this
property, we simulate the weak error over long time in Figure 4 for (a) f(U) = ||U||3,
(b) F(U) = sin(|U]2), and (¢) f(U) = e~IVII%; it shows that the weak error for the
proposed scheme would not increase before 7' = 1000 while the weak error for the EM
scheme would increase with time.

. _ 4
(a) f(U) =IUII3 (b) F(U) = sin(||U]13) (c) f(U) =eIVIl1

FIG. 4. The weak error [E[f(U™) — f(U(T))]| for (a) f(U) =||U|I3, (b) £(U) =sin(||U]|}), and
(c) f(U) = e UG (7 =2712 h = 0.05, T = 103, K = 30).

5. Appendix.

5.1. Proof of Lemma 3.4. As proved in Proposition 3.1 that ||[U™|| =1, Vn €
N, for the nonlinear term, we have

2y M
—E Z
m=1

by the convexity of S, i.e., [U"2|| <1, a.s. The noise term can be estimated as
2\ ¥

n+% n+% 6y
Um Um

E|Fmthumts

3y
2 1
) gIEHU”Jri <1

M
67<E<Z
1

K
+l
U 2 e (Tm ) /TkOn+1 Bk
=1

1 2y M
E HZ(U"H)&MﬁH ~E( Y

m=1
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M 5 K 2\ 5 K 2\
<E (22 w3 | (3 Vilonsaul) ) =E<2HU"+5 (3 vmloneafl) )
m=1 k=1 k=1

(24)

K 11 il K 2y—-1 K v
<CE (Z nin 6n+15k|> < CE[( ) (2w |6n+15k|27)] <or
k=1

k=1 k=1

n41
rL+2
m

by |ex(m)| < f 2 and Holder’s 1nequahty In the last step of (24) we notice that, as
Q € HS(L?, Hf_W) Sy 33 T < 00, 80 M = O(k™ -3 1)) for any € > 0. Thus,

oo

o0 o0
ijmt“ < ()Zk*(‘**%“)m — Czk*(“rﬁin) < 0.

k=1 k=1 k=1

In conclusion,

B ot - o

2 2 2
<C (E H%AU“% H "4E HATF(U“%)U“% "LE HZ(U”+%)6n+1/8H 7)

CT2’Y
S 95

E HU"+1 +O0r +CrY < C (7.27;1747 + T”) ,

where we have used the fact that | Al < 4.

5.2. Proof of Lemma 3.5. From (2) and (3), based on Hélder’s inequality, we
obtain

E|[U (tn41) — Ultn)]>

tot1 1 . bnt1
/ {ithU FINF(U)U — EU] dt + / iZ(U)dp(t)
tn t

tnt1 2y tnt1 24
gc(/ E dt(/ 12wdt)
tn tn
tha1
| izwas
t

n

2y
=E

1 2y—1
i3 AU +INF(U)U — BU

.

2y thal EIU 2'Yd 2y N
WU|“"dt +Cm*7" + Cr

tn

+E

L4

h2

< C’(7’2“’h_4'Y +77),

< Oort

where we have used the boundedness of F(U)U in S similar to that in Lemma 3.4.
In the third step of the equation above, we also used

M 2\ 7

K
E 771@6;.3 xm Um
k=1

E|EU|* < CE

=1
Y

X 2
° (Z m) < CE|UI* < C
k=1

IN
=
1=
<
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and

| " izwase| <c (/ " (E1zos)” dt)y
/ Y

<c /+< <ZZ|umekxm >7>$dt

tn m=1 k=1

tn+1 1 Y
<C (/ (]E (2n||UH2)’V) ’ dt) <o
tn

according to the Burkholder-Davis—Gundy inequality and the fact that the Hilbert—
Schmidt operater norm || Z(U)||lns = ||Z(U)||r, with || - ||r denoting the Frobenius
norm.

5.3. Proof of Theorem 3.6. Based on Taylor expansion and Lemmas 3.4 and
3.5, we obtain

E [o(U(7)) = (UN)] =E [Dp(UH)(U(r) - 1)JFO(IIU( )= U'%)]

=E [DpU°)(U(r) —=U")] + E [D*o(U°)(U" U(r)—UY)]
+O(E (U = U 2|U(r) — U] + Bl (r U1|| )
= A+B+C.

We give the mild solution and discrete mild solution of (2) and (7) respectively:
U(r) = ez A7y0 + / Rz A=) (i)\F(U(s))U(s) - EU(s)) ds
0

- / A2 ()8 (s),
0

- _ 0 Nt
U _< 2h2A) <I+2h2A)U +<I—2h2A) ixrF (Uh) U
. —1
+ (I ;};A> iz (U%) 5. 5.

Estimation of A. Considering the difference between the above equations, we
have

i%AT iT B
utn - U = ( s <I‘ w“‘) (” 2hA)> v
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- . —1
) ir o
+1/0 (1 - WA) Z(U(s) — U*)dB(s)
a 2h2
=:a+b+c+d+e+f,
which, together with the fact that E[Dp(U%)d] = E[Dp(U)e] = 0, yields that

A=E [Dp(U°%a] + E [Dp(U")b] + E [Dep(U°)c] + E [Dp(U°)f]
= A1+A2+A3+A4.

. . -1 -
1 (1 - ”A) Z(U' — U5, 8+ / A=) By (s)ds
0

Based on the estimates e — (1 — 2)7}(1+ £) = O(2?) for |z|| < 1, and

(25) i Ar=s) _ (] _ WA) ( ||A\|> <Orh™2, VYselo,7],
we have
(26) |A1] < Cllgll oo llTh 2 AIPENU®| < CT3R7° < C72h72

under the condition 7 = O(h*), and
(27) [ Ag| < C||<P||1,oo/0 Irh =2 Al F(U(s))U (s)]|ds < CT2h~2.

Term Az can be estimated based on Lemmas 3.4 and 3.5:

42l =[5 | Do) [ (1- 5734) B (PO - FOO)

- (F (U%) Ui - F(UO)UO) ]ds] :

in which we have known from the proof of Theorem 3.7 that

F(U(s)U(s) = F(U)U® = g(U(s)) — 9(U°)

= Dg(U°)(U(s) = U°) + %D29(9(8))(U(5) - UY)?

o) [ Zave) + nm @) - v+ [ 2wase)

+ §D29(9(8))(U(8) - UY)?

for some 6(s) € [U°,U(s)] and s € [0,7], and the same for the term F (U%> Uz —
F(U%)U°. Based on the fact that E [Dg(U°) fo U(r))dB(r)] =0, we hence get
(28) |As| < C(T*h 2 + 77)
similar to the proof of Lemma 3.5. We rewrite
ui —uf
ZU' - U%68 = Eng Ao B

1 0
Upr — Uy
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25:1 ex(71)/Mk01 Bk
= .. ) (Ul _ UO)

Yt ex(Tar) /M1 B
=GU" - U"),
where G satisfies that E[GU] = 0. Utilizing that E[GF(U°)U°] = 0, we can rewrite

term A4 as
. . —1 T
E|Dyp(U°) (1 (I - ;};A> QU —U°) +/ eiw(T—S)EU(s)dsﬂ
0

A4 5
Dy(U?) (1 - A> G(ihTzAUé +iAMF(U?)U? +iGU%>

= WJE
2h2

-E D@(UO)/ eih%A(T_s)EU(s)ds
0

. —1
_ T 0 1T 1_ 770
~ 5E | De(U°) (1 2h2A> GA(U' - U°)
1 —1
- 0 _ NUi — 0ygyo
+ 3ATE | Dp(U) (1 2h2A) G (F(U Wi — FUYU )
+1E Dp(U% (T — a4 71G2(U1 - U%
1 212

E D@(U0)<<I—WA> IGQUO—/OTe‘h12 TYEU(s)d )]

= Ay Ay + Agz+ Agy,

in which, based on E[G3U°] = 0, A4 5 can be expressed as

=

1
-E
4

-1
0 _ 2 ({2 AUS 1 3
Dy(U") (I 57,2 A) G <1h2 AU? +itAF(U=)U

+ %G(Ul - UO))

For any U € CM | we have

N

K 2 1
E|GU| = E|IZ(1)85] < CE <|U||2(Z NaDE) ) < ot (BJU)3)*
k=1

Hence E[|G3(U' — U%)|| < Cr2(E||G2(U" — U°)||2)2 can be further estimated based
on (24) with v = 4 under the condition Q € HS(L?, H7), which together with Lemma
3.4 and Uz < 1 yields

(29) Ay + Ay + Ays| < C(T%h_4 + 72072 47 < O(r*h 2 + 12).
For the term Ay 4, we have
L, oag 1 e € (1) (818) 2l ) . > € (@1)mkua(s)
§GU:5 : , EU(s) = = :
Sk €3 () mk(5181) 20l S € (@nn)mua (s)
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Thus, we obtain

) S € () (01 Br) Pl
Aga = 5E | Dp(U") (I - A) :
Zk 1% TM 77k(515k) UM

Zk 1€k o1)nru(s)
ds

1 .
— 58 | Dot [ ersac
Zk 1ek 1) nk((‘slﬁk) —7)uf

1 0

(Zk 1€k )Mkt (S)

S e (@an)ne((8181)% — m)udy
Zk—l eq (z1)miul

o << [ it

K
Zk:l 6% (xM)TikU%/[

. S e (@) (ur(s) —ul)
~Lg |pptwn) [ enearo ; |,
0

2 K
D k=1 ei<xM)77k (UM(S) - “9\4)

where in the last step we have used the fact that

K K
D k=1 ei(wl)nwu? D k=1 ei(wl)nku?

= / : ds.
o :

K K
> one1 er(@ar) Ul > et € (@ar) el

Noticing that the first term in (30) vanishes as E(8; ;)% = 7 and replacing U(s) — U°
by the integral type of (2), then further calculation shows that

(31) |Agal < C(r2h72 +77)
based on (25) and the technique used in (28). We then conclude from (26)—(31) that
(32) A < C(T?h™ 2 +77) < Cu12.
Estimation of C. Estimations of A; and As show that
(33) Ella+b|? < C(rh 1 4+ r*h7?) < C72.

Based on Hoélder’s inequality, 1t6 isometry, and Lemmas 3.4 and 3.5, we have
(34)  Elc+d|*< CT/ E|U(s) — U?||ds +/ Cr2h~4ds < O(r°h™ + 73)
0 0

and
2
ds| < Or2.

(35) E||e||2s0E/
0 HS

(I ;;2 A) "y (U(s) —U)
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Rewriting Z(U* —U®)6,8 = G (i%AU% +INMF(U2)U? + iGU%) together with the
Holder’s inequality and (24) yields

(36) E|f|* < C(r3h™* + 12).

We then conclude from (33)—(36) and the condition 7 = O(h*) that

(37) E|U(r) - U'? < C7?,

which yields

(38) [cl=0 (@I -U°I%)* ®IU(r) - U2)* +E|U() - UY)F) < Cr

Estimation of B. As for B = E [D?p(U°) (U' = U%a+b+c+d+e+f)],
according to Holder’s inequality, (33), and (34), we have

[E[D?o(U°) (U - U a+b+c+d)|
<CEIU" ~U°IP)* (Blla+b+c+dl?) < O 472
Noticing that

E [D*o(U°) (U= U e+f)]

_ 2 0 1_ o T 7i77 - s) — Ut s
ED@w>@ U’A<IQW@ ﬂW)tmwuﬂ
+ %IE D?p(U?) (Ul -U%i <1 - ;};A>_ Z(U" — Uo)élﬁﬂ

—E [D%(U") (U1 - UO,/ eihlZA(TS)EU(s)ds)}

0
=: By + B2 + Ba,

where |B;| < C71? according to (37) and Lemma 3.4. Furthermore,

1 . T 1, 11, ir !
By = SE D*p(U") <1h2AU2 +iTAF(U2)U2,i (I - WA) Z(U* - U°)516>]
1 (U =U° , ir \7'
+ 51@ D%p(U%) <1Z (2> 518, (I - 2h2A> Z(U' - UO)&ﬁ)]
1 . —1
+5E | D2p(U") (iZ(UO)élﬁ,i (1 - ;};A> Z(U" - U0)616>

=: By + Bya+ DBa3

with |Bg1 + Ba2| < C(72h~2 + 72). Replacing U! — U again by (7), we obtain

|Ba3| <

pe[prew) (st (1= 35a) 2 (i) )|
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+C(T*h ™2 + 7%

. —1
< ;E{DQ@(UO) iZ(U0)616,1<I—21};A> Z (iZ(U°)6:8) 6,3 ]

+C(r?h 2 4+ 77)
= C(r*h 2 +17),
where in the last step we used the fact E[(6;8)%] = 0 and U is Fo-adapted. Also,

|Bs| < ‘IE {D%(UO) <ihTQAU% +imF(U%)U%,/ eihBA(T_S)EAU(s)dsﬂ ‘
0

+ ’E |:D2g0(UO) (iZ(Ué)élﬂ, /T ei;%zA(‘rfs)E (U(S) _ UO) d8>:| '
0
)61, /T eii?A(TS)EAUOdsﬂ ‘
0

<O(r*h2+7%) + % ‘]E {D%(UO) (iZ(U1 - U0)516,/ eifsz<TS>EU°ds>} ‘
0

|-

+ ’E [D2<p(U°) (iZ(U

< C(T*h% 4+ 77,
so we finally obtain
B] < C(r*h™% + 7°) < Cy?,
which, together with (32) and (38), completes the proof.
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SCHEMES FOR THE STOCHASTIC LANGEVIN EQUATION VIA
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Abstract. In this paper, we consider the stochastic Langevin equation with additive noises,
which possesses both conformal symplectic geometric structure and ergodicity. We propose a method-
ology of constructing high weak order conformal symplectic schemes by converting the equation into
an equivalent autonomous stochastic Hamiltonian system and modifying the associated generating
function. To illustrate this approach, we construct a specific second order numerical scheme and
prove that its symplectic form dissipates exponentially. Moreover, for the linear case, the proposed
scheme is also shown to inherit the ergodicity of the original system, and the temporal average of
the numerical solution is a proper approximation of the ergodic limit over long time. Numerical
experiments are given to verify these theoretical results.

Key words. stochastic Langevin equation, conformal symplectic scheme, generating function,
ergodicity, weak convergence
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1. Introduction. A common way to describe dissipative systems which interact
with their environment, especially in the fields of molecular simulations, quantum
systems, cell migrations, chemical interactions, electrical engineering, and finance
(see [8, 10, 20] and references therein), is by means of the stochastic Langevin equation.
The stochastic Langevin equation considered in this paper is a dissipative Hamilto-
nian system, whose phase flow preserves conformal symplectic geometric structure [4]
as an extension of the deterministic case. Namely, its symplectic form dissipates ex-
ponentially. One can also show that the considered stochastic Langevin equation is
ergodic [13, 14, 21] with a unique invariant measure, i.e., the Boltzmann—Gibbs mea-
sure [4, 6]. This dynamical behavior implies that the temporal average of the solution
will converge to its spatial average, which is also known as the ergodic limit, with
respect to the invariant measure over long time.

This work proposes an approach for constructing high weak order conformal sym-
plectic schemes that accurately approximates the exact solution, while preserving both
the geometric structure and the dynamical behavior of the system. We illustrate this
approach by a specific case and show that the proposed scheme for this particular
case inherits the ergodicity of the original system with a unique invariant measure.
The weak convergence error, as well as the approximate error of the ergodic limit, is
proved to be of order two.
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There have been several works concentrating on the construction of numerical
schemes for the stochastic Langevin equation, mainly based on the splitting tech-
nique. For instance, [4] constructs a class of the conformal symplectic integrators to
preserve the conformal symplectic structure, and [18, 19] propose quasi-symplectic
methods which can degenerate into symplectic ones when the system degenerates into
a stochastic Hamiltonian system. The convergence rates of these schemes depend
heavily on the splitting forms. As for the ergodicity, to the best of our knowledge
its numerical analysis in general contains two aspects. The first is to construct nu-
merical schemes that inherit the ergodicity (see, e.g., [13, 21]) and to give the error
between the numerical invariant measure and the original one (see, e.g., [5, 7]). The
other aspect is to approximate the ergodic limit with respect to the original invariant
measure via the numerical temporal averages for some empirical test functions (see,
e.g., [12, 14, 19]). In the latter case, the numerical solutions may not be ergodic.

In this paper, for the considered stochastic Langevin equation, we aim to construct
numerical schemes which are of high weak order and are conformally symplectic. To
achieve these aims without incurring the complexity of the high order splitting tech-
nique, we introduce a transformation from the stochastic Langevin equation to an
autonomous stochastic Hamiltonian system. It then suffices to construct high order
symplectic schemes for the autonomous Hamiltonian system, which turn out to be
conformal symplectic schemes of the original system based on the inverse transfor-
mation of the phase spaces. The discretization of the modified equations, which are
constructed by modifying the drift and diffusion functions as polynomials with re-
spect to some time step, represents a powerful tool for obtaining high weak order
schemes. For example, [1] constructs high order stochastic numerical integrators for
general stochastic differential equations (SDEs), but these schemes may not be sym-
plectic when applied to the Hamiltonian systems. Based on the internal properties
of the Hamiltonian systems, [2] proposes a method for constructing high weak order
stochastic symplectic schemes with multiple stochastic It6 integrals, using truncated
generating functions. Based on these schemes, [24] gives their associated modified
equations via generating functions. To reduce the simulation cost and still get high
weak order symplectic schemes, inspired by [1, 2, 24], we modify the generating func-
tion for the equivalent stochastic Hamiltonian system and derive associated symplec-
tic numerical methods by truncating modified generating functions. We would like to
mention that this class of methods reduces the simulation of multiple stochastic It
integrals by simulating products of increments of Wiener processes instead. We illus-
trate this approach with the construction of a stochastic numerical scheme that has
weak order two. For the proposed numerical scheme, both the discretized phase vol-
ume and symplectic form dissipate exponentially, which coincides with the behavior
of their exact counterparts in the original stochastic Langevin equation. Furthermore,
the proposed scheme, similar to the original system, is proved to possess a numerical
invariant measure that is unique for the linear case, which implies the ergodicity of
the numerical solution. Finally, we verify that both the weak convergence error of the
numerical scheme and the error of ergodic limit are of order two.

An outline of this paper is as follows. Section 2 gives a review of some basic
properties of the stochastic Langevin equation, as well as the generating function of
the stochastic Hamiltonian system, and also the transformation between the stochastic
Langevin equation and an autonomous stochastic Hamiltonian system. In section 3, a
weakly convergent conformal numerical scheme, which possesses an invariant measure,
is proposed by means of modified generating functions and the transformation of phase
space. In section 4, we show that both the weak convergence rate of the proposed
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scheme and the approximation error of the ergodic limit are of order two, based on
the uniform estimate of the numerical solutions. Finally, we give some numerical tests
to verify the theoretical results in section 5.

2. Stochastic Langevin equations. Let (2, F,P) be a probability space, F;

be the filtration for ¢ > 0, and W (t) = (Wy(t),..., V[/m(t))T be an m-dimensional
standard Wiener process associated to {F;}+>0. Denote the 2-norm for both matrices
and vectors by || - || and the determinant of matrices by |-|, and let C be a generic
constant, independent of h, that may differ from line to line.

2.1. Stochastic conformal symplectic structure and ergodicity. In this
section, we focus on the stochastic Langevin equation driven by additive noises with
deterministic initial values P(0) = p € R? and Q(0) = q € RY, of the following form:

" dP = —f(Q)dt — vPdt — i ordWe(t),
r=1

dQ = MPdt, te(0,T],

where f € C®(R% RY), M € R is a positive definite symmetric matrix, v >

0 is the absorption coefficient, and o, € R? with » € {1,...,m}, m > d, and
rank{oy,...,0,} = d. In addition, assume that there exists a scalar function F' €
C>(R%,R) satisfying
IF(Q) .
fl(Q): 851)7 7’:177d

To simplify the notation, we will remove any mention of the dependence on w € €2
unless it is absolutely necessary to avoid confusion. Note that (1), as well as all the
other SDEs in what follows, holds almost surely with respect to P. It is well known
that if v = 0, (1) turns out to be a separable stochastic Hamiltonian system (SHS)
which possesses stochastic symplectic structure and phase volume preservation [17].
However, when v > 0, the symplectic form of (1) dissipates exponentially, i.e.,

dP(t) NdQ(t) = e "'dpAdq YVt >0,

which characterizes the long-time tracking of the solutions to (1), as well as the phase
volume Vol(t). Namely, denoting by D; = D;(w) C R?? a random domain which has
finite volume and is independent of Wiener processes W (t) with respect to the system
(1), one can obtain

Vol(t) = / dp...dP4dQ' - dQ?
D,

_/ D(Pl,...,P‘ﬂQl,...,Qd) d
Dg
D(PY,...,P%,Q%,....Q%)

D(pl,...,pd,ql,...,qd) pl"'dpddql"'dqdv
where the determinant of Jacobian matrix | DO gl | = e " with d being
the dimension [16, 17].
As another well-known long-time behavior, the ergodicity of (1) is shown in [13]
by proving that (1) possesses a unique invariant measure p. Noticing that (1) satisfies
the hypoelliptic setting

(2) span{U;, [Up,Uj], i =0,...,m, j=1,...,m} = RrR2?
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with vector fields Uy = ((=f(Q) —vP)",(MP)")" and U; = (0] ,0)7, j =1,...,m,
which together with the following assumption yields the ergodicity of (1).

ASSUMPTION 2.1 (see [13]). Let F € C™(R? R) satisfy that
(i) F(u) >0 for all u € R%;
(ii) there exist a >0 and 8 € (0,1) such that for all u € RY, it holds

LT f) = F() + 0?22 2 )

2 8(1—p)

Intuitively speaking, the ergodicity of (1) reads that the temporal averages of
P(t) and Q(t) starting from different initial values will converge almost everywhere
to its spatial average with respect to the invariant measure . More precisely,

1 T
@ Jim g [ ECYwPO.QO)d= [ vde Ve CER)

T—oo T 0 R2d

in L?(R?? 1), where E(®9)[] denotes the expectation starting from P(0) = p and
Q(0) = ¢. In the following, we use the notation E instead of E(% to simplify the
notation.

Next, we aim to convert (1) into an equivalent homogenous SHS via a transfor-
mation of phase space, such that one can construct conformal symplectic schemes
for (1) based on symplectic schemes of the homogenous SHS. To this end, denoting
X;(t) = "' Py(t) and Y;(t) = Q;(t) and applying Itd’s formula to X;(t) and Y;(t) for
i=1,...,d, one can rewrite (1) as

m d
(4)  dX;=—e"fi(Y1,...,Ya)dt — €Y opdW,(t), dY;=e "> M;;X;dt
r=1

=1

with X;(0) = p; and Y;(0) = ¢;. It is obvious that (4) is a nonautonomous SHS with
time-dependent Hamiltonian functions

d d
- 1 - )
HO = evtF(Y]_, e ,Yd) + §€_Ut E XZM”XJ, Hr = e”t E 0'71‘}/1
i=1

4,j=1

To obtain an autonomous SHS we introduce two new variables X317 € Rand Y 11 € R
as the (d + 1)th components of X and Y, respectively, satisfying

OH o~ OH,
de+1 = dt, dXd+]_ = —Ttodt - 815

r=1

o dW,.(t)

with Y341 (0) = 0 and Xu11(0) = Flqu, .., qa) + 3 X0 .y piMijpj + Smey S0 olgi

Here the notation “o” means that the equation holds in the Stratonovich integral
sense. Then (4) becomes the (2d + 2)-dimensional autonomous SHS

OH,  OH,
Ty Y

H, " HH,
o dW,(t), gy = Moy 50

(6) ax= T ox T T 4ox

o dW,.(t),

with X(0) = (X1(0),...,X441(0)) € R Y(0) = (Y1(0),...,Y4:1(0)) € R¥L and
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new Hamiltonian functions

d

1
HO(X, Y) _ e”Yd“F(Yl, o 7Yd) + ief’l}Yd%»l Z XiMinj + Xa+1,
ij=1
d
Ho(X,Y) =Yy " olY;.
i=1

Here, (5) is called the associated autonomous SHS of (1), and its phase flow preserves
the stochastic symplectic structure. Notice that the motion of the system can be
described by different kinds of generating functions (see [2, 23] and references therein).
We consider only the first kind of generating function S in this article.

2.2. Generating functions. For convenience, we denote X (0) =z and Y (0) =
y. It is revealed in [22] that the generating function S(X,y,t) related to (5) is the
solution of the following stochastic Hamilton—Jacobi partial differential equation:

oS — oS
(6) dtS(X,y,t) = HO (X,y—i— &X)dt-‘r ;HT (X,y + &X) OdWT(t).

Moreover, the mapping (z,y) — (X (t),Y (t)) defined by

0S(X(t),y,t)
Oy ’

0S(X(t),y,t)

(7) Xt)=z—- 39X

Y(it)=y+

is the stochastic flow of (5). Based on the It6 representation theorem and stochastic
Taylor—Stratonovich expansion, S(X,y,t) has a series expansion (see, e.g., [2, 3])

(®) S(X,y,t) =Y Gal(X,y)JL,
where

t S S2
J(tl :/ / / Odel(sl)Ode2(82)o"'Odel(Sl)
0 JO 0

with multi-index o = (j1,52,.--,51) € {0,1,...,m}® 1 > 1, and dWy(s) := ds.
Before calculating coefficients G (X, y) in (8), we first specify some notation. Let
l(a) denote the length of a, and let a— be the multi-index resulting from discarding
the last index of a. Define ax o’ = (j1,...,J1,j1,--.,7}), where o = (j1,..., ;) and

o' = (j1,...,7j)). The concatenation “x” between a set of multi-indices A and a is
A+ a={Bx*a|B € A}. Furthermore, define

{(1,01), (G100} i 1=1=1,
A {AGoyar— * (), * ()} i 1=11"#1,
o {Mae gy * G)yax ()} if T#1L1 =1,
{Aa—ar * (1) Aaar— % (31} if T# LU # 1.

For k > 2,let Aa,....ar, = {AB,0x |8 € Aay.....ar_, }- We refer the reader to [2] for more
details about this notation. Substituting (8) into (6) and applying Taylor expansions
to H,. (r =0,1,...,m) at (X,y), we obtain G,, = H, with @ = (r) being a single
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index and
d+1
Z Z 9'H; (X, y) Z 0Gay  0Ga,
| k= aykl O, l(or) + -+ (o) = () — 1 0X, 0Xk,
a— € Aayoonrrs

for any a = (41, j2, ..., Ji) with I > 2 (see, e.g., [2, 3]). To make it clear, the simplified
d+1 DHy OHyy o
i=1 8y, 0x, N

expressions of G, are given when | =2 or 3: G(;, j,) = >

di 8H 8G J17J2) % 0?’H aHjl aHj’z + aHj’z aI{jl
J1 2J2,J3) — Ay 8y18y] 0X; an 0X; an

Let C; := e"4+1 and Cy := e~ VY4+1. Here y44+1 denotes the (d 4+ 1)th component
of y. Note that y is the initial point of the considered interval; that is, if we consider
the problem on the interval [s,t], then y = Y(s). For r1,r2,75 € {1,...,m}, we have

G(Tl,’l"g) = G(Tl,o) = G(’l"1,7’2,’l“3) G(Tl,’l"z, ) = G(Tl,o,’l“z) = 07

d
G(Oﬂ‘l) = Z O',f.lMinj +vCh Zafﬁqi’ G(Oﬂ‘l,’!‘z 010' MO'TQ,

i,j=1 i=1

d d
1
G(o’o) = Z fl(y)M”X] + ’l)ClF(y) — 51)02 Z XZM”X]
i,j=1 ,j=1
a8

For a fixed small time step h, using (8) and applying Taylor expansion to o T

%(X,y,h) and 08—;?’1_ = %(X,y,h) at point (x,y,h) for i =1,...,d, we obtain

81/1 0y 0y,

h? h2 K 9°F
ZO Gy T 0dlom) + fily )(h+ 02)] +5 > (y)MjkaRl,
k=1

5 d
D LI (RS 3) TP A szfij%
() j=1

j=1r=1

where every term in Ry and Ry contains the product of multiply stochastic integrals
whose lowest order is at least % as do the remainder terms R; with [ = 3,...,7 in

what follows. Furthermore, ax -(X,y,h) = h and

59 h m d .
8yd+1 a vh( Z rt ) ( ! %) e Z Zaryi((](};) " UJ{ELT))

ij=1 r=114i=1
d m ] m
+ Z ZUJ:’Mijxth(};’) +vC} Z MJTQJ(O r1,r2)
',j*l r=1 r1,r2=1
o Z ( = M;jaih —70 Z ot Mol hJ(Tl)J(r2)> + Rs,
i,j=1 r1,ro=1

where 635 takes the value at (X, y, h).
Yd+1
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By truncating the generating function, the weakly convergent stochastic symplec-
tic numerical schemes have been proposed by several authors (see, e.g., [2, 17, 22]).
In these approaches, some techniques are applied to simulate the multiple integrals in
the truncated generating functions and obtain high weak order schemes. To reduce
the simulation of multiple integrals, we introduce a modified generating function to
construct more concise symplectic schemes in section 3, from which conformal sym-
plectic and ergodic schemes for stochastic dynamical systems (1) are deduced by using
the transformation of the phase space.

3. High order conformal symplectic and ergodic schemes. To construct
high order symplectic numerical integrators for (5), we modify the stochastic Hamilto-
nian functions first. Namely, we consider the following (2d+ 2)-dimensional stochastic
Hamiltonian system:

HM(xM yM m HM(xM yM
dXA/sza 0( ) )dtfza 7“( ) )
oYM — oyM
(9) -
HM (XM, yM SN OHM (XM Yy M
dYM:aO( ) )dt Zar( ’ )
oxXM oxXM

odW,(t), XM(0) ==,

odW,(t), YM(0) =4y,

r=1
where

Hé\/[(XJW’Y]\/I) _ HO(XM’YM) +H([)1](X]\/[,YM)],L+...+H{[)T](XM,YM)hT,

(10)
HM(XM yMy = g (XM yMy + HN(XM Yy MYp 4o HIT (XM Yy M)pT

with functions Him, 1=0,...7,j=1,...,7, 7 € Nj to be determined. Meanwhile,
according to the definition of G in subsection 2.2, we get the associated generating
function of (9), which is called the modified generating function of (5). Our goal is
to choose undetermined functions in (10) such that the proposed scheme is of weak
order k+k’ when approximating (5), even though it is only a kth order approximation
of (9) for some positive integers k and k. Now we first give a symplectic numerical
approximation to (9) via its generating function, such that this scheme shows weak
order k for (9) without specific choices of Hi[]] (see [2] and references therein). In
detail, we replace the multiple Stratonovich integrals JY in the modified generating

function by an equivalent linear combination of multiple It6 integrals

t Sy S9
IE = / / i / dWil (Sl)dWiz (82) s dW“ (Sl)
0o Jo 0
with multi-index 8 = (iy,42,...,%) € {0,1,...,m}®" [ > 1, based on the relation
> CBIL @) > 2,
JL.=< 58
IL, (o) =1,

where CB are certain constants given in [11]. Denote by

(11) SUXY y,t) = GIX%,y) > CRIL
o 1(B)<k
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the truncated modified generating function (see, e.g., [2, 3, 11]), where

l(a)—1 d+1 i ;7 M (G
=Y Y G )3
D k1yeoki=1 ! i l(a1)+"~+/l\(ai):l(a)fl
a— € Moy

9GS 9GS,
oxg  axg

for l(a) > 2, and Gg,) = HM for r = 0,1,...,m. Then we get the following one-step
approximation:

aSG(XGayah) YG:y+aSG(XG7y>h)

G_ - = Ph
(12) X =T 8y ) GXG 9

which preserves symplectic structure and is of weak order k for (9). Notice that
the truncated modified generating function contains undetermined functions Hi[j],
t=0,...7,j5=1,...,7 in (10). To specify high weak order symplectic schemes, we
need to determine all the terms Hi[j } such that the numerical scheme based on (12)
satisfies

(13) ’Egb(X(h), Y (h)) — E¢(XG,YG)| _ O(h’”klﬂ)

for all x times continuously differentiable functions ¢ € C's(R?¢+2 R) with polynomial
growth; that is, the numerical scheme based on (12) is of weak order k + k' for
(5). Conditions on x will be specified later. The detailed approach of choosing the
undetermined functions will be illustrated with the case k = k' = 1 in the next section.

3.1. Numerical schemes via modified generating function. For k = k' =
1, it is sufficient to consider 7 = 1 in (10). Based on the fact that G(Ci) = HM for
r=20,1,...,m, we rewrite the truncated generating function (11) as
(14) SG(XGayvh) (HO XG7y ZG(TT) 7y)> h+ZH7{V[(XG7y)I(};)7

r=1

where

U omlY d+1 ] gl
=C ; h T h?
Gl = 12" <aXG v axgil) +; dyi 0XC

According to (14), the one-step approximation (12) turns out to be

G G m
XG:J} 8}IO (XGay) 4= ZaGTT)(X 73/) h_ZaH’r{M(Xcvy)Jh
Oy 2 & Oy « Oy (ry
(15) G .
OHM (X%, y) o OGE  (X aHM Y)
G _ 0 ’ r,r
ooy (SO S T )y 3 U
r=1
G oH 1] oH1]
Inwkga;{t[lf]ollowasHlet ai/ = %‘Z (XG,y,h),g)S(—jG:: 25 JG(XG,y, h), T = oy (z,v),
d o = (:r y)forj=1,...,d+1and r=0,1,...,m. Applying Taylor ex-
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d, we obtain

pansion to W and 8SG at (x,y,h), fori=1,...,

0S¢ oM & oH}!
%G CQZMljxjh+Z< ZMUO' )Imh ZwaJ (y)h? + 80 h2
7 7/ ] 1
m 62H7~ QQHE] o
+ 3x,8xd+1 (Xd+1 Ld+1 I(’r‘)h Clr g 1321 9z;0z; iz‘[(m)‘[(rz)h
d m A ] 92l
Z Z 8 2 Yi k h* + Ry
=1 =1 .Tj &mc‘?xdﬂ
and
98¢ W orM UG a2H[”
o0 =Y (orly + fily)h) + Z oy lmh D0 o (X7 —aIyh
Yi r=1 r= r=1j=1 Yi J
oHL! Oy d H[” oHM o2 )
+ — + i h* 4+ Rs.
y; 2~ z; " Oy, 8:1:J 0T q41 4 0x4110Y; g
Similarly,
d+1 1
ase oHM h Z o2 XO ) 1 oH)! 2
0X§., (‘336 8xd+1ax] () 01441
g , 92l )
C h*+C Ly h* + Rg,
+ Ch Z UT ax axd+1 +C1 Z V0.Y a d+1 + fig
and
0S¢ 1, & orM
= CiF(y) — =C xiMjzj | h+0C O'T ZIT—i— hIT
OYa+1 1F() 272 ;1 ! ! ;; Yiltr) Z * OYdt1 (r)
m_d+1 Y 8H([)1] )
+ vol My ihIly + hIr h
]21231 e ;; 3yd+18mz R a1
ZZ . 8H[1] , oM o2 2 HM 2
o i VY
2 = 4 0xgr1  0z;0Yd+1 Y 0% d+10Yd+1
d C m
+ v Z (CQ UZ'JhQ it Z 0,1Mz]0,2hl(71)l(72)> + R'T
i,j=1 r1,ro=1
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Applying Taylor expansion to ¢(X(h),Y(h)) and ¢(X%,Y¥) at (z,y) and taking
expectations, we have

E¢(X (h),Y (h)) — E¢(X%, V)

%am« ). (9SE  0S +di8¢(x,y)E 95 959
o Ox; Oy 3y oy; 0X; 8XZ-G

i=1

1 § P(w.y) o (asas_ aSGaSG>
(16) Owidx;  \Oyi Oy, Oyi Oy,

. di P¢(w,y) , (9SC 0S¢ 95 95
8yz(9xj 0XE dy; 09X, dy;

1,7=1

L1 dfa?my 98 9s 989 989
dy; 0y, 0X;0X; 0XEZoX¢

i,j=1

To make the symplectic numerical approximation be of higher weak order, we choose
H[ J] ,1=0,...,7, 5 =1,...,7, such that the terms containing h and h2 in the right—
hand side of (16) vanish. Note that the coeflicients of J(h) and h in ? and &2— are

the same as those in (%? and 65 with i =1,...,d + 1, respectively. Then we get

08¢ 98¢ 098 08 m i)
E - vCyo i h2 1 B3er(x
<8X§+1 6yd+1 8Xd+1 8yd+1> ;; 10, y 1( y)

where e;(z,y) denotes the coefficient of the term containing h® and can be calcu-
lated based on the expression of the partial derivatives of S¢ and S, as do the other

(1
remainder terms e;, [ = 2,...,7, in what follows. Thus, we choose gfr = 0 for
— r] j— 3 8SG
r=1,..., —Olntom,wehave
9s¢ s oH oH"
E - 0 _h?®+E(Rs — O hZ 4 hiey(x
<3X§+1 8Xd+1> al‘d+1 ( ) 8$d+1 2( y)
&

which leads us to make gH = 0. In the same way, usmg (% =0forr=0,1,...,m,
we derive

S 89S 0S¢ 8SG> ™ ( oHM aH[”)
El—————F———)=C vOotio) — ot = — oI = | % + h3es(x,
<8yi dy;  Oyi Oy, ' ; ' dy; 9y (@)

and

9S 9S  9SC 98C m Hm
E - = 2 M. h2 hd
(5% 0X; Oy 8X]G> Cl;‘jr ( Z Oy + h'eq(,y)

with 4,5 = 1,...,d, and hence choose

oY 1 . oM 1 :
ayl = 5”010-7‘7 Txl = ile”O'g., 7‘:17...,m.
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The last term in (16) is of order 3 due to the following estimate:

5 ( S 8S  8S% 8s%

- =h3 j=1,... L.
8Xi aX] 8X1G6XJG> h 65(1‘7y), [2W) ’ ad+

and %7 with » = 0,1,...,m, are independent of xz; and y;, we
have
98 0S¢ 0?F(y oM
E _ — C : 0 h2 h3 L),
(8%‘ 0yi ) Z 0y;0y kak+ v Lfily) - I + h’es(, y)
oS dS8¢ d aH([)l] ) 5
B <8Xi - 8Xz'G> - ZMZJfJ ;'[}C2Mz]$j oz, h* + h’er(z,y)
fori=1,...,d. We choose H(gl] such that the above terms containing h? vanish, i.e.,
oHM 1 K 92F(y) 1
_ — M - C : ,
i 2%_:1 Dy, Tk T 5 rOW)
oHW 1¢
axoi 9 ;Mij (fi(y) = vCax;).
Substituting the above results on the partial derivatives of HP], r=0,1,...,m, into

(15), we have the following scheme of (9):

m

m
v 7 v 1 v i
- E oIl — e fi(y)h - 52”6 "orhl)
r=1

LS I s

(17)

m
G:yi—l—Ze_”t” XGh—i— ZZM’JUI
j=1 r=1j=1
1A
+ = Z M;; fj — ve*“t”XjG) h?,
j:1
which is started at time ¢, = nh for n = 1,...,N = T/h. That is, z; = X;(tn),
yi = Yi(ty,) fori=1,...,d, and yg41 = t,.
To transform scheme (17) into an equivalent scheme of (1), we denote Ph[ ] =
e Vina;, QMn] == yi, Pn+ 1] :=e V1 XY and Qi n+ 1] :=Y,C fori=1,...,d.
Based on the transformation between two phase spaces of (1) and (5), we get

(18)

Phin+1] = e~ Phn] — %QVQF(Qh[n])MPh n+1] - h(l + oA

S )e Q" )
— (1 + %)e‘”haAn_HVV,
2

Q"n+1]=Q"n)+h (1 - ”:) e""MP"n +1] + %Mf(@h[n]) + gMaAnHW,
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where ¢ = (01,...,0,) and A W = W(tnt1) — W(t,). Notice that A, W can
be simulated by ¢"vh with &* = (&2, ... €M) being an F;, -adapted d-dimensional
normal distributed random vector.

Remark 3.1. The proposed scheme (18) also has exponentially dissipative phase
volume. More precisely, denoting D(q) = (Iq + %QVQF(q)M)_l, the determinant of
Jacobian matrix

aP"[1]  aP"[1] v aP"[1
8}[) Bg _ € hD(Q) aq[ ] .
v v — v v oP
gl o9 h(1—2)MD(q) D(q)~" +h(1 — ) 2L
= |e™""14|D(q)|| D(q)~ | = e~
Furthermore,
AP"[n]  9P"[n)]
op dq — e—vtnd
9Q"[n]  9Q"[n] ’
dp dq

3.2. Conformal symplectic structure and ergodicity. In this subsection,
we prove the conformal symplecticity of the proposed scheme (18) as well as its er-
godicity.

THEOREM 3.2. The proposed scheme (18) preserves conformal symplectic struc-
ture, i.e,
dP"n +1] AdQ"[n + 1] = e V"dP"[n] A dQ"[n).

Proof. Based on (18), we obtain
dP"[n + 1] AdQ"[n + 1]
1
= dP"[n+ 1) AdQ"[n] + §h2dPh [n+ 1] A MV?FdQ"[n]

= AP o] A dQ ] — " [V F(Q ) M P! 1] 7 dQ
+ h;dph[n + 1] A MV2F(Q"[n])dQ" n].

Denote P" := M P"[n + 1]; then the second term becomes

h? -

S d[VAF@Q ) P A dQ"n]

h? . >Fr ph 1)h h h? 2 h h h
=5 2 Baogag s Qi A Qi) — VP FQ ) MdP"[n +1] A dQ" [n).

Since matrix M is symmetric and the first term in the right-hand side of the above
equation vanishes, we finally get

dP"n +1] AdQ"[n + 1] = e "dP"[n] A dQ"[n]. 0

To show the ergodicity of (18), we first introduce the following conditions which
are sufficient to ensure the existence and uniqueness of the invariant measure (see [13]
and references therein). Then we will show that these conditions are exactly satisfied
by the proposed scheme.
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CONDITION 3.3. The Markov chain Z, := (P"[n]",Q"n|")" with Zy = = satis-
fies
(i) for any v > 1, there exists Co = C(7y) > 0 which is independent of h, such that
E||Z1||" < Cao(1 + ||2||7) for all z € R,
(i) there exist C1 > 0 and € > 0 which are independent of h, such that E||Z(h) —
Z1||? < O1(1+ ||2]|2)het2 for all z € R?L, where Z(h) = (P(h)T,Q(h)T)T.
CONDITION 3.4. For some fized compact set G € B(R?*?) with B(R??) denoting
the Borel o-algebra on R?*¢, the Markov chain Z, = (P"n]T,Q"n]")T € F,, with
transition kernel Py (z, A) satisfies
(i) for some z* € int(G) and for any & > 0, there exists a positive integer n such
that
Pn(z,Bs(z*)) >0 Vyedq,

where Bs(z*) denotes the open ball of radius § centered at z*;
(ii) for any n € N, the transition kernel P, (z, A) possesses a density pp(z, w) which
is jointly continuous in (z,w) € G x G.

THEOREM 3.5 (see [13, Theorem 7.3]). For some K € N, if Conditions 3.3 and 3.4
are satisfied by a Markov chain Z, when sampled at rate K, that is, these conditions
hold for the chain Z, == Z,k, then Z, has a unique invariant measure.

THEOREM 3.6. Assume that the vector field f is globally Lipschitz. The solution
(P"n),Q"n]) of (18), which is an F, -adapted Markov chain, satisfies Condition
3.3 and hence admits an invariant measure p, on R?*¢. In addition, if f is a linear
function, then Condition 3.4 is also satisfied and the invariant measure is unique, that
is, (18) is ergodic.

Proof. Step 1. We first show that scheme (18) satisfies Condition 3.3. Denote
Zt) = (POT, Q)T e R*, Z, = (P"[n]T,Q"n]")T € R*?, 6 = (0y,...,0,) €
R>" W = (Wy,...,W,)T € R", and D(q) = (I + %QVQF(q)M)*l. We rewrite (18)
as

o P"[1] = D(q) (e_”hp - (1 + %)e‘”%AlW - h(l + WQh)e‘”hf(q)> :

2
Q"1 =q+ h(l - %)e”hMPh[l] + %Mf(q) + gMaAlw
with z := (P ,Q4)" = (p",q") ", which yields

(20)  E[P"[" + EIQ"[1]I" < O+ [Ipl" + llgl") + C( + [lgl|” + E[ P*[1]||7)
<SCAA+pl™ + llall”)

based on the fact that vector field f is globally Lipschitz, the matrix I + "2—2V2F(q)M
is positive definite, and ||[D(q)|| < 1 for any ¢ € R? and h € (0,1). As the norm
1
1Z1l = (IP"[1))* + |Q"[1]]*)? is equivalent to the norm (|[PH{L]||" + |Q"[L]]”)7,
Condition 3.3(i) holds.
Rewrite (1) into the following mild solution form:

h h
P(h)=p— / =) F(Q(s))ds — / &5 g (),

h
Q(h) = q+/0 MP(s)ds
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with P(0) = p and Q(0) = ¢. Based on (18), we have

P(h) — P'1] = [h(l + Yo uh (q) + v (M PP - / ' e-v<h-s>f<cz<s>>ds}

h
+ (1 + U;)e_”hUA1W—/O e_”(h_s)adW(s)]
= I+1I,
h h h h?
Q(h) — Q"1] = [/O MP(s)ds — h(1 - %)e”hMPh[l] - [2M0A1W + 2Mf(q)]
=111+ 1V.

Now we estimate terms I, I'I, III, and IV, respectively:

2 2

v rg P +cE [ @t - sta s

2

Bl < CBy

+C /Oh e ") ds f(q) — h(l + %)e*”hf(q)

4 2 " —20(h—s) " T Riq1 112
< CR (1 + ||| )+C/O e ds ; (1Q(s) = Q"[A]II* + [|Q"[1] - qll*) ds

1—e 0 vh\ _,n 2 9
ro (o n(14 e ) @t lal?)

h
(21) < CR*(1+|l2]%) +C/ 1Q(s) — Q"[1][|*ds,
0
where in the last step we have used (20). For the term I7, based on the Itd isometry,
h vh 2
(22) E|I1]? < / ((1 n ?)e*vh - ev<h5>> dsTr (o0 1) < ChA.
0

Similarly, we have

(23)
h ? vh 2
E|III|? < CE / M (P(s) — P"1)) ds| +CE Hh (1 - (1 - 2>e”h> MP"1]
0
h
<C [ ||P(s) = P"[1]||*ds + Ch*(1 + ||2]1?)
0
and
(24) E|IV[[* < Ch*(1 + [lq]).

From (21)—(24), we conclude

h
E|Z(h) - Z1|* < C/ E|Z(s) = Z1|ds + Ch* (1 + ||2]1%),
0
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which together with Gronwall’s inequality yields Condition 3.3(ii) with e = 1. In this
case, there exist real numbers & € (0,1) and 8 € [0, 00) such that E[V(Z,11)|F:,] <

aV(Zy,) + B for V(z) = Llp||> + F(q) + Lp T q + %Hq”2 +1 with z = (pT,¢")7" (see
Theorem 7.2 in [13]). Hence,

1_&'",

E[V(Zy41)] < GB[V(Z,)] + B < a"HE[V(Z0)] + < C(Z);

1—a
which induces the existence of invariant measures (see Proposition 7.10 in [9]).

Step 2. We now consider the chain Z5, sampled at rate K = 2 and verify
Condition 3.4 when f is linear with a constant C; := Vf = V?F. Let G :=
{(PT,QT)T eR*:Q =0,|P| <1}, which is a compact set. Forany z = (p',0)" €
G and w = (w] ,wy )" € B with B € B(R??), we aim to show that A;W and A, W
can be properly chosen to ensure that P"[2] = w; and Q"[2] = ws starting from
(Py,QJ)" = 2. Denoting L, = h(1 — “)e"" M, from (18), we have

(25)
v h? vhy _, vhy _,
wy = e P[1] = - CpMuy - h(1 + 7)6 hEQM]) — (1 + ?)e ho AW,
(26)
h h2 h h
wy = Q"[1] + Lpwy + ?Mf(Q 1)) + §MJA2W
_1 2
= Q"1] + Lyw, + h (1 + %) eV M <e”hPh[1] —wy — thMwl) ,
2 2 2
(27)
h? vh vh
h _ ,—vh, ' h o Y\ —vh _ “Y —vh
PM1] = e=""p — - CrMP"[1] h(l +5 )e £(0) (1 +5 )e AW,
(28)
—1 2
— LPM] + g(l + %) eoh M (e—vhp _phpl - ’;chphm) .

Notice that (26) and (28) form a linear system, from which we can get the solution
P![1] and Q"[1] based on the positive definite coefficient matrix. Then A,W and
A1 W can be uniquely determined by (25) and (27), respectively. Condition 3.4(i) is
then ensured according to the property that Brownian motions hit a cylinder set with
positive probability. For Condition 3.4(ii), from (19), we can find out that P"[1] has
a C'* density based on the facts that A; W has a C* density, o is full rank, and D(q)
is positive definite for any ¢ € R?. Thus, Q"[1] also has a C™ density, and Theorem
3.5 is applied to complete the proof. 0

Remark 3.7. For the nonlinear case, the uniqueness of the invariant measure is
unsolved since both equations in (18) contain the same noise, which is totally different
from the continuous case and brings essential difficulties when showing the irreducible
property. For higher k and &/, following the same procedure as for the case k = k' = 1
(see also [1]), choosing undetermined functions such that the error in (13) is of higher
order, we can also get higher weak order symplectic schemes for (5), which turn
out to be high weak order conformal symplectic schemes for the original system (1)
based on the inverse transformation (X,Y) — (P,Q). It is worth mentioning that



HIGH ORDER SCHEMES VIA GENERATING FUNCTIONS 3021

the solvability of undetermined functions, as well as the ergodicity of the schemes, is
unknown for high order cases, as far as we know.

4. Approximation error. In this section, we consider the weak convergence
order of (18) by investigating the local convergence error first. Furthermore, based
on the local convergence error and the hypoelliptic setting (2), we can also get the
approximation error of the ergodic limit. Denote the exact solution of (1) and the
numerical solution by Z(t) = (P(t)7,Q(#)")T and Z, = (P"[n]T,Q"[n]")T, respec-
tively. The next theorem gives that the moments of (1) are uniformly bounded, and
its proof follows the same procedure as that of Lemma 3.3 in [13].

THEOREM 4.1. Let Assumption 2.1 hold. Then for any k € N, the kth moments
of P(t) and Q(t) are uniformly bounded with respect to t € Ry.

Before proving the main convergence theorem, we first show the boundedness of
the numerical solution to (18) in the following theorem.

THEOREM 4.2. Assume that the coefficient f of (1) is globally Lipschitz and sat-
isfies the linear growth condition, i.e.,

(29) 1f(w) = fw)| < Lllu —wll, If ()]l < Cr(1 + [lul))

for some constants L > 0 and Cy > 0, and any u,w € R?. Then there exists a positive
constant hg such that for any h < hg, it holds that

sup  E[|[P"[n][|* + Q" [n]|I"] < co.

ne{l,....N}

Proof. For any fixed initial value z = (p7,¢") T, random variable ¢ := ¢!, and h,

we have based on (18) that

h h
1P = pll < e = 1llpll + b (1 + ) IS @I+ VA(1+ ) log]
h? h?
+ S IV R@IIMIllpl + 5 V2 F @M P (1] - pl.

Denote C, :=1+ % Using the global Lipschitz condition and mean value theorem,
there exists some 6 € (0, 1) such that

IP*[1] = pl| < | = vhe™ " [||pl| + hCs(1 + ||2[]) + VRC,||o€]
h2 h2 .
+ 5 LIMIli=l + 5 LIMIIIP[A] = pl
h2
< C(L+ |zID(IEIVR + ) + L||M||[| P*[1] —rl5-

It is obvious that there exists a positive constant hg such that for any h < hg,

h2
LM% < 5.

N |

It then yields

1P (1] = pl| < 20(L + (|2 (IE]IVR + h).



3022 JIALIN HONG, LIYING SUN, AND XU WANG

On the other hand, for h < hg, we have
[E(P"[1] - p)|
h? h?

<||(e™"" = 1)p— ?VQF(Q)Mp - the_"hf(Q)H + ‘

h2
< oh|lp|| + hL||M||||p[| + hCCy (1 + ||2[]) + 3LHMIIIIE(P”[1] -l

which leads to
IE(P"1] - p)|| < C(1 + ||z])h.

Based on the estimate of P"[1] — p, similarly, we have

Q" 1] = gll < CA+ zDUEIVR + 1), IBQ"[1] = g)ll < C(L + 2]

We can conclude that, for Z; = (P*[1]7,Q"[1]")T,
(30) 121 — 2| < (€N + VR)(L + 1210V < C(IEl + 1)(L + [|2]) V.

Thus, we complete the proof according to Lemma 9.1 in [15].

EVQF(q)ME(Ph[l] - p)H

d

Based on the above preliminaries, our result concerning the weak convergence

order of the proposed scheme is as follows.

THEOREM 4.3. Under the assumptions in Theorem 4.2, the proposed scheme (18)

is of weak order 2. More precisely,
|Ey (P(T),Q(T)) — E¢ (P"[N], Q"[N])| = O(r?)
for allyp € C4(R?4,R) and T = Nh.

Proof. Without loss of generality, we consider the case of d = 1. Based on It6’s

formula and Theorems 4.1 and 4.2, we obtain

h m h
P(h) = p- / (F(Qs)) + vP(s)) ds — > / o dW, (5)
r=1

- /Oh (f(q) + / V2F(Q(0))MP(0)d0> ds — i /Oh o d W (s)

0

h s s m
_v/o <p—/0 f(Q(a))de—/o vP(@)dG—ZJTdWT(0)> ds,

r=1

which leads to

1 m o rh
P(h) =p— f(q)h—vph — S V*F(q)Mph? - Z/ o dW,(s)
r=1 0
(31) 1 1 R
1 2, L o 49
+ 50l (@h? + 50ph +v;/0 /0 oo AW, (0)ds + b1,

where E||6;]| = O(h®) and E||61]|* = O(h®). Analogously, it also holds that

(32)

h s s m s
Q) = q+ / M<p— / F(QUO))d0 — v / PO — > / ardwr<9>> ds
r=1

1 1 - b
:q+Mph—gf(q)hQ—ivMth—ZMar/ / dW,.(0)ds + 62
r=1 0 0
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with E||62] = O(h?) and E||d:]|> = O(h®). For (18), applying Taylor expansion to
P"[1] and Q"[1] at (p, q), we obtain

1 m
P'[1] =p— f(g)h — vph — 5V F(q)Mph® =) S o0: MW
(33) . =l
1 2 1 2 2 1
+ §vf(q)h + 3V ph” + §UZUT]ZA1W + J3,

r=1

1 1 1
(34) Q"1 =g+ Mph — S f(q)h®> — JoMph® — 5 3 Mo, hAW + 6y,
r=1

where E||5;|| = O(h?) and E||6;||*> = O(h®) with i = 3,4. Due to (31) and (33), we
know that

P(h) - PP =Y o, (/Oh /O AW, (8)ds — ;mlw> + (61— 53),

and thus |[E(P(h) — P"[1])|| = O(h?). Similarly, based on (32) and (34), we have
IE(Q(R) — Q"[1])|| = O(R?). For i = 2,3,4,5, we obtain
|E[(P(h) =)' — (P"[1] = p)']|| < CR® + O(h*),
) =)' = (Q"[1] - ¢)'][| < Ch® + O(h?).
Moreover, for i1 +is = 2,3,4,5 and i; > 1,
[E[(P(h) = p)*(Q(h) — @)™ = (P"[1] = p)" (Q"[1] = )] || < Ch® + O(h?).

By Taylor expansion and the mean value theorem, we obtain

(35)
| [ Qh) - w(Ph )]|
i gg gpwasf’  [BIP®) — P (@) — 0~ — (PM[1) ~ p)(@"1] — Y|
6 36 91 h 91 .
- ; E ( Yp+ ap%(aqﬁqf Q(h ’ P QR =0 ||>
S (|8%%(p + 0P [1], g + 0 | 3
+ 2 E ( ¢(P + Qapi(g(1]6q1+ 2Q ‘ H Ph )I(Qh[l] . q)6 H)

with constants 0 < 0; < 1 and 0 < 6 < 1. Here, based on (31)—(34) and Theorems
4.1 and 4.3, we derive

o8 0, P(h 0 ,
e [[GOEPICIORS)

< C(B[(P(h) — p)* (@Q(h) —9)> %)% < Cho3,
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where we also use the fact that 1 € C%(R??R). Analogously,
E (‘ 0°Y(p+6:P"[1], g+ 6,Q"[1
Op*0qs—1
for 0 <4 < 6. Finally, we deduce
(36) [E¢(P(h), Q(h)) — Ep(P"[1], Q"[1])] < O(h?),

which, together with Theorem 9.1 in [15], yields global weak order two for the proposed
scheme (18). 0

According to the above theorem and the condition (2), we can get that the tem-
poral average of the proposed scheme (18) is a proper approximation of the ergodic

limit [y, tdp.

THEOREM 4.4. For any vy € C’g (R24 R) and any initial values, under assumptions
in Theorems 3.6 and 4.3, the scheme (18) satisfies
<c(w+l
— T .

In fact, one can check that the assumptions in Theorem 5.6 in [14] are satisfied
by (18) and thus deduce this result.

DY jprp) - pyi(@ ) —q>6—iu) — O 4)

¥ LB AL Q) ~ [

5. Numerical experiments. The first example (section 5.1) tests the numer-
ical approximation by simulating a linear stochastic Langevin equation. In section
5.2, numerical tests of the conformal symplectic scheme for the nonlinear case are
presented. In all of the experiments, the expectation is approximated by taking the
average over 5000 realizations.

5.1. A linear oscillator with damping. Consider the following two-dimensional
stochastic Langevin equation:

dP = —aQdt — vPdt — odW (t), P(0)=p,
dQ = aPdt, Q(0) =g,

where a, v > 0 and o # 0 are constants and W(¢) is a one-dimensional standard
Wiener process. The solution to (37) possesses a unique invariant measure fi:

(37)

dpy = p1(p, q)dpdg,

where p1(p,q) = ©exp ( is known as the Boltzmann—Gibbs density and

_av(p2+q2))
o2

-1
0 = ( fR2 exp ( — %)dpdq) is a renormalization constant. The proposed
scheme applied to (37) yields

h
L>6_vh0An+1W

h? h
Poii=e P, — 2P — h(1 n U—)e_”hQn _ (1 +5

(38) 2 2

h h? h
Q7L+1 = Qn + h(l - %>€vhapn+1 + ?aan + §aO'An+1W
Based on Theorems 3.2 and 3.6, scheme (38) inherits both the conformal symplecticity

and ergodicity of the original system. To verify these properties numerically, we choose
p=3and q=1.
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Fi1G. 1. The value S”%O(M") of two numerical schemes (a =1 and o = 1).

Figure 1 shows the value S’L%M of the weak Taylor 2 method and the proposed

scheme, with v being different dissipative scales and .S,, being the triangle square at
step n. We choose the original triangle which is produced by three points (—1,5)7,
(20,2)7, (0,30) . We find out that the discrete phase square of the proposed scheme
exhibits exponential decay, i.e., S, = exp(—wvt,)Sy with the same dissipative coeffi-
cient v as in the continuous case, while the weak Taylor 2 scheme does not.

For ergodicity and weak convergence of the proposed scheme, we have taken
the three different kinds of test functions (a) ¥(p,q) = cos(p + q), (b) ¥(p,q) =
exp (—% - %), and (c) ¥(p,q) = sin(p? + ¢°) as the test functions. To verify that
the temporal averages starting from different initial values will converge to the spatial
average, i.e., the ergodic limit

/ Y(p, q)duy = / Y(p, q)p1(p, q)dpdg,
R2 R2

we introduce the reference value for a specific test function i to represent the er-
godic limit: since the function  is uniformly bounded and the density function p;
dissipates exponentially, the integrator is almost zero when p? + ¢? is sufficiently
large. Thus, we choose f_lgo f_lgo ¥(p,q)p1(p, q)dpdg as the reference value, which
appears as the dashed line in Figure 2. We can tell from Figure 2 that the tempo-

initl 1
06 —— it 2
— intel 3
08 | inital 4
— - reference ine

inial 1
——init 2
—intil 3
el 4
— = reference Ine

0 50 100 150 200 250 300
time t

(a) ¥(p,q) = cos(p + q).

50 100 150 200
timet

250

300

0 50 100 150 200 250 300
time t

(c) ¥(p,q) = sin(p® + ¢?).

(b) ¥(p,q) = exp(—E — L),

F1G. 2. The temporal averages % 27]:]:1 EY(Pn,Qn) starting from different initial values (a =
1,v=2, 0 =0.5, and T = 300).
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ral averages % ZnN:1 Ey(P,, Q) of the proposed scheme starting from four different
initial values, initial(1) = (—10,1)T, initial(2) = (2,0)", initial(3) = (0,3)7, and
initial(4) = (4,2) ", converge to the reference line with error no more than h? + 7,
which coincides with Theorem 4.4.

5 45 4 35 3 25 2 5 45 4 a5 3 25 2 5 45 4 35
log(h) log(h) log(h)

(a) ¥(p,q) = cos(p +q)- (b) ¥(p,q) = exp(~B — L), (c) ¥(p,q) = sin(p? +¢?).

3 25 2

F1G. 3. Rate of convergence in weak sense (a =1, v =2, and o = 0.5).

Figure 3 plots the value In |E¢(P(T), Q(T)) — E¢(Pn, Qn)| against In h for five
different step sizes h = [273,274275 276 277 at T = 1, where (P(T),Q(T)) and
(Pn,QnN) represent the exact and numerical solutions at time T, respectively. It can
be seen that the weak order of (38) is two, as indicated by the reference line of slope 2.

5.2. A nonlinear oscillator with linear damping. In this section, we con-
sider the following equation:

dP = —(4Q% — 6Q)dt — vPdt + /26 vdW (t), P(0) = p,

(39)
dQ = Pdt, Q(0) =gq,

where v, § > 0 are fixed constants and W (t) denotes a one-dimensional standard
Wiener process. Similarly to (37), [14] shows that the dynamics generated by (39) is
ergodic with the invariant measure po, which can be characterized by the Boltzmann—

Gibbs density
1 2 3 2 ?
p2(p,q) = Oexp | — SR '

—1
with the renormalization constant © = (f]R2 e‘ﬁ(%p2+(%_q2)2)dpdq) . Based on (18),
we get the associated conformal symplectic scheme
h? h
Poy = €My = TP (12Q2 —4) - he_“h(l " %) (4@3; - GQn)
h
(40) +evh (1 + %) V287 v A, 1 W,

Quir = Qut e (1~ %)Pnﬂ + %2(462;2 ~6Q) - g\/Qﬁ_lvAnﬂW-

Since this nonglobal Lipschitz case is not included in Theorems 3.6 and 4.3, we inves-
tigate its ergodicity and weak convergence order in view of numerical tests.
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() ¥(p,q) = cos(p + q). (b) ¥(p,q) = exp(—22 — L), (¢) ¥(p,q) =sin(p® +¢*).

Fic. 4. The temporal averages % 25:1 EY(Pn, Qn) starting from different initial values with
T = 300.

Let v = 4, 8 = 2, and test functions ¥ be the same as those in section 5.1.
Figure 4 shows the temporal averages + ZnN:1 Ey(P,, Q) of (40) starting from dif-
ferent initial values initial(1) = (—10, 1)J¥, initial(2) = (2,7) 7, initial(3) = (0,3) ", and
initial(4) = (4,6) 7. We also use f_lgo f_l(l)o ¥(p, q)p2(p, ¢)dpdg as an approximation of
the reference value, i.e., the ergodic limit

/ (p,q)dps = / (p, 0)p2(p, Q)dpda.
R2 Rz

Figure 4 indicates that the proposed scheme also converges to the reference line when
time goes to infinity.

log(weak-error)
&
o—o

log(weak-error)
log(weak-error)

&
o—o

12 12 12
© 55 5 45 4 45 3 25 6 55 5 45 4 85 4 25 6 55 5 45 4 A5 3 25
log(h) log(h)

(a) ¥(p,q) = cos(p + q). (b) %(p,q) = exp(— — L), () ¥(p,q) =sin(p? + ).

log(h)

F1G. 5. Rate of convergence in weak sense (p = —2 and ¢ = —2).

The value In |[E¢(P(T), Q(T)) — E¥(Pn,Qn)| against Inh for five different step
sizes h = [274,27° 276 277 278] at T' = 0.5 is shown in Figure 5, similarly to Figure 3.
Compared with the reference line of slope 2 in Figure 5, it can be seen that (40) has
order two in the sense of weak approximations.

6. Conclusion. In this paper, an approach for constructing high weak order
conformal symplectic schemes for stochastic Langevin equations is developed, moti-
vated by the ideas in [1, 2, 18, 24]. The key points are that the generating function is
applied to ensure that the proposed scheme preserves the geometric structure, while
the modified technique is used to reduce the simulation of multiple integrations. We
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show that, for the case k = k’ = 1, the proposed scheme could inherit both the confor-
mal symplectic geometric structure (under Lipschitz assumption) and the ergodicity
(under linear assumption) of the stochastic Langevin equation. Numerical experi-
ments verify our theoretical results. In addition, the numerical tests of an oscillator
with nonglobal Lipschitz coefficients indicate that the proposed scheme could also
inherit the internal properties of the original system, which implies that our results
may possibly be extended to the nonglobal Lipschitz case. The theoretical analysis
of this extension is also ongoing.

Acknowledgment. The authors are very grateful to Prof. Michael Tretyakov
for his helpful discussions and suggestions.
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Abstract In order to inherit numerically the ergodicity of the damped stochastic nonlin-
ear Schrodinger equation with additive noise, we propose a fully discrete scheme, whose
spatial direction is based on spectral Galerkin method and temporal direction is based on
a modification of the implicit Euler scheme. We not only prove the unique ergodicity of
the numerical solutions of both spatial semi-discretization and full discretization, but also
present error estimations on invariant measures, which gives order 2 in spatial direction and
order % in temporal direction under certain hypotheses.

Keywords Stochastic Schrodinger equation - Numerical scheme - Ergodicity - Invariant
measure - Error estimation
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1 Introduction

The ergodicity of stochastic differential equations (SDEs) and stochastic partial differential
equations (SPDEs) characterizes the longtime behavior of the solutions (see [5, 8, 14] and
references therein), and it is natural to construct proper numerical schemes which could
inherit the ergodicity. For ergodic SDEs with bounded or global Lipschitz coefficients,
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the ergodicity of several schemes were studied in [15]. It also gave an error estimation of
invariant measures

e(p) = /dJ(y)dM(y) - / ¢(y)dl7«(y)‘
via the exponential decay property of the solution of Kolmogorov equation, where w and [t
denote the original invariant measure and the numerical one respectively. In the local Lip-
schitz case, the ergodicity is inherited by specially constructed implicit discretizations (see
[14] and references therein). For SDEs, there are also various works related to the study of
error e(¢) by assuming the ergodicity of the schemes (see [1] and references therein). For
SPDEs, there have also been some significant results concentrating on invariant laws, e.g.,
[3] studied a semi-implicit Euler scheme in temporal direction with respect to parabolic type
SPDEs with bounded nonlinearity and space-time white noise; [4] studied a full discretiza-
tion for stochastic evolution equations with global Lipschitz nonlinearity and space-time
white noise. Invariant laws of the approximations are, in general, possibly not unique. To
our knowledge, there has been less work on constructing a fully discrete scheme to inherit
the unique ergodicity of SPDEs up to now.

In this paper, we consider an initial-boundary problem of an ergodic one-dimensional
damped stochastic nonlinear Schrodinger equation

du = (iAu —ou+ ik|u|2u)dt + Q%dW
u,0)=u(,1)=0,t>0 (1.1)
u(0,x) = uo(x), x € [0, 1],

where o > 0, A = %1 and the solution u is a complex valued (C-valued) random field on a
probability space (€2, F, P). The noise term involves a cylindrical Wiener process W and a
symmetric, positive, trace class operator Q such that the noise is colored in space and white
in time. The operator Q is supposed to commute with Laplacian A, and the noise has the
following Karhunen-Loeve expansion

00 oo
Q1AW = Y fiimen (W)dfn(®), 1 € RY and n:='Y " nn < o0,

m=1 m=1

where {8, (1)} m>1, associated to a filtration {F;};>0, is a family of independent and identi-
cally distributed C-valued Wiener processes and {e;, },»>1 is the eigenbasis of the Dirichlet
Laplacian. This model has many applications in statistical physics and has been studied by
many authors. For instance, it can describe the transmission of the signal along the fiber
line with signal loss (see [11, 12] and references therein). The ergodicity for Eq. 1.1 with
A = 1 has been studied in [8] based on a coupling method, Foias-Prodi type estimates and a
priori estimates for a modified Hamiltonian H = %II . II% - %II . IIi4 + coll - ||8. The authors
showed that (1.1) possesses a unique invariant measure p assuming that the noise is non-
degenerate in the low modes, i.e., ,, > 0, m < N, for some sufficiently large N,. In the
same procedure, one can also show the ergodicity for the cases A = 0 and A = —1 by set-
ting H = %II . II% — %II . IIi4 + coll - ||8. Note that the damped term (o > 0) is necessary for
both linear and nonlinear Schrodinger equation to be ergodic.

Our work mainly focuses on the construction of a fully discrete and uniquely ergodic
numerical scheme (i.e., whose numerical solution possesses a unique invariant measure).
Moreover, the estimation of error between the original invariant measure and the numerical
one is also considered based on the weak error of solutions.

@ Springer
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In order to obtain a scheme whose noise remains in an explicit expression, we apply
spectral Galerkin method in spatial direction to obtain a N-dimensional SDE

duy = (iAuN — quy +irry (|uN|2uN) )d: AN Q2dW (1.2)

with 7y being a projection operator. Here the spectral Galerkin method also ensures that the
semigroup operator is the same as the one of Eq. 1.1, which simplifies the error estimate in
spatial direction. We find a Lyapunov function by proving the uniform boundedness of uy
in L2-norm. It ensures the existence of the invariant measure of Eq. 1.2. We show that the
solution u y (¢) is a strong Feller and irreducible process via the non-degeneracy of the noise
term in Eq. 1.2. Hence, u y () possesses a unique invariant measure py, which implies the
ergodicity of uy (¢). We would like to emphasize that the noise in the original equation do
not need to be non-degenerate. Our method is also available under the same assumption in
[8], that is n,, > 0, m < N, for some sufficiently large N.. Here N and N, need to satisfy
the condition N < N, to ensure the non-degeneracy for the truncated noise and obtain
the ergodicity for numerical solutions. The error between invariant measures py and p is
transferred into the weak error of the solutions, which is required to be independent of time
t. Different from conservative equations, the damped term in Egs. 1.1 and 1.2 contributes
to an exponential estimate on the difference between semigroup operators S(z) and S(t)my,
where S(¢) is generated by the linear operator iA — «. Therefore, we achieve the time-
independent weak error of solutions directly which, together with the ergodicity of u and
uy, deduces the error between invariant measures uy and .
For the temporal discretization of Eq. 1.2, we propose a new scheme

Kk —ar k-1 ( koo s (|“11€v|2"‘|eM”]/{vq'2 k)) !

uy —e “uy = |iAuy +iiny 5 uy ||t +an025W, (1.3)
which is a modification of the implicit Euler scheme. In order to analyze the effect of the
time discretization, we investigate both the ergodicity of u’l‘v and the weak error between
up and ull‘v The fully discrete scheme (1.3) is specially constructed to ensure the uniform
boundedness of u’,‘\, in L2-, H!- and H?-norms, which is essential to obtain the existance of
the invariant measure as well as the time-independence of the weak error. Together with the
Brouwer fixed point theorem and properties of homogeneous Markov chains, we prove that
”/1(\/ is uniquely ergodic. For the weak error, it is usually analyzed in a finite time interval
[0, T] and depends on T (see e.g. [7, 9]). In our cases, however, the weak error between
un(T) and u% (T) is required to be independent of time 7 and step M. Thus, some technical
estimates are given to obtain the exponential decay of the difference between non-global
Lipschitz nonlinear terms and between S(¢) and S;. Based on the time-independency of the
weak error of the solutions, we show that the error of invariant measures has at least the
same order as the weak error of the solutions.

This paper is organized as follows. In Section 2, some notations and definitions about
ergodicity are introduced. In Section 3, we apply spectral Galerkin method to Eq. 1.1 and
prove the ergodicity of the spatial semi-discrete scheme. The time-independent weak error
of the solutions, together with the error between invariant measures, is given. Section 4
is devoted to the proof of ergodicity of the fully discrete scheme. Moreover, we give the
approximation error of invariant measure in temporal direction via the time-independent
weak error. In Section 5, numerical experiments are given to verify the time independence
of the weak error as well as the weak order in temporal direction for the linear case. The
last section is the appendix of some proofs.
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2 Preliminaries

In this section, we present some notations and the definition of ergodicity. Moreover, we
introduce a sufficient condition for a stochastic process to be ergodic, which will be used in
our proof on ergodicity of the numerical solution.

2.1 Notations

We set the linear operator A := —iA + «, and the semigroup S(t) := e "4 = /1A~ jg
generated by A. The mild solution of Eq. 1.1 exists globally and can be written as

t t
u(t) = Suog +ik/ St — s)|u(s)|2u(s)ds + / St — s)Q%dW(s).
0 0

It is obvious that {A,},en = {i(rm)2 + a}neN is a sequence of eigenvalues of A with
1 < [An| = 400 and {es}nen = {+/2sin nix} o is the associated eigenbasis of A with

Dirichlet boundary condition. Denoting L%(O, 1) as the space L2(0, 1) with homogenous
Dirichlet boundary condition, then {e,}, <N is an orthonormal basis of Lé(O, 1).

Definition 1 For all s € N, we define the normed linear space

[e.¢] o0
w=Y (w enen € L3O, Vst Y |, e[l < ool

n=1 n=1

H = D(A) = [u

endowed with the s-norm

1

0 2
luells := (Z | @en) | mrf) :

n=1

where the inner product in the complex Hilbert space L2 (0, 1) is defined by
1
(u,v) = / u(x)v(x)dx, Yu,v € L*(0, 1).
0

In particular, ||ullo = |lull;2,Yu € HO.

In the sequel, we use notations L? = L%0,1) and H® := H*(0, 1). It’s easy to check
that the above norms satisfy |[u]l; < [lu|ls(V0 < r < s) and [luls = lullgs(s = 0, 1, 2) for
any u € H*.

The operator norm is defined as

| Bull,
||B||L(H"‘.H’): sup , Vr,s eN,
ey STPTR
hence, for0 < r <,
2 3
o) t(iA—a) r
(Z,,=] | (e w,en) [ |2l ) e ull,
||S([)||[;(H.\',Hr) = sup B TR
o lalls o lulls
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We need Q% to be a Hilbert-Schmidt operator from L2 to H* with norm

oo o0
L2 . 1 2 s
102 15 502 sy = D 192 €mlly = Y 1m "1t < 0.
m=1 m=1

Assumptions on s will be given below.
2.2 Ergodicity

Let P; be the Markov transition semigroup with an invariant measure u and V be a Hilbert
space. The Von Neumann theorem ensures that the limit

1 T
lim Pp(y)dt, ¢ € L*(V,p)
0

T—o0

always exists in L2(V, 1), where y denotes the initial value of the stochastic process.

Definition 2 (see e.g. [S]) If P; has an invariant measure p, and in addition it happens that

1 T
lim —/ P (y)dt = / ¢du in L*(V,w) 2.1
T—oo T 0 1%
forall ¢ € L2(V, ). Then P, is said to be ergodic.

Remark 1 In the following sections, we choose P;¢ (ug) = E[¢p(u(t))|u(0) = ug] for any
deterministic initial value 1, and take expectation of both sides of Eq. 2.1 to obtain

T
lim l/ E[d)(u)]dt:f ¢du in R. (2.2)
T—oo T 0 74

The sufficient conditions for a stochastic process to be ergodic are stated in the following
theorem.

Theorem 2.1 (see e.g. [5]) Let F : V — [0, oo] be a Borel function (Lyapunov function)
whose level sets

L, ={xeV:Fkx)<a}
are compact for any a > 0. Assume that there exists y € V and C(y) > 0 such that

E[F(u(t;y))] <C(y) for all 1t € RY,

where u(t; y) denotes a stochastic process whose start point is y. Then u has at least one
invariant measure.

If in addition the associated semigroup P; is strong Feller and irreducible, then u
possesses a unique invariant measure. Thus, u is ergodic.

For Eq. 1.1, it is ergodic with a unique invariant measure.

Theorem 2.2 (see [8]) There exists a unique stationary probability measure (. of { Pt};cr+
on HOl (0, 1). Moreover, for any p € N\{0}, u satisfies

2
f 1 lull}"du < oo.
HL0,1)

o\
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3 Spatial Semi-discretization

We apply spectral Galerkin method to problem (1.1) to get a spatial semi-discrete scheme
which is a finite-dimensional SDE. We show that the solution uy of Eq. 3.1 possesses a
unique invariant measure 4y, which leads to the ergodicity of u . Furthermore, we prove
that the weak error of the spatial semi-discrete scheme does not depend on the time interval,
which implies that py converges to w in at least the same rate.

3.1 Spectral Galerkin Method

The finite-dimensional spectral space is defined as
Vy == span{em}f:{:l.

Let 7y : HO — Vy be a projection operator, which is defined as

N 00
aNu =Y (U em)em. Yu =Y (u,en)en € H'.

m=1 m=1

We use uy as an approximation to the original solution u, and the spatial semi-discrete
scheme is expressed as

duN:(iAuN—auN—l-i)»nN (|MN|2MN>)dt+JTNQ%dW a1

un (0, x) = wyuo(x),
where Ty Q%dW = ZZ:] A/ Mmem (x)dBp (t), and the projection operator 7y is bounded
I7nllzegs 2y =1, Vs €N
3.2 Ergodicity of Spatial Semi-discrete Scheme

Theorem 3.1 Let up (¢, x) be the solution of Eq. 3.1, then uy possesses a unique invariant
measure, denoted by . Thus, uy is ergodic.

Proof Following from Theorem 2.1, we need to show three properties of u y,““strong Feller”,
“irreducibility” and “Lyapunov condition”, in order to show the ergodicity of uy. Thus the
proof is divided into three parts as follows.

Part 1. Strong Feller. We transform (3.1) into its equivalent finite-dimensional SDE
form. Denote a, (1) = (un(t, x), e, (x)) and we have

N
un (6, X) =Y ap()en(x).

m=1

Applying the Itd’s formula to a,, () leads to

dap (1) = [—kmam(t)+<iAnN (|uN|2uN) , em) ]d:+mdﬂm(t), l<m<N. (32

We decompose the above equation into its real and imaginary parts by denoting a,, =
a,ln + iai, A = )L,ln + ik,zn and 8, = ,3,11 + iﬁi, where {B;,}1<m<n,i=1,2 is a family
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of independent R-valued Wiener processes and the superscripts 1 and 2 mean the real and
imaginary parts of a complex number, respectively, and obtain

da,ln = [ - A}na}n + )Lfnai + Re (iAnN (|uN|2uN) , em) ]dt + ./r)mdﬁ,}l(t),

da,zn = [ — )»,zna,L — )L,lnai + Im (ian (luN|2uN) , em) ]dt + «/nmdﬁ,%l(t).

With notations X (t) = (a} (1), aX(1), -+ ,ay @), aX ()T, B = (Bl B, -, BN, BT €
RN F =diag{A,---, AN},

Re (ikmv (|uN|2uN) ) 81)
Im (irmy (JunPuy) . er)

-2l a2
A= (_A% —A})’ G(X(1) =

Re (i)utN (|uN|2uN) ) €N)
Im (iAnN (|uN|2uN) ) 6’N)

and

NI
NI

. - 1 2 1 2
7 = .. .—(Z 9Z1"'5ZstN)7

NG
NG

we get an equivalent form of Eq. 3.1

N 2 N 2

dX(t) = [FX(t) + G(X(t))]dt + >N Zhap, =Y (X0)dt+ Y Y ZLdBj,.

m=1i=1 m=1i=1
It is obvious that
span{Z{, 23, -+ . Zy. Zy} = R*N,

which means the Hérmander’s condition holds. According to the Hormander theorem [13],
X (1) is a strong Feller process.
Part 2. Irreducibility. By using the same notations as above, we have

dX =Y(X)dt + Zdp, (3.3)

with X = X (1) € R?M, X(0) = y and Z being invertible. Using a similar technique as
[14], we consider the associated control problem

dX = Y(X)dt + ZdU, 3.4)
with X = X(¢) and a smooth control function U € C'(0, T). For any fixed T > 0,
y € R?Y and y™ e R?V, using polynomial interpolation, we derive a continuous function

(X (1), 1 €0, T1) such that X(0) = y and X(7) = y*. Hence,

dU = 271 (dX — Y(X)d1),
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and we get the control function U such that (3.4) is satisfied with X(0) = y, X(T) = y*
and U (0) = 0. We subtract the resulting Eqs. 3.3 and 3.4, and achieve

t

X(@) —X() = / Y(X(s)) — Y(X(s))ds + Z(B(t) — U(1)), t€[0,T].
0

According to the properties of Brownian motion,

P( sup |,3(t)— U(t)| < e) >0, Ve > 0.

0<t<T

Note that Y is locally Lipschitz because of its continuous differentiability, and the ranges of
X(t) and X (¢) (¢t € [0, T]) are both compact sets. Thus, it holds

t
P<|X(t)—Y(r)|5/c1|X(s)—Y(s)|ds+cze, vielo, T]) >0, Ye>0
0

with C1 and C; are positive constants independent of €. Then the Gronwall’s inequality
yields

P<|X(t) —X(®)| = C(1+e“e, Vielo, T]) >0, Ve>0.
For any 8 > 0, choosing t = T and € = §/C(1 + ¢“1T) > 0, we finally obtain
P<|X(T) —yt < 5) 0.

In other words, X (T) hits B(y™, §) with positive probability. The irreducibility has been
proved.

The above two conditions ensure the uniqueness of the invariant measure of X (¢). It
suffices to show the existence of invariant measures in the following.

Part 3. Lyapunov condition. A useful tool for proving existence of invariant measures is
provided by Lyapunov functions, which is introduced in Theorem 2.1. It&’s formula applied
to |luy(t) ||g implies that

1 N
dlluy O3 = —2alluy ®)|I3dr + 2Refo ity ()y QT dxdW () + 2 > nmdt,  (3.5)

m=1

where we have used the fact that
1 1
Re [ik/ nN(|uN|2uN)uNdx:| = Re [ik/ (|uN|4 —(Id - nN)(|uN|2uN)ﬁN) dx:|
0 0

=—AIm ((Id — JTN)(|uN|2uN), MN) =0.

Taking expectation on both sides of Eq. 3.5, we get
d 2 _ 2
th||uN(t)||0 = —2aEllun@®lly + Cw,
where Cy = 2 anvzl Nm < 2n. It is solved as
t
Ellun 0 = e ( / Cye™ds + ElunO)I) < e Elluy O +C. Y1 > 0,
0

On the other hand,

1, N 2
ey @13 = [ 3 an@en 0] dx = 1X 01 oy

m=1
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Define F = || - [lpmeny : R*N — [0, +00]. The level sets of F are tight by Heine-Borel
theorem. Therefore, X (¢) is ergodic. We mention that the ergodicity of X (¢) is equivalent to
the existence of a random variable £ = (“g‘l], 512, cee g}v, 51%,) such that

lim X(t) =&, ie., lima, (1)=&, ¥Ym=1,---,N,i=1,2.

1—>00 —>00
It leads to

N
. 1 g2
tl—l>rgo un(t) = Z (Em + l€m> €m,
m=1

which shows the ergodicity of uy (1). O

According to the proof of Lyapunov condition, we have the following uniform bounded-
ness for O-norm. Moreover, 1-norm and 2-norm are also uniformly bounded, which is stated
in the following proposition. Its proof is given in Appendix “The Proof of Proposition 3.1”
for readers’ convenience. In sequel, all the constants C are independent of the end point T
of time interval and may be different from line to line.

ogs . 1 .
Proposition 3.1 Assume that uy € H', | Q2 ”?—LS(LZ gy < 00 and p > 1. There exists
positive constants co and C = C(a, p, ug, co, Q), such that for any t > 0,

i) Ellun®IZ < e P Elluy )] +C < C,
i) EMun()? <e " EHuy(0)” +C < C,

where H(uy (1)) = 3 Vun @) - Glun Ol + collun @)§. In addition, if we assume

further ug € H? and IIQ% ||HS(L2,H2) < 00, we also have
i) Elluy 03 < C.
Remark 2 The uniform boundedness of the original solution u can also be obtained in the

same procedure as Proposition 3.1 or [8]. As the H>-regularity for both the original solution
and numerical solutions are essential to obtain the time-independent weak error, we need

. . 1 . .
the assumption ug € H?and | Q2 ||7_LS(L2’H2) < 00 in the error analysis.
3.3 Weak Error between Solutions z and uy

Weak convergence is established for the spatial semi-discretization (3.1) in this section
utilizing a transformation of u y (#) and the corresponding Kolmogorov equation.

Theorem 3.2 Assume that ug € H? and || Q% IIHS(Lzﬁz) < o0. Forany ¢ € C,%(Lz), there
exists a constant C = C(ug, ¢, Q) independent of T, such that for any T > 0,

<CNZ

’E[¢(uN<T>)] ~ E[¢p(un))]

Before the proof of Theorem 3.2, we give a useful lemma.
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Lemma 1 Assume that S(t) and 7ty are defined as before. We have the following estimation

”S(t) - S(I)T[N”L'(H‘,Lz) < Ce_atN_s.

Proof For any u € H®, we have

o0

IS — S@myullo = e u —myulo =e*" | Y |, el
n=N+1
1
00 2
<e PN Y] Il e ] < CeT NS Juls.
n=N-+1

Proof of Theorem 3.2 We split the proof in three steps.
Step 1. Calculation of E [¢ (u(T))].

To eliminate the unbounded Laplacian operator, we consider the modified process
Y(t) = S(T — t)u(t),t € [0, T], which is the solution of the following SPDE

dYy () = iAS(T — t)[|S(t — )Y (1)]*S(r — T)Y(t)]dt + S(T — t)Q%dW

= HY(1))dt + S(T — 1) Q2 dW.
Denote v(T — ¢, y) := E[¢(Y(T))|Y (¢) = y] and it follows easily
ov(T —t,y) .
ot
Note that the mild solution of u has the expression u(T) = S(T — t)u(t) + ir ftTS(T —
s)ulPuds + [T S(T — 5)Q2dW. Thus, we have
(T —t,y) = E[p(Y(T)IY (1) = y] = E[¢pu(T))|u(r) =St —T)y]

T T
- E[¢> (y+ik/ S(T—s)lu(s)|2u(s)ds+/ S(T —s)Q%dW)].
t t

1 1is2 1
—(Dv(T—t,y), H(y))—ETr[(S(T—t)QZ) D v(T—t,y)S(T—t)QZ].

For any h € L2, similar to [7] (Lemma 5.13), we have
T T
(DW(T —t,y),h) = E [(ng (y +iA/ S(T — $)|u(s))Pu(s)ds +/ S(T — s)Q%dW> , Xh(t)>]
t t
with x" (1) = h+ir [T S(T —5) (2|u(s)|2)(h(s) + u2(s)xh(s)) ds. It's easy to obtain that
T
Ix"®llo < llnllo + C / e T Nu() 1311 x" () llods. (3.6)
t

To show the uniform boundedness of E|| x" (r)|lg, we define a family of subsets

sup u()ll; >m(T+1—t)5}, meN

t<s<T

Ky = [weQ
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for any + < T. We claim that E (sup, ;-7 [lu(s)||I3) < C + C(T — t). In fact, we can
deduce

dH@u(t)) < —;a?{(u(t)) + Cdt + dM, (1)

similar to Proposition 3.1 or [8], which implies

H(u(s)) Eeiga(sft)’}'[(u(l))-l-/ﬂ Cefga(sfr)dr—}-/Ae*%a(sfr)dM*(r)

t t

with M, = 6colul|§Re (1, Q2dW) = Re (Au -+ ilulu, Q3dW ) and EH(u(®) < C.
Taking supremum and expectation, we get

A

t<s<T t<s<T Jt

E|: sup 'H(u(s)):| < EHu@®)+C(T —1) +E|: sup /Se_ga(s_r)dM*(r):|

IA

C+C(T -1,

where in the last step we have used the Doob’s inequality for convolution integrals (see [16],
Theorem 2). This complete the proof of the claim. Then the Chebyshev’s inequality (see
e.g. [10]) yields that

E 2 _
P(Kp) < (S0P <7 I LT =D _C et
m2(T +1—1) m2(T +1—1t) ~— m?
o0 o
As Y P(Km) < Y, % < 00, we get P(N° UX_ K,,) = 0based on the Borel-Cantelli

m=1 m=1
Lemma (see e.g. [10]). It implies that there exists a constant M, € N, for any m > M,,

lu@®ll1 < sup |lu(s)h <m(T +1— t)% almost surely. Then the backward Gronwall’s
t<s<T

inequality applied to Eq. 3.6 yields E|| x"®Ollo < Clihllo thanks to the exponential decay
factor, and it holds

[(Du(T —1,y), h)| < ||¢||C;E||Xh(f)||0 = Cligllc; iz lo- (3.7

Similarly, we also have

(D20 =130 1) k)| = Cllglicz 1} (3.8)

The It6’s formula gives that
dv(T —1,Y(t)) = %(T —1,Y())dt + (Dv (T —t,Y@®),HY@)dt
+S(T = DQEAW D))

+%Tr [(S(T — 02 D*u(T —1,Y (1)) S(T — t)Q%] dt

(DU(T —1,Y (), S(T — t)Q%dW(t)> .

Therefore,

T
v(0, Y(T)) = v(T, Y(0)) +/ (DU(T — 5, Y(s)), S(T —s)Q%dW(s)). (3.9)
0
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Noticing that Y(0) = S(T)up and Y(T) = u(T), we recall v(T — t,y) =
E[¢p(Y(T)|Y (t) = y] to derive

v(0,Y(T)) = E¢@(T)HIY(T) = u(T)]
and

v(T, Y(0))

E[p(Y(T)IY(0) = S(T)uo)

T 1
E [qs(S(T)uo +/O H(Y(t))dt + S(T — t)Qde(t)) ‘Y(O) - S(T)uo] :

Take expectation of both sides of Eq. 3.9 and we have

T
El¢w(T)] = E [qb(S(T)uo +/0 H(Y (1))dt + S(T — t)Q%dW(t))j| . (3.10)

Step 2. Calculation of E [¢p (un(T))].
The mild solution of Eq. 3.1 is

t

t
un () = S(6) N0 +ixf S(t — s)7w (|uN(s)|2uN(s)) ds +/ S(t — )TN Q2 dW (s).
0 0

Using similar argument as above, we consider the following stochastic process:
Yn() = S(T —tun(t).
The relevant SDE is
dYy(@) = IAS(T — t)nN[|S(t —T)Yn®)?S(t — T)YN(t)]dt + S(T — t)nNQ%dW
‘= Hy(Yn(0)dt + S(T — )y QZdW (1).

Apply Itd’s formula to t — v(T — ¢, Yy (¢)) and we get

dv(T —t,YN(@)) = %(T —t, Yy(@))dt
+ (DU(T —t,Yn@), Hv(YN(®))dt + S(T — )7y Q%dW(t))
+%Tr[(S(T — N Q) DR(T — 1, Yn(6)S(T — r)nNQ%]dz
- (Dv(T — 1, Yn(®), S(T — )y Q%dW(r)>
+(DU(T —t,YN(@®), Hy YN () — H (YN(f)))df
1 Lok 2 1
—ETr[(S(T — )03 D*(T — 1, Yy (1))S(T — t)Qz]dt

—l—%Tr[(S(T — N Q) DR(T — 1, Yy (6)S(T — t)nNQ%]dz.
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Therefore,

T
v(0, Yy(T)) = (T, Yy(0)) + / (DT = 5. Yn (), ST = )TN Q2AW(s))
0

T
+/0 (Do(T = 1. Yw ), Hy (Yw(®) = H(¥x(0)) )dr
1T L o 1
+5/ Tr [(S(T — N0 D2u(T — 1, YN (1) S(T — t)nNQZ]dt
0
e L2 1
—5/0 Tr [(S(T—z)QZ) D>u(T —1, YN(t))S(T—t)QZ]dt. 3.11)
By the construction of Yy, we can check that
YN@O) = S(T)nyug and YnN(T) =un(T).
According to the representation of v, we have
v(0,YN(T) = E[¢Y(TINIY(T) =YnN(T)] = E[¢un(T)IY(T)=Yn(T)]
and

v(T, Yn(0))

E[p(Y(T)HIY(0) = S(T)rmyuo]

T
E[qb(S(T)nNuo—i-/ H(Y (1))dt
0

+S(T — t)Q%dW(t)) ‘Y(O) - S(T)nNuo].

Take expectation of the two sides of Eq. 3.11 and we get

T
Epun(T)] = E [¢(S<T)nNuo+ /0 H(Y (1))dt + S(T —r)Q%dW(z))]
T
+E/0 (DU(T — 1, Yn (), Hy (Yn () — H(YN(I)))dt
T 1
+%E/ {Tr [(S(T — DN 02 D> (T — 1, Yn (1)) S(T — t)nNQf]
0

—Tr [(S(T — QY D*(T — 1, Yy (1)S(T — z)Q%] }dt. (3.12)

Step 3. Weak error of the solutions.
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Subtracting the resulting Eqs. 3.10 and 3.12 leads to
E¢pun(T)]— E[¢u(T))]
T
- E[¢<S(T)n,vuo + / H(Y(1))dt + S(T — t)Q%dW(t))
0

T
—¢(S(T)uo + / H(Y(0))dt + S(T — t)Q%dW(t)>]
0
T
+E/0 (Do(T =1, v ), Hy (Yn ) = H(Yy(®) )ds
1 T 1y o 1
+5E/0 {Tr [(S(T — )N 02 D> (T — 1, Yy (1)) S(T —t)nNQZ]

—Tr [(S(T — Q) D*(T —1, Yn(1)S(T — t)Q%] }dt
=1+II+1I1. (3.13)
Due to Lemma 1, terms / and I/ can be estimated as

11 = ClIglicy EIS(Tuo = S(Mmyuollg < Ce™ il y ElluollaN ™2 < Ce TN 2,

(3.14)
and
T
111 < CE [ 161eyl (0 0) = HC ) lods
T
= CE [ 101y 05T = )1 = ) a0 Py 0) ot
T
< IC [ e Ty o ey O I ]V
< |,x|£1v—2 (3.15)
o

based on Lemma 1, Proposition 3.1 and the embedding H' <> L in R. In the first step of
Eq. 3.15, we have used the fact (3.7).

Let us now estimate term ///. As (S(T — t)ay — S(T — t))Q% is a bounded linear
operator and so is D?v shown in Eq. 3.8, we have

Tr [(S(T — N 02 D2u(T — 1, Yy (1) S(T — z)nNQ%]

—Tr [(S(T — QDT — 1, Yy () S(T — z)Q%] ‘

Tr [((S(T — )N — S(T = 1))03)* D>o(T — 1, Yn(0))(S(T — )7y + S(T — z))Q%]

IA

1 1
CIST =Dy = ST =Dl 2, 1) 122 s, a 1012 IS(T = Dll 2,192 s, 2)
< Ce?T=DN2,

Hence, integrating above equation leads to

c
|[[I1] < =N2. (3.16)
o
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Plugging (3.14), (3.15) and (3.16) into (3.13), we get
—aT 1 -2 -2
‘E[qb(uN(T))] - E[d)(u(T))]‘ =CEe "+ NP =N 3D

in which, C is independent of time 7. O
3.4 Convergence Order between Invariant Measures x and u y

Based on the ergodicity of stochastic processes u and uy, for any deterministic ug € H?,
we have the following two equations

1 T
lim —f E¢>(u(t))dt:/ ¢du(y),
o0 0 L2

1 T
iim 7 [ Esun®)ar = [ s0)duney)
0 VN

for any ¢ € Cg(Lz). Due to the time-independence of the weak error in Theorem 3.2, it
turns out for any fixed o and N,

1 T
‘/ dMdu(y) —/ d)(y)duzv(y)‘ = | lim */ E¢(u(r)) — Ed(un(t))dt
L? Vy T—oo T 0

o1 T S Y P P GR
ngimm?f() |E¢(u(t))—E¢(uN(t))|dt§T1me?£ C(e +;)N dtsEN ,

which implies that j is a proper approximation of u. Thus, we give the following theorem.

. 1
Theorem 3.3 Assume that uy € H?* and ||Q7||H$(Lz A3 < oo The error between
invariant measures | and |y is of order 2, i.e.,

C
< N2
o

' / SN (y) — / 6 (dun ()
12 Vy

Remark 3 Although the time-independent weak error between u and up is obtained

. 1 .o . ...
under the assumption | Q2 ||H$(L2 g2y < 00, it is necessary to assume in addition

| Q% ||7-LS(L2,H3) < oo in order to get the unique ergodicity of u (see [8]).

4 Full Discretization

In this section, we discretize (3.1) in temporal direction by a modification of the implicit
Euler scheme to get a fully discrete scheme. We prove the ergodicity of the numerical solu-
tion u’,‘\, of the fully discrete scheme, and get weak order % of ”]1{\1 in temporal direction.
Thus, we achieve at least the same order as the weak error for the error of invariant measure,
as a result of the time-independency of the weak error and the ergodicity of the solution.
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4.1 Fully Discrete Scheme

We use a modified implicit Euler scheme to approximate (3.1), and obtain the following
scheme

' i ' | |2+|eark1|2
uy —e “Tuy T = (iAuly +irny ‘N 5 T+71NQ25Wk

ul = myuo(x),

4.1)
where ull‘v is an approximation of uy (#¢), T represents the uniform time step, #x = kt, and
Wi = W(ty) — W(tg—1).

The well-posedness of scheme (4.1), together with the uniform boundedness of the
numerical solution, is stated in the following proposition. The time step t is assumed to
satisfy ot € [0, 1] in sequel.

Proposition 4.1 Assume ug € HO. For sufficiently small t, there uniquely exists a family of
Vi -valued and {F; }ren-adapted solutions {MI;V}kEN of Eq. 4.1, which satisfies that for any
integer p > 2, there exists a constant C = C(p, «, ”(1)\/) > 0, such that

Eluk P <, YkeN,

Proof Step 1. Existence and uniqueness of solution.
Similar to [6], we fix a family {gi}ren of deterministic functions in V. We also fix
k le Vy, the existence of solution u]]‘\, € Vy of

~k — ~k 1
a2 el
2

u]]‘\, e_atﬁll‘v_l = iIAﬁI]‘V +irtmy <

) + /T8 (4.2)

—=k
can be proved by using Brouwer fixed point theorem. Indeed, multiplying (4.2) by i,
integrating with respect to x and taking the real part, we get

~k 2 ~k —at ~k—12 —2 ~k—1
i 11§ + ity — el 115 — e~ iy 113

L =kl
2J/TRe (uN —e iy )grdx + (6 Uy )gkdx
0

k! —2at | ~k—1
llitly — e iy 11§ + e > llitly

IA

15+ 27 llgx 13-
ie.,
il 1§ < 2e7 2 iy 11§ + 27 llge I 4.3)
Define
A:Vy x Vy — P,

(1211‘\,_1, gr) — {ﬁlj\,mlj\, are solutions of (42)},

where P(L?) is the power set of L%. Equation 4.3 implies that A is continuous, and its
graph is closed by the closed graph theorem. When the spaces are endowed with their Borel
o -algebras, there is a measurable continuous function « : Vy x Vy — L? such that

k(u,8) € A(u, 8), Y (u,g) € Vy x Vy.
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Assume that u]]‘\fl € Vy is a F,_ -measurable random variable, then u’j\, =

1
K(ull‘\,_l, Lj?‘sw") is an L2-valued solution of Eq. 4.1. Moreover,

W Sy e Y
(I —iAtuy = e *Tuy +irtmy 2 +71NQ28W1(EVN

Hence, u’,‘v is actually a Vjy-valued solution of Eq. 4.1.

For any given u',‘\,_l and sufficiently small time step 7, the solution u’,‘v is unique, which

can be proved in a similar procedure as [2]. This fact will be used in proving the ergodicity of
the numerical solution {lev}keN, and it can be found in Appendix “The Proof of Uniqueness
of the Solution for Eq. 4.1”.

Step 2. Boundedness of the p-moments.
The constants C below may be different, but do not depend on time.

i) p = 2. To show the boundedness, we multiply (4.1) by @k > integrate in [0,1] with
respect to the space variable, take expectation and take the real part,

1
ENdb I3 + Elluk; — e @Tub M3 — e 2T Efuk 2 = 2ReE/ u’;,nNQ%awkdx
1
= 2ReE/0 (@, — e ak ey Q26 Widx < Efluky — e @ik 12 + Ellmy Q28 Wi |2,

It derives

E||ul]<v||(2) < 72arE”u ||O+C‘L' <672o¢tkE”uN”0+CT(1+672a1’+.”+672a1’(k71))

IA

e E|ul 13+ = < Ellul 11} +

—2at —

—12q

fort < é, where we have used 2% < 1 — e~ 1207 for T < é

ii) p = 4. In the case when p=2, without taking expectation, we have
k2 2 k 1 ! k ]
Iy 1§ — e Ny IG + lluly — e7" I5 = 2Ref Uy Q28Widx.
0

Multiply both sides by ||u’}‘V ||%, take expectation and take the real part and we get

(LHS) = Eluly I — ™7 Euly W3l 13 + B[k, — el i3k 13 ]
1 _ 1 _
= S (B — e Bl 1) + 5 B (e — e 13
+E[ kg — el 3k 1]
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and

(RHS) = 2ReE/ ||uN|| uNJTNQZBWkdx

1
2ReE/ (||u’;v 13 (%, — e—‘”ﬂ’;;l)) 7y Q2 8Widx
0

1
+2ReE / ((uu@n%— e 2T luly(I5) e Tty 1)nNQ%swkdx

IA

E[ Iy = emmuly 3y 13] + £ (1 10w @28 W)

1 _ _ _ -
4B 1 — e 1 1) + 4o BN ey 02 WA 13

IA

B[y — el I3 13] + 5 E (W — el 3) +
Compare (LHS) with (RHS), we obtain
Eluy g < e * Ellufy ' |I§+ Ct < C.
iii) p = 3. Using 1) and 2), it is easy to check that the following holds true

k 12 k 4
K, 12 + k)
Elluk 3 < E-20 N0 5 N0 < ¢,

iv) p > 4. By repeating above procedure, we complete the proof.

Before showing the weak error between u y (#) and ull‘v, we need some a priori estimates
k k
on [[uy [l and [|uy 2.

. 1
Proposition 4.2 Assume that > = 0 or —1, ug € H', u([)v = nnug and || Q2 |lyy g2, 1y <
oo. Then for any p > 1, there exists a constant C = C(«, ug, p) independent of N and ty,
such that

EH, <C,VkeN,

where Hy := || Vuly 1§ — 5 llul 117,
Proof The proof for A = 0 is in the same procedure as that for A = —1 and is much easier.
Here we only give the proof for A = —1
2 —aty, k 12
u + |e
uk, — ekt = (iAu’;, —imy (' | '2 | )) T+ aANQIW. (44)

—at7k—1

i) p = 1. Multiplying (4.4) by E]/‘V — e %"y, integrating with respect to x, taking the
imaginary part and using the fact ((Id — wy)v, vy) =0, Yv € H, vy € Vy, we
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have
k 2 k — k—1y2 —2 k—1)2
Vuyllg + I1IV@y — e *Tuly g —e T IVuy I
1
- —Re/ (|u’;v|2+ le™Tul 1|2 )u’j\,(ﬁll‘v — e b Ndx
0

2 1
+71m/ TN QI SW @k — e itk ydx
T 0

=: A+ B.

Simple computations yield

! k —ar k-1 k —at k-1
uy +e u ut —e
A = —Re |:/ (\u’;\,\2+|[azu1;v71|2>< N 5 N Uy 5 Un )(ullcv_earulzcvl)dxi|
0
< —| k H4 +l 74atH ” < _l” k H4 _,’_l —2arH k—1”4
=75 Unlips 26 Uy 2 uyllya 2e u'y
and

— k 1
R
2

1 1
:2Re[f0 V(nNQ%SWw-V(ﬁkN—e-“fuxl)dx]JrzRe[/o V(ﬂNQ%SWk)'V(e_‘”ﬁ];fl)dx}

2 1 _—
B=ZIm [/ nNQ%aWk[—nAuNﬂr N+nNQ28Wk]dx:|
T 0

[ 1
+Re / (\u’j\,lz + e % u II(V l\z)ﬁ’;\, . nNQ%(SWkdx
0

IA

1 1
21V = e Ul DIE + CIIVGry 02 5Wi I + 2Re U V(nNQ%SWk)-v(e*“uﬁ;')dx}
0

1
+Re / (\u],‘\,lzﬂ—le"” k=12 )uN nNszSWAdx
0

Denote Hy,

IVl 15 + 311k, 1134, then

3 _
EHk+ZE||V(u§V— k2

e PTEH 1 +Ct “4.5)

IA

1
+ReE f (b P+ e ul P )i - v 0o Wedx | 46)
0

Based on the formula
(la|>*+1b)*)a = ala—b)* +b@—b)*>+3|b|>@—b)+bla—b|>+ (b)*(a—b)+2|b|?D,
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the last term on the right hand side can be rewritten as
1
ReE fo (\u’,‘\,\z + e % u 1,“\, l\z)uN rrNQuSWkdx

1
= ReE/ wk
0

1
+3ReE/0 e uk Pk — et )y 0 F S Widx

_ —1)? 1 b 1 —ar—k—1\2 1
u/,‘v —e ‘"ull‘v 1‘ JTNQZ(;WkdX-‘rReE'/(; e aru’,‘\, 1(u’[‘v —e ‘”ull‘v 1) 7N Q2 8Widx

! k—1]| k —1]? !
+ReE/ ey ‘uN —e “Tuy } N Q28Widx
0

1 1
+ReE/ (e~ @k 2wk, — e uky ])nNQZBWkdx+2ReE/ le™ @ uk 1 Pemor gk, 75 0 Wedx
0

= a+b+c+d+e+f.

Noting that f = 0, it suffices to estimate the other five terms

a+b+d < E[lukllollaly — e uly 12y 03 6Will i

—ar ko —at k-1 1
+2[le™*" ol — el 4H7TNQ25W1<IIL°°]

IA

1
k - k—1 k - k=112 1,k — k 1
E|:(HMNH0+2H€ “Tuy IIU)HV(MN — e T ul g luly — e Tkt ||7TNQ23W1<HL°°:|

IA

1 _
ZE[Ivay — e m Doy — e ul 1o

— — — 1
+CE [ (a1 + e aly 1) Iy — e~ a7 10w 03 6 Wil |

IA

1 -~ _ _ 2

ZEHV(u’;V e k12 4 CE (rZ(Ilu’;,I%HIe Ty ke 1||0)\|uN Tk 1||0)
_1 1 2 \?

YCE (r znnNstWkan)

1 .
< ZE\|v<u§v e Tuk T HI3 + Cr,

where in the last step we have used Proposition 4.1,

cte = 4E [l ul 2k — e ul ol 0 SWello |
1
< S Elluy — ey G + Snre T T Elluy
< DEluy — el G 4 28 (Vartevuly o) ( 5oz 8ne b Il 13
<3 5 f
1
< §E||u’;, — e kT2 ¢ are T E VU2 4 C
Then (4.5) turns to be
EHi < (1 +at)e ™ EH; 1 +Ct <e “"EH;_1 +Cr.
We finally obtain that

EHy <C.
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ii) p=2 Fromthecase p=1,by | -[I74 <V lloll - I, we get
_ 1
He—e ™ My < CV(anQ28Wi)l§
1
+CRe [/ Yty Q2 8Wy) - V(e_””ull‘\,_l)dx:|
0

1 _ _ 2
+C (27 (ko 3 + ey 1E ) ks — =713
+C (r—%unNQ%aWkniw) +are M,

+Ct M uly ||o||7TNQ28Wk||Loc
Multiplying above formula by Hj, we have
le + (Hk _ e—ZWTHk71)2 _ 6—4011’7_[,%_1

1
CHLIIV (ry Q28W) 13 + CHyRe U V(my Q18Wy) - V(e_muljvl)dx:|
0

=<
2
+Cr M (Il 13 + e ul IF) Ty — el
2
FCH, (r*%nnNQ%aWanLoo) Fate X H Hy
eI e 1Sl Q2 S Wil
:nz+H+c+J+e+f,
where

Eld +b +c +d]

IA

1
JEG— e TH 1)+ Cr

2
+Cre‘2”E[Hk71(nu®n%+||e‘“fu§‘v”||%) ludky — e=muly ‘||0]

1 1
ZE('Hk — 672‘”7‘[1{71)2 + fre74‘”E’Hi_l +Crt,

<
- 2
/ 1 —2ut1 2 1 2.2 —4at 2
El¢] < 5E(Hk—e Hk_l) + (et +am)e MTEH]
1 2 203 2
< EE (’Hk —e ‘”"kal) —I—Eare “TEH;_,
and
_ 1
E[f1 < - (Hk_e 2Ty 1) +Ct2E [llu i ||7TNQ25Wk||8Loo]

1
+one*40”153'-1k,l +CcE [||u’,‘v—1 ||(‘)2||nNQ75Wk||§w]
2 2 4 2
-FE (Hk —e ‘”/Hk_1) + ate O”E,Hk71 + Crt.
Then we conclude

EH} < (1+3at)e ™™ EH; | +Ct <e ™ EH} | +Ct<C,
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where we have used (1 4+ 3a1)e 3% < 1 forat < 1.

iti) For p = 2!, I € N, the result can be proved by above procedure. So it also holds for
any p € N.

O

Corollary 1 Under the assumptions in Proposition 4.2, we have
k —at, k—1)2p P
Eluy —e “Tuy |l;” < Ct?,

where constant C is independent of N and ty.

Proof 1t is easy to check this by multiplying ﬁ’l‘v — e“”ﬁll‘v_l to both sides of Eq. 4.4,
integrating with respect to x and taking expectation,

k_marykel
Elluk, — emul M Ig"

1
= E[rlm /0 VUV @y — e~y Ddx + Re /0 mn Q18w (i — e ml ) dx

1 P
+£Im/ <|u/]<V|2+ le Ty 11(\7 1| )(ullc\l +e Ty II(V 1) (ﬁllcv _e—arfk l)dxi|
0

< CE[r”||Vu’;V||5||V(u’;V—e ) 1
2
e (e e e N (A A e )]
1 2 1 _
+CElmy Q28Wellg” + S Elluy — e~ Tuly” hier
l k _ —at k—1)2p p
< 2E||uN e “tuy g +Cth.
Then we complete the proof by Proposition 4.2. O

. 1
Proposition 4.3 Under the assumptions ». = 0 or —1, ug € H* and || Q2 3522, 52y < ©0,
we also have the uniform boundedness of 2-norm as follows

Elluk|5 <C, Yk eN,
where C is also independent of N and ty.

Proof We also give the proof for A = —1 only. Multiply (4.4) by A@, — e~@7ak "),
integrating with respect to x, and then taking the imaginary part, we obtain
AU g + 1Ay — e Tuy DG — e Auy 15

1
= Re/ (|u’1‘\,|2 + |e7‘”u]f\,_] |2> uk; A@, — efwﬁ],‘v_l)dx
0

2 1
—fIm/ TN QWi A, — e ) dx
T 0

=: A +PB.
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According to the uniform boundedness of any order of 0-norm and 1-norm, we have the
following estimations.

E[A] = ReE/ |k, Pk, AN, — ek dx
+e*3‘"ReE/O kP A, — e Tl dx
-I—e_z‘”ReE/(;] |”11<v_1|2(”]1<v — e_mu];\,_l)A(ﬁ],‘\, — e‘”ﬁll‘\,—l)dx

= ReE/01|u/1‘v|2u/1‘vAuI;\,dx — e_4arReE/ |u |2 ﬁ];\,fldx
+e2”ReE/01|u’;,—‘ Pl — e Tuly HAa@y — e iy dx
+ReE/(;1u'1‘\,Au§,|ulfv — e_mull‘v_l|2dx
1

+2ReEf0 ak (Vuk )2 @, — e wk dx
—|—4ReE/01u]]{v|Vuljv|2(ulf\, — e mk Hdx

1
+ReE/O ik — e~k AT, (|u’;v|2 — ek ! |2) dx

= Ak — e TART LA A AL+ A A

a

We estimate above terms repectively and obtain
_e—4arAl;—1 — _e—2atA1;—l + e—ZaI(l _ e—2at)A1;—l

< —e TA L CTE|u ] < —e T AN 4 O,

Ap < e TE [nu"N“niwnu’;v — e Uk ol A, — 67“7u®_1)||0]
1 - - - - —
< 6EIIA(u’;V—e T2 CrE kTS + Co T E N, — e Tk
1
< —E|lA@)y — e *Tuly IG5+ Cr,

)

k — k 1
Ac < E [y — e a2,y e A o

- . - 1
= Cr E[IV Gy — el Dilolluly — el Il 17 ] + Sar BN A}

IA

1 _ _ _ —

6E||A(u’[<v_ ot k- 1)||0—1-Cr SE|uk — ‘”uf\, Hig2
1

+CTE |y |If + gatEll Aufy I}

1
oer||AuN||O+C‘L'

1 k _mar kol
< ¢ElA(y —e™ )G+ g
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1 k2 —at, k=12
u + |e u
Ay = 2ReE/O ﬁN(Vu],‘V)Z[—iTAﬁI,‘V +i‘L'7'[N<| I | N | 7k>

2 N
+nNQ%aWk]dx
1 1 [ 1
< 16arE||AuN||O+Ct+2ReE/ wk (Vuk )2y Q78 Widx
< ionE||Au’< |2+ Ct +2ReE (ﬁk — e (Vuk) 025W;d
= 76 Nllo ) N N) TN kax

+2ReE/ Tk ‘((WN) (—“’vu’;v”)z)nNQ%aWkdx
0

1 - - 1

< —arElAuy I3+t + CE [y — el ol Vi 12 Iy 0 Wil |
ko _ ot k 1 3

+CE IVl - o (I ey 1+ ™ 1) N @26 Wil |

IA

1 _ 1
gEIIA(u’fv— Tk 1)||0+8owE||AuN||o+Cr

and

1
Af = ReE/0 W, — e uks 1)AuNRe[< —ef‘”u]}‘\,_l) @, +e7atﬁll‘\,_1)]dx

IA

k — k 1 k
E [y = el 2l e + o)l Ay o

1
8arE||AuN||0—|—C1:

IA

1 _
EEIIA(M’,‘V— ko3 +

where A, has an same estimation as Ay and we have used that [V - |lo Z |- 1 < || - |2 =
IIA - |lo- So we obtain

5 1
E[A'] < 8E||A<u’;v —e Tk h13 + 2arE||AuN||0+Cr
For term B’, we have

, 2 ! 1 T A e i T
E[B] = —ZImE A(nNQzaWk) —iv A, +imy (=, Ty Q2 5Wi | dx
T 0
1 1
= 2ReE/ A (nNQfaWk) A@ — e~ 7k ydx
0
1
,RQE/ A(”NQ%SWk> (|”]1€v|zﬁ’fv*\€_m ko1 2mar k- 1>dx
0
1 1
—ReE/ A (mv Q3w ) le Tl Py — emm ik dx
0
1
EEHA(u]]‘V e T uk )2 4 C

Denoting K := [ Au, 2 — Re fiy luf, |2uk, Awdx, then E||Auk, |2 < EKy + C and

1 1
EKy — e ®TEK;_ < EonEnAu’;vng +Ct < SatEK + Cr.
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Finally,

1
EK, < (- Ear)*le’z‘”EICk_l +Cr <C,

where we have used (1 — %ar)"e‘z‘” <e *Tforat < 1. O
4.2 Ergodicity of the Fully Discrete Scheme

To prove the ergodicity of the scheme (4.1), we will use the discrete form of Theorem 2.1.
We give some existing results before our theorem.

Assumption 1 (Minorization condition in [14]) The Markov chain (x;,),eN with transition

kernel P, (x, G) = P(x, € G|xo = x) satisfies, for some fixed compact set C € B(RY), the
following:

i) for some y* € int(C) there is, forany § > 0, at; = 1(8) € N such that
Py (x, Bs(y")) >0 Vx €C;

ii) the transition kernel possesses a density p,(x, y), more precisely
Px.G) = [ putroidy V2 €C. G e B NBE)
G

and p, (x,y) is jointly continuous in (x, y) € C x C.

Assumption 2 (Lyapunov condition in [14]) There is a function F : R — [1, 00), with
limjx |00 F(x) = 00, real numbers 6 € (0, 1), and y € [0, 00) such that

E[F (xp+ )1 Fp] < OF (xn) + .

Definition 3 We say that function F is essentially quadratic if there exist constants C; >
0, i =1, 2, 3, such that

Ci(1+Ix*) < F(x) < C(1 + [Ix]1?), IVFx)| < C3(1+ |IxID)

Theorem 4.1 ([14]) Assume that a Markov chain (xp),eN satisfies Assumptions 1 and 2
with an essentially quadratic F, then the chain possesses a unique invariant measure.

Based on the preliminaries above and the theory of Markov chains, we prove the
following theorem.

Theorem 4.2 For all © sufficiently small, the solution (u/;\/)keN of scheme (4.1) has a unique
invariant measure [13;. Thus, it is ergodic.

Proof 1) Lyapunov condition. Based on Proposition 4.1, we can take essentially quadratic
function F(-) = 14| - ||(2) as the Lyapunov function, and the Lyapunov condition holds.
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ii)

Minorization condition. In scheme (4.1), it gives
_ _ . A _ _ _ _
Py =Py ‘—r(AQx+5nN((|Pm2+|Q’;V|2+|e PP 1O ) Q"N)>

N
Y Simemdi,- 47

m=1

_ A _ - _ _
Oy = oy +r<Ava+EnN((|P£|2+|Q§V|2+|e PP 1T O) va))

N
+ Z 2V 77mem§k1331s (4.8)

m=1
where P/’f, and Q’,‘V denote the real and imaginary part of u'j\, respectively, that is u’j\, =
Py +iQ%. Also, TNQISWE =Y N Vimem (8kBL, +18kB2), where 88, and 8, B2
are the real and imaginary part of § Wy, respectively.

For any y; = a1 +1iby, yo = ap + iby € Vy with ¢; and b; denoting the
real and imaginary part of y; (i = 1, 2) respectively, as {em}fr\::l is a basis of Vy,
{cSk,B,L, 8;{,331 }ZZI can be uniquely determined to ensure that (Pllffl, Qlj\fl) = (a1, by)
and (Pk, Q’;V) = (ay, by), which implies the irreducibility of u’jv.

As stated in Proposition 4.1, the J; -measurable solution {lev}keN is defined

1
. . . — 2
through a unique continuous function: u’/‘v = K(ulfv ! M\/?BWI{)’ where W has a

C® density. Thus, the transition kernel Pj(x, G), G € B(Vy) possesses a jointly
continuous density pi(x, y). Furthermore, densities pi(x, y) are achieved by the
time-homogeneous property of Markov chain {M]fv}keN-

With above conditions, based on Theorem 4.1, we prove that ull‘\, possesses a unique

invariant measure. O

4.3 Weak Error between Solutions uy and u’l‘\,

We still use modified processes to calculate the weak error of the fully discrete
scheme in temporal direction. Denote S; = (Id — itA)~'e™®7, then scheme (4.1) is
rewritten as

k2 —at k=12
[up =+ le ™ uy | 1
N T N K ) e TS, i QIS Wy

o

uy = S,u];fl +irTe* S;my ( 5 N

k IMI |2+\e"”u171\2 k .
= Skl +inee™ Y SE iy (il |+ e Y Sy 0rsw (49)
=1 2 =1

Lemma 2 For any k € N and sufficiently small t, we have the following estimates,

wh

. 1 1
DUISE = SOl pge g2y < CU+D)2e™ T2, 1 € [t tis1],
i) 1S5 = SO gy < Ce™ 1 € it tia1 ],

ere the constant C = C(«) is independent of k and .
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Proof Stepl. If t = . A§ S(¢) is the operator semigroup of equation du(t) =
AA—a)u(t)dt, u(0) = u® € H?, and S; is the corresponding discrete operator semigroup,
we have

k k — k— . k
S*u(0) = uf = e uf ! 4irAut, (4.10)
173
St)u0) = u(ty) = e *“u(tr_) +/ ie 4= Ay(s)ds.  (4.11)
tk—1
Denote e; = uk — u(ty) = (S¥ — S(t)) u(0) with g = 0, then
1k
ep =e “Tep_q +itAe; + i/ [Au(tk) - e_o‘(t"_s)Au(s)]ds.

Ix—1

Multiply e to above formula, integrate with respect to x, take the real part, and we get

1
2 - 2 -2 2
5 [eelld + llex — =113 — e ey 13]

1 7 tx
= Re i/ / AEk/ ie %) Au(r)drdsdx
0 Jtr— K

17 Ik
c / / 1A — Au()lloll Aur)lodrds
tk—1 VS

IA

IA

Ce 2% | Au(0) |32,

where we have used the fact that ||Auk||% < e’z""kHAuOH% and ||[Au()]o =<

Ce=' || Au(0)]|o. In fact, multiplying Aw* — e=*" Au*~! to Eq. 4.10, integrating in spac;
and taking the imaginary part, we obtain
1AM < e 2T Ak MG < e AUl
Then it’s easy to check that
lex 1§ < ™2 llex—11I3 + Ce™* | Au(0) 37>
leads to

lexlld < Cte™ % || Au(0) |13, 4.12)

1
which finally yields ||S’rC =Sl zg2.12) = Ctk2 e*""kr% ini).
For ii), we have

2
[An]

I (55 = S@w0) uol} = > 7o (1 22 ™ = e ) w(0), en)
n=1

o0
< 47N " (W(0), en)|* [l = deT > u(O)]17.

n=1
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In the following two steps, we only give the proof of i), and ii) can be proved in a same
procedure. We use the notation || - || = || - || ;g2 12, Which is an operator norm defined at
the beginning of this paper.

Step 2. Ifr € [tx—1, t],

|
IS5 — SOOIl < I1S¥ — S| + 1St — S| < Ctle “kr2
+e—0l1|e—0é(lk—t) _ 1|
3 —at L —at o 1 n 3 —atp L
< Ctie T2 +e Za(at) <Cte T2
n=1
e’ — 1
+e Yar
ot
< Clt+1)e ™l

e“T—1
at

We have used the fact that

is uniformly bounded for at € [0, 1].

Step 3. Ift € [t, tit1],

L 1
ISE = SOl < 18 = S@I + 1S() = S| < Crle 2

+e*0{[|efa(fk7t) _ 1|
1 1 at—1
< Ctkzefatea(tftk)rj + €7atOlT
ot

<C+1)2e 70,

We have used the fact e*¢~%) < 7 < ¢,

Remark 4 From Eq. 4.10, we can also prove that
1S5 £ 2,02y < Ce™™,

where k and ¢ satisfying ¢ € [tx—1, tx+1].

Next theorem gives the time-independent weak error of the solutions for different cases.

%—lS(LZ,HZ)
the cases A, = 0 or —1, the weak errors are independent of time and of order % That is, for
any ¢ € Ci (L?), there exists a constant C = C(uy, @) independent of N, T and M, such
that forany T = Mr,

. 1
Theorem 4.3 Assume that ug € H?, ”?v =un(0) = ayugand | Q2| < oo. For

|Elp@n ()] = Elg ()] = €3

Corollary 2 Under above assumptions, for any t € [(M — 1)t, (M + 1)t], it also holds
1
|Elp@n )] - Elp@ih]] < crt.

Proof LetT = Mt. As

Elg n ()1~ El¢ ()] = | L@ Gun ()= El (un ()] +| El (un (T)1 = Elg k)]
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and
El¢un(T))] - E[¢(MN(I))]‘ = gl Ellun(T) — un@®llo
= ol (T —1) sup [EIIMN(t)Ilz + Ellun(®)llo + E””NU)“%””N(I)”O]
>
1 1
+|I¢>|ch1EII7TNQ7(W(T) —W®)lo < Cr2,
we then complete the proof according to Theorem 4.3. O

Proof of Theorem 4.3 We split it into several steps.
Step 1. Calculation of E[¢p(un(T))].
Recall the process we constructed in the proof of Theorem 3.2,
dYyN(t) = Hy(Yn())dt + S(T — t)n Q%dW(t).
Now we denote vy (T —t,y) = E[¢(Yn(T))|Yn(t) = y], then

T 1
UMQMGV=WWRM@D+A(me—LMOMﬂT—meMWm)
(4.13)
where

uN (0, YN (T)) = E[p(un (THIYN(T) = un(T)],
uN (T, Yn(0)) = E[¢(YN(T))|YN(0) = S(T)un(0)]

T T
—E [4; <S(T)uN(0) +/ Hy (Yy(s))ds +f S(T —s)nNgidWN Yy (4.14)
0 0

= S(Mun(©)].
The expectation of Eq. 4.13 implies,

T T
Elpun(T)]=E [qb (S(T)MN(O) +/O Hy (Yn(s))ds +/O S(T — S)”NQ%dW>:| :

(4.15)
Step 2. Calculation of E[¢ (uAN’I )]
Similar to [9], we define a discrete modified process
Y}i, = Sf” 7ku]1‘\,
k 12 —at,, =12
= SMUY 4 ircett Y SMH Ly, (Wu’,v) (4.16)
=1

k
+eT Z Si”“‘lnNQ%aWz
=1

k
= S rince” Z SMA=l gy
I=1

Sl—Myl 2+ efoaSIfl—Myl—l 2
(' vyl 5 r v | sEMyl ) @17

k
+e7 Y SMH 028w,
=1
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Consider the following time continuous interpolation of Yllf,, which is also Vy-valued and
{F1}i>0-adaped,

. M
Yn() = Sﬁwu%—i—i)»e“r/ ZS%+171ﬂN

[—M vyl |2 — [—1-M yl—1,2
(lST YL12 4 et st Y
0o

5 si-M Y,{,) 1,(s)ds

t M
re [130 ¥y bW s
0 =1

t t M
= Sﬁ”u?er/O HI(Y%,s)ds+e°”/o 3 SMH Ay 03 1 (5)d W ().
=1

In particular for ¢ € [f,_1, #],

|S.l[_MY}[\,|2+ ‘e—otrS.l[—l—MYIIV—1|2
2

+e TSy 03 (W) - W(nn)), 4.18)

v = vt +ixeafs;”+1*’n,v< SH%{,)(: —1_1)

or equivalently,
— — —1- —1
|S.l[ MY[[\,|2+|€ otTS.l[lMYIIV |2
2

T SMHI g 03 (W(z) - W(tl)). (4.19)

Yn@) = Y+ ixe“’s%l*’n;v( SQ*MY]{,)(z —1)

Apply Itd’s formula to t — vy (T — 1, Yy (1)),

dun(T —t, Yy (1))
M
3 i
- %(T — 1, Tn())dt + (DvN, He (Y 0ydt + &7 Y sMH Iy 03 ll(t)dW(t)>
=1

M * M
1
5T (WZSQ“”nNth(t)) D?vy (e“sty“’nNQ%l,(t)) dt

=1 =1

M
= (DUN, Ho (Y1) — HN(?N(z))) dt + (DUN, Ty SMHI-lny 03 ll(t)dW(t))
=1

+

N =
M=

*
Tr [(e“fsﬁ‘”‘—’nNQ%) D%vy (emsﬁ‘”‘—’nNQ%)] 1 (0)dt

N
I

ol =
M=

Tr [(S(T — Dy Q%)* D?uy (S(T - t)nNQ%)] 1,(t)dt,

-
I

1

where Dvy and D?vy are evaluated at (T —1t, f’N (1)).
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The same as before, integrate the formula above from O to T, and take expectation based
on the fact that

un (0, YN (T)) = El¢p(Yn(T)IYN(T) = Yn(T)] = El¢pui)|Yn(T) = udl],
uN (T, YN (0) = E[¢(Yn(T))|Yn(0) = Yn(0)]

T
E[(j) (Si”uNmH / Hy (Y ()ds
0

T
+/ S(T — s)nNQ%dW>
0

Yn(0) = S¥ uN(O)] ,

we get

El¢ ]

T T
E[gb (S?/IMN(O)—i—/ HN(YN(s))ds+/ S(T—s)nNQ%dW)]
0 0

T
+ E/ (DUN, H (Y, 1) — HN(?N(I))) dt

(=)

1 T *
+ 5ZE/ Tr[(e“fsﬁ‘“l—‘nNQ%) D?uy (e“fsﬁ‘“l—’nNQ%)
0
=1

- (S(T - t)nNQ%)* Duy (S(T _ r)nNQ%) ] 1,()dr. (4.20)

Step 3. Weak convergence order.
Subtracting (4.15) from (4.20), we derive

E[¢pui)] — El¢(un(T))]
T T
= E[qs (Sﬁ"uN(O)Jr/ HN(YN(s))ds—l—/ S(T—s)nNQ%dW>
0 0

T

—¢ (S(T)MN(O) + /THN(YN(S))dS +/ S(T — S)ﬂNQ%dW> }
. 0 0
+E/0 (DUN, Ho(YM . 1) — Hy(Ty (z))) dr
1 ¢ r L\ * 1
+5 ;E/O Tr|: (emsi+1=ay 03) Doy (e M1y 07)

- (S(T - t)nNQ%)* Dy (S(T - t)nNQ%)]ll(t)dt.
— I II+1I1.
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Now we estimate /, /1, and 111 separately. The constants C below may be different but are
all independent of T and 7.

7]

T T
‘E[qb (S?/IMN(O)-F/ HN(YN(s))ds—i-/ S(T—s)nNQ%dW)}
0 0

T T
—E [d’ (S(T)MN(O) +/ Hy (Yn(s))ds +/ S(r _S)”NQ%dW>i| ‘
0 0

Cllgllcy 1157 un (0) = STy (O)lo
< ClIplicp 152" = S ggz, 1) lun )12

1

C(T +1)7e 713, 4.21)

A IA

IA

where we have used Lemma 2 and ux (0) = myug € H2.
Noticing /1 = 0 for A = 0, now we consider the nonlinear term // for A = —1. By using
the notation q; := Si_MY]lv = ulN and Egs. 4.18 and 4.19, we can define b; in two ways,

b= St —T)YNMHL @)

e“”ulil 2+ u[ 2
= S(t_T)Sﬁ”“*’u’,;l+e“f5(t—T)S§”+1*’(imN (' N2| Iy uby ) ¢ = 1-1)

N QT (W (D) — W(ll—l))>,

or equivalently,

by = S(t —T)Yn(1)1;(r)

e—arul—l 2+ ub 12
= S(t—T)S,M*lu’N+e°”S(t—T)SQ”‘*’(iAnN (' N2| ey | by )t = 1)

iy QT (W) — W(n))).

Hence, we have
aj—1 — b
M+1-1Y 1-1
= (1d = sa=T)s¥ ) uly

e—arulfl 2+ ul 2
—e*TS(t — T)SM+1-! (ian (' Nzl | uly ) (¢t —1-1)

+ay Q2 (W) = W(t-1)
and

ar—br = (1d =S¢ - s uly

e—arul*l 2+ wb 12
—e*TS(t — T)SM+H1 (imN (' N2| ey uly

+n QT (WD) = W),

@ Springer



Approximation of Invariant Measure for Damped SNLS 355

where [|S(t — T)SM || . ;2 12) < C and
M—I M~ 1.1
1d—St=T)S" |l o212y < USU=D) 12,2 IST =) =8P 4212 < C(T—t47) 272
according to Lemma 2s. Thus, we have the following estimate
B B 11y I AT 3 _
llar=billo = C{(T—t+) 272 fluyllo 4 luy N7+ uy 17 ) Iy llo+lzy Q2 (W @) =W lo |-
Also, ||la;—1 — bi]|o can be estimated in the same way. Thus, based on Eq. 3.7, we have

T
< cnqbuq;f0 E|Hr (Yy . 1)= Hy (Y (1))lod!.
(4.22)

T
11| = ’E/ (DUN, H (YM 1y — HN(YN(t))) dt
0

where

H (YN, 1) — Hy(Yn (1))

M —at 2 2
-y [e“fSrM“—’nN (ik le a,,12|  Jail a,> — S(T = Hymy (ik|b1|2bl>:| 1)
=1

M
A
= Eil_zl [eaf (S.iw-i_l_l _ S(T _ t))JTN (|€_ata[71|2a]>

e = DS = Dy (jar-1 Par)

+S(7 = Dy (jar-1 Par - Ibllzbl)]lz(t)

M
A, M+1-1 2 2
+3i 12_1 [e‘" (ST —S(T — t))nN (|a,| a,) T — D)S(T — Dy (|a,| a,)

+S(T =Dy (jarPar — 161 ) ] o)

M
A, M+1-1 — 2
= §1|: E_ e (ST — S(T — t))mv (|e “Ta;_| al) 1;(2)

M

+ 3 ST = o (lar1 (@ = b) ) 1i0)

=1

M M
+ 32 ST = o (i@ = b)) 1) + Y ST = O (a-1bi@im = b)) 1)

=1 =1

M

+ @ = ST = oy (la-i P ) 1)
=1
M

+ e (sH = s =) (larPar) 1)

=1
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M M
+ 32 ST = 0 (Janl (@ = b ) 1) + D2 ST = D (1buP @ — b)) 111)
I=1 =1

M M
+ 30 ST = Dy (aby @ — b)) ll(t)] + D = ST = Dl ) 1)
=1

=1

N>

i[II]”l i T e e e 1+ Ilé].

If A = —1, thanks to the uniform estimations of 0-norm, 1-norm and 2-norm of ull‘\,, we
have the following estimates.
By the embedding H! < L> in R!, we have following exponential estimates

A

M
_ 1 _ ot I
ENI{ o = 5 D ISHHT = ST =Dl e g E | (1e7muly Puy ) | 1o
=1

M
< CY ISHF — S(T = Oll g2 E [y 1T + ey 13| 1)
( )
=1

< C(T—t+1)2e TN

M
ENL o < Ce T EY  flar-1lillar — billoli (1)
=1
M 1 1
< Ce*W*’)EZ||u’N‘1||%[C<T—r+r>m||u§v||z
=1

+C [ (a1 + ey 13 iy o + e @3 (W (1) = W@lo ] 110)

< C(T —t+ Die@TDg3,

IA

ENI5 o < e (1 - e“”)E[Huév‘ 1||%||»/N||o} < Ce@T=Ng,

and their integrals are also of order % I If, 1 Ié and / 15[ can also be estimated in the same
way, where we have used the fact that for any 7 > 0, the integral fOT (T—t+7) 2eaT=0 gy

is bounded and 37, 1;(1) = 1.
Other terms are proved in the same procedure by using the fact that

- — 1
IbillFee < CISGE = TOSET o oy Ly I+ lluly I + llew @28 W17
and [|la;by|| o < 3lllall + [11]1% 1. Finally, we have

11| < Ct2. (4.23)
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Next is the estimate of 171, which is similar to the same part in the proof of Theorem 3.2.
g r 1\ * 1
1 = 3 3 E/ Tr[ (gafsﬁ‘”‘*’nNQf) D2uy (e“fsﬁ‘f“*lmvgf)

=1 0

- (S(T - z)va%)* Doy (S(T - z)nNQ%) } 1)

-5y E/OTTr[ ((ems¥1 — s — ) mw0F) " DPuw (&4 = 57— 1) nNQ%)}

+2Tr|: ((e“sy“*’ ST — z)) nNQ%)* D’uy (S(T - z)nNQ%) ]wm

_ %ZE]OTT’[‘?ZM ((Syﬂ_/ _S(T - t)) ﬂNQ%)* Doy ((syﬂ_l ~S(T - t)) nNQ%>

1=

#2627 (M1 = ST =) v 07

" D2uy (S(T - t)va%)
—‘,—(82(” -1 (S(T _ f)JTNQ%)* DZUN (S(T — f)TfNQ%> ]ll(l)dt
N

=3 Z Ef (A1 + 2B + C)1;(ndt,

=1 70

where A;, B; and Cj satisfy

E|A;|

IA

_ 1 _ _
CISEH = ST = DN a1 18 Q211 12 o 19l 2 < C(T — 1+ 1)e 22T =D,

E|B|

IA

_ 1
CISIHT = ST = D)l 2o, 12 1N @2 I 2o 1912 1S(T = Dl 2z 12

C(T —t+1)7e22T0r3

IA

and
1 _ _
E|Cl| < Ctllay Q272 12 1002 IS(T = D172 12y < Ce T 0.

It follows
111] < Ct3. (4.24)

We can conclude from Eqs. 4.21, 4.23 and 4.24 that,

1

El¢un()] - E [p@l)] | = c73,
where C is independent of 7, M and N. O

Remark 5 For the linear case (A = 0), as the weak convergence order depends heavily on the
regularity of the solution, which depend only on the regularity of the initial value and noise,
we can achieve higher order by increasing the regularity of the initial value and the noise.
For example, the weak order turns out to be 1 if we assume uq € H*and || Q% “’HS(LZ a4y <
o0. However, for the nonlinear case (A = =1), it is too technical to obtain the uniform ’higher
regularity under proper assumptions, as a result, we work under the assumptions ug € H?>

and || Q2 [l3ys5(12, g2y < o© and derive order 1.
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4.4 Convergence Order between Invariant Measures uy and u},

. 1
Theorem 4.4 For > = 0 or —1, assume that ug € H? and || Q2 llyscr2, 2y < 00 the error

, , T o 1 .
between invariant measures uy and [y is of order 3, ie.,

‘ /V 6 ()N () — /V $0)duy ()| < Cet. Vo e CAL?).

Proof By the ergodicity of stochastic processes uy and u’]‘v, we have

1 T
tim 7 [ Esan®)dr = [ o0)dun0, @25)
T—oo T Jo Va
1 M-1
. k T
Jim,_ 55 2 E8Gh) = [ sy 4.26)

for any ¢ € Cﬁ (L?). As the weak error is proved to be independent of step k and time ¢ in
Theorem 4.3, it turns out that for a fixed 7,

/V¢(y)duzv(y)—/v d)(y)dufv(y)'

1 M=l g
< lim — E
M—oo, T P
k=0 “'

T=Mt—0c0

E¢(un (1) — E¢(u]1‘v)‘dt <Cr12.

O

Remark 6 For the case A = 1, if the 1-norm and 2-norm of ull‘v is also uniformly bounded,

we can also get order % for both time-independent weak error and error between invariant
measures. If not, based on the fact || - |41 < N||-||s, we can get the weak error depend on N

E[¢uy(T)] — Elp @] < CN*z2,

as well as the error between invariant measures.

5 Numerical Experiments

This section provides numerical experiments to test the longtime behavior of scheme
(4.1) for the case A = 0. Based on the spatial semi-discretization in stochastic ordinary
differential equation form Eq. 3.2

day (t) = —i(mm)*a ()dt — ety ()dt + /Tmdn(t), 1<m <N,

we derive an equivalent form of the full discretization (4.1) as

1 NOTLIY!
ak —emom gkl = —jra? ak + ,
N? VINSkBN
where @¢ := (a¥,---,ak)T is an approximation of a(r) := (ai(t), --,an ()" and

8k Bm = Bm(tx) — Bm(tx—1) for 1 <m < N.In the sequel, we take « = 1, N = 100.
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-6
12 210° ’I=2-6 10 210° =2
—— Initial(1) ——initial(1)
n —— Initial(2) ———Initial(2)
initial(3) ) Initial(3)
10 initial(4) ——Initial(4)
——— Initial(5) ——Initial(5)
6
P
I e
2}
4
0
3
% 50 100 150 200 250 B 25 50 100 150 200 250 =0
t

1

(a) ¢(a@) = exp(—|l@]?) (b) ¢(@) = sin(||dl};2)

Fig.1 The temporal averages ﬁ Z,ICW:O El¢ (@%)] started from different initial values (z = 27°, T = 300)

Weak Emor
Weak Emor

et

5 L
0 100 200 300 400 500 600 700 800 %0 1000 0 00 200 300 400 500 600 700 800 900 1000
t t

() 6(@) = exp(=[dllZ), 7 =27 (b) ¢(@) = exp(~[d[Z), 7 = 27°

5

a ]
20 210 x10

bbb

0 00 200 %00 400 %0 600 700 800 %00 1000 0 00 20 %00 400 %0 600 700 800
t

(c) o(@) = sin(||al), 7 = 27 () ¢(@) = sin([jal}2), 7 = 2°°

Fig. 2 The weak error E[¢(a(t)) — ¢(Zik)] for different ¢ and step size v with #x = kt € [0, T] and
T =10

200 1000
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Strong Order Weak Order Weak Order
—— ”vo,;,,”.‘ i . e — = 6’;"“: e ——— ”o;.mn,gé
- . | —orderos| | 1 Order 0.6 || i ——Order0.6| |
Order1.0| | [ i ] 5 Order 1.0 [ ' - 7 Order 1.0/ |
P , o - =" b - ) : nemt ||
s | B S e . e |l
_—— | | t P o = | P = n=m® ||
e e P
&l
(a) Strong Order (b) ¢(a@) = exp(—|lall%) (c) ¢(@) = sin(||@l];2)

Fig. 3 The strong and weak orders for noise in L2, H? and H4, i€, Nm = m~1, m_3, m=S. (T = 75
Te{27i,5<i<9)

In Fig. 1, the temporal averages ﬁZ,’yz 1 E[¢p@*)] of the fully
discrete scheme started from five different initial values initial(1) =

1,0,---,07, initial (2) = (0 0003i,0,---,0)7,  initial(3) =
(sin (77) sin () .- ,sin(}g‘fn)) : initia1(4) = (2+')(1 2,---,100)7 and
initial(5) = (exp ( 50) exp (—%) S, exp( 1;)(())1)) will converge to the same

value with error r% before time T, where T = 276 and T = 300. This result verifies the
ergodicity of the numerical solution: the temporal averages converge to the spatial average,
which is a constant, for almost every initial values in the whole space. We choose 500
realizations to approximate the expectations in Figs. 1 and 2, and choose 1000 realizations
in Fig. 3.

In Figs. 2 and 3, we fix the initial value uo(x) as V2 sin(rx), such that a,, (0) = (ug, e;)
and a° = a0) = (1,0,---,0)7. Figure 2 displays the weak error E[¢(d(t)) — ¢>(ak)]
over long time T = 103 for different time step sizes and test functions: (a) v = 274,
¢(@) = exp(—lall%) (b) T =27, ¢(a) = exp(—[al%), () T = 274, ¢(a) = sin(|la,2)
and (d) 7 =270 qb(a) = sin(||d@||;2). The reference values are generated for the time step
size T = 273, and the noise is chosen in H2, i.e., Nm = Flgure 2 shows that the

weak error is independent of time interval and can be controlled by Ct 3 , which coincides
with our theoretical results. Figure 3 displays both (a) the strong convergence order and
the rates of weak convergence for (b) ¢(a) = exp(—||a|| ) or (¢) ¢(@) = sin(|la|l;2)-

The reference values are generated for the time step size T = 274, As the initial value
uo(x) = +/2sin(rrx) is regular enough, both the strong and weak convergence order depend
heavily on the regularity of the noise for the linear case. It shows in Fig. 3 that the orders
slightly increase as the noise from L? via H? to H* (i.e., n;; from m~! viam™3 to m=),
which verifies Remark 5. Noticing that the orders are a little bit better than the theoretical
results, because the truncation of the noise makes the noise more regular than it should be,
which increases the orders slightly. Numerical tests also shows that the weak convergence
order is almost the same as the strong convergence order, which is similar to the statement
in [7] (Remark 5.11).
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Appendix
The Proof of Proposition 3.1

i) Asitis proved in Part 3 of Theorem 3.1 that E |luy (¢) ||é < C, we assume further that
Elluy(®)|?" < C, ¥Yn=1,---, p— 1. Denoting dM; = 2Re (uN,nNQ%dW),
then It6’s formula and Eq. 3.5 yields

_ 1 _
dluy O = plun@le? Vdlluy @))% + 3PP~ Dllun @) Io" > d(M;)

2 2(p—
—2aplluy Ol dt + plluy ®llo" " dM; (1)
N
2(p—1
+2p2p = 1) Y nmllun @5 Vdr,

m=1

IA

where (-) denotes the quadratic variation process and in the last step we used the fact

d{My)

N oo
4<Re > /0 N (5)/Tmem (X)dx(dBn. 1 +idﬂm,z>>

m=1

N | 2 | 2
43 |:<Re/ uN(t,x)mem(x)dx> + <[m/ uN(t,x)mem(x)dx) }zz
el 0 0

N
< 8 nullun)ligdr.
m=1

Taking expectation on both sides of above equation, we obtain

N
d 2 2 2p—1
TENunOl" < ~2epElun 01" +2p@p = 1) Y mmElun 0l
m=1

—2apElluy0)F +C

IA

by induction. Then multiplying ¢2*”* to both sides of above equation yields the result.

ii) The proof in this part is similar to the proof of Lemma 2.5 in [8]. According to the
Gagliardo-Nirenberg interpolation inequality, there exists a positive constant cg, such
that

5 4 g _ 1 2 1 6
8)\||”N(t)||L4 S lun®lijs < 4||VMN(f)||o + ZCO””N(f)”o- (D
Thus,

0=<Hun®) :

1 2 A 4 6
§||VMN(f)||o - ZH”N(Z)HU + collun @)y
2
3

IA

(IVan @I = Mlun O34 + 2colun®I§) . @)
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Applying It6’s formula to H (ux (1)), it leads to

dHuy(t) = [—a||VuN(r>||%+ax||uN(t)||i4 — 6accollun (O
—2A/ junl? an|em| dx

+ Z m2n + 6collun (1 Z Mo

m=1 m=1

1
+12co||uN(t)||é||nNquN<t)||3]dr

1
+6colun )l Re (un, Ty Q2dW)

—Re (AuN(t) + Mun @) Pun @), nNQ%dW) ,

where we have used the fact ((Id — ny)v,vy) = 0, Vv € HY vy € Vy. By the
following estimates

1 N
2 [ Y nalenPx <0
0
m=1

N
1
6eollun g Y nm + 12¢olluy O lrn QZun (D11 < decollun (D)[§ + C

m=1

and Eq. 1, we have

dH(uy () < [— || Vuy ()5 + erllun ()54 3)
N
~2acoluy 1§+ 3 mn, + C]dt
m=1
+6colun )l Re (un (1), Ty Q2AW (1)) @

—Re (Auy @)+ My (0 Pun (1), 7x 02 W )
< —%a?—[(u;v(t))dt + Cdt +dM>, (3)

where
dM; = 6collun [§Re (un, Ty Q2dW) = Re (Auy + hu Puy, 7x Q2dW).

Taking expectation, we derive
3
dEH@un((@)) < —E(xE’H(uN(t))dt + Cd:t.

Hence, by multiplying e%"" to both sides of the equation above and then taking inte-
gral from O to ¢, we get the uniform boundedness for p = 1. By induction, we assume
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that the results hold for p — 1. Then, based on the following estimates (see [8])

(6l I Re (s 7y @2aw) )

A

clos? 10,/
”Q ”HS(LZ,LZ)HMN”O z,

IA

1 2 1
(Re (Aun + My Pu, ox 02aW)) = CUQH 12510 ry (1Vun I+ luen 13”) de

and Eq. 5, we have

1
dH@un0))” = pHun @) dHun @) + FPr - DH(un ()P ~*d(My)

IA

—;apH(uN(t))”dt + CpHun®)Pdt + pHuy ()P~ dM,

+Cp(p = DHan )2 (IVun I + lux @) dr. ()

From Eq. 1, we deduce that

1
N VunOIIF + collun IS, 2 =0or — 1,
Hun(®) = 1 % ;
2 6
TeIVan OIG + geolun @I, & =1,

As a result, the last term in Eq. 6 can be estimated as

Cp(p = DHn )2 (IVuy O + lux @11
3 -2 1] p
= (CHEN @) + CHuN )T ) Huy @)™ = CHun @)™ + JapHay ()", (7)

where in the last step we used the inequality of arithmetic and geometric means

SapHun(1)? + 3apH(un (0))? + CHuy 1))

C(Hun ()2 Hun (0)Huy (1) < 2

Gethering Eqs. 6 and 7 and taking expectation, we obtain
dEHun(®))? < —apEHuy))Pdt + Cdt

by induction, which complete the proof by multiplying e*’ on both sides of above
equation.
iii) We define a functional

1 1
f(u):f |Au|2dx+ARe/ (AW |u)?udx,
0 0

which satisfies
I Aull3 < 2f @) + Clull$ 8)

based on the continuous embedding H' < L% and })\RefolAﬁ|u|2udx’ <

sIAuld + 51ulbs < 31 Aullf + Cllull§. The 1t6’s formula applied to f (uy) yields
: . 2 1
dfun) = Dfn)( (iduy +idlunPuy — auy ) dr) + Df wy) (v Q2dW)
1
+5D7 fun) Ty Q2 AW, iy Q2d W)

= A+B+C, &)
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where

1
Df(u)(g) = Re/ [2Am¢ 1 2M(ADuRe(@p) + A(AD)|ul?¢
0
(A () [dx,

1
D> f(u)(p, V) = Re/ [ZAEAw + 20 (AW uRe(@yr) + 20 (Au)pRe(uyyr)
0

+20(A@)uRe (@)
+2A (AW Y Re(@u) + 2A(AV)uRe(@g) + L(AD)|u|*y

+3(AT) g |dx
and E[B] = 0. Now we estimate .4 and C respectively.
1
ELA] = —2E[f(un))dt + ReE/ [4Ai(AﬁN)uN|VuN|2
0
+22(ATN) N (Vi N)Z]dxdt

1
+ReE/ [kzi(AﬁN)|uN|4 - 4aA(AﬁN)uN|uN|2]dxdt
0

1
+ReE/ [ — darluy 2| Vuy|? — 2aA(VuN)25%V]dxdt
0

=: —2aE[f(un)ldt + Aidt + Ardt + Azdt,

where we have used the fact A(|u|?u) = 2|u|?Au+4u|Vu|? + 25 (Vu)? + u? A and
Ay, A; and Aj are estimated as follows.

1
A = ReE/ [4Ai(AEN)uN|VuN|2+2Ai(AﬁN)EN(VuN)2]dx
0

o
< Bl Aun + CE [lun o Vun |2
o 2 4 3
< Tl Aun} + CE [lun It + I Aunllol Vun
« 2 4 6
< SENAunI3+ CE [l + lun ]
o 2
< SElsunl}+C,

where we have used the uniform boundedness of ||u Ipr for p > 1inii), the contin-
uous embedding H' <> L™ for R! and the interpolation of L* between L? and H'.
Similarly, based on the continuous embedding H' < L% and H' < L8, we have

1
| Ay = ReE/ [kzi(AﬁN)le“—4ak(AﬁN)uN|uN|2]dx
0
o 2 8 6 o 2
< §E||AMN||0 + CEllunllys + llunlijel < §E||AMN||0 +C
and
1
|A;] = ReE/ [—4ax|uN|2|wN|2 — 2aA(VuN)2ﬁ§v]dx < CElluy|* < C.

0
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Thus, we obtain

ELA] < —20E[f(uy)ldr + %EHAuNII% +C.

The estimate of C is similar with that of A, and we derive E[C] < E||Auy II% +C.
Taking expectation on both sides of Eq. 9 yields

dEf(un) +20Ef(uy)dt < %EHAuNH%dl‘ + Cdt < aEf(uy)dt + Cdt.

Multiplying both sides of above equation by e*’ and taking integral from O to ¢, we
conclude the uniform boundedness of E f (uy ()

C
Ef(un(t) < e Ef(uyn(0)) + —(1- oo,

which yields the uniform boundedness of E| Au N||(2) based on Eq. 8. As the norm
llun |2 is equivalent to || Auy|lo under Dirichlet boundary condition, we complete the
proof.

O
The Proof of Uniqueness of the Solution for Eq. 4.1

Suppose that U and W are two solutions of the scheme, then it follows
. T 2 2 —at k=12
U—W_nA(U—W)erEnN (IUIPU = [WIPW) + e~ Tuly |2(U = W) |.

Multiply the equation above by U — W, integrate in space and take the real and imaginary
part respectively, we have

2 T
U =Wl = Z1£W) = fWI 41U = Wiizs,

1 A _
IVW = WG < SIFW) = FONI 51U = Wilgs + Zlle™ Ty 741U = Wi,

where f(U) := |U|*U and

IF @) = fFWIl 4

1
[ fwev - wew
0
1 2
/ ’\U|2+|W|2+|UW\‘ dx
0

3
4 4
3a'x)

3
4 4 1
de) = (/ )|U|2(U—W)+|W|2(U—W)+UW(ﬁ—W)
0
1

1 7
(/0 U — W|4dx> < 101+ W7V = Wile.

o=

IA
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Since
v - WII‘£4 < U= WIIVU - W)l

3
2 (1
(@) = rami 41U =wi)* <§||f(U) —FOWI 51U = Wil

1

IA

[ 2
+ 5 le Ty U = Wiz

1 3 1
2o T+ Wl (01 W+ 3l 22) o = wiid,

IA
-

3

= 372 (W1 1w+ BN+ Wl ) 10 = Wi,

~

o3 (w1 + 1w + BT+ Wl 1)
ot 2 (101 + W[5 + AU+ W G+ 31112 )

For cases A = 0 or —1, the L*-norm of the solutions are uniformly bounded. So C()T% >

1, which do not hold when 7 is sufficiently small. For case A = 1, according to the fact that
6 3 3 3 6

U1+ Wi, < [lUl+ WI|g [VAUT+1WwD|§ < N2 [l + W],

we have Co N 3 T% > 1, which is also a contradiction when t is sufficiently small.
Thus, the numerical solution for Eq. 4.1 is unique. O
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