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Abstract
This paper is concerned with the inverse random source problem for a stochas-
tic time fractional diffusion equation, where the source is assumed to be driven
by a Gaussian random field. The direct problem is shown to be well-posed by
examining the well-posedness and regularity of the solution for the equivalent
stochastic two-point boundary value problem in the frequency domain. For the
inverse problem, the Fourier modulus of the diffusion coefficient of the ran-
dom source is proved to be uniquely determined by the variance of the Fourier
transform of the boundary data. As a phase retrieval for the inverse problem,
the phaselift method with random masks is applied to recover the diffusion
coefficient from its Fourier modulus. Numerical experiments are reported to
demonstrate the effectiveness of the proposed method.

Keywords: fractional diffusion equation, stochastic partial differential equation,
inverse source problem, uniqueness, phase retrieval, phaselift
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1. Introduction

In the past two decades, the differential equations involving fractional-order derivatives, known
as the fractional differential equations (FDEs), have received increasing attention in applied
disciplines. Such models are able to capture more faithfully the dynamics of anomalous
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diffusion processes in amorphous materials. Consequently, fundamentally different physics
can be obtained. For instance, the FDEs can be used to model some anomalous diffusions in
a highly heterogeneous aquifer [1], underground environmental problems [21], the relaxation
phenomena in complex viscoelastic materials [20], and non-Markovian diffusion processes
with memory [30].

Motivated by the significant applications in scientific and industrial fields, the research of
inverse problems has gone tremendous developments in the past decade. Recently, the inverse
problems on FDEs have become an active research field [6, 11, 12]. In particular, the inverse
problems for the time fractional diffusion equations have been extensively studied mathemat-
ically and numerically. Generally, the inverse source problems of FDEs are to determine the
time-dependent or the space-dependent source functions by using the space-dependent or time-
dependent data [2, 4, 22, 39]. There are also cases where boundary conditions are used as the
data [31, 38]. Although there has been a lot of research done for the inverse problems of FDE:s,
there is little work on the stochastic inverse problems for the FDEs.

The inverse random source problems refer to the inverse source problems that involve uncer-
tainties. Due to the randomness and uncertainty, compared to the deterministic counterparts,
stochastic inverse problems have more difficulties in addition to the existing obstacle of ill-
posedness. For the inverse random source scattering problem, where the wave propagation is
governed by the stochastic Helmholtz equation driven by a white noise, it is shown in [14]
that the correlation of the random source could be determined uniquely by the correlation of
the random wave field. Effective computational methods are developed in [5, 26] for the white
noise model, where statistical properties, such as the mean and the variance, of the random
source are recovered by using the boundary measurements of the random wave field at multiple
frequencies.

There is much less work on the inverse random source problems for the FDEs. Consider the
stochastic time fractional diffusion equation

OCu(x, 1) — Au(x, ) = f(x)h(t) + g(x)B (1), (x,1) € D x (0,7),
u(x,1) =0, (x,7) € D x [0, T},
u(x,0) =0, xeD

where 0f* denotes the Caputo fractional derivative with o € (0, 1), B is the fractional temporal
Brownian motion with Hurst parameter H € (0, 1) and BY denotes the formal derivative of B
with respect to the time ¢, D is a bounded domain with the Lipschitz boundary 0D, and f, g
are two deterministic functions supported in D. Given f and g, the direct source problem is
to determine u; while the inverse source problem is to determine the unknowns f and g that
generate a prescribed u. For this kind of random sources perturbed by a time-dependentrandom
noise, the mild solution of the problem can be obtained by using the Mittag—Leffler functions,
and it may lead to the reconstruction formulas between the unknowns and the measurements.
In [33], fand |g| are proved to be uniquely determined by the mean and covariance of the final
data u(x, T), respectively, under the conditions that o € (%, 1)and H = %, i.e., the white noise
case. It is also pointed out that the inverse problem is not stable as a small variance of the data
may lead to a huge error on the reconstructions. The inverse problem for a generalized case
with o € (0, 1) and H € (0, 1) is considered in [16], where f and |g| are recovered from the
same statistics of the final data u(x, 7). Similar results are obtained about the uniqueness and
the stability of the inverse problem. A related inverse random source problem on the stochastic
fractional diffusion equation for the time-dependent noise may be found in [27]. If the random
sources are perturbed by a space-dependent noise, the mild solution approach is not available
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anymore since the spatial noise may not be regular enough to guarantee the well-posedness
of the problem. New techniques need to be explored to reconstruct the diffusion coefficient of
this kind of random sources.

In this paper, we consider the one-dimensional stochastic time fractional diffusion equation

O'u(x, 1) — Ou(x, 1) = FOW,,  (x,1) € (0,1) x Ry,
u(x,0) =0, x €[0,1], (1.1)
du(0,1) =0, u(l,1) =0, reRy,

where F'is a deterministic function satisfying (0) = 0 and denotes the diffusion coefficient
of the random source, and the Caputo fractional derivative 0%u, o € (0, 1), is defined by

L

Ofu(x, 1) = T — o)

!
/ Osu(x, s)(t —s) “ds
0
with T'(a) = [, e *s*~'ds being the Gamma function. Here, W, stands for the spatial Brow-
nian motion satisfying E[W,W,] = x Ay for any x,y € (0,1), and Wx denotes the formal
derivative of W, which should be interpreted as a distribution and is known as the white noise.

To deal with the initial boundary value problem of the stochastic diffusion equation (1.1), we
consider an equivalent stochastic two-point boundary value problem in the frequency domain,
and study the well-posedness and regularity of the solution based on the estimate of the Green
function. It then leads to the well-posedness of (1.1) by showing that the solution to (1.1) is the
inverse Fourier transform of the solution to the equivalent problem in the frequency domain.
For the inverse problem, the Fourier modulus |F| of the diffusion coefficient F is proved to be
uniquely determined by the variance of the solution to the equivalent problem in the frequency
domain. However, the recovery of F from |F| is apparently not unique, since we measure |F|
instead of F and lose information about the phase of F. If we could retrieve the phase of F,
then it would be trivial to recover F. This kind of problem, i.e., the reconstruction of a signal
from the magnitude of its Fourier transform, is generally known as the phase retrieval [34]. It
arises in many applications such as diffraction imaging, optics and quantum mechanics, and
is usually ill-posed and notoriously difficult to solve. A large amount of methods have been
proposed to solve the phase retrieval problem [23]. These approaches can be broadly classified
into two categories: utilizing either a priori information about the signal F’ or additional mea-
surements of the modulus \IA’ |. In this work, we adopt the latter and apply the phaselift method
with random masks to collect additional measurements of the modulus | F|, which may be used
to uniquely determine |F|, which is the modulus of the diffusion coefficient of the random
source. Numerical experiments are reported to demonstrate the effectiveness of the proposed
method.

The rest of the paper is organized as follows. In section 2, the time fractional derivative
and its properties are introduced. Section 3 is concerned with the well-posedness of the direct
problem. The inverse problem is addressed in section 4, which includes the recovery of \I:“ [,
the phase retrieval problem, and its numerical method. Section 5 presents several numerical
examples to illustrate the effectiveness of the proposed method. The paper is concluded with
some general remarks and directions for the future research in section 6.

2. The time fractional derivative

In this section, we discuss the Fourier transform of the Caputo fractional derivative, which
serves as a basis to convert the initial boundary value problem of the stochastic time fractional
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differential equation (1.1) into an equivalent stochastic two-point boundary value problem in
the frequency domain.

Lemma 2.1. Let v be a causal function, i.e., v(f) = 0 if t < 0, whose fractional derivative
v is well-defined in L*(R). Then the Fourier transform of the fractional derivatives of v
satisfies

Flofv](w) = (iw)*v(w) Ya € (0,1],

where
H(w) = Flolw) = / e “(r)dr
R

denotes the Fourier transform of v.

Proof. The result is obvious for the case o = 1 if v € H'(R). Next we show the assertion
for the case o € (0, 1). Define a causal function k% (¢) with o € (0, 1) by

1
—1 t>0,
KL= { T —a)
0, <0,

which satisfies
l t
g u(t) = m/o Osv(s)(t — 5)" " ds = (O x k)(1).
Based on the fact

Flo7vlw) = FIOwl(w)FkL(w) = (w)o(w)FKLI(w),

it suffices to show that the Fourier transform of k¢ admits the following form (cf [35,
Sec. 2.9.2)):

—iwt y—a

o [T e e el
F[k+](w)—/0 7F(l_a)dt—(1w) . 2.1

In fact, let Ugr C C be a simply connected open set with v, being a closed curve shown in
figure 1. It is clear to note that the mapping

z—=e 7 zeC

defines a holomorphic function in Ug. It follows from the Cauchy integral theorem that

_ R i/R
e [ o[
R 1/R Ir iR Ik

where Ig:={z € C: |z =R} and I, p:={z € C:|z| = 1/R} denote the positively oriented
a quarter section of the circle with radius R (the dashed curve in figure 1) and the negatively
oriented a quarter section of the circle with radius 1/R (the solid curve in figure 1), respectively.

Clearly, we have
/ /
Ir ik

e Wimdz =0, (2.2)

lim
R—00

e—iwzz—(y dZ =0.
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01/R R

Figure 1. The integral contour .

Taking the limit of (2.2) as R — 400 leads to

/ e Wiy od, 4 / emwima 4 = ().
0 +ioco

Letiwz = 5. A simple calculation yields

“+o00 ) —+ioo )
/ e wima q, — / e wima gy
0 0

= (iw)*"! / e’s " ds = (iw)* 'T(1 — a),
0
which completes the proof by noting (2.1). (]

Remark 2.2. Note that (iw)® is a multi-valued function when « is a fractional number.
Throughout the paper, we define

| exp (”70‘ sgn(w)) . w#O,
0, w =0,

(iw)* =

where sgn () denotes the sign function.

3. The direct problem

In this section, we discuss the direct problem. The well-posedness of the problem (1.1) and
the regularity of its mild solution are investigated by studying an equivalent problem in the
frequency domain.
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3.1. The direct problem in the frequency domain

Since the function F satisfies F(0) =0, we denote by F the zero extension of F in (—oo, 0)
and by F the Fourier transform of F. Consider the two-point boundary value problem of the
stochastic differential equation

{BXXU(x, W) — (W) U(x,w) = —F(w)W,, x€D, weR, an

oUO,w)=0, U(,w)=0, weR.
In the following, we deduce the Green function and present the well-posedness of (3.1).

3.1.1. Green’s function. Let s:= (iw)* and denote by g, (x,y) the Green function of (3.1). We
consider two cases where g,, takes two different expressions.
If w # 0, then g, satisfies

{axxgw(x’y) - Sgw(x’y) = (5()( - y)’ X,y € D,
axgw(oay) =0, gw(lay) =0, y € D,

where § is the Dirac delta function. It is known from solving the second order ordinary
differential equation with constant coefficients that g (x, y) has the general form

oy — Ay)e V4 Bi(yeV™, x<y,
o Ay eV 4+ By()eV™, x>y,
where A; and B;, i = 1,2, are to be determined. Using the boundary conditions

axgw(o’y) =0, gw(lay) =0,

and the continuity and jump conditions

lim g, (x,y) — limg,(x,y) =0, lim 0,g,(x,y) — limd,g,(x,y) = 1.
X=y- x—yt x—y~

x—yt
we may easily obtain from Remark 2.2 that

( ) _ e\/‘;(x"!‘y) + e\/E‘X_Y‘ — e\/§(2—x—y) _ e\/E(Z—‘X—y‘)
Sulh Y= 2/5(1 + e2VF) ’

x,y €D, (3.2)

where
V5 = (i0)? = [w|? exp (”;O‘ sgn(w)), RIV5] = |w]? cos (%) > 0.

Here the notations f3[-] and &[] stand for the real and imaginary parts of a complex value,
respectively.
If w = 0, then g, (x, y) solves

{axng(xay):(s(x_y)a x,y €D,
0x80(0,y) =0, go(1,y)=0, yeD.
Similarly, we may solve the above two-point boundary value problem and obtain

go(x,y) = max{x,y} — 1, x,y€D. 3.3)
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Lemma 3.1. The Green function g,, given in (3.2) and (3.3) satisfies the estimate

1 :
lgollr2xpy = 3 ifw=0,
lgulli2ioxpy < Clw|™ if w #0,
where C > 0 is a constant independent of w.

Proof. Ifw = 0, then it follows from a simple calculation that

X 1
Hgo\lizww):/ U (x—1)2dy+/ (y—l)zdy] dx
0 0 X

1
| o3
:/ [x(l—x)2+(l ")}dle.
0

3

Ifw # 0, we get

”gw”[z}(pxp) Z//\gw(x,yﬂzdx@
DJD
_ 1
281+ 2V

1ol ’
X / / ’eﬁ(uy) + eVl _ eVi@—xy) _ oVl T g dy
0 Jo

1 1 1 .
<——— 2 RIVEIE+Y) | o2 Rvsllx—y
[V/s(1 + eM)P/o /0

4 @AWVIC—-9) | 2RIl gy

1 et RVl

T VA e TRV
1

|w|? cos (72)

jwl ™

e4\w\% cos(Zg) _ 1

X g ixes g xey o
[e‘”w‘z os(F) 4 1 42217 () cos (2|w|? sin (%))}

Hw| R (\w\% cos (?)) , (3.4)

where the function 4 is defined by

e4k —1
[e* + 1+ 22 cos (2k tan (Z2))]”

W) =

Clearly, & is a nonnegative function for all k > 0.
We claim that h(k) is uniformly bounded for all k > 0. On the one hand, due to the fact

. . 1—e
) = e T T o % 1 20 % cos (2k tan ()] ~

7
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there exists a constant C¢ such that h(k) < 1 for all k > Cy, which shows that 4 is uniformly
bounded on (Cy, o0). On the other hand, by noting

lim h(k) = 1,
i

we get that % is also uniformly bounded on (0, Cy] due to its smoothness, which completes the
proof of the claim.

Using the estimates for s, we have from (3.4) that there exists a constant C > 0 independent
of w such that

o yiyes _ —
I8l < (Jwl ¥ cos (5) ) | < €l ™,

which completes the proof. (]

3.1.2. Well-posedness. Based on the Green function g, we are able to show that the two-
point boundary value problem of the stochastic differential equation (3.1) admits a unique mild
solution. The following result gives the estimate of the mild solution, which plays an important
role in the analysis of the time domain problem.

Theorem 3.2. Assume that F € H'(R.). Then the stochastic differential equation (3.1)
admits a unique mild solution given by

U(x,w) = —F(w) / 2u,(x, y) dW,. (3.5)
D

Moreover, the solution U satisfies the estimate

EliwU| @120y < ClIF 3 (3.6)

(Ry)
where C > 0 is a constant.

Proof. The existence and uniqueness of the mild solution can be proved similarly as those
in [5]. We only show the proof for the estimate (3.6).
By It6’s isometry, Lemma 3.1 and Parseval’s identity, we get

2
dx dw

/ guw(x, y)dW,
D

ElliwU ) gazm) = /R/D‘MF(W)FE
:/R\iwI:"(OJ)\ZngHiZ(DxD) dw
5/‘”‘_”|iwﬁ(w)‘2dw

R

/ |F(w)[* dw + / liwF(w)|* dw
{wiw|<L1} {wiw|>1}

<FI 2@y + liwF |22 = 1Fllm,

N

which completes the proof. (]

Hereafter, the notation a < b stands for a < Cb, where C is a positive constant whose value
is not required but should be clear from the context.

8
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3.2. The direct problem in the time domain

Using the result obtained for the equivalent problem in the frequency domain (3.1), we are now
at the position to show the well-posedness of the time domain problem (1.1).

Theorem 3.3. Assume that F € H'(R.). Then the initial boundary value problem of the
stochastic differential equation (1.1) admits a unique solution u satisfying

EH@;MH?}(D) < C”F”?{l(]&r) Vie R+’

where C > 0 is a constant.

Proof. Let
u(x, 1) = F '[Ux, )@, x€e€D, teR,

where F~! denotes the inverse Fourier transform and U is the mild solution of (3.1). Define
u(x, 1) = u(x, t)|ier,, - (3.7)

To show the existence of the solution to (1.1), we prove that the function u defined above is a
solution of (1.1).
Note that

1

i, 1) = F UG 910 = — /

—00

F(s)F ! [/gw(x,y)dWy] (t — s)ds,
D

where F is the zero extension of F on (— o0, 0) which is defined at the beginning of this section.
Hence, u is a causal function with u(x,7) = 0 if # < 0, which implies that

u(x,0) = u(x,0) = 0. (3.8)

Moreover, it follows from Parseval’s identity and Theorem 3.2 that d,it € L* (Q; L*(R; L*(D))
satisfies

|0t 22y = EliwUl| @ m) < C\|F\|§,1(R+), (3.9)

which indicates that the Caputo fractional derivative of & with respect to ¢ is well-defined.
Taking the inverse Fourier transform with respect to w on both sides of (3.1), we have

{Bxxu(x, 1) — 0Culx,t) = —F(t)W,, x€D, t€R,, 510

Ou(0,1) =0, u(l,t)=0, teR,,

where we have used Lemma 2.1 for the causal function & and the fact u = ii|r, . The
equation (3.10), together with the initial condition (3.8), indicates that u defined in (3.7) is
a solution of (1.1) satisfying the estimate (3.9).

The uniqueness of the solution of (1.1) is obtained directly by the equivalence between
the time domain problem (1.1) and the frequency domain problem (3.1), as well as the well-
posedness of (3.1) given in Theorem 3.2. O

4. The inverse problem

In this section, we address the inverse problem which is to reconstruct the diffusion coefficient
F of the source from the measured wave field (0, ) at the point x = 0 for # > 0.

9
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4.1. The reconstruction of |F|

First we consider the reconstruction of the modulus of the Fourier coefficients of F, and
investigate the uniqueness and the issue of instability of the inverse problem.

4.1.1. Uniqueness. It follows from (3.5) that the mean and variance of the solution U(x, w) at
x = 0 satisfies

E[U(0,w)] =0
and
VIU(0,w)] = E[|U(0,w)|*] = [F(w)[* / 18.,(0,)|* dy, 4.1)
D

where we have from (3.2) and (3.3) that

e\/Ey — e\/E(Z*)’)

8.(0,y) = NCIETZ0R yeD 4.2)

if w # 0 and

g0, yy=y—-1, yeD
ifw=0.
Lemma 4.1. Foranyw € R, it holds

/Igw(O,y)Izdy > 0.
D

Proof. Forw = 0, a simple calculation yields

1
1
/Ig(O,y)\zdyz/ - 1*dy= 3
D 0

For w # 0, it holds

1 1
2(0,y)[2dy = —/ ‘e‘ﬁy — eV

1 : 2 R[5y 2 R[V512-y)
~ AT, [T e

_zgmwﬂquewﬂﬂ—vﬁ}®

B 1 et VI — 1 &MV sin (26[/5])
Vs P\ 2R S[y/5]

2
dy

> ! R SEPEENY.
VAT SEF | 25
L 2RIVA),

NGET2GE

10
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where we have used the fact @ < 1 for any x € R, and the function /; is defined by

2k_1

Lk = & —2¢k, k>0

It then suffices to show that /;(k) > O for all K > 0. Note that

2k — e —2k2 ek + 1 _ bk

Lk = 5 o

where L(k) = (2k — 1)e** — 2k?¢* + 1. It is easy to check that (k) > 0 and hence (k) > 0
for all k > 0. In fact, by noting that

ly(k) = (4ke* — 2i* — 4k)e* > (4k(1 + k) — 2k*> — 4k)e* >0 Vk >0,
we get

(k) > lim (k) = 0.
k=0t

Hence the function /; is increasing for all £ > 0 and satisfies

2% _
li(k) > lim/;(k) = lim { — 2ek} =0,
k=0t k=0t
which completes the proof. (]

Theorem 4.2. Assume that F € H'(R,). Then the modulus \F(w)\ can be uniquely deter-
mined by the data V[U(0,w)].

Proof. It follows from (4.1) and Lemma 4.1 that

1
. VU@, w)] ) ?
Fw)| = ( Vw e R,
FT= ey
which implies the uniqueness of the reconstruction. |

4.1.2. Instability. By theorem 4.2, the inverse problem admits a unique solution but it lacks
stability due to the fact that the denominator |, 18,0, y)|*dy goes to zero as w — oo, which is
stated in the following theorem.

Theorem 4.3. For any fixed w # 0, it holds

/ 1800,y < ] .
D

Proof. By (4.2), we have

1 ! 2
29y — VY aVs2-y)
2 1 2 2
- = sy Vs(2—y)
s WE(1+eM>|2/o (‘e +|e )dy

1
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2 U amay | 2
- AT, () g
1 e Vsl

T VAP RV

Following from the same estimate as that of (3.4), we get

[ lest0ay < ol (jwlf cos (%)) ol
D

which completes the proof. (]

4.2. Phase retrieval

In this section, we discuss the phase retrieval problem. More precisely, we aim to numerically
reconstruct |F| from |F|, where the former is the modulus of the diffusion coefficient F of the
source in the time domain and the latter is the modulus of the diffusion coefficient F in the
frequency domain.

To introduce the numerical methods for the phase retrieval, we begin with presenting a
discrete version of the phase retrieval problem, and then introduce an additional measurement
based framework named phaselift [8], which is adopted to solve the phase retrieval problem.

4.2.1. Discrete phase retrieval problem. Letx = (xy,...,xy)' € CN be a signal of length N,
and y= (y;,...,yy) € CV be its N-point discrete Fourier transform (DFT). Denote by f
the conjugate of the mth column of the N-point DFT matrix, i.e.,

T - 2r(m—1) 2am—DIN=1D \ |
f<'">=<ff'">,..., ;;")) ::(1,elﬁv—,...,e'ﬁv—) . 4.3)

Then it is easy to check that y, = (f™, x), where (-, -) is the complex inner product defined
by

N
(3= Ty
n=1

The discrete phase retrieval problem is formulated as follows:

find X
4.4)
subject to Im = \(f(’"),xﬂz, m=1,...,N.

Pioneered by Gerchberg in [19], earlier approaches for the phase retrieval problem are based
on alternating projections and can be reformulated as the following least-squares problem:

M
miny (2, — (£, 3))".
m=1

The algorithm requires oversampling by using an M-point DFT with M > N. It attempts to min-
imize the above non-convex objective by starting with a random initialization and iteratively
imposing the time domain and Fourier magnitude constrains using projections. However, since

12



Inverse Problems 37 (2021) 045001 Y Gong et al

the projections are taken between a convex set and a non-convex set, the solution usually con-
verges to a local minimum, which leads to the limited recovery ability of the algorithm even
in the deterministic setting.

Recent frameworks to attack the ill-posedness of the phase retrieval problem can be broadly
classified into two categories: (1) developing a modified model with a prior information; (2)
taking more magnitude measurements. The former aims to reduce the number of unknowns by
assuming some a prior information of the signal, such as the support constraints [13], positiv-
ity and real-valuedness [17], or sparsity [24]. Depending on the applications, the latter can be
done in various ways, which include the use of masks [25], optical gratings [28], oblique illu-
minations [15], or short-time Fourier transform magnitude measurements which utilize overlap
between adjacent short-time sections [36].

4.2.2. Phaselift. Based on the semi-definite programming method, the phaseliftis an effective
approach to solve the phase retrieval problem. It has been shown that the phaselift may yield
robust solutions to various quadratic-constraints. Since phase retrieval results are in quadratic
constraints, the phaselift is adopted to handle our inverse problem.

There are two main ingredients in this method: multiple structured illuminations and lifting.
For the self-contained purpose, we briefly introduce the two components of this method. The
details may be found in [8].

First we comment on the multiple structured illuminations. Let x = (xy, .. ., xn) € CV be
the object of interest, and assume that the illumination schemes, which collect the diffrac-
(w1, ...,wy)" € CY may be selected by the user. There are several ways to implement the
recovery in practice, such as masking, optical grating, and oblique illuminations. It is usually
preferred to adopt the approach in which fewer diffraction patterns are required for a stable
recovery.

Next we present the lifting. Based on the diffraction pattern w mentioned above, suppose
that we have quadratic measurements of the form

b=(by,....bn)" =@, x)....[(@™,x))",

where a™ can be chosen based on the diffraction pattern w in the following form:
T
a™ = (ffm)wl, R jf,m)wN) ,

-
where f = ( fl(m), oo f 15"1)) is defined in (4.3). The phase retrieval problem is then
transformed to the feasibility problem:

find X
subject to bp=@™,x)>, m=1,...,N.

The core idea of the phaselift is to embed the signal x into a higher dimensional space by
using the transformation X = xx*. Next, we lift up and interpret the signal x to this rank-one
matrix X. Denoting A™ := a"(a™)*, we get

by = (@™, x)|* = x*a™(@™)*x = Tr(A"xx"), 4.5)

where Tr(-) denotes the trace of a matrix. Let A be the linear operator mapping any positive
semi-definite matrices X, denoted by X > 0, into

AX) = (TrAVX),. .., TrAV X)) . (4.6)
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Based on the above notation, the phase retrieval problem is equivalent to

find X
subject to AX) =z,
4.7
X=0,
rank(X) =1,
wherez = (z1,...,zy) " is defined in (4.4). Consequently, the phase retrieval reduces to finding

arank-one positive semi-definite matrix X which satisfies these affine measurement constraints.
Equivalently, the phase retrieval problem can be formulated to

minimize rank(X)
subject to AX) =z, 4.8)
X >0.

The equivalence between (4.7) and (4.8) is obvious since b = A(xx*) according to (4.5)
and it has a rank-one solution. After solving (4.8), we factorize the rank-one solution X as
xx*, which then leads to the solution of the phase retrieval problem. Therefore, our inverse
problem is equivalent to a rank-minimization problem over an affine slice of the positive semi-
definite cone. Furthermore, it is reduced to a problem of low-rank matrix completion or matrix
recovery, which is a classical optimization problem that has gained tremendous attention in
recent years [9, 10].

However, it is known that the rank-minimization problem (4.8) is NP-hard. The trace norm
is thus explored as a convex surrogate [29] for the rank functional in (4.8), which gives the
following semi-definite programming problem:

minimize Tr(X)
subject to AX) =z, (4.9)
X is Hermitian positive semi—definite.

The semi-definite programming problem (4.9) is convex, and there exists a wide choice of
numerical solvers including the popular Nesterov accelerated first-order method [32]. As far
as the relationship between (4.8) and (4.9) is concerned, it is beyond the scope of this work
and we refer to [9, 10] for the detailed discussion.

4.3. Numerical method

In this work, all the numerical algorithms are implemented in MATLAB by modifying the
templates for first-order conic solvers (TFOCS) [7]. The TFOCS is a library of MATLAB
files which are designed to facilitate the construction of optimal first-order methods for a vari-
ety of convex optimization problems including the semi-definite programming problem (4.9)
considered in this paper.

To illustrate how we actually handle (4.9), we next briefly introduce the formulation and
implementation of a class of optimal first-order methods to solve the following general convex
optimization problem:

minimize @(x) == g(x) + h(x), (4.10)
where g : RY — R is convex and smooth and /2 : RY — R is convex.

14
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Consider a class of first-order methods to solve (4.10) based on iterations with a generalized
projection (cf [7]):

. 1
Xip1 = argmin |g(xx) + (Vg(xr), x — xx) + h(x) + 27](Hx — x|, @11
X

where || - || is a chosen norm and #; is the step size. The global convergence of (4.11) is
guaranteed if #; is bounded away from zero and g(x;1) has the following upper bound

1
gxrr1) < gxp) + (Ve(xn), Xkp1 — xi) + z—tk||xk+1 — x|, (4.12)

which can be accomplished by assuming that Vg satisfies a generalized Lipschitz criterion
1Ve@x) — Ve« < Ll|x — yl| (4.13)

for any x, y belonging to the domain of ¢. Here, || - || denotes the dual norm of the norm || - ||
defined by

18]l = sup {(h. g) : |[n] < 1}

Then the bound of (4.12) is assured for any #; < L~! under the assumption (4.13), which leads
to the convergence

600 — infn)| < e

in O(L/e) iterations for a simple algorithm, known as the forward-backward algorithm or
proximal gradient descent [18], based on (4.11).

Optimal or accelerated first-order methods are able to improve the bound of number of
iterations to 0(\/1%), and have been studied by many researchers in the past decades (e.g.,
[37]). The TFOCS implements a variety of the optimal first-order variants based on a variation
of the method described by Nesterov in [32]. One variant, the Auslender and Teboulle method
[3], is described as follows:

Yo = (1 = 0)xi + 0%,

_ . 1 _
X1 = argmin (Vg(y,),x) + EekLHx — %||* + h(x),
X

Xir1 = (1 = Opxe + 0% + 1, (4.14)

2

9k+l:—,
1+4/1+4/0?

where x is chosen in the domain of ¢, Xy = x¢, and 6y = 1. Here, 0; is usually referred to as
the accelerated parameter.

5. Numerical experiments

In this section, we discuss the implementation for solving the direct and inverse random
source problems, and report several numerical examples to demonstrate the effectiveness of
the proposed methods.
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5.1. Numerical discretization of the direct problem

To avoid the inverse crime, we employ the finite difference method to discretize the initial
boundary value problem of the stochastic differential equation

Ou(x, ) — Opeu(x, 1) = F(OW,,

u(x,0)=20
ou(0,1)=0, u(l,r)=0

over the interval (0, 1) x (0, T) for some T > 0.
Define the partition of the time and spatial intervals with nodes

t,=nh, n=0,1,...,N, x;=1ih,, i=0,1,...,N,,

where h, = T/N, and h, = 1/N,, respectively. Let u! be the numerical approximation to
u(x;, t,). The fractional derivative 0u at (x;, t,,) is approximated by

1 " Ou(x;,s) 1 ds
L' —a) /o ds  (t, — )™
B 1 (Y Quxi,s) 1
T — a); /, 3 (G —5

Jj—1

1 —ul”!
F(l—a)zu il / (t, —s) “ds

1 1
I‘(l—a)hal—a

a[au(xia tn) =

Z(u —ul Dl —j+ D" = (= ']

n—1

W4+ ul (= j+ D=2 — e

j=1

__ 1
T2 -a)h

+ (n _ ] _ 1)1704) _ M? (nlfoz _ (n _ 1)17&)

The second order derivative O,,u at (x;,t,) is approximated by using the central difference
method

2u} + u
xxu(xl’tn) ~ Tl
The white noise W, at x = x; is approximated by the increment [W(x;11) — W(x;)]/h, of the
Brownian motion W satisfying

Wxiv) = W) a &
hy Vhy
where a < b means that the random variables a and b have the same distribution and {&12

is a set of independent and identically distributed standard normal random variables, denoted
by & ~ N(O, 1).

NXI
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a=0.4 «=0.8

N — Approximation
07t i —-—-—Exact solution |-

The value of |F(t)|

Figure 2. Example 1: the exact solution is plotted against the reconstructed solution of
|F|. (Left) a = 0.4; (right) = 0.8.

Using the above approximations, we obtain the following implicit scheme:

1

T |u Y u (= DT =20 = ) (- - D

T2 —ah? — ( )
o= 2ul n

o M? (nl—a o (}’l o 1)1—(1) o ut+1 ul + utfl

h3
W(xip1) — W(x;
— F(t) (Xit1) (X).
hi
By denoting 0 = L, the above scheme can be rewritten as
TR—a)he

—upy + (0 +2uf —uj

= W F (1) [W(xi1) — W)l — oul (' — (n — 1))

- ani wl (n—j+ D7 =2 — )+ (n—j— D'
j=1

= h F(t,)[W(xip1) — W(xi)]

- ani u (=41 =20 = P+ = = 1))
j=1

=:G" (5.1)
forn=1,---,N;andi=0,1,---,N, — 1, where we have used the initial condition
wW=0 Vi=0,...,N,.
Moreover, according to the boundary condition d,u(0, ) = 0 in (1.1) and noting that

M(hx, t) - M(_I’lx, t) _
2h, B

Owu(0,1) = hlii% 0,
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we define

u' =u} VYn=0,...,N.
Hence, when i = 0, (5.1) leads to

—2u} + (o + 2uy = G

Vn=1,...,N. (5.2)

By the boundary condition u(1,f) = 0 in (1.1), the following boundary condition is taken into
account to the numerical scheme:

ul’i,x =0 Vn=0,...,N,,
and thus (5.1), when i = N, — 1, turns to be
VnZI,...,Nt.

(0 +2uy,_ —uy,_, =Gy, (5.3

Combining (5.1) with (5.2) and (5.3), we conclude that the numerical scheme has the
following compact matrix form:

(o0 +2 -2 0 0 1[uw 1 [ G
-1 o042 -1 0 uy Gy
0 1 o+2 0 uy G,
' . . Vn:l,. ,Nt
0 1 o+42 -l :
0 0 -1 o+2f Ly ] Loy )

5.2. Implementation of the phaselift

For the problem (1.1), the modulus of the Fourier coefficient |F| can be reconstructed
from (4.1) by utilizing the variance V[U(0, w)] of the Fourier transform of the field u(0, #).
To solve the phase retrieval problem numerically, i.e., to uniquely recover the source
f=(F(t;),...,F(ty))" at discrete temporal nodes, more measurements are usually required
and the phaselift with masks introduced in section 4.2 is used.

Let M| and M, be two masks with M| being the N, x N, identity matrix and M, being a
random binary mask, i.e., an N; X N, diagonal matrix whose entries are randomly chosen as 0
or 1. Using these two masks to perform the structured illumination with sources M, f, we can
obtain in total 2N, intensity measurements A(f f*), where the operator A is defined in (4.6)
with N = 2N, the vectors {a”™}*  involved in the operator A are defined by

(1)
a(m) _ le ’
sz(m*Nt)’

m=1,...,N,
m:Nt+1,...,2N[,
and f™ is given in (4.3).

To recover the source f, it then suffices to solve the convex optimization problem introduced
in section 4.3 based on the objective functional

1
O =8N+ () = 5lIb = ASFOz+ X T+ hih),
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a=0.8

The value of |F(t)|
The value of |F(t)|

Figure 3. Example 2: the exact solution is plotted against the reconstructed solution of
|F|. (Left) « = 0.4; (right) o« = 0.8.

where | - ||» denotes the Euclidean norm, A > 0 is a regularization parameter, and 4 is the
indicator function defined by

nf) = 0 if ff"is Hermitian positive semi—definite,
oo else.

Here, b is the quadratic Fourier modulus obtained by the measurement {u}*"", at x = 0 per-
turbed by the sources [(M, f)", (M, f)"]" with masks. More precisely,b = (by, ..., boy,)" has
entries

= ViUl n=1 2N,
n— 1. L - ICECIEIEY 1
Jiy 18,0, y)2dy
where (U}, ..., UgN’)T is the 2N,-point DFT of the measurement (u, . . ., ugN')T and w, =

2mnh /N;.

The Auslender and Teboulle method (4.14) is applied to solve the above problem, which
is terminated when the relative residual error of our reconstructed result f is less than a fixed
tolerance, i.e., | A(ff*) — b||» < 107°||b||,. Note that the solution f = (]N‘l, .. ,th)T isunique
only up to the global phase, i.e., (|cfi|*.....|cfn|)" = (F@)|% ..., |[F(ty)>)" is unique,
where c is a complex scalar satisfying |c¢| = 1. In particular, if F(7) is a real-valued nonnegative
function, then the recovery is unique. As a result, the absolute value |F| is recovered in the
following three numerical examples.

We set N, = 65 and N, = 100, and use the total number of 1000 sample paths to approxi-
mate the variance of the solution. In addition, the data is assumed to be polluted by a uniformly
distributed noise with the noise level o = 0.05. In the first example, we set the source func-
tion F(f) = sin(r) exp (—1/6) and T = 4. In the second example, the source function is taken
to be F(¢t) = sin(2¢) cos(3¢) with T = . In the third example, a discontinuous function F is
considered:

0, 1 €[0,T/5),

2, 1 €[T/5,2T/5),
F(t)=40.5, t€[2T/5,3T/5),
1.5, 1 € [3T/5,4T)5),
0, t € [4T/5,T1,
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Figure 4. Example 3: the exact solution is plotted against the reconstructed solution of
|F| with different noise levels. (Left) o = 0.4; (right) « = 0.8.

where T = 7. We present the results for two different cases: & = 0.4 and a« = 0.8 in all of the
examples. The reconstructed solutions are plotted against the exact solution in figures 2—4, for
the three examples, respectively. In the third example, the results are given for three different
noise levels o = 0, 0 = 0.03, and o = 0.05 in order to test the stability of the method. It can
be observed from the numerical experiments that the proposed method is effective and robust
to reconstruct the modulus of the source functions.
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6. Conclusion

In this paper, we have studied an inverse random source problem for the stochastic time frac-
tional diffusion equation driven by a spatial Gaussian random field. By examining the equiva-
lent two-point stochastic boundary value problem in the frequency domain, we show that the
direct source problem is well-posed and the inverse source problem has a unique solution. The
ill-posed nature is revealed for the inverse problem, i.e., the modulus of the Fourier coefficient
of the source function decays in an « order of the frequency. The inverse problem is then con-
verted into a phase retrieval problem which is to recover the original signal from its Fourier
modulus and is implemented via the phaselift with random masks. The numerical results show
that the method is effective to reconstruct the modulus of the source functions.

The proposed approach based on the Fourier transform can be naturally extended to solve
higher dimensional problems. For more complex cases, there are still several interesting prob-
lems to be investigated along this line of research. First, the source can be modeled by more
general random processes such as spatial fractional Brownian motions. The analysis and results
would remain the same for the direct problem. However, the uniqueness of the inverse problem
may not be guaranteed due to the correlated kernel of fractional Brownian motions. Sec-
ond, the Fourier transform requires more constraints about the functions u# and f, while the
Laplace transform demands less constraints on these functions. Nevertheless, there is no effi-
cient algorithm to deal with the phase retrieval problem on the Laplace transform. In addition,
when it comes to the situation that o € (1,2), more initial conditions are required to ensure
the well-posedness of the model equation, which leads to the fact that the transform may not
apply in this case. We hope to report the progress on these problems elsewhere in the future.
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