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This paper investigates numerical schemes for stochastic differential equations driven by multi-
dimensional fractional Brownian motions (fBms) with Hurst parameter H € (%, 1). Based on the
continuous dependence of numerical solutions on the driving noises, we propose the order conditions of
Runge—Kutta methods for the strong convergence rate 2H — %, which is the optimal strong convergence
rate for approximating the Lévy area of fBms. We provide an alternative way to analyse the convergence
rate of explicit schemes by adding ‘stage values’ such that the schemes are interpreted as Runge—Kutta
methods. Taking advantage of this technique the strong convergence rate of simplified step-N Euler
schemes is obtained, which gives an answer to a conjecture in Deya ef al. (2012) when H € (%, 1).
Numerical experiments verify the theoretical convergence rate.

Keywords: fractional Brownian motion; strong convergence rate; Runge—Kutta method; simplified step-N
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1. Introduction

In this paper we consider the strong convergence rate of numerical schemes for the following stochastic
differential equation (SDE):

d
dy, = V(Y)dX, = > V(Y)dX;, te(0,T], an
=1 !

where X, = (X}, -- XHT e RY with X! = tand X2, - - -, X? being independent fractional Brownian
motions (fBms) with Hurst parameter H € (%, 1). The well posedness is interpreted through Young’s
integral or fractional calculus pathwisely; see Zihle (1998), Lyons et al. (2007), Friz & Victoir (2010)
and references therein.

The fBm X’ on the probability space (§2, F,P) is a centred Gaussian process with continuous sample
paths. Its covariance satisfies

1
E[ng,’] - E(ﬂH 20— |t—s|2H), Vs,te[0,T], (1.2)
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where H € (0, 1) is called the Hurst parameter. The fBm is a semi-martingale and Markovian process
only if H = %, that is, the standard Brownian motion. Otherwise, the process exhibits long-range or

short-range dependence when H € (%, 1)or H € (0, %), respectively. This brings in wide applications
of SDEs driven by fBms, such as the flows in porous media (Cao et al., 2017, 2018), the stochastic
volatility model (Chronopoulou & Viens, 2012; Garnier & Sglna, 2017), the simulation of transient noise
in circuit (Denk & Winkler, 2007), the rough Hamiltonian systems (Hong et al., 2018), the stochastic
modelling in nanoscale biophysics (Kou, 2008) and the range of cumulated water flows in hydrology
(Mandelbrot & Van Ness, 1968). However, there are many obstacles in both the simulation for noises
and analysis of strong convergence rate for numerical schemes.

On one hand the covariance of fBms causes difficulties in simulating Nth-level (N > 2) iterated
integrals in multi-dimensional case. For the standard Brownian case H = % Milstein & Tretyakov
(2004) give an approximation for iterated integrals, which can be simulated by specific independent
and identically distributed Gaussian random variables. For the case H # % other techniques need
to be explored. An implementable choice is to substitute the Nth-level iterated integral of X by
]%(AX,()N directly. The corresponding numerical schemes are called simplified step-N Euler schemes;
see Gradinaru & Nourdin (2009), Deya et al. (2012), Friz & Riedel (2014) and Bayer et al. (2016).
Another way is taking advantage of stages values to design Runge—Kutta methods, which are derivative
free and can be particularly chosen as structure-preserving methods; see Milstein & Tretyakov (2004),
Hong ef al. (2018) and references therein.

On the other hand, since fBms with H # % have no independent increments or martingale property,
approaches for the analysis of the convergence rate for schemes in the fractional setting are different
from those via the fundamental convergence theorem, which reveals the relationship between the local
error and the global error in Milstein & Tretyakov (2004) for the standard Brownian case. In Deya
et al. (2012) authors analyse the simplified step-2 Euler scheme by the Wong—Zakai approximations
and obtain the pathwise convergence rate (H — %)’ in Holder norm for any H € (%, 1). They conjecture
that the optimal convergence rate in supremum norm is 2H — % based on the best probable rate for
implementable approximations of the Lévy area of fBms proposed in Neuenkirch er al. (2010) and
Neuenkirch & Shalaiko (2016). In Hu ef al. (2016a, 2017) authors prove the optimal strong convergence
rate of the Crank—Nicolson scheme and the modified Euler scheme for H € (%, 1), respectively, by
combining the techniques of Malliavin calculus and fractional calculus.

The goal of this paper is to demonstrate that both simplified step-N Euler schemes and Runge—Kutta
methods satisfying order condition (3.10) achieve the same convergence rate as the best probable rate
2H — % for approximations of the Lévy area of fBms. Namely, denote by Y” the numerical solution
under study with time step size h = %, then

<CRi=z Vp> 1. (1.3)
17(2)

sup |Y, — Y|
1€[0,T]

For general Runge—Kutta methods we construct continuous versions of numerical solutions and
stage values, which are continuously dependent on the driving noises. This robustness coincides with
the property of the exact solution. Combining estimates for iterated integrals of fBms in Hu ez al. (2016b,
2017) we utilize the property that numerical solutions are determined implicitly through stage values to
derive the order conditions for Runge—Kutta methods. Moreover, since the martingale inequality is not
valid for fBms, the Besov—Holder embedding is used to prove the L’ (§2)-estimate for the supremum
norm of the error.
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Further, to obtain the strong convergence rate for the simplified step-N Euler schemes, we introduce
‘stage values’ to interpret these explicit schemes as Runge—Kutta methods satisfying order condition
(3.10) with negligible high-order terms. This approach leads us to the same strong convergence rate
2H — % and avoids the estimation of the Wong—Zakai approximations. Our result gives an answer to
the conjecture in Deya et al. (2012) for H € (%, 1). Numerical experiments are performed to verify the
optimality.

For H € (4—1‘, %) the optimal strong convergence rate for the simplified step-2 Euler scheme is still an
open problem, in which case equation (1.1) is understood via the rough path framework in Davie (2007),
Lyons et al. (2007) and Friz & Victoir (2010). We refer to Bayer et al. (2016), Hong et al. (2018) and
Liu & Tindel (2019) for related results.

The paper is organized as follows. In Section 2 we recall some definitions and results about fractional
calculus and fBms. In Section 3 we prove the solvability of implicit Runge—Kutta methods, derive the
order conditions of the strong convergence rate 2H — % for Runge—Kutta methods and illustrate the
approach to view the simplified step-N Euler schemes as Runge—Kutta methods. In Section 4 we show
the continuous dependence of numerical solutions under study on the driving noises and then prove the
main theorems, Theorems 3.2 and 3.3. Numerical experiments are presented in Section 5.

2. Preliminaries

In this section we introduce some notations, definitions and results about fractional calculus and fBms.
We use C as a generic constant that could be different from line to line.

2.1 Fractional calculus

Denote by € ([0, T]; R?) the space of continuous functions from [0, 7] to R?. For any f € €([0,T]; RY),
0<s<r<TandO0 < B < 1 the -Holder semi-norm of f on [s, f] is defined by

Ify = 1l
||f||”,3 Sup[(vv_u)uﬁ,s\u<v<t,
where | - | is the Euclidean norm on R¢. Especially, we use || f]| g =l Sflor, 8 for short. The Holder

semi-norm is estimated by the Besov—Holder embedding, which is a corollary from Garsia—Rodemich—
Rumsey inequality.

LEmMA 2.1 (see Friz & Victoir, 2010, Corollary A.2) Letg > 1, @ € (é, 1) and f € €([0, T];]Rd).
Then there exists a constant C = C(«, g) such that forall0 < s << T,

q | fu = H 1
1, s < // M auan

Letf € € ([s,t]; R) be B-Holder continuous on [s,¢#] C [0,T]with1/2 < B < landg: [s,f] > R
be a step function defined by g, = g1, + ZZ;(I) 8k1(zk,zk+1] withs =1, <t; <--- <t, =t The
integral of g with respect to f can be defined as the Riemann sum

/[grdfr = nilgk (ftk+1 _ffk) :
§ k=0
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For 1 — B < a < 1, according to fractional calculus (see e.g., Zihle, 1998, Section 2), the integral has
the characterization

t t
/ g, df. = (—1)* / D% g,D;"“F, dr. (2.1)
N N

Here (—1)* = ¢™™* F, := f, — f,, D% g, and D!=*F, are fractional Weyl derivatives of the order «
and 1 — «, respectively:

1 g "og. -8,
(Dss8)y F(l—a)((r—s)”“ = wetT d”)’
-
ot S (o] )
@ \G—ni—= (- >2 z

2.2 A priori estimate for the solution and iterated integrals

In the sequel, we denote by ‘gév (R™; RM) the space of bounded and N-times continuously differentiable
functions V : R — R™ with bounded derivatives.

The following lemma shows the well posedness of (1.1). Since almost all sample paths of X are
B-Holder continuous for any 8 € (0, H), it implies that the solution Y is continuously dependent on the
driving noises in Holder semi-norm. The numerical solutions proposed in this paper will be shown to
possess a similar property in Section 4.

LEmMMA 2.2 (see e.g., Friz & Victoir, 2010, Theorem 10.14) Let 1/2 < 8 < H. If V € ‘fbl (R™M; Rm*d)
then there exists a unique solution of (1.1) satisfying almost surely that

1
IYll5 < C(V. B, T)max{nxuﬁ,uxn /'3}

1
1Yl < Iyl + C(V, B, T) max |||X||,3, Ix11,” ]

where ||Y] o, = up{|Yu|, 0<u< T}. Moreover, for some Cy > 0 and 0 < s < ¢t < T such that
IXlglt — s)P < C o» the estimate can be improved to

1Yl < CV, B, T, C)l X1l p-

Several estimates for the Lévy area type processes and iterated integrals of X are introduced in the
following lemma, which plays an important role in the error analysis for numerical schemes.
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LEMMA 2.3 (see Hu et al., 2016b, 2017) Denote t;, = kh, k = 0,--- ,n with h = % andn € N+. Let
X,1 = t and X,z, cee ,X;i be independent fBms with H > % Then it holds that for 0 < 1; < i < T and
p=1,

il te+1 S 1 U1 1 1
Z[/ / dXSdX?—/ dXidX?” <Cly— PRy @)
k=i t 7 t s Lr(82)
J-1 ley1 S fe+1 Ll

[/ / dx! dx? —/ dx! dxf} < Clty— 12112, 2.3)
k=i tx tk 173 s Lr(£2)

where C = C(p) above is independent of n. Moreover, for any /;,--- ,l\» € {1,--- ,d}, it holds that

j_l Tr+1 uj Uy’ lN/ ; /
> Xy, - - dx2 ax’
k=i 179 Ik tr

where r = N"H+ N —N" —1when N" =d{l; : [, # 1} iseven, r = N"H + N' — N” — H when N" is
odd and C = C(p) is independent of n.

< Clty — 1121, (24)
LP(£2)

In particular, if NV = N” =2thenr =2H — 1 < 2H — % This implies that the convergence rate of
the first-level iterated integrals of X in the form of (2.2) is higher than that in the form of (2.4). We will
use the next lemma to connect the convergence rates above for iterated integrals of X with the numerical
erTors.

LeEMMA 2.4 (Hu et al., 2016b, Proposition 8) Let f be a f-Holder continuous stochastic process in
L (2)with§ <p <Handp > 1, ie,

[ ||fv _fu”LZﬂ(_Q)
p —

i X ,0<u<v<T]<oo.
V—u

If a sequence of stochastic processes {gn}neN+ satisfies g, (t;) = Z;;lo &, and
1
”gn(fj) _gn(ti)||L2p(g) < C|tj -2, v0<1 < L <T,

then

1
gcm—mi v0<q<5<1
Lr(£2)

j—1
> fubux
k=i

All constants C = C(p,f) above are independent of n.

3. Strong convergence rate
For a numerical scheme we apply the uniform partition of the interval [0, 7] with step size h = %
neN+ and denote t;, = kh, k =0,--- ,n.
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3.1 Runge—Kutta methods

Consider an s-stage Runge—Kutta method applied to (1.1):

Ytr/lml =Y, + Za,jV( tk+1J)AXk’ 3.1)
lk+1 =Y, + Zb V(Y o) A (3.2)
. d
withi,j = 1,---,8,k =0,---,n—1, AX; = th , — X, € R and Y,’(’) =y € R™. Here YI’ZH i
i=1,---,s,are called stage values
If the method is an implicit one, such as the midpoint scheme, the solvability of (3.1) and (3.2)
should be taken into consideration. For the classical case with H = 1/2 the increment X, — X, is

usually replaced by ¢ /A, with ¢ being a bounded truncation of an (0, 1)-distributed random variable.
However, for the case H € (1/2, 1) considered in this paper, the covariance function turns out to be more
complicated, which makes it more difficult to get the error of the truncation. To avoid this we show that
the solvability of implicit Runge—Kutta methods can be obtained without using the truncation technique
if the coefficients are assumed to be bounded.

ProrosiTION 3.1 IfV € Cé? (R™, ]R’”Xd), then for arbitrary time step size 2 > 0, initial value y and
coefficients {a”, 2 i,j = 1,---,s}, the s-stage Runge—Kutta methods (3.1) and (3.2) has at least one
solution for every w.

Proof. Fixw e £2,h>0andY; € R™.
LetZ,---,Z,eR"and Z = VAN ,ZST)T € R™. We define a map ¢ : R — R™ with

P2 = (2)], - 0D,

N
02)=2-Y - > a;V(Z)AX (), i=1,--- s
j=1

It suffices to prove that ¢ (Z) = 0 has at least one solution, which implies the solvability of (3.1) and thus
the solvability of the Runge—Kutta method. Let ¢ := max{|aU| i, j=1,---,8},v:= SUP, V)l
and

R = /s|Y} |+ sv/scv| AX ()] + 1.
If |Z| = R then
S

22 =721 (2, -V} = D a;V(Z) AXy (@)

i=1 j=1

> |Z| (1Z] — 31}, | — sv/scv| AX; (w)]) > 0.
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1614 J.HONG ET AL.

We aim to show that ¢(Z) = 0 has a solution in the ball By := {Z : |Z| < R}. Assume by
contradiction that ¢(Z) # 0 if |[Z] < R. We define a continuous map i by ¥ (2) := ﬁj’((zz))l Since
Y : By — Bp, ¥ has at least one fixed point Z* such that Z* = y(Z*) and |Z*| = R. This leads to a

L 12 Tox _ _ Rp@ZH'Z* i
contradiction since |Z*|* = ¢ (Z*) ' Z B < 0. Therefore, ¢ has at least one solution. [

To derive order conditions on coefficients of Runge—Kutta methods with the strong convergence rate
2H — %, we first construct the continuous versions (3.3) and (3.4) for the Runge—Kutta methods (3.1)
and (3.2), taking advantages of the stage values Y; ;- Denote [1]" := 1, | fort € (#,1,,]. In particular,

t =t if and only if t = [¢]" for some k = 0, - - - , n. The continuous version reads
Y= Yo mvo +Z/, VO agV(YignpdX,, i=1,---s, 3.3)
S t
Yii=y+ > /0 bV(Yin ) dX,, (3.4)
i=1

where s V t := max{s, t}. Then the error is decomposed into

t t
Y,—Y;’=[ /0 V(Y dX, - /0 V(Yf)dxs]

t
+ [ / V(Y™ dX, — / Zb V(YT )dXX}
0

=:L +R,.
For the first term the Taylor expansion yields
t t
L= / V(Y dX, — / V(YY) dX;
0 0

d t 1
= Z/ / VV,(0Y, 4+ (1 —0)Y") (Y, — Y") do dX_.
0 JO

For the second term, fix any r = [f]", we have

R,:/ V(Y dX, — /va Vi) dX,
nt/T—1

Z /tk+1 [V(Y") _ Zb V( . )]dX
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Fori=1,---,s,q=1,---,m, denote by ¥;"! and an the gth component of Y}' and Y” We apply the
Taylor expansion to V(Y;Lr ) at Yy and at Yy o respectlvely, then

v(ve.) =V / Za v(eve, .+ a—ovr) (vid - vie) do
and
vyt )=v Za v(eyr .+ 1 —-6)Y" Y™ —yM ) do
Tkt151 fk+1 Tt 150 Tiet1 Ti150 Tt 1 ’

where 9, denotes the partial differential operator with respect to the gth variable. For simplicity we omit
the range of indices in summations in the sequel. Let n € [0, 1], then for any s € (#,#; 1l

V(Y")—va(zkﬂz)
=n[V(Y§') -2y (y;;)}
o o (00 @ -om) (1, ) @9
+(1—77)[ va( )]

—qa —n)Zb,./ o,V (ovn, .+ =0y ) (ved = vid) do
iq
=R +nR2 + (1 — )R> + (1 — R,

Applying the chain rule and (3.4) to V(Y}), we get

Rl =v(m — ZbV(Y"
[ )+Z/ 0,V (v bV (Yi,,) qu] WAL
= [vom -+ Xavom [Cove () e8] - Sy )
q,i i
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where E! := Dadid le [f[k d,0,V(Y))by % (Y” L dXy ] b;VI(Y"  .)dX, represents the remainder

term of R!. Therefore, we propose the first COIldlthH

tkll

to obtain

tkt1 Tkt 1 Tk+1
/; R!dX, =/{ >a,v (¥ / bw( " 1l) qudXS—i—/ E!'dx,. (3.5)
k k q.i

Ik

Similarly,

l‘k+1 tr+1 tht tir 3
[ / Z 9 V tk-H) / b va ( fet 1 l) dXM dXs +/t Es dXs (3.6)
k

k

) dX,. For R? and R? using

Tiet-151

with 3 = X o S [ 0,0,V 00k VI (7 dX, | bver;
the definitions from (3.1) and (3.2) that

n n __ n
YIA+1 i Ylk - Zaijv (Ytk+1J) AXp

YZH i er1l<+1 = Zb V( tk+1J) AXp + ZaUV( lk+1J) AXp
we have
Tit1 Ti+1 Tkt1 41
| R [T S (1) [ v () axJens [T B 6
Ik 173 179

iq

1k+1 Tit1 Ti+1 Ti41 4
A / > b,V ,kﬂ,)[/tk a;—bpve (ve,,) dXM} dXSJr/;k E*dX,.

i,q
(3.8)
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The remainder terms E% and E? are defined by
1 1
E=3 bi/o [/0 0,0,V (@0 + (1 —oYye, +00=011) 0 -1 (1, - ) de’]

i.q.q9'J
I 1 N
Uf agv? (Vi) qu} as,
k

1 1
=Y bl./o [/0 0,0,V (@0 + (1 —omye, +oa—oxs Ya-o (v, ~vi) d@/}

i.q.q'J
Tkt 1
[ / (az—bpve (¥i,,) qu:| do.
173

Yand V(Y )at Yt’i in (3.7) and (3.8), and choosing

Te+14

Applying the Taylor expansion to both V(Y

ey 1.0
n= % we propose another condition

S S
Db Dibj—2a;) =0
i=1 j=1

such that

Tet1

m_ s S Tkt 1 Iy
ZZbiZ/ aqV(Y;;)/ azVI(Y?) dX,, dX, +/
1, 179

g=1i=1 j=1"% i

This implies that the second-level iterated integrals of X in (3.7) and (3.8) vanish. Therefore, the leading
order term of R, is shown to appear only in (3.5) and (3.6), which is in the forms of (2.2) and (2.3). More
precisely, recalling n = % and applying the Tayor expansion again to both V(Y7) and V(Y7 ) at YZH—IJ
in (3.5)—(3.6), we derive that the leading order term of R, is

nt/T—1 m

1 S kel S
lead __
Rl =2 3 33| [ o () v (v) exax

k=0 g¢=1 i=1
Tk+1 teg1 . ; )
_/rk /y %V (Y’kﬂﬂ') 4 (Yrm,i) dx, dXs] (3.9)

Note that the remainder R, — R/* contains the third-level iterated integrals of X in each interval (;, #;., ]
in the form of (2.4).

Combining the two conditions above we obtain the strong convergence rate for the Runge—Kutta
methods, whose proof is postponed to the next section.

Ti+1
aqV(Y;;)/ (a; —b)VI(Yy)dX, dX, = 0.
173
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THEOREM 3.2 Suppose V € ;) (R™; R™*?) and H > 1/2. Denote ¢; = >'5_; a;;. If it holds that

S S
Dhi=1 and > bc;=1/2 (3.10)
i=1 i=1

then the strong convergence order of Runge—Kutta method for (1.1) is 2H — % More precisely, there
exists a constant C independent of # such that

sup |Y, — Y7 <SCHH=Y p>1, G.11)
t€[0,T] LP(R2)
where h = % and Y} is defined by (3.4).
REMARK 3.1 Given th, k= 1,---,nas the information of fBms the best approximation for the solution

Y, is the conditional expectation £ [Yz | X,1 , X,
upper and lower bounds of

X,ﬂ]. Neuenkirch & Shalaiko (2016) derive both the

2’...’

w3 |y, — B [Y, X, X

PR, ¢

(£2)

for a two-dimensional linear equation, whose solution is the Lévy area of fBms. This implies that the
optimal strong convergence rate of implementable schemes for equations driven by multi-dimensional
fBms is 2H — 5 L in general.

REMARK 3.2 If the diffusion term satisfies the following commutative condition
Zavl => 9V, 1<I<I<ad,
q

then Fubini’s theorem shows

nt/T 1

Rﬁ“’d Z ZZb |:3 Vv ( fett 1) Vq (Y;ZH t) 3,1 ( ler1 1) Vq (Yfrllc+1 l)]

k=0 g I#1
ley1 s T+l fletl
[/ / dudXé—/ / dudXé}.
173 1 1 K

As a result the strong convergence rate in (3.11) is H + % according to (2.3). This indicates that a large

class of numerical schemes can achieve the best probable rate of convergence H + % for the scalar noise
case proved in Neuenkirch (2008).

1202 I4dy 0z uo }senb Aq 9661 /8G/0.G1/2/ 1 v/o101He eulewl/wod dnoolwapede//:sdiy Wolj papeojumoq



CONVERGENCE RATE FOR SCHEME TO SDE DRIVEN BY FBM 1619

REMARK 3.3 If the drift and diffusion terms satisfy the commutative condition

Dvvi=> 0V, V], 1<i<l<d,

then Rﬁ"“d = 0 and the strong convergence rate is 2H based on (2.4). The order is optimal and reasonable
in the view that the order condition above coincides with the second-order condition for Runge—Kutta
methods in the deterministic case by taking H = 1 formally for X, = ¢.

REMARK 3.4 As H goes to % the convergence rate in (3.11) tends to % in general cases and to 1 in
commutative cases, respectively. This is consistent with classical results for Stratonovich SDEs driven
by standard Brownian motions.

REMARK 3.5 If the Hurst parameter of X! is H,l=1,...,d satisfyingH; > --- > H; > %, a similar
procedure as in Lemma 2.3 and Theorem 3.2 leads to the strong convergence rate H; | + H,; — %

3.2 Simplified step-N Euler schemes
Fix an integer N > 2. The simplified step-N Euler scheme applied to (1.1) is

Ly I
AX)Y - AX
k k
Vi =Yy + Z 2 . Y ) — (3.12)
w=1 lw l 1 =1 :
where ¥ is identified with the first-order differential operator Z?:l qu » —azq, [ =1,---,d. Similar

to the Runge—Kutta method, we construct a continuous version for the simplified step-N Euler scheme.
For t € (#,1;, ] define [t], := 1, and for t = O define |¢], := 0. Then a continuous version of (3.12) is

l 1 I I
(Xw _Xw)(XZ _XZ )
[s1" Ls]n [s1" Ls]n I
_y+/ Z W VAT o dxh. (3.13)
Wk,
For simplicity we take N = 2 in the following. Indeed, our approach gives the same strong

convergence rate 2H — % of simplified step-N Euler schemes for N > 2. We decompose the error by

t 1
Y, - 1! =[/O V(Y,) dX, —/0 V(Yg)dxs] + [/ V(Y" dx, — / vy, ) }

=:L +R,
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If we apply the Taylor expansion V(Y7) at V(Y [’S 1) directly, the corresponding leading order term of R,

contains second-level iterated integrals of X in the form of (2.4), i.e.,

nt/T—1

Tk+1
Rlead Z Z/ / a Vl( tkl tk l) Xm Xm

k=0 gl

| T

Tie+1
:_ Z z /Jr / 8Vl( tkl tkl

k=0 gLl "

nt/T 1

Tet1
5 X | [ [ avoovi

k=0 gl "

| T

et 1 T+l [l
I 3yl
7é E E / / a Vz( 1) Y}il)dX dX; / / a Vz( 1) (

k=0 gLl "

t= 11",

/ Tl flerd . ;
dX / / 8Vl( tkl (,kl)dXdX}

’ l Te+1 fTkt1 . ;
tkl)dXdX / / aVl( tkl (tAl)dXdX]

i

4 1
y!')dx! dX}

where the Fubini theorem is used in the second step. Roughly speaking it yields the convergence rate

2H — 1.

To gain a sharp convergence rate, our goal is to show the corresponding leading order term of the
error is in the forms of (2.2) and (2.3). The key idea is to compare it with the following 2-stage Runge—

Kutta method (the Heun’s method)
Zn _ Z}'l

thr1,.1 T T

n2=7Zn+V(Z00) A%
! —Z"+1V zZ! AX+1V AX
Tkt 1 o Tit1,1 k ( Tit1, 2)AX,

which satisfies condition (3.10). We introduce two similar stage values for Y, tk+ %

n __yn
YIA+1 1= Ytk’

n _yn
Vi a=Ye V(Y ) AX,

and define the continuous versions:
n __ n
Yt,l - Y(Z—h)VO’

t
Ynz = Y(t h)v0 +/ 14 (YFH" 1) dX;.
(t—h)Vv0

Notice that

(3.14)

(3.15)
(3.16)

(3.17)
(3.18)

V(Y ) =V [/ >,V (QY; L+ —Q)YZ) de]v;(yg)Axg

q.l
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and
3V, (QYI’;H’Z + (- e)Y{;)

=9V + > [/ vi(e'love, .+ -0l +a-6)r;) de/} (ovii o ax))

/ l//

=1 0,V,(Y!) + G (0).

We have

1
vi(ve, o) = Vi) +Z[aqv,(yg)+/o GZ’,,k(O)dG}qu,(Y,’;)AX,IC

a.l

YR+ >0,V (v Vi (v AX,Q+Z[/ GZ,,,k(Q)dH]Vl‘? (v]) AX!

q.l q.l
+Za v, (v v Y")AX’ -
q.l

Therefore, the simplified step-2 Euler scheme is rewritten in an implicit way:

y" —Y"—i—lV AX—}—IV AX, + ~ ZG AX! 3.19
Tk+1 ) lk+1 1 ko fk+1 2 k Ltkr1 =k (3.19)

e 1
Y{’=y+§/0v( ) 4X!+ 2/\/(1%,,2 ) axt+ 5 Z/ e dXL, (3.20)

where % > fot GZ [s]n ng contains third-level iterated integrals of X.

Based on (3.19) and (3.20), and arguments in Subsection 3.1, we obtain that the simplified step-2
Euler scheme has the same leading order term as scheme (3.14)—(3.16), i.e.,

nt/T 1

lead _ flet q (yn ! 1yl
R’ [ / / 0V (Vi) Vi (v, ) axt axt

k 0 iqll
S 3 V Vq Y" dx? dx’ 3.21
l lk+ll Tt 1,0 u = [+ (3.:21)

Thus, we get the same strong convergence rate for the simplified step-2 Euler scheme as in Theorem 3.2.

THEOREM 3.3 If N > 2,V € ‘K}f\’ +1 (R™, IR’"Xd) and H > 1/2 then the strong convergence order of
simplified step-N Euler scheme for (1.1) is 2H — % More precisely, there exists a constant C independent

1202 I4dy 0z uo }senb Aq 9661 /8G/0.G1/2/ 1 v/o101He eulewl/wod dnoolwapede//:sdiy Wolj papeojumoq



1622 J.HONG ET AL.

of n such that

<=3, p>1,
1P(2)

sup |Y, — Y/
te[0,T]

where h = % and Y7 is defined by (3.13).

Based on Theorem 3.3, we consider linear interpolation of Y{;{, ie.,

i . t—1t,
YR e (Y =) VI (Gt (3.22)
Then
sup |Yt _ Ytn,lineur| < sup |Yt _ Yl"| + sup |Ytn _ Y[n,linear|
t€[0,T] LP(£2) t€[0,T] /() 1€[0,7] @)
2H-1 t— 1]
SCh™7 2+ C| sup (X, — X, — —, n (XM" —an)
1€[0,T] )

T
< C(hZH_é +hH,/10g Z), p=1,

where the last inequality follows from Hiisler et al. (2003, Theorem 6). This result gives an answer to
a conjecture in Deya et al. (2012) for the simplified step-2 Euler scheme when H > % Indeed, our
approach to determining the leading order term of the error of the simplified step-2 Euler scheme is
available for general schemes constructed by second-order Taylor expansion. As a consequence, these

schemes share the same strong convergence rate 2H — %

REMARK 3.6 Our result indicates that the simplified step-2 Euler scheme is superior to the classical
Euler method (Mishura & Shevchenko, 2008), whose convergence rate is 2H — 1, H € (%, 1). Compared

with the optimal convergence rate y of the modified Euler scheme Hu et al., (2016a) where y = 2H — %
when H € (%, %), y =17 whenH = % and y = 1l when H € (%, 1), the simplified step-2 Euler scheme
has higher convergence rate for H € [%, 1).

4. Proof of Theorems 3.2 and 3.3

In the following we establish the continuous dependence of the numerical solutions on the driving
noises for Runge—Kutta methods in Section 4.1 and for simplified step-N Euler schemes in Section 4.2,
respectively. In Section 4.3 we combine the continuous dependence with the leading order term of the
error to prove the main theorems, Theorem 3.2 and 3.3.
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4.1 A priori estimates for Runge—Kutta methods

For f € € ([0, T], Rd) we introduce the discrete Holder semi-norm

Iy —ful

( )B,s<u<v<t,u:ﬁﬂ”,v:{v]"]
V—u

I flls,s,p.0 := sup H

anduse || fllg, :== I/ lo7,gn for short.

LEmMA 4.1 IfV € %bo(Rm;Rde) then foranyn € N, and 1/2 < 8 < H, ||Y.”||ﬁ,n and ||Y,”’,.||ﬁ,n are
finite almost surely, i = 1, - - - ,s. More precisely

1Y g, < Cd,m,n,c,v,9)|IX]lg < 00, a.s.,

||Y"||ﬁn Cd,m,n,c,v,9)|X|lg <00, a.s.,

with ¢ := max{|a i, 10, 2i,j=1,---,s}and v := SUPycRm [Vy)l.
Proof. Recall that

—y+Z/ bV(Ylin ) dX,,

Yr =Y h)v0+2/( o a;V( T ) dX, i=1,---,s.

Due to the boundedness of V we have that for u = [u]" =, and v = [v]" =1,

s k—1

<Zz|b|‘v( pr1s l) Ip+1 _Xt1)|
i=1 p=l
s k-1

<30l |V (¥, ,) [ 1 H,

i=1 p=l
which implies

Yo ¥y _CWdmn.c, v.8)[1X|| 4P

lu—vlf = lu—v|p

< C(d, m,n,c,v, S)”X”ﬂ'

The estimate for Y}, can also be obtained by a similar procedure. ]
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Inspired by Hu ef al. (2016a) we give the following two lemmas as a priori estimates for the
continuous versions (3.3) and (3.4). Further, Proposition 4.1 shows the bounds for the stage values Y_’fi
and the numerical solution Y” in terms of the driving noises in Holder semi-norm.

LEMMA 4.2 Let o, 8 and B8’ satisfy 1 — B < a < B’. Then for any s,¢ € [0, T] satisfying s < ¢ and
s = [s]" there exists a constant C = C(«a, 8, 8/, T) such that

n p
/(t )T 1/ (1" = [ g, dr < C(t — s)P TP

Cr—uwetl
Proof. Without loss of generality suppose 7 = 1. By the definition of [-]” in Subsection 3.1, we have

t r n __ n /S/
/S (t— r)”‘J”g*l‘K —({r(l_ ugl:ll) dudr

t |"|”77 n n B
= [ e / A" =107 gy
I I

§1141/n 5] (r — )+l
n_2 n_1 ﬂ/
=/t (t-r)”ﬂ‘l(/m ’ +/m ")—(mn_ ") ar
[5174+1/n 51 -2 ) r—wet
= 11 +12.

For the first term, since r — u > % and [F]" — [ul" <r—u+ %, we have

t |'r'|"7— n n\ B’
I, = / (t— r)aJrﬂ*l / M du dr
s1"+1/n I

S|t (r— u)a+1
n_2 ’ ’
< / AT Gl / O e
[s1"+1/n [s1" (r— M)OH_I

t
< c/ t— P — 5P ~*dr
[s1"+1/n

t
< c/ (t— PPl — 9f 2 qr
[s1"+1/n

< C@t—s)PHF
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For the second term

t -1 n_ ran)f
I, = / (t— r)o‘"'ﬁ—l/ M dudr
I [

S1n+1/n An-2 o (r—wet!

2\ 1\ ™
< C(t — 5)* A (—) / (r — "+ —) dr
n [s1"+1/n n

/

wip {2\ (t=s\ (1) "
<ca-o 1 (2) (. : )(;)

O

LEmMA 4.3 Let 8 and B’ satisfy B+8" > 1. Let g € ‘Kbl R™; R), x € €(s,1];R) and z € € ([s, t]; R™).
If ||x|lg and ||z]l g, are all finite for any n € N then for s = [s1" and t = [£]",

t
‘ / gz dX,| < Cg. B, B DI + Izl g0t — 9Pl g1 — )P
N

Proof. Considering the equivalence of norms in R” we suppose m = 1 without loss of generality. Let
a satisfy @ < 8" and 8 + o > 1. According to the characterization of the integral (2.1)

' t
/ 8(zpn) dX, = (—1)“/ D?+g(zrr]n)Dtl__“ (x, — x,) dr.
S N

8(Zmn)
(r —s)“

Combining the fractional Weyl derivatives, we have that for s < r < f,
" |g(zpn) — 8 )
Dg+g(Z"r"n) + / Ld fu] du
s

<C
( )
1 r |Z[r]n _Zru]n|
<C d
((r—s)a +/S (r—wer

1 (1 = 1)
<G Wt | )
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and

D} ~%(x, — x,)

! |xr_xu|
<( [ o)

< Clixllg (e = r)* 1

X, — X,
t—r)l-«

Using Lemma 4.2 we obtain

</
N

t 1 r (l-r-ln . |'u'|”)ﬁ/ ",
gC/s ((r—s)a lellspn / Wdu)nxnﬁ(t—r) +1 g

< CU A+ Nzl prnt — P xll gt — 5)P.

D?, g(z(n)D; "% (x, — x,)| dr

t
' / 8(zpqn) dX,

ProposITION 4.1 Let 1/2 < B < H.If V € %} (R™; R™*9), then forany n € N,

S

1
S Yllg < Cles.V.B.T) max[nxn,g, ||X||ﬂ/”],
i=1

S

1
> 1Y%l < syl + Cles, V. B.T) maxluxn,g, ||X||ﬂ/ﬂ],
i=1

1 1
17"l < Cles, V. B T) max[nxn,g, 117 ]

1 1
1Yl < ] + Cle.s, V. B.T) max[lleI ) e ]

where ¢ = max{laij|, ;| :i,j=1,---,s}.
Moreover, there exists some Cy > Osuch that 0 < s < ¢ < T and || X|| glt — )P < C, imply

N
DY s < Cles. V. B.T.Co Xl .
i=1

||Y‘n||5,t,ﬂ < C(C, S, V’ ﬁ? Ts CO)"X”ﬂ'
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Proof. We first take s, € [0, T] satisfying s = [s]" and ¢ = [f]". Lemma 4.3 yields

(t— h)vO t
n n n
v — Y, (Ym J) dX, + / azV (YW J.) dx,
(t—h)vO0
(s—h)Vv0 K
- b.v("n.)dX—/ agV (Vi) 4
/0 J [y r (smtpv0 U [ty r
S (t—h)Vv0 t
n
g Z / b V( rn, ) dX + ‘/ al]V (Y[r]nz/) er
s (t—h)v0
n n dX
‘/(s mvo Yo " ‘/(9 o' Vi )
S
SCE VBT [ 14 D 1Y palt = 9P | IXN (2 = 5)P.
j=1
Summing up above inequalities over i = 1,- - ,s and dividing both sides by (¢ — 5)#, we have

S S
DYl gppn < (Cless, V. B, T) V1) (1 D WY g pnt = s)ﬂ) 1115
i=1

i=1

S
=:C, (1 + D Y pat — s)ﬂ) X1l -

i=1
If n > 2T (2C,||X||5)"/? then there exist Ny € N, and N} := NI gych that
QC X~ < 2Ny <20C X5 P.

When ¢ — s = N, considering the choice for N, we get

S
DYl pa < 2C1Xl g

Whent —s > N,

l‘_
Z| Yil < ([ N]s}ﬂ) sup ZHY"ilrrmlﬂn Ny,

i=1 r=[r1"<t,— I j=1
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where [7] means the largest integer that is not larger than ¢. Then we obtain

T 1=F
ZIIY"II”M\ ( +1) 11Xl
1 1
<c(ixy®" + 1) 1x,

1
< Cmax [||X|Iﬁ, ||X||5/ﬁ]»

where the second inequality is from the choice of N|. If n < 2T(Q2C, || X]|| /3)1/ P the definition of Y
leads to

-1
n n T +ﬁ
Zw —Yul<ce—9 X1 4-

and thus

S
1
DYl < CIXI”

Then for 0 < s < ¢t < T, it holds that

1
ZMY"HW C||X||,9+Z||Y"||Wﬂ pn < Cmax[||xn,g,||xn,g/ﬂ].
i=1

Therefore,

1
IY%]l5 < Cle,s, V. B.T) max|||xnﬂ,nxu /ﬁ],

1
1Y%l < Il + C(e,s, V. B, T) max {nxnﬂ, IX| /’3].

Moreover, if Cy € (0,1/Cy) then for 0 < s < ¢t < T such that IXliglt — | < Cy, it can be
improved to

N
DY s < CCLL BT, ClIXll -
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Considering the numerical solution Y” since

/St bV (Yigng) dX,

S
SC 14+ DYl = 9P | IXN 5 = 5)P
j=1

S
vy <>
i=1

1 1
<C(es,V, B, T) max i X1l 115" ](r -9,
we obtain that

1 1
171l < Cle.s. V. p.T) max [nxnﬂ, X" ]

1 1
1Yo < Iyl + Cle,s, V, B, T) max [IIXII,g, ”X”ﬂ/ﬁ+ ]

and for 0 < s < 1 < T such that || X|| 4]t — s < Cy € (0,1/C)),

” Yn ||_y’t’ﬂ g C(C, S, V? ﬂ’ T, C()) ||X||/3'
(|

REMARK 4.1 Note that Fernique’s lemma implies that | ||X||1/§’||Lp(m <ooforanyp > land N € N ;
see e.g., Hu et al. (2016a, Remark 3.2).

4.2 A priori estimates simplified step-N Euler schemes

Using similar arguments in the proof of Lemmas 4.1-4.3, we obtain Lemmas 4.4—4.6. Then we obtain
the bound for Y”* defined in (3.13).

LemmA 44 If V e 4~ (R™; R then for any n € N, and 1/2 < < H, ||Y"||4,, are all finite
almost surely.

LEMMA 4.5 Leta, B and B’ satisfy 1 — 8 < o < B'. Then for any s,¢ € [0, T] satisfying s < ¢ and
s = [s]", there exists a constant C = C(a, 8, 8/, T) such that

' wipt [T, — Lul)P /
/s(t—r) +8-1 ’ Wdudrgl((t—s)ﬁﬂg.

LEMMA 4.6 Let B and B’ satisfy B + B > 1. Letg € €} (R™;R), x' € €([s,1];R), 1 € {1,--- ,d} and
z€C (s, t;R™. If IIXZIIﬂ, llzll g, are all finite for any / € {1,--- ,d},n € N then forw > 2, s = [s]"
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and t = [f]",

t
Ly Ly I} 1
‘/s 8 (b, —al,) - (35—, ) axl
<C@ BB T) (1 el = 7 ) Il o I 50— 57,

where I;,---,1,, € {l,--- ,d}.

Proof. Let®, = g(zmn)(xmn —le‘;'Jn) (xm,, _leer,,)~ Taking a suchthata < 8 and 8+« > 1 we
estimate the left fractional Weyl derivative of @ via
) \
/ = 7 du.

|D‘sx+¢r| ~

For the first term we have

(r— S)“

l LT\
<l ||x2||,3(;) (r—s)~.

For the second term we decompose @, — @, into

I I l 1} 13 l 1} 1}
[8(Zmn) a (xfrw" - frjn) (xrzrw" _xfrjn) —8(y,) (’CFA" =X, ) ( X _xLqun)]
I I 1 l I l I l
+ [g(zmn) a (xr3r1" _xfrJn) (xrzuw _xfwn) —8(y,) (xﬁﬂ" _xfan) (xrzuw _xfujn)]

Ly Ly I} I Ly Ly I I
+ [g(zmn) (xw - xLan) e (x(zuw - xLZan) — 8@ ,) (xm" - xLan) o (xrzuw - xLZan) ]
= Il +I2"' +IW’

We analyse each of them by

7\ "2
1 < Cllxh g ||x12||ﬁ(;) [(M" — [P + (Url, — LuJ,,)ﬂ],

T\PW=2)
L] < Cllx g - ||x12||ﬂ(;) [(M" — 1P + (Url, — Lan)ﬂ],

LT\
ot < Cll -||x2||ﬁ(;) [t = 11" + (17, = 1), ]
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and
I 1< Ly Ly b b
1, < (g(Zmn) - g(ZLan)) Xpgn = X, ) X — X,
Ly Ly ! I
s¢ |(ZLrJn = Zuy,) (xw - xLan) o (xﬁm - xLqun)
o , Bw—1)
<Cllzlly g (L) — Ll )P I 1l - ||x2||,3(;) :
Combining Lemma 4.5 and arguments in Lemma 4.3 we conclude the proof. O

PrOPOSITION 4.2 Let1/2 < B < H.IfV € ‘K;fV(R’”;R’"Xd), then for any n € N,
—1+1
||Y"||ﬂ < C(N,V,B,T)max [”X”ﬂ’ ”X”],;, 1+ /ﬁ]’
N-1+1
1Yl < Iyl + COV, V. 8, T) max[HXII,g, g /ﬂ].

Moreover, there exists Cy > O such that 0 < s << T and X1l glt — s)P < C, imply
1Y"1l,,.5 < CN, V. B, T, Cp) IXll 5.

Proof. Take s,t € [0, T] such that s = [s]" and t = [¢]". Lemma 4.6 yields

N
Y =Y SCN,V,B,T) D IXIEG = 9P [1+ 1Yl 5,0 — )]

w=1

N
=:C D IXIEE =P [1+ 1Yl gt — 9P,

w=1
since ||XIW||ﬁ e Ixh I < IXII%5. Dividing both sides by (r — 5)#, we have
N
1Y gppn < C1 D IXIE @ = PO D1+ 1Y, 5, — 9P].
w=1
If n > 2T(2NC, [|X||4)!/P then there exist Ny € N, and N, = 2L such that

QNG 1IX1g)~F < 2N <22NCIX] )77

When t — s = N| we get

ClIXIa— 9P < —
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which shows

N
1Yl g0 < 2C D I (2 — $)POD.

w=1

Whent—s > Ny,

t—s
¥y — 7| <C([ N }+1) SUp (1Yl VT -

r=[r1"<n-1

We derive that if n > 2T (2NC, ||X|| ﬁ)l/ﬂ,
N—1+1
1Y" 5, 4 < Cmax [||X|| g Xl /’f‘].

Ifn <2T(2NC, ||X||ﬁ)1/ﬁ the definition of Y” leads to

1/8
1Y g0 < CIXIG".

Therefore, for0 < s <t < T,
N—1+1
1Y"llg,p < CIXIE + 1Y rgyn 1), pn < € max Inxuﬁ, X113 /’5],
which we conclude the estimates

—1+1
||Y"||/3 < C(e,s,V,B,T) maxI||X||B’ ||X||1/;7 + /ﬁ]’

N—1+1
1Yl < Iyl + Cle,s, V. B, T) maxiuxnﬁ, D /”}.

Moreover, if Cy € (0, (C;N)™") then for 0 < s < ¢ < T such that [|X||g|z — 5| < Cy, we obtain

1"l < CN, V. B, T, Co) Xl .
O

The continuous dependence of two-stage values Y f’l and Y’ f’2 introduced by (3.17) and (3.18) follows
from Proposition 4.2.
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PROPOSITION 4.3 Let 1/2 < B < H.If V € ¢ (R™; R™*9) then for any n € N,
N—1+1
151l < COV. V. B, T) max [nxnﬂ, X1~ /ﬂ],
N—-1+1
1Yo < IyI 4 CN, V, B, T) max [nxnﬁ, Xy~ /ﬁ].

Moreover, there exists some Cy > O such that 0 < s < < T and ||X||ﬁ|t -5 < C, imply
Y505 < CN, V. B, T, Co)lIXll 5.

4.3 Proof of Theorems 3.2-3.3
Now we are in position for the proof of our main theorems, Theorems 3.2 and 3.3.

Proof of Theorem 3.2. Notice that condition (3.10) deduces the expression of Rlead (3.9, Together with
Proposition 4.1, Lemmas 2.3 and 2.4 lead to

|Rlead — Rlead |, < Clt—) P73, ¥p =1, 1=[1]", s =[s]". (4.1)

(£2)

Similarly, based on (2.4) and Hu et al. (2017, Lemma 6.2), we have
| R, = RE“D) = R, = R ) < Clt = P Vp>1,0=11" s = [s]"

Recall that
t 1 t
L= Z/ / VV,(0Y, + (1 —0)Y") (Y, — Y do dX! = Z/ shr, — ymydx’.
| 0 J0 / 0

We introduce two linear equations defined through Sﬁ. Let matrices A" and I'" satisfy the linear
equations

t
A;’=1+Z/O stamrdx!,
1
! 1) 1
17!:1—2/0 rrstaxi,
1

where I € R™*™ denotes the identity matrix. Using the chain rule one can check that A" = [.
Applying Proposition 4.1, Remark 4.1 and Hu ef al. (2016a, Lemma 3.1 (ii)), we obtain

max[nnA”uqu(m,||||A"||,3||m),||||F"||oo||u(m,||||F"||ﬂ||y(g) <C Vpxl. (42
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Since Y, — Y}' = A} fol I dR the Holder inequality implies that

Y = Yl oy < H ||A”||oo” / " dR, H
0 oo I LP(£2)

| [ s
0

. 1 .
Define f}' := n?f—2 fot I dR;. It suffices to prove that ||[| /" [l ll ¢y < C. forany g > 1.

For 0 < s <t < T if there exists some k € {1,--- ,n} suchthat0 < s < 1, <t < T, we decompose
[ r*dR, into

t [s1" [2]n t
/Fu”dRuz/ Fu"dRqu/ Fu”dRqu/ I dR,
Ky N [S]" UJn

[s1" Lt]n Lt pu t
= / I dR, +/ I, dr, + / / dry' dr, +/ I, dR,.
s [s1" [s1m L L]

For the first term, combining the definitions of Y} and R,, we have

AL AL
/ ' dr, = / ri[venn = v (V) | X,
N N i

, Vp=1l

< MA™ sl 22y
L2”(Q)

oo

By the property of Young’s integral (see e.g., Lyons et al., 2007, Theorem 1.16 and Remark 1.17), we
obtain for% <B<H,

[51”
/ I'dr,
N

<CB. DXl gl 51" = s1°

(I - Sovot]|_+|rvom - Sovor.)|
<CB. V. DX 51" — sIP

[ D U e + I DY = ¥ o + DI o Y7 = Yl ]
i i

where we use the assumptions V € %”bl and D ; b; = 1 in the last inequality. It follows from (3.1) to (3.4)

that
[s1"
‘ / r}dR,
N

< CB. V. DIXNGUT oo + 1T )I[s1" = s1° 1P

1_ _ _ _1
< CB V. DIXIGUT oo + 1T )l — |7 72HPp=CH=2),
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For the second term, according to (4.1) and (4.2) and Lemma 2.4, we have

1
< Clt—s|2.
L4(£2)

For the third term, combining the definitions of I}* and R,, we know that it contains the third-level

iterated integrals of X. Then
Lt]n u
n* / / dr*dr,
[s1" Jluln

For the fourth term, using similar arguments as the estimate for the first term, we get

t
[ e
Lt]n

Iff, <s <t <t itholds that

t
/ I dr,
s

Therefore, for 0 < s < T and g > 1, we obtain

1
< Clt —s)2.
L4(£2)

1_ _ _ _1
S CBV.DIXNGUT o + 1T )|t — 5|2 72HP = CH=2),

1_ _ _ _1
< CB V. DIXNGUTM o + 1T )t = 5|27 2HF = CH=2),

1 1_ _
I = FM ey < C(1t— 5|2 + |t — s|272H=P),

For g > 4 we take B such thatmax{%,H— ziq} < B < H and take o = %

such that ¢ € (}1, %).
Lemma 2.1 yields that

1
q
B[11%] < B[]
TE[l ~ 19
// T 1

T ;4 __ _ —2q(H—B)
3 s|2 + |t s|2 q
/ / |1+qa dsdr

O
Proof of Theorem 3.3. According to (3.21) we have that R%% for the simplified step-N Euler scheme
is the same as that in (3.9) for the Runge—Kutta method in the proof of Theorem 3.2. Then similar
techniques yield

| Rleed — Rlead <SCU—s)2KH=2 Vp>1,1=[" s=[s]"

Lr($2)
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and

| R, — Rleady — R, — Rlea)| ) < C—s)hH, Vp>1,1=[" s=[s]"

-+ Simpeuler2
~<Midpoint
RK4
--Order 1.1
10° 107 107
Stepsize
(c) H=0.8

J.HONG ET AL.
10°
/A/V/“ 107 A i
//// /A/r"/
T S 10
- E ,//r
-+ Simpeuler2
-+ Midpoint 10° -+ Simpeuler2
RK4 ~Midpoint
--Order 0.7 RK4
. . : ) --Order 0.9
X ; . 10" : .
10° o 10" 10 0 o
Stepsize Stepsize
(2) H=0.6 (b) H=0.7
10"
/A

) -+ Simpeuler2
~Midpoint
) RK4
--Order 1.3
1% 102 10"
Stepsize
(d H=09

FiG. 1. Maximum mean-square error (MMSE) vs. step size.

Repeating the arguments in the proof of Theorem 3.2 we conclude the result.

5. Numerical experiments

In this section we give an example to verify our results. Consider

YOZS,

dY, = 3sin(Y,)dt + 3 cos(¥,)dX? + 3sin(¥,)dX?,

1€ (0,1],
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where X? and X are independent fBms with Hurst parameter H > % We compare the following three
numerical schemes: simplified step-2 Euler scheme and two Runge—Kutta methods with coefficients
defined by the Butcher tableaus:

1/2]1/2
1 b)
0
1/2 172
121 0 1)2

110 o0 1
1/6 2/6 2/6 1/6

In other words the first Runge—Kutta method is the midpoint scheme and the second one is a four-
stage Runge—Kutta method satisfying conditions for order 4 in deterministic case. Both of them satisfy
condition (3.10). Theorems 3.2 and 3.3 indicate that their maximum mean-square convergence rate is
2H — %, ie.

2? 9

1
< etz
12(£2)

5

max |Y, — Y7|
H I<k<n o T

which is illustrated by numerical results in Fig. 1. For each scheme the numerical solution with time
step size h = 2713 is taken as the approximated ‘exact solution’ for comparison and the average of 1000
sample paths is used as an approximation of the expectation.

REMARK 5.1 As mentioned in the introduction the convergence rate 2H — % is optimal since only

increments of fBms are used in the methods under study. This fact is illustrated in Fig. 1 that the four-
stage Runge—Kutta method shows the same rate as the other two schemes. It is still an open problem to
construct numerical schemes with strong convergence rates higher than 2H — %, in which case efficient
simulation of iterated integrals of multi-dimensional fBms should also be taken into consideration to
make schemes implementable.
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