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We consider Hamiltonian systems driven by multi-dimensional Gaussian processes in 
rough path sense, which include fractional Brownian motions with Hurst parameter 
H ∈ (1/4, 1/2]. We prove that the phase flow preserves the symplectic structure almost 
surely and this property could be inherited by symplectic Runge–Kutta methods, which are 
implicit methods in general. If the vector fields satisfy some smoothness and boundedness 
conditions, we obtain the pathwise convergence rates of Runge–Kutta methods. When 
vector fields are linear, we get the solvability of the midpoint scheme for skew symmetric 
cases, and obtain its pathwise convergence rate. Numerical experiments verify our 
theoretical analysis.

© 2018 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

Let (�, F , P) be a probability space. We consider a stochastic differential equation (SDE)

dYt = V (Yt)dXt, t ∈ [0, T ] (1)

driven by multi-dimensional Gaussian process in rough path sense. Under proper assumptions, X can be lifted to a rough 
path almost surely and then (1) can be interpreted as a rough differential equation (RDE). For example, the lift of the 
fractional Brownian motion (fBm) with Hurst parameter H > 1/4 is constructed by piecewise linear approximations and 
their iterated integrals. We refer to [18,10,8,6] and references therein for more details.

The well-posedness of the RDE is given originally in [18] for the case that the vector fields belong to Lipγ (see Def-
inition 2.2), i.e., they are bounded and smooth enough with bounded derivatives. When the vector fields are linear, the 
equation is still well-posed (see e.g., [8]). In particular, the solution is equivalent to that in Stratonovich sense almost surely 
when the noise is a semi-martingale. The robustness of the solution allows numerous researches to be developed, such as 
the density and ergodicity of SDEs driven by non-Markovian noises (see [3,12] and references therein) and the theory of 
regularity structures for stochastic partial differential equations (see e.g., [6]).

The author in [4] develops an approximation approach to deal with the equation driven by non-differentiable paths. 
The approximations are further investigated and called the step-N Euler schemes in [8]. When the equation is driven by 
fBm with H > 1/2, modified Euler scheme, Taylor schemes and Crank–Nicolson scheme are analyzed in [15,16,14], respec-
tively. When the noise is a Brownian motion, the pathwise convergence rate of an adaptive time-stepping Euler–Maruyama 
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method is given in [22]. For rougher noise, the simplified step-N Euler schemes [5] and modified Euler scheme [17] for 
fBm with H ∈ (1/3, 1/2] are proposed to avoid simulating iterated integrals of the noise. Authors in [7] give the estimate of 
the pathwise convergence rate of Wong–Zakai approximations for Gaussian process under proper assumptions and obtain 
pathwise convergence rates of the simplified step-N Euler schemes. The results are applicable for fBm with H ∈ (1/4, 1/2]. 
Further, the Lr(�)-convergence rates are obtained in [2] to reduce the complexity of multilevel Monte Carlo.

From the perspective of modeling, Gaussian noises with nontrivial correlations are more general than standard Brownian 
motions. For a dynamical system influenced by additional nonconservative forces in [9], which could be generally assumed 
as Gaussian noises, its pathwise movement rule is described by Hamiltonian equations in rough path sense. In this paper, 
we are concerned about a Hamiltonian system driven by multi-dimensional Gaussian process under proper assumption. The 
fBm with H ∈ (1/4, 1/2] satisfies our assumption with ρ = 1

2H , where ρ is a parameter related to the regularity of the noise. 
We prove that rough Hamiltonian system, as a generalization of the deterministic case (see [11] and references therein) and 
the stochastic case driven by standard Brownian motion (see e.g., [21,20]), has the characteristic property of Hamiltonian 
system that its phase flow preserves the symplectic structure almost surely. The symplecticity is naturally considered to 
be inherited by numerical methods. The simplified step-N Euler schemes, which are explicit, can not possess the discrete 
symplectic structure in general.

Based on the two motivations—preserving the symplectic structure of the original rough Hamiltonian system and avoid-
ing simulating iterated integrals of the noises, we investigate the symplectic Runge–Kutta methods. For the standard 
Brownian setting, we refer to [1,23] and references therein for more related works. Since these methods are implicit in 
general, the solvability of the numerical methods should be taken into consideration, which is one of the differences be-
tween explicit methods and implicit methods. For SDEs driven by standard Brownian motions, authors in [20] use truncate 
technique to give the solvability of implicit methods and convergence rates in mean square sense. For Gaussian processes 
with nontrivial covariance, the truncation technique is not suitable and more conditions should be put on the vector fields. 
In [13], we prove the solvability of implicit Runge–Kutta methods when vector fields are bounded, which includes the case 
that they belong to Lipγ . If the vector fields are linear, we suppose additionally that they are skew symmetric in Section 4, 
and prove the solvability of the 1-stage symplectic Runge–Kutta method—the midpoint scheme.

Furthermore, we analyze pathwise convergence rates for Runge–Kutta methods. For the Lipγ case, we obtain that the 
convergence rate of the midpoint scheme is ( 3

2ρ − 1 − ε), for arbitrary small ε and ρ ∈ [1, 3/2). The convergence rate of 
another two symplectic Runge–Kutta methods, whose stages are higher, is ( 1

ρ − 1
2 − ε) for ρ ∈ [1, 2). This is limited by the 

convergence rate of Wong–Zakai approximations, similar to the simplified step-3 Euler scheme in [7]. If the vector fields are 
linear and skew symmetric, we prove the uniform boundedness of numerical solutions for the midpoint scheme and have 
that its convergence rate is also ( 3

2ρ − 1 − ε) when ρ ∈ [1, 3/2).
This paper is organized as follows. In Section 2, we introduce notations and definitions in rough path theory as well 

as the result of the well-posedness of RDEs, which contains both the Lipγ case and the linear case. In Section 3, we 
derive Hamiltonian equations with additional nonconservative forces through the variational principle to obtain the rough 
Hamiltonian system and prove that the phase flow preserves the symplectic structure almost surely. In Section 4, we propose 
symplectic Runge–Kutta methods for rough Hamiltonian systems and give the solvability of them. In Section 5, we analyze 
pathwise convergence rates for symplectic Runge–Kutta methods. Numerical experiments in Section 6 are presented to 
verify our theoretical convergence rate and show the stability of implicit methods.

2. Preliminaries in rough path theory

We first recall some notations in rough path theory. For p ∈ [1, ∞), we are interested in continuous maps X : [0, T ] →
G[p](Rd), where [p] is an integer satisfying p − 1 < [p] ≤ p and G[p](Rd) is the free step-[p] nilpotent Lie group of Rd , 
equipped with the Carnot–Carathéodory metric d.

Since the group G[p](Rd) is embedded in the truncated step-[p] tensor algebra, i.e., G[p](Rd) ⊂ ⊕[p]
n=0(R

d)⊗n with 
(Rd)⊗0 = R, the increment of X is defined by Xs,t := X−1

s ⊗ Xt . Denoting by π1
(
G[p](Rd)

)
the projection of G[p](Rd) into 

R
d , we have π1(Xs,t) = π1(Xt) − π1(Xs).

Define the p-variation of X (see e.g., [18]) by

‖X‖p-var;[s,t] := sup
(tk)∈D([s,t])

⎛
⎝∑

tk

d(Xtk ,Xtk+1)
p

⎞
⎠

1/p

,

where D([s, t]) is the set of dissections of [s, t]. We call X a weak geometric p-rough path if

X ∈ C p-var([0, T ], G[p](Rd)
) := {X : ‖X‖p-var;[0,T ] < ∞},

where the set C p-var
([0, T ], G[p](Rd)

)
contains drivers of RDEs. In addition, we say X is of Hölder-type if

‖X‖1/p-Höl;[0,T ] := sup
d(Xs,Xt)

|t − s|1/p
< ∞.
0≤s<t≤T
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This implies |π1(Xs,t)| ≤ ‖X‖1/p-Höl;[0,T ]|t − s|1/p for any 0 ≤ s < t ≤ T . Similar to the 1/p-Hölder continuity in classical case, 
a larger p implies lower regularity of X.

The solution of an RDE is constructed by means of a sequence of bounded variation functions on Rd , which are appropri-
ate approximations of X. Let x : [0, T ] → R

d be a bounded variation function, then we consider its canonical lift to a weak 
geometric p-rough path defined by S[p](x) with

S[p](x)t :=
⎛
⎜⎝1,

∫
0≤u1≤t

dxu1 , · · · ,

∫
0≤u1<···<u[p]≤t

dxu1 ⊗ · · · ⊗ dxu[p]

⎞
⎟⎠ ∈ G[p](Rd).

One can observe that S[p](x) contains information about iterated integrals of x up to [p]-level, which corresponds to the 
regularity of X. If S[p](x) is close to X in p-variation sense, then x is a proper approximation of X. In other words, the 
rougher X is, the more information is required.

We now introduce the definition of the solution of an RDE

dYt = V (Yt)dXt, Y0 = z ∈ R
m, (2)

where V = (V 1, · · · , Vd) :Rm →R
m×d is a collection of vector fields on Rm .

Definition 2.1. (see e.g., [8]) Let p ∈ [1, ∞) and X ∈ C p-var
([0, T ], G[p](Rd)

)
. Suppose there exists a sequence of bounded 

variation functions {xn}∞n=1 on Rd such that

sup
n∈N

‖S[p](xn)‖p-var;[0,T ] < ∞ and lim
n→∞ sup

0≤s<t≤T
d
(

S[p](xn)s,t,Xs,t
) = 0.

Suppose in addition {yn}∞n=1 are solutions of equations dyn
t = V (yn

t )dxn
t , yn

0 = z, in the Riemann–Stieltjes integral sense. If 
yn

t converges to Yt in the L∞([0, T ])-norm, then we call Yt a solution of (2).

To ensure the well-posedness of an RDE, proper assumptions are given for V , which will be described by the notation 
Lipγ . Throughout this paper, | · | is the Euclidean norm, and we will use C as generic constants, which may be different 
from line to line.

Definition 2.2. (see e.g., [18]) Let γ > 0 and 
γ � be the largest integer strictly smaller than γ , i.e., γ − 1 ≤ 
γ � < γ . We say 
that V ∈ Lipγ , if V is 
γ �-Fréchet differentiable and the kth-derivative of V , Dk V , satisfies that

|Dk V (y)| ≤ C, ∀ k = 0, · · · , 
γ �, ∀ y ∈R
m,

|D
γ �V (y1) − D
γ �V (y2)| ≤ C |y1 − y2|γ −
γ �, ∀ y1, y2 ∈ R
m,

for some constant C . The smallest constant C satisfying these two inequalities is denoted by |V |Lipγ .

In the sequel, we give the theorem of the well-posedness of an RDE.

Theorem 2.1. Let X ∈ C p-var
([0, T ], G[p](Rd)

)
. If V = (V i)1≤i≤d is a collection of vector fields in Lipγ with γ > p, or a collection of 

linear vector fields of the form V i(Y ) = Ai Y with Ai ∈ R
m×m, then (2) has a unique solution on [0, T ]. Moreover, the Jacobian of the 

flow, ∂Yt
∂z , exists and satisfies the linear RDE

d
∂Yt

∂z
=

d∑
i=1

D V i(Yt)
∂Yt

∂z
dXi

t,
∂Y0

∂z
= Im, (3)

where Im ∈R
m×m is an identity matrix.

Proof. For the case of V ∈ Lipγ , the existence and uniqueness of the solution follow from Theorem 10.14 and Theorem 
10.26 in [8]. From Theorem 10.26 in [8] and Proposition 1 in [3], we know that ∂Yt

∂z exists and satisfies (3) with a bound

sup
t∈[0,T ]

∣∣∣∣∂Yt

∂z

∣∣∣∣ ≤ |Im| + Cν1‖X‖p-var;[0,T ] exp
{

Cν
p
1 ‖X‖p

p-var;[0,T ]
}

,

where ν1 ≥ |V |Lipγ and C depends only on p.
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In the linear case, for any fixed initial value z = z0, the existence and uniqueness of the solution follow from Theorem 
10.53 in [8]. It implies that Y will not blow up on [0, T ] for some T > 0 and

sup
t∈[0,T ]

|Yt | ≤ θ + C(1 + θ)ν2‖X‖p-var;[0,T ] exp
{

cν p
2 ‖X‖p

p-var;[0,T ]
}

=: R(θ), (4)

where ν2 ≥ max{|Ai | : i = 1, · · · , d}, θ ≥ |z0| and C depends only on p. This guarantees that we can localize the problem as 
Theorem 10.21 in [8]. Considering the set {z̃ ∈R

m : |z̃| ≤ 2θ}, which is a neighborhood of z0, and replacing V by a compactly 
supported Ṽ ∈ Lipγ which coincides with V in the ball B2R(θ) := {y : |y| ≤ 2R(θ)}, we turn the problem into the first case 
and obtain that ∂Yt

∂z |z=z0 exists and satisfies (3). �
3. Symplectic structure of rough Hamiltonian systems

In this section, we derive autonomous Hamiltonian equations with additional nonconservative forces using the modified 
Hamilton’s principle. Under Assumption 3.1, we show that these equations form rough Hamiltonian systems when the 
nonconservative forces are characterized by rough signals. Moreover, rough Hamiltonian systems possess the symplectic 
structure similar to the deterministic case.

The classical Hamilton’s principle indicates that the motion Q : [0, T ] → R
m extremizes the action functional S(Q ) :=∫ T

0 L(Q , Q̇ )dt under variation, where L is the Lagrangian of a deterministic Hamiltonian system. The author in [9] gives 
the modified Hamilton’s principle through the Legendre transform H (P , Q ) = P Q̇ − L(Q , Q̇ ). For a Hamiltonian system 
influenced by additional nonconservative forces, its Hamiltonian energy turns out to be

H0(P , Q ) +
d∑

i=1

Hi(P , Q )χ̇ i

instead of H (P , Q ), where Hi : R2m → R for i = 0, · · · , d. The second term is the total work done by the additional forces 
and χ̇ i = dXi

t
dt represents a formal time derivative of Xi . In this case, the action functional is

S(P , Q ) =
T∫

0

[
P Q̇ − H0(P , Q ) −

d∑
i=1

Hi(P , Q )χ̇ i
]

dt.

Denote perturbation functions to P and Q by δP and δQ respectively with δQ (0) = δQ (T ) = 0, then the modified Hamil-
ton’s principle reads

d

dε

∣∣∣∣
ε=0

S(P + εδP , Q + εδQ )

=
T∫

0

[
Pδ Q̇ + Q̇ δP − ∂H0(P , Q )

∂ P
δP − ∂H0(P , Q )

∂ Q
δQ −

d∑
i=1

(
∂Hi(P , Q )

∂ P
χ̇ iδP + ∂Hi(P , Q )

∂ Q
χ̇ iδQ

)]
dt

≡0,

where δ Q̇ is the time derivative of δQ . The chain rule shows that a sufficient condition for the above equation is that P
and Q satisfy the following Hamiltonian equations:

Ṗ = −∂H0(P , Q )

∂ Q
−

d∑
i=1

∂Hi(P , Q )

∂ Q
χ̇ i,

Q̇ = ∂H0(P , Q )

∂ P
+

d∑
i=1

∂Hi(P , Q )

∂ P
χ̇ i,

which can be rewritten as

dP = − ∂H0(P , Q )

∂ Q
dt −

d∑
i=1

∂Hi(P , Q )

∂ Q
dXi, P0 = p,

dQ =∂H0(P , Q )

∂ P
dt +

d∑ ∂Hi(P , Q )

∂ P
dXi, Q 0 = q.

(5)
i=1



124 J. Hong et al. / Applied Numerical Mathematics 129 (2018) 120–136
Let P = (P 1, · · · , Pm)�, Q = (Q 1, · · · , Q m)� , p = (p1, · · · , pm)�, q = (q1, · · · , qm)� ∈R
m . In order to get a compact form for 

(5), we denote Y = (P�, Q �)� , z = (p�, q�)� ∈ R
2m , X0

t = t , Xt = (X0
t , X1

t , X2
t , · · · , Xd

t )� ∈R
d+1 and V i = (V 1

i , · · · , V 2m
i ) =

(− ∂Hi
∂ Q 1 , · · · , − ∂Hi

∂ Q m , ∂Hi
∂ P 1 , · · · , ∂Hi

∂ Pm )� , i = 0, · · · , d. Then (5) is equivalent to

dYt =
d∑

i=0

V i(Yt)dXi
t = V (Yt)dXt, Y0 = z. (6)

In the sequel, we consider Xi
t = Xi

t(ω), i = 1, · · · , d, as Gaussian noises under the following assumption.

Assumption 3.1. Let Xi
t , i = 1, · · · , d, be independent centered Gaussian processes with continuous sample path on [0, T ]. 

There exist some ρ ∈ [1, 2) and K ∈ (0, +∞) such that for any 0 ≤ s < t ≤ T , the covariance of X satisfies

sup
(tk),(tl)∈D([s,t])

⎛
⎝∑

tk,tl

∣∣∣E[
Xtk,tk+1 Xtl,tl+1

]∣∣∣ρ
⎞
⎠

1/ρ

≤ K |t − s|1/ρ,

where Xtk,tk+1 = Xtk+1 − Xtk .

For any p > 2ρ , by piecewise linear approximations, X can be naturally lifted to a Hölder-type weak geometric p-rough 
path X almost surely, which takes values in G[p](Rd+1) and π1(Xs,t) = Xs,t (see e.g., [8, Theorem 15.33]). Therefore, (5) or 
(6) can be transformed into an RDE almost surely and interpreted in the framework of rough path theory where the chain 
rule also holds for rough integrals. In this sense, we call (5) or (6) a rough Hamiltonian system.

The fBm with Hurst parameter H ∈ (1/4, 1/2] satisfies Assumption 3.1 with ρ = 1
2H . It is widely studied (see e.g., [19]). 

When Xi , i = 1, · · · , d, are standard Brownian motions, i.e., H = 1/2, Y equals to the solution of a stochastic Hamiltonian 
system driven by standard Brownian motions in Stratonovich sense almost surely (see e.g., [8, Theorem 17.3]).

As a function of time t and initial value z, Y is a phase flow for almost every ω. In the deterministic case [11] and the 
stochastic case [20,21], we know that the phase flow preserves the symplectic structure, i.e., the differential 2-form dP ∧dQ
is invariant. Note that the differential here is made with respect to the initial value, which is different from the formal time 
derivative in (5). The geometric interpretation is that the sum of the oriented areas of two-dimensional surfaces, obtained by 
projecting the phase flow onto the coordinate planes (p1, q1), · · · , (pm, qm), is an integral invariant. The rough Hamiltonian 
system is a generalization for the deterministic case and the stochastic case, which allows for rougher noises. They share a 
characteristic property of Hamiltonian systems, which is proved in the next theorem.

Theorem 3.1. The phase flow of the rough Hamiltonian system (5) preserves the symplectic structure:

dP ∧ dQ = dp ∧ dq, a.s.

Proof. From Theorem 2.1, we know that P and Q are differentiable with respect to p and q. Denote P jk
p = ∂ P j

∂ pk , Q jk
p = ∂ Q j

∂ pk , 

P jk
q = ∂ P j

∂qk , Q jk
q = ∂ Q j

∂qk . Since dP j =
m∑

k=1
P jk

p dpk +
m∑

l=1
P jl

q dql and dQ j =
m∑

k=1
Q jk

p dpk +
m∑

l=1
Q jl

q dql , we have

dP ∧ dQ =
m∑

j=1

dP j ∧ dQ j

=
m∑

j=1

m∑
k=1

m∑
l=1

(
P jk

p Q jl
q − P jl

q Q jk
p

)
dpk ∧ dql

+
m∑

j=1

m∑
k=1

k−1∑
l=1

(
P jk

p Q jl
p − P jl

p Q jk
p

)
dpk ∧ dpl

+
m∑

j=1

m∑
k=1

k−1∑
l=1

(
P jk

q Q jl
q − P jl

q Q jk
q

)
dqk ∧ dql.
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Meanwhile, the time derivatives of P jk
p , Q jk

p , P jk
q , Q jk

q yield

dP jk
p =

d∑
i=0

m∑
r=1

(
− ∂2Hi

∂ Q j∂ P r
P rk

p − ∂2Hi

∂ Q j∂ Q r
Q rk

p

)
dXi, P jk

p (t0) = δ jk,

dQ jk
p =

d∑
i=0

m∑
r=1

(
∂2Hi

∂ P j∂ P r
P rk

p + ∂2Hi

∂ P j∂ Q r
Q rk

p

)
dXi, Q jk

p (t0) = 0,

dP jk
q =

d∑
i=0

m∑
r=1

(
− ∂2Hi

∂ Q j∂ P r
P rk

q − ∂2Hi

∂ Q j∂ Q r
Q rk

q

)
dXi, P jk

q (t0) = 0,

dQ jk
q =

d∑
i=0

m∑
r=1

(
∂2Hi

∂ P j∂ P r
P rk

q + ∂2Hi

∂ P j∂ Q r
Q rk

q

)
dXi, Q jk

q (t0) = δ jk,

where all coefficients are calculated at (P , Q ). Then one can check

d

⎛
⎝ m∑

j=1

(
P jk

p Q jl
q − P jl

q Q jk
p

)⎞
⎠ = 0, ∀ k, l,

d

⎛
⎝ m∑

j=1

(
P jk

p Q jl
p − P jl

p Q jk
p

)⎞
⎠ = 0, ∀ k �= l,

d

⎛
⎝ m∑

j=1

(
P jk

q Q jl
q − P jl

q Q jk
q

)⎞
⎠ = 0, ∀ k �= l,

to get 
m∑

j=1
dP j ∧ dQ j =

m∑
j=1

dp j ∧ dq j . �

Because of the symplecticity of the phase flow of a rough Hamiltonian system, it is natural to construct numerical 
methods to inherit this property. However, the simplified step-N Euler schemes, which are similar to the N-level Taylor 
expansion of the solution, cannot inherit this property in general. Consequently, in the next three sections we will propose 
and analyze Runge–Kutta methods for rough Hamiltonian systems.

4. Runge–Kutta methods for rough Hamiltonian systems

Given a time step h, we construct s-stage Runge–Kutta methods by

Y h
k (α) = Y h

k +
s∑

β=1

aαβ V
(
Y h

k (β)
)

Xtk,tk+1 ,

Y h
k+1 = Y h

k +
s∑

α=1

bα V
(
Y h

k (α)
)

Xtk,tk+1

(7)

with coefficients aαβ , bα , α, β = 1, · · · , s, tk = kh, k = 0, · · · , N −1 and Y h
0 = z. Here, we suppose N = T /h ∈N for simplicity. 

The numerical solution Y h
k if exists is an approximation for Ytk .

Theorem 4.1. The s-stage Runge–Kutta method (7) inherits the symplectic structure of a rough Hamiltonian system, if the coefficients 
satisfy

aαβbα + aβαbβ = bαbβ, ∀ α,β = 1, · · · , s.

Proof. Denote the jth-component of P h
k and Q h

k by P h, j
k and Q h, j

k respectively, j = 1, · · · , m, then from (7) the exterior 
derivatives of P h, j and Q h, j are
k+1 k+1
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dP h, j
k+1 = dP h, j

k −
d∑

i=0

m∑
r=1

s∑
α=1

bα

(
∂2Hi

∂ Q j∂ P r
dP h,r

k (α) + ∂2Hi

∂ Q j∂ Q r
dQ h,r

k (α)

)
Xi

tk,tk+1
,

dQ h, j
k+1 = dQ h, j

k +
d∑

i=0

m∑
r=1

s∑
α=1

bα

(
∂2Hi

∂ P j∂ P r
dP h,r

k (α) + ∂2Hi

∂ P j∂ Q r
dQ h,r

k (α)

)
Xi

tk,tk+1
.

The exterior product performed between the above equations yields

dP h, j
k+1 ∧ dQ h, j

k+1 =dP h, j
k ∧ dQ h, j

k +
d∑

i=0

m∑
r=1

s∑
α=1

bαdP h, j
k ∧

(
∂2Hi

∂ P j∂ P r
dP h,r

k (α) + ∂2Hi

∂ P j∂ Q r
dQ h,r

k (α)

)
Xi

tk,tk+1

−
d∑

i=0

m∑
r=1

s∑
α=1

bα

(
∂2Hi

∂ Q j∂ P r
dP h,r

k (α) + ∂2Hi

∂ Q j∂ Q r
dQ h,r

k (α)

)
∧ dQ h, j

k X i
tk,tk+1

−
⎛
⎝ d∑

i1=0

m∑
r1=1

s∑
α1=1

bα1

(
∂2Hi1

∂ Q j∂ P r1
dP h,r1

k (α1) + ∂2Hi1

∂ Q j∂ Q r1
dQ h,r1

k (α1)

)
Xi1

tk,tk+1

⎞
⎠

∧
⎛
⎝ d∑

i2=0

m∑
r2=1

s∑
α2=1

bα2

(
∂2Hi2

∂ P j∂ P r2
dP h,r2

k (α2) + ∂2Hi2

∂ P j∂ Q r2
dQ h,r2

k (α2)

)
Xi2

tk,tk+1

⎞
⎠ .

Replacing dP h, j
k and dQ h, j

k in the second and third terms by the following expressions from (7), respectively:

dP h, j
k = dP h, j

k (α) +
d∑

i=0

m∑
r=1

s∑
β=1

aαβ

(
∂2Hi

∂ Q j∂ P r
dP h,r

k (β) + ∂2Hi

∂ Q j∂ Q r
dQ h,r

k (β)

)
Xi

tk,tk+1
,

dQ h, j
k = dQ h, j

k (α) −
d∑

i=0

m∑
r=1

s∑
β=1

aαβ

(
∂2Hi

∂ P j∂ P r
dP h,r

k (β) + ∂2Hi

∂ P j∂ Q r
dQ h,r

k (β)

)
Xi

tk,tk+1
,

we have

dP h, j
k+1 ∧ dQ h, j

k+1 =dP h, j
k ∧ dQ h, j

k +
d∑

i=0

m∑
r=1

s∑
α=1

bαdP h, j
k (α) ∧

(
∂2Hi

∂ P j∂ P r
dP h,r

k (α) + ∂2Hi

∂ P j∂ Q r
dQ h,r

k (α)

)
Xi

tk,tk+1

−
d∑

i=0

m∑
r=1

s∑
α=1

bα

(
∂2Hi

∂ Q j∂ P r
dP h,r

k (α) + ∂2Hi

∂ Q j∂ Q r
dQ h,r

k (α)

)
∧ dQ h, j

k (α)Xi
tk,tk+1

−
d∑

i1,i2=0

m∑
r1,r2=1

s∑
α,β=1

(bβaβα + bαaαβ − bαbβ)

(
∂2Hi1

∂ Q j∂ P r1
dP h,r1

k (α) + ∂2Hi1

∂ Q j∂ Q r1
dQ h,r1

k (α)

)

∧
(

∂2Hi2

∂ P j∂ P r2
dP h,r2

k (β) + ∂2Hi2

∂ P j∂ Q r2
dQ h,r2

k (β)

)
Xi1

tk,tk+1
Xi2

tk,tk+1
.

Summing up the above equation from j = 1, · · · , m, based on the symmetry of the Hessian matrix ∇2Hi , we deduce

m∑
j=1

dP h, j
k+1 ∧ dQ h, j

k+1 =
m∑

j=1

dP h, j
k ∧ dQ h, j

k

−
d∑

i1,i2=0

m∑
r1,r2, j=1

s∑
α,β=1

(bβaβα + bαaαβ − bαbβ)

(
∂2Hi1

∂ Q j∂ P r1
dP h,r1

k (α) + ∂2Hi1

∂ Q j∂ Q r1
dQ h,r1

k (α)

)

∧
(

∂2Hi2

∂ P j∂ P r2
dP h,r2

k (β) + ∂2Hi2

∂ P j∂ Q r2
dQ h,r2

k (β)

)
Xi1

tk,tk+1
Xi2

tk,tk+1
.

Therefore, we obtain the symplectic condition

aαβbα + aβαbβ = bαbβ, ∀ α,β = 1, · · · , s,

to ensure the discrete symplectic structure dP h ∧ dQ h = dP h ∧ dQ h . �
k+1 k+1 k k
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Symplectic Runge–Kutta methods are implicit in general. As we said before, the solvability of symplectic Runge–Kutta 
methods should be proven. Based on Brouwer’s theorem, we consider the bounded case and the linear case for the vector 
fields respectively.

Proposition 4.1. (see also [13, Proposition 3.1]) If V = (V i)0≤i≤d is a collection of vector fields in Lipγ for some γ > 0, then for 
arbitrary time step h > 0, initial value and coefficients {aαβ, bα : α, β = 1, · · · , s}, the s-stage Runge–Kutta method (7) has at least 
one solution for any path.

Proof. Fix h > 0 and Y h
k ∈ R

2m . Let Z1, · · · , Zs ∈ R
2m and Z = (Z�

1 , · · · , Z�
s )� ∈ R

2ms . We define a map φ : R2ms → R
2ms

with

φ(Z) = (φ(Z)�1 , · · · , φ(Z)�s )�,

φ(Z)α = Zα − Y h
k −

s∑
β=1

aαβ V (Zβ)Xtk,tk+1 , α = 1, · · · , s.

It then suffices to prove that φ(Z) = 0 has at least one solution. Let c = max{|aαβ | : α, β = 1, · · · , s}, ν = |V |Lipγ and

R = √
s|Y h

k | + s
√

scν|Xtk,tk+1 | + 1,

we have that for any |Z | = R ,

Z�φ(Z) =
s∑

α=1

Z�
α

⎛
⎝Zα − Y h

k −
s∑

β=1

aαβ V (Zβ)Xtk,tk+1

⎞
⎠

≥ |Z |
(
|Z | − √

s|Y h
k | − s

√
scν|Xtk,tk+1 |

)
> 0.

We aim to show that φ(Z) = 0 has a solution in the ball B R := {Z : |Z | ≤ R}. Assume by contradiction that φ(Z) �= 0
for any |Z | ≤ R . We define a map ψ by ψ(Z) = − Rφ(Z)

|φ(Z)| . Since ψ is continuous and ψ : B R → B R , Brouwer’s fixed point 
theorem yields that ψ has at least one fixed point Z∗ such that Z∗ = ψ(Z∗) and |Z∗| = R . This leads to a contradiction 
since |Z∗|2 = ψ(Z∗)� Z∗ = − Rφ(Z∗)� Z∗

|φ(Z∗)| < 0. Therefore, φ has at least one solution. �
For the case that vector fields are linear, we need to suppose they are skew symmetric in addition, and obtain the 

solvability of the midpoint scheme which is the 1-stage symplectic Runge–Kutta method (a11 = 1
2 , b1 = 1):

Y h
k+1/2 = Y h

k + 1

2
V

(
Y h

k+1/2

)
Xtk,tk+1 ,

Y h
k+1 = Y h

k + V
(
Y h

k+1/2

)
Xtk,tk+1 .

(8)

Proposition 4.2. Suppose V = (V i)0≤i≤d is a collection of linear vector fields of the form V i(Y ) = Ai Y . If Ai , i = 0, · · · , d are all skew 
symmetric, i.e., Ai = −A�

i , then for arbitrary time step h > 0 and initial value, the midpoint scheme is solvable for any path.

Proof. Fix h > 0 and Y h
k ∈R

2m . Define a map φ :R2m →R
2m with

φ(Z) = Z − Y h
k − 1

2
V (Z)Xtk,tk+1 .

Since Ai , i = 0, · · · , d, are all skew symmetric, we have Z� Ai Z = 0, which leads to

Z�φ(Z) = |Z |2 − Z�Y h
k − 1

2

d∑
i=0

Z� Ai Z Xi
tk,tk+1

≥ |Z |(|Z | − |Y h
k |) > 0,

for any |Z | = |Y h
k | + 1 =: R . By similar technique in Proposition 4.1, we have that φ(Z) = 0 has at least one solution in the 

ball B R := {Z : |Z | ≤ R}. �
Remark 4.1. If a linear rough Hamiltonian system, i.e. (6), can be rewritten equivalently into the form (5) with V i(Y ) = Ai Y

and Ai ∈ R
2m×2m being skew symmetric, then Ai is in the form of 

(
A1

i −A2
i

A2
i A1

i

)
, where A1

i = −(A1
i )

� ∈ R
m×m and A2

i =
(A2

i )
� ∈R

m×m .
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5. Convergence analysis

In Definition 2.1, the solution of an RDE depends on the information about iterated integrals of the noise, which is very 
difficult to simulate. The Runge–Kutta methods are implementable because they only make use of the increments of the 
noise and omit the dissymmetric parts of iterated integrals. For instance, Lévy’s area is omitted in the standard Brownian 
motion setting. To analyze the error caused by this, we introduce piecewise linear approximations, which is a special case 
of Wong–Zakai approximations in [7]. We define xh

t := (xh,0
t , · · · , xh,d

t ) with

xh,i
t := Xi

tk
+ t − tk

h
Xi

tk,tk+1
, t ∈ (tk, tk+1], ∀ k = 1, · · · , N, i = 0, · · · ,d, (9)

and consider the following differential equation in Riemann–Stieltjes integral sense:

dyh
t = V (yh

t )dxh
t , yh

0 = z. (10)

Theorem 5.1. Suppose X and xh are as in Assumption 3.1 and (9) respectively. If for some γ > 2ρ , V = (V i)0≤i≤d is a collection of 
vector fields in Lipγ or a collection of linear vector fields of the form V i(Y ) = Ai Y , then both (6) and (10) have unique solutions Y and 
yh almost surely.

Moreover, let θ ≥ |z|, ν ≥ max{|V |Lipγ , |Ai |, i = 0, · · · , d}, then for any 0 ≤ η < min{ 1
ρ − 1

2 , 1
2ρ − 1

γ }, there exists a finite random 
variable C(ω) and a null set M such that

sup
t∈[0,T ]

|yh
t (ω) − Yt(ω)| ≤ C(ω)hη, ∀ ω ∈ � \ M

holds for any h > 0. The finite random variable C(ω) depends on ρ , η, γ , ν , θ , K and T .

Proof. For the first case of V , see Theorem 6 and Corollary 8 in [7]. The finite random variable C(ω) depends on ρ , η, γ , ν , 
K and T . For the linear case, we know if 2ρ < p < γ , then for any ω ∈ � \ M , ‖S[p](xh)(ω)‖p-var;[0,T ] has an upper bound 
for all h > 0 (see [8, Theorem 15.33]). According to the estimate in (4), there exists some constant R > 0 depending on ω, 
ρ , γ , ν , θ and T , such that it is a bound for Yt and yh

t , for all h > 0 on [0, T ]. Using again localization, we replace V by a 
compactly supported Ṽ ∈ Lipγ which coincides with V in the ball B R := {y : |y| ≤ R} and then the result can be generalized 
from the first case to this linear case. �

We are in position to analyze the convergence rate. If V ∈ Lipγ , we analyze the midpoint scheme for ρ ∈ [1, 3/2) in 
Theorem 5.2 and two s-stage symplectic Runge–Kutta methods (s > 1) for ρ ∈ [1, 2) in Theorem 5.3. If V is linear, we 
focus on the convergence rate of the midpoint scheme for ρ ∈ [1, 3/2) in Theorem 5.4, using the uniform boundedness of 
numerical solutions in Proposition 5.1.

Theorem 5.2. Suppose ρ ∈ [1, 3/2) and Y h
k is the numerical solution of the midpoint scheme (8). If |V |Lipγ ≤ ν < ∞ with γ > 2ρ , 

then for any 0 < η < min{ 3
2ρ − 1, 1

2ρ − 1
γ }, there exists a finite random variable C(ω) and a null set M such that

max
k=1,··· ,N

|Y h
k (ω) − Ytk (ω)| ≤ C(ω)hη, ∀ ω ∈ � \ M

holds for any 0 < h ≤ 1. The finite random variable C(ω) depends on ρ , η, γ , ν , K and T .

Proof. We divide the error into two parts

max
k=1,··· ,N

|Y h
k − Ytk | ≤ max

k=1,··· ,N
|Y h

k − yh
tk
| + sup

t∈[0,T ]
|yh

t − Yt |. (11)

The second part has been estimated in Theorem 5.1, then it suffices to estimate the first part.
Step 1. Local error. According to the definition of xh

t , for any k = 1, · · · , N , n ≥ 1, i1, · · · , in ∈ {0, · · · , d}, we have

∫
tk−1≤u1<···<un≤tk

dxh,i1
u1 · · ·dxh,in

un =
∫

tk−1≤u1<···<un≤tk

X i1
tk−1,tk

h
du1 · · · Xin

tk−1,tk

h
dun

= Xi1
tk−1,tk

· · · Xin
tk−1,tk

n! ,

which implies 
∫

dxh
u ⊗ · · · ⊗ dxh

u = X⊗n
t ,t /n!. Taylor expansion yields
tk−1≤u1<···<un≤tk 1 n k−1 k
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yh
t1

= yh
0 +

∫
0≤u1≤t1

V (yh
u1

)dxh
u1

= yh
0 + V (yh

0)X0,t1 +
∫

0≤u2<u1≤t1

D V (yh
u2

)V (yh
u2

)dxh
u2

⊗ dxh
u1

= yh
0 + V (yh

0)X0,t1 + D V (yh
0)V (yh

0)X⊗2
0,t1

/2 + R1

with

R1 =
∫

0≤u3<u2<u1≤t1

(
D V (yh

u3
)2 V (yh

u3
) + D2 V (yh

u3
)V (yh

u3
)2

)
dxh

u3
⊗ dxh

u2
⊗ dxh

u1
.

According to Taylor expansion and Y h
1/2 = (Y h

0 + Y h
1 )/2 implied by (8), we have that

V
(
Y h

1/2

) =V
(
Y h

0

) + D V (Y h
0 )(Y h

1/2 − Y h
0 ) + D2 V (Ỹ h

0 )(Y h
1/2 − Y h

0 )⊗2/2

=V
(
Y h

0

) + D V (Y h
0 )(Y h

1 − Y h
0 )/2 + D2 V (Ỹ h

0 )(Y h
1 − Y h

0 )⊗2/8.

Here Ỹ h
0 is determined by Y h

0 and Y h
1/2. Then,

Y h
1 = Y h

0 + V
(
Y h

1/2

)
X0,t1

= Y h
0 +

[
V

(
Y h

0

) + D V (Y h
0 )(Y h

1 − Y h
0 )/2 + D2 V (Ỹ h

0 )(Y h
1 − Y h

0 )⊗2/8
]

X0,t1 .

Replacing D V (Y h
0 )(Y h

1 − Y h
0 ) in the above equation by

D V (Y h
0 )

[
V

(
Y h

0

) + D V (Y h
0 )(Y h

1 − Y h
0 )/2 + D2 V (Ỹ h

0 )(Y h
1 − Y h

0 )⊗2/8
]

X0,t1 ,

we get

Y h
1 = Y h

0 + V
(
Y h

0

)
X0,t1 + D V (Y h

0 )V (Y h
0 )X⊗2

0,t1
/2 + R2

with

R2 = D V (Y h
0 )2(Y h

1 − Y h
0 )X⊗2

0,t1
/4 + D V (Y h

0 )D2 V (Ỹ h
0 )(Y h

1 − Y h
0 )⊗2 X⊗2

0,t1
/16 + D2 V (Ỹ h

0 )(Y h
1 − Y h

0 )⊗2 X0,t1/8.

Noticing |Y h
1 − Y h

0 | ≤ |V (
Y h

1/2

)‖X0,t1 | and γ > 2, we obtain that the difference between Y h
1 and yh

t1
is

|Y h
1 − yh

t1
| ≤ |R2 − R1| ≤ max{|V |4Lipγ ,1}(|X0,t1 |3 + |X0,t1 |4).

For any η satisfying that max{0, 3
γ −1} < η < 3

2ρ −1, there exists a 2ρ < p < γ such that η = 3
p −1. Since for any ω ∈ � \ M , 

|X0,t1(ω)| = |π1(X0,t1 (ω))| ≤ ‖X(ω)‖1/p-Höl;[0,T ]h1/p , the local error is

|Y h
1 (ω) − yh

t1
(ω)| ≤ C(ω)h3/p, ∀ h ≤ 1.

Step 2. Global error. We use the notation π(t0, y0, xh)t , t ≥ t0, to represent the solution of (10) with the driven noise xh

and the initial value y0 at time t0. Similar to Theorem 10.30 in [8],

|Y h
k (ω) − yh

tk
(ω)| ≤

k∑
s=1

|π(ts, Y h
s , xh)tk − π(ts−1, Y h

s−1, xh)tk |

=
k∑

s=1

|π(ts, Y h
s , xh)tk − π(ts,π(ts−1, Y h

s−1, xh)ts , xh)tk |.

Since the solution is continuously dependent on the initial value, which is given by the estimate in [8, Theorem 10.26], we 
have for any 1 ≤ s ≤ k ≤ N ,

|π(ts, Y h
s , xh)tk − π(ts,π(ts−1, Y h

s−1, xh)ts , xh)tk | ≤ C exp{Cν p‖S[p](xh(ω))‖p
p-var;[ts,tk]}|Y h

s − π(ts−1, Y h
s−1, xh)ts |,
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where C = C(γ , p). Because for any ω ∈ � \ M , ‖S[p](xh)(ω)‖p
p-var;[0,T ] has an upper bound for h > 0 (see [8, Theorem 

15.33]), the estimate for the local error yields

|Y h
k (ω) − yh

tk
(ω)| ≤ C(ω)h3/p−1.

Therefore, for any ω ∈ � \ M , 0 < η < 3
2ρ − 1,

max
k=1,··· ,N

|Y h
k (ω) − yh

tk
(ω)| ≤ C(ω)hη. (12)

Combining Theorem 5.1 and the fact that 3
2ρ − 1 ≤ 1

ρ − 1
2 for ρ ∈ [1, 3/2), we complete the proof. �

When the components of the noise are independent standard Brownian motions, i.e., ρ = 1, the convergence order 
is (almost) consistent with the mean square convergence rate of SDEs in Stratonovich sense with multiplicative noise. 
Moreover, note that the estimate in Theorem 5.2 is valid for the case when ρ ∈ [1, 3/2), which is similar to the simplified 
step-2 Euler scheme in [7]. To construct a numerical scheme for ρ ∈ [1, 2) and fill the gap between the convergence rates 
of two parts in (11), in the following theorem we use higher stage symplectic Runge–Kutta methods with local order τ ≥ 4
when applied to classical ordinary differential equations.

Theorem 5.3. Suppose ρ ∈ [1, 2) and Y h
k represents the solution of one of the two s-stage Runge–Kutta methods with coefficients 

expressed in the Butcher tableaus below.
Method I (s = 2):

(3 − √
3)/6 1/4 (3 − 2

√
3)/12

(3 + √
3)/6 (3 + 2

√
3)/12 1/4

1/2 1/2

.

Method II (s = 3):

a/2 a/2

3a/2 a a/2

1/2 + a a a 1/2 − a

a a 1 − 2a

,

where a = 1.351207 is the real root of 6x3 − 12x2 + 6x − 1 = 0.
If |V |Lipγ ≤ ν < ∞ with γ > max{2ρ, 3}, then for any 0 < η < min{ 1

ρ − 1
2 , 1

2ρ − 1
γ }, there exists a finite random variable C(ω)

and a null set M such that

max
k=1,··· ,N

|Y h
k (ω) − Ytk (ω)| ≤ C(ω)hη, ∀ ω ∈ � \ M.

In addition, both of the two methods inherit the symplectic structure of a rough Hamiltonian system.

Proof. We adopt a similar strategy as in Theorem 5.2.
Since V ∈ Lipγ with γ > 3, a Taylor expansion of the solution yh

t1
in (10) leads to

yh
t1

= yh
0 + V (yh

0)X0,t1 + D V (yh
0)V (yh

0)X⊗2
0,t1

/2 + D V (yh
0)

2 V (yh
0)X⊗3

0,t1
/6 + D2 V (yh

0)V (yh
0)

2 X⊗3
0,t1

/6 + R1 (13)

with |R1| ≤ max{|V |6Lipγ , 1}|X0,t1 |4/24.
For scheme (7), a Taylor expansion shows for any α = 1, · · · , s,

V
(
Y h

0 (α)
) =V

(
Y h

0

) + D V (Y h
0 )(Y h

0 (α) − Y h
0 ) + D2 V (Y h

0 )(Y h
0 (α) − Y h

0 )⊗2/2

+ D3 V (Ỹ h
0 (α))(Y h

0 (α) − Y h
0 )⊗3/6,

where Ỹ h
0 (α) is determined by Y h

0 (α) and Y h
0 . Plugging it into Y h

1 = Y h
0 + ∑s

α=1 bα V
(
Y h

0 (α)
)

X0,t1 , we get

Y h
1 =Y h

0 +
s∑

α=1

bα V
(
Y h

0

)
X0,t1 +

s∑
α=1

bα D V (Y h
0 )(Y h

0 (α) − Y h
0 )X0,t1

+
s∑

α=1

bα D2 V (Y h
0 )(Y h

0 (α) − Y h
0 )⊗2 X0,t1/2 +

s∑
α=1

bα D3 V (Ỹ h
0 (α))(Y h

0 (α) − Y h
0 )⊗3 X0,t1/6.
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Denoting cα = ∑s
β=1 aαβ , we have from Taylor expansion that

Y h
0 (α) − Y h

0 =
s∑

β=1

aαβ V
(
Y h

0 (β)
)

X0,t1 = cα V
(
Y h

0

)
X0,t1 +

s∑
β=1

aαβ D V (Y h
0 )cβ V

(
Y h

0

)
X⊗2

0,t1
+ R2

with |R2| ≤ C(aαβ, |V |Lipγ )|X0,t1 |3. Then

Y h
1 =Y h

0 +
s∑

α=1

bα V
(
Y h

0

)
X0,t1 +

s∑
α=1

bα D V (Y h
0 )

[
cα V

(
Y h

0

)
X0,t1 +

s∑
β=1

aαβ D V (Y h
0 )cβ V

(
Y h

0

)
X⊗2

0,t1

]
X0,t1

+
s∑

α=1

bα D2 V (Y h
0 )

[
c2
α V (yh

0)
2 X⊗2

0,t1

]
X0,t1/2 + R4,

with |R4| ≤ C(aαβ, |V |Lipγ )|X0,t1 |4. Comparing it with (13), we get the order conditions

s∑
α=1

bα = 1,

s∑
α=1

bαcα = 1

2
,

s∑
α=1

s∑
β=1

bαaαβcβ = 1

6
,

s∑
α=1

bαc2
α = 1

3
,

for

|Y h
1 − yh

t1
| ≤ C(aαβ, |V |Lipγ )|X0,t1 |4,

which are satisfied by Method I and Method II (see also [11, Section II.1.1]). For any η satisfying that max{0, 4
γ − 1} < η <

2
ρ −1, there exists some p ∈ (2ρ, γ ) such that η = 4

p −1. Since for any ω ∈ � \ M , it holds that |X0,t1 (ω)| = |π1(X0,t1 (ω))| ≤
‖X(ω)‖1/p-Höl;[0,T ]h1/p , the local error shows

|Y h
1 (ω) − yh

t1
(ω)| ≤ C(ω)h4/p, ∀ h ≤ 1.

A similar proof of Theorem 5.2 yields the estimate for the global error that for any ρ ∈ [1, 2), 0 < η < min{ 1
ρ − 1

2 , 1
2ρ − 1

γ }
and ω ∈ � \ M ,

max
k=1,··· ,N

|Y h
k (ω) − Ytk (ω)| ≤ C(ω)hη.

Moreover, it can be checked that the symplectic condition in Theorem 4.1 is also satisfied by Method I and Method II. �
Remark 5.1. This convergence rate equals to that of the simplified step-3 Euler scheme in [7] for γ large enough. Indeed, 
using Runge–Kutta methods with a higher stage will not improve the convergence rate since the error of piecewise linear 
approximations persists.

The next proposition is essential to get the convergence rate of the midpoint scheme in the linear case.

Proposition 5.1. If V in (6) is a collection of skew symmetric linear vector fields of the form V i(Y ) = Ai Y , then numerical solutions of 
the midpoint scheme (8) are uniformly bounded. More precisely, |Y h

k | = |z|, k = 1, · · · , N.

Proof. For any k = 0, · · · , N − 1, since Y h
k+1 = Y h

k + ∑d
i=0 Ai

(
Y h

k+1/2

)
Xi

tk,tk+1
, we have

|Y h
k+1|2 = (Y h

k+1)
�Y h

k+1 =|Y h
k |2 +

d∑
i=0

(Y h
k+1/2)

� A�
i Y h

k Xi
tk,tk+1

+
d∑

i=0

(Y h
k )� Ai Y

h
k+1/2 Xi

tk,tk+1

+
d∑

i1=0

d∑
i2=0

(Y h
k+1/2)

� A�
i1

Ai2 Y h
k+1/2 Xi1

tk,tk+1
Xi2

tk,tk+1
.

Substituting Y h
k = Y h

k+1/2 − 1
2

∑d
i=0 Ai Y h

k+1/2 Xi
tk,tk+1

into the second and third term, we get

|Y h
k+1|2 = |Y h

k |2 + 2
d∑

i=0

(Y h
k+1/2)

� Ai Y
h
k+1/2 Xi

tk,tk+1
.

Therefore, |Y h |2 = |Y h|2 results from (Y h )� Ai Y h = 0, since Ai is skew symmetric. �
k+1 k k+1/2 k+1/2
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Theorem 5.4. Suppose ρ ∈ [1, 3/2). Let V be as in Proposition 5.1 and Y h
k represents the numerical solution of the midpoint scheme. If 

θ ≥ |z|, ν ≥ max{|Ai | : i = 0, · · · , d}, then for any γ > 2ρ , 0 < η < min{ 3
2ρ − 1, 1

2ρ − 1
γ }, there exists a finite random variable C(ω)

and a null set M such that

max
k=1,··· ,N

|Y h
k (ω) − Ytk (ω)| ≤ C(ω)hη, ∀ ω ∈ � \ M

holds for any 0 < h ≤ 1. The finite random variable C(ω) depends on ρ , η, γ , ν , θ , K and T .

Proof. Proposition 5.1 implies that there exists some constant R > 0 depending on ω, ρ , γ , ν , θ and T , such that 
|π(tk−1, Y h

k−1, x
h)t | ≤ R for all h, k, t . Then the localization technique is applicable. Using the same approach as in The-

orem 5.1 and Theorem 5.2, we complete the proof. �
6. Numerical experiments

In this section, we illustrate our theoretical results by two examples. In the first example, we verify the theoretical 
convergence rate given in Theorem 5.3. In the second one, we consider a linear model and compare the performance of the 
midpoint scheme, the simplified step-2 Euler scheme and the simplified step-3 Euler scheme.

6.1. Example 1

We consider a rough Hamiltonian system in R2 with

H0(P , Q ) = sin(P ) cos(Q ), H1(P , Q ) = cos(P ), H2(P , Q ) = sin(Q ).

More precisely, the corresponding Hamiltonian equations are

dP = sin(P ) sin(Q )dt − cos(Q )dX2, P0 = p,

dQ = cos(P ) cos(Q )dt − sin(P )dX1, Q 0 = q,

where X1 and X2 are independent fBms with Hurst parameter H ∈ (1/4, 1/2].

Pathwise convergence rate. Since the vector fields are bounded with bounded derivatives, the theoretical convergence 
rates of both Method I and Method II in Theorem 5.3 are (0.3 − ε), (0.2 − ε), (0.1 − ε) for arbitrary small ε, when the 
Hurst parameter H are 0.4, 0.35, 0.3 respectively. Fig. 1 shows the maximum error in the discretization points of Method I, 
maxk=1,··· ,N |Y h

k (ω) − Ytk (ω)|, which we call the pathwise maximum error for short. Pictures in the same row are from three 
sample paths with the same H . In addition, the fact that the error becomes larger, as H decreases, implies the influence of 
the roughness of the noise.

6.2. Example 2

For the linear case, we consider the following model

dP = − Q dt − σ

3∑
i=1

Q dXi, P0 = p,

dQ =Pdt + σ

3∑
i=1

PdXi, Q 0 = q,

(14)

where X1, X2 and X3 are independent fBms with Hurst parameter H = 0.4.
We have the expression of the exact solution

P = p cos(t + σ

3∑
i=1

Xi
t) − q sin(t + σ

3∑
i=1

Xi
t),

Q = q cos(t + σ

3∑
Xi

t) + p sin(t + σ

3∑
Xi

t).
i=1 i=1
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Fig. 1. Pathwise maximum error vs. step size for three sample paths with p = 1, q = 2 and T = 0.1.

Denoting Y = (P , Q )� ∈ R
2 and X0 := t , we have that (14) is equivalent to dY = ∑3

i=0 Ai Y dXi , where A0 =
(

0 −1
1 0

)

and Ai =
(

0 −σ
σ 0

)
, i = 1, 2, 3. Since Ai are all skew symmetric, the midpoint scheme is solvable. We compare it with the 

simplified step-2 and step-3 Euler schemes in the following experiments.

Evolution of domains. Fig. 2 shows the evolution of domains in the phase plane for one sample path. The initial domain is 
a square with four corners at (1, 1), (2, 1), (2, 2) and (1, 2). Images at t = 0.4, 1.6, 8, are presented under the exact mapping 
and the three numerical methods. One can observe that the exact mapping is area preserving, which is equivalent to that 
it preserves the symplectic structure of the system. This property is inherited by the midpoint scheme, since the areas of 
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Fig. 2. Evolution of domains in the phase plane for one sample path with σ = 1.5, T = 10 and h = 0.002. (For interpretation of the colors in the figure(s), 
the reader is referred to the web version of this article.)

Fig. 3. Phase trajectories for three sample paths with p = 1, q = 1, σ = 1, T = 10 and h = 0.002.

red squares are the same. However, the areas of images under the simplified step-2 and step-3 Euler schemes increase and 
decrease respectively, which proves that they are not symplectic methods.

Conservation of quadratic invariant. For the initial value (1, 1), the exact solution is on the circle with center at the origin 
and radius r = √

2, which implies another invariant of this system (see also [2, Example 1]). We present the phase trajec-
tories for three sample paths in Fig. 3. The midpoint scheme preserves this property such that its solutions are always on 
that circle, which is proved in Proposition 5.1. The phase trajectories of the simplified step-2 Euler scheme deviate from the 
exact one a lot and those of the simplified step-3 Euler scheme shrink gradually. Fig. 2 and Fig. 3 verify that the midpoint 
scheme, as a symplectic Runge–Kutta method, preserves the invariants of the system (14).

Stability for the size of the noise. We investigate the influence of the size σ of the noise in Fig. 4. The pictures in the same 
column are from the same sample path. As σ becomes larger, the pathwise maximum error of the midpoint scheme is 
smaller in general. This implies the stability of an implicit method.
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Fig. 4. Pathwise maximum error vs. step size for three sample paths with p = 1, q = 1 and T = 1.
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