Outline of MA265

Instructor: Xu Wang

This is an outline of MA265 Linear Algebra. All the definitions can be found in the

textbook and are omitted here for brevity.

1 Chapter 1

1.1 Systems of linear equations

e Def: linear equation
Ex: Are they linear equations?

V3x, +ay =1, V1 + T =2, T1T2 + w3 = 1

e Def: linear system

Ex: Construct a linear system according to the following problem: An unknown
amount of chickens and rabbits were locked in a cage. The total amount of them
is 6, and there are 16 feet in total. What is the amount of chickens and rabbits,
respectively? (Hint: assume that there are x; chickens and x5 rabbits.)

1+ 22 =0 Collect all coefficients | 1 1 6 .
augmented matrix 1
To get the solution
Tp = * corresponding matrix 1 0 =

we only need to transform the matrix in (1) into the form in (2).

Elementary row operations
1. Interchange two rows.
2. Multiply a row by a scalar.

3. Replace a row by the sum of itself and a multiple of another row.

11 6 116 116 L 04] =4
2 4 16 02 4 01 2 01 2 O



1.2

|

D
2

—6—
L6y 116 = = . w2 Infinitely many solutions
2 0 0 T 1s free

+1x9=06
[1 1 6]N[1 1 6}<:>{x1 IS—Q No solution

Def: solution/solution set

1. only one solution 2. infinitely many solutions 3. no solution

Def: row equivalent
Properties: systems are equivalent <= corresponding matrices are row equivalent

<= they have the same solution set

Row reduction and echelon forms

Def: Nonzero row/column

Def: leading entry

Def: echelon form (3 conditions)/reduced echelon form (5 conditions)

Ex: Find echelon forms and the reduced echelon form of the original matrix:

113
~101 2
000

S NN O

0
2
1

N W O
W = O
2
S O N
S =N
SN W
O W
S W N

10
~ 101
0 0

Thm: Each matrix may be row equivalent to more than one matrix in echelon form,
but is row equivalent to only one matrix in reduced echelon form.

Def: pivot position/pivot column

Thm: A linear system is consistent if and only if its rightmost column is not a pivot
column.
Ex: Recall examples in Lesson 1.1:

1 6 D 0 4
@ 16 0o @O 2

} the rightmost column is NOT a pivot colum, so consistent
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[ %) (1@ 6 } ~ [ %> (1) g } the rightmost column is NOT a pivot column, co consistent

{ %) 1 é } ~ [ %> 1 } the rightmost column is a pivot column, so inconsistent

e Remark: For a linear system:
consistent + no free variable <= only one solution e.g. the first matrix above

consistent -+ free variable <= infinitely many solutions e.g. the second one above

1.3 Vector equations

A linear system has the following equivalent expressions.

1 1 6 row view 1+ a9 = 6 column view 1 J— 1 Ty — 6
2 4 16| ° 21, + 4zy = 16 e | T4 | 16

e Def: (column) vector

1. Vectors in R?: u = [ul ], v = {Ul }
U9 (%)

(1) u=v if and only if u; = vy and uy = vy, e.g. [1]7& {2]

2 1
U + U1
2 —
( ) utv |: U2 + V2 :|
(3) cu= { cth }, ¢ is a scalar
ClU2
Uy
2. Vectors in R?: u= | us
Uusg
(31
3. Vectors in R™: u =
Uy,

Geometric description: Identify a geometric point (a,b) with a vector { “ } Four

b
vectors u, v, u + v and the origin could form a parallelogram.



e Def: linear combination

Ex: For the vector equation [ é } r1+ [ i 1 To = [ 166 } , we have already known its

. ry =4 .
solution That is,
Ty =— 2.

1 1 6 6 | . . o 1 1
4{2]—1—2{4]{16}, SO {16} is a linear combination of {2]and[4].

e Thm: Vector y is a linear combination of vectors vi,---,v,

<= The vector equation viz; + ---v,z, = y has a solution

<= The augmented matrix [ Vi oV, Y } is consistent
e Def: Given vectors vy, -« - , v,
Span{vy,---,v,} = {all linear combinations of vy,--- ,v,}
={avi+---+c¢Vy:c,- -, ¢, are scalars}
= subset spanned (generated) by vectors vy,---,v,

Geometric description:
Span{u} denotes a straight line

Span{u, v} denotes a plane

1.4 Matrix equations Ax =Db

e Def: product between A and x

1
1 2 3 1 2 3 14
Ex.[234L 2 _{2}x1+[3}x2+{4}x3_[20]
X3 3
3x1
1 00 1 T 1 00
Ex: |0 1 0 To | = a2 |, I=|0 1 0 |:identity matrix
0 01 T3 T3 0 0 1
1
Ex: For vectors vq, vy, V3, we can rewrite vy + vy — 2vg = [ Vi Vo vg] 1

-2



e Properties: A(u+v)= Au+ Av, A is a matrix and u, v are vectors

A(cu) = cAu, ¢ scalar

1 2 1 1
Ex: LetA:[_2 3},u:{0] andV:[z].Then

s = 4 3 (o] o)) =1 % 3] 12) =12
weav=[ 3] [0]+ [ 3] )= [ 2]+ [3] =[]

e Thm: Let A be an m X n matrix with columns a;,--- ,a, and b € R™.
The solution set of Ax = b <= The solution set of ajz1 +---+a,z, =b
<= The solution set of the system determined by the augmented matrix [ A b }

e Question: Determine if for each vector b € R™, Ax = b is consistent

U R | | b
B ac [} o= 8]

11 b 11 b . . . . B
[2 5 bQ}N {O 0 62_%1]15 consistent if and only if by — 2b; =0

R B | |
B a=[1 -] ]

L1 H 11 by ) '
[2 4 bQ}N {O 5 62_2[)1}15 consistent for any b

& Thm: The following statements are equivalent:
For each b € R™, Ax = b is consistent
<= For each b € R™, b is a linear combination of ay,--- ,a,
<= R™ = Span{ay,---,a,}

<= A has a pivot position in every row

1.5 Solution sets of Ax =b

e Def: A homogeneous linear system is in the form Ax = 0. It must be consistent with
the trivial solution x = 0.

If x # 0, it is called a nontrivial solution.

Remark: Ax = 0 has nontrivial solutions <= Ax = 0 has infinitely many solutions



<= Ax = 0 has free variables

1 2 3
Ex: A= | 2 3 4 |. Find all the solutions of Ax = 0.
1 2 3
1230 1 2 3 0 D 0 -1 0 Ty = T3
2340 ~10-1 =20|~]00 2 0| <= (r3=—213
1 2 30 0O 0 0 0 0 0 0 0 r3 = x3(free)
X1 1
X = [ T | =x3 | —2 |, x3 can be chosen as any real numbers.
I3 1

o Def: x =1tv, t € R, is call the parametric vector form of the solution.

Ex: Find all solutions of x; — z9 — 23 = 0.

1 = X9 + T3 1 1
[@ -1 -1 O}<:> To =1y (free) <= x= |1 |za+ | 0 | 3
r3 = x5 (free) 0 1
1
Ex: Given xg = | 1 |. Find matrix A such that Axy = 0.
1
Suppose that x3 is a free variable and all the solution can be written as x = | 1 | x3.
T1 = T3 ry—x3=0 10 -1 0
Then { 9 = 3 <= ( 19 —23 =0 <= augmented matrix | 0 1 —1 0
rg = w3 (free) 0=0 00 0 0
10 -1
So we can choose A= | 0 1 -1
00 0
1 2 3 1
Ex: Find all the solutions of Ax =bwith A=1] 2 3 4 | andb=| 0
1 2 3 1
1231 1 2 3 1 ® 0 -1 -3 Ty =—3+ 13
2340|~]10 -1 -2 =2|~]000 2 2 = ( 19 =2 —2x3
1 2 31 0 0 0 0 0O 0 0 O x3 = x3 (free)
-3 1
All the solutions are in the form x = 2 4+ a3 | —2
0 1

Compare it with the first example on this page, we get the following Thm.



e Thm: Assume that Ax = b has a solution p. Then any solution of Ax = b has the

1.7

form x = p 4+ v, where v is any solution of the homogeneous system Ax = 0.

Linear independence

Def: 1. linearly independent
2. linearly dependent

1 2 3
Ex: Determine if the columns of A= | 2 3 4 | are linearly dependent
| 3 45
1 230 1 2 3 0 D 2 30
Augmented matrix | 2 3 4 0 |~ |0 -1 =2 0|~ O @O 2 0
3450 | 0 -2 -4 0 0 0 0O

There is infinitely many solutions for Ax = 0, so of course there is nontrivial ones,
since there is one free variable. Thus, the columns of A are linear dependent.

1 2
Ex: Determine if vi = | 2 | and vo = | 4 | are linear dependent.
3 6

Method 1: consider the augmented matrix [ vi vo O } as above

Method 2: note that vy = 2vy, so they are linearly dependent. See also what follows.
Thm: Vectors vy, -- -, v, are linearly dependent <= One of them is a linear combi-
nation of the others.

Thm: Any set of vectors {vy,---,v,} in R™ is linearly dependent if p > n.

Reason: Consider linear system vix; + - -+ + v,x, = 0. There is p variables in total.
There is at most n pivot variables since there is n equations. As a result, there is at
least p — n(> 0) free variables. So the system has nontrivial solutions, and thus the
vectors are linearly dependent.

Thm: Any set of vectors {vy,--- ,V,} containing the zero vector is linearly dependent.

Reason: Without loss of generality, we assume that vi = 0. Then apparently

V1'1+V2'0+"'+V2'0:O

r =

To = 0
is always true, that is, viz; + - -- 4+ v,2, = 0 has a nontrivial solution

x, =0



1.8 Linear transformations
e Def: transformation (mapping)
T: R"— R™ R"™ : domain, R™ : codomain

x — T'(x) T(x) : image of x, range of 7" all the images

Ex: Define the following transformation

T
s () r([4]) e ()
w1 ()= LoD (o (2D L]

Ex: Define another transformation
T: R?> 5 R?
X — 2X

e ([ ])([1]) (2]
e (1)) =3 ()= [} (8D [

e Def: matrix transformation (7'(x) = Ax)

e Def: linear transformation

& For a matrix transformation 7'(x) = Ax, we have the following three kinds of problems.
1. Given A, u = T'(u)

Ex: T:R?* —» R? with A = é i ,u= [;} What is the image T'(u)?
1 2] (1 )
Answer.T(u):Au:_3 4_[2]:[11}
2. Given A, T'(u) = u
Ex: T:R?* —» R? with A = ?1) Z ,T(u):[;].Whatisu?

1

5 1 Then it suffices

Answer: Since u satisfies T'(u) = Au, we have [ ;) A } u= [

to consider the augmented matrix and do the row reduction:
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12 1 12 1 Lo] o 1
3 4 3 01 0 01 o ™= 1,1"

3. For each x, the image T'(x) is given = A

T Ty — T2
Ex: Foreach x = | xy |, T(x) = 219 . What is A?
I3 1+ x3
T, — To 1 —1 0
Answer: Rewrite T(x) = 219 = |0 |xg+ 2 | X2+ | 0 |x3 =
T+ T3 1 0 1
1 -1 0 1 1 -1 0
0 2 0 To |,s0A=|0 2 0
1 0 1 T3 1 0 1
Ex: Consider T : R? — R?. Let e; = [ (1) } and ey = [ (1) } be the two columns of the
1

identity matrix. If we know T'(e1) = [ 5

} and T'(ez) = [ i ], what is A?

T

Answer: For each x = [ -
2

} = e;1x1 + eaxy, we have

T(x) = T(ex1 + ears) = T(e1)1y + Tez)rs = [ T(es) Tlea) | [ s } |

X2

So A=[ T(ey) Tl(ez)] = B i}

1.9 The matrix of a linear transformation

e Thm: Let T : R — R™ be a linear transformation. Then there exists a unique matrix
A such that T'(x) = Ax for any x € R™. In fact,

A=[T(er) -+ T(en) |,

where eq, - - - , e, are the columns of the identity matrix I,,«,.

e Geometric description in R?: e; = { (1) } , ey = [ (1) }



) 1 0
1. Reflections: A = { 0 1 }

2. Contractions and expansions: A = { (1] 2 }

1 k
3. Shears: A = [O 1]

4. Rotation: A = Cf)sqb —sing
sing cos¢

5. Projections: A = [ (1) 8 }

Def: onto mapping
Ex: The mapping 7 : R? — R? is NOT onto.

1]

Thm: Let T : R® — R™ be a linear transformation.
T is onto. <= For each b € R™, Ax = b is consistent.
<= A has a pivot position in every row.

<= R™ = Span{ay,--- ,a,} with a;,--- ,a, being the columns of A

Def: one-to-one mapping

Ex: The mapping 7 : R? — R? is NOT one-to-one.

<1}

Thm: Let T : R” — R™ be a linear transformation.
T is one-to-one. <= Ax = 0 has only the trivial solution.

<= The columns of A are linearly independent.
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2 Chapter 2

2.1 Matrix operations

Q14 11 Q2 - Q1p
. Q25 Q21 Q22 -+  Q2p

Aan - [ a; -+ Ay ] with a; = . — A= . . . ( = [aij]an>
Amgi Am1 Am2 - Amn

Diagnal matrix: a square matrix with zero non-diagonal entries, for example, [,, =
nxn

1. Sum and scalar multiple
A = B: same size & same corresponding entries
A+ B: the sum has the same size as A and B & adding corresponding entries
cA: same size as A & each entry in A is multiplied by ¢
Properties: A+ B=B+ A, ¢c(A+ B)=cA+cB

2. Multiplication

Def: Given A,,«, and B, x, = [ b, --- b, ], the product is defined by
AB = [ Ab; - Abp}
1 2 1 1 01
Ex: Given A = [ ] and B=1]11 1 0 . What is AB?
2 1 2
2x3 01 1
3x3
1 01
Answer:AB:[;?;] 110 :{ggi}
011 2x3

= The (7, j)-entry in AB can be calculated as (AB);; = row;(A) - column;(B)

Ex: Since any given matrix could define a linear transformation, we have
Apxn < T4 :R" - R™, By <= Tp:RF - R"
X — Ax, X — Bx
That is, for any x € RP, x By Bx A ABx, which define a new mapping
(AB)imxp <= Tap:RP - R"

x — ABx
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Properties: A(BC) = (AB)C, A(B+C)=AB+ AC, ¢(AB) = (cA)B = A(cB)

11 1 2
& In general, AB # BA e.g.A:{O 0],32[3 4]

2 3

& In general, AB=AC » B=C e.g. A, B as above, C' = [ 5 3

& In general, AB=0+# A=00r B=0 AaS&bOV@;B:{_ll _11}

3. Transpose

Def: Given A,,x,. Its transpose, denoted by A", is an n x m matrix whose columns
are the corresponding rows of A

Properties: (AT)T = A, (A+ B)" = AT + BT, (cA)T =cA", (AB)" = BTAT

2.2 & 2.3 Inverse of a matrix

e Def: invertible
& If AB = AC and A is invertible = B = C
& If AB =0 and A is invertible (resp. B is invertible) = B =0 (resp. A =0)

e Properties: (A1) = A, (AB)"' =B 1AL (AT)t = (AT

o Thm: Let A= | ° b . If ad—bc # 0, then A is invertible and A= = —L d b .
c d ad=be | —c @
If ad — bc = 0, then A is not invertible.
Ex: Let A = { ;) g ] What is A=1?
Answer: ad —bc=1x5—2x 3= —1, so A is invertible and

4 1[5 =271 [-5 2
A_—_1—31_3—1

e Thm: If A, ., is invertible, then for each vector b € R", Ax = b has a unique solution
x = A~ 'b.

— In this case, A has a pivot position in every row.

& Thm: A, ., is invertible <= A is row equivalent to I,
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e Def: elementary matrix

Ex:Elz{i (1)]152:[(1) H,Egz{g ﬂ

For any 2 x 2 matrix A, we have

1 0 a b a b
ElA_[r 1][0 dl_[m—i—c rb+d}

— E'A is obtained by performing the same row operation to A

& Calculation of A~': If A,,,, is invertible, then A ~ I,, and there exists a matrix A~*
such that A=A = I,,. That is, A~! is a kind of row operations that transform A to I,,.
Moreover,

AT A L =[1, A
That is, under the operation A™', we have [ A I, | ~[ 1, A7 ]

1 2
Ex: LetA:[3 5].

2.8 Subspaces of R"

e Def: subspace
Ex: For u € R? Span{u} is a subspace of R?.
For u,v € R?, Span{u, v} is a subspace of R3.
Ex: R", {0} are both subspaces of R™.

e Def: column space of A: ColA
— For A,,«n, ColA is a subspace of R™

e Def: null space of A: NulA

= For A,,«,, NulA is a subspace of R"

L 2] and u = [i] Is u in ColA or NulA?

Ex: LetA:[3 4

13



@ Consider [ A u]:{l 2 1}N 1 2 1

3 4 4 02 —1| The rightmost column is not a

pivot column, so the system is consistent. Equivalently, there is a solution x such that
Ax = u, that is, u is a linear combination of the columns of A. Hence, u is in ColA.

: 1 21 [ 9 : : :
@ Consider Au = (3 4 } {4 = |19 } That is, u is not a solution of the
homogeneous system Ax = 0, so u is not in NulA.
1 2]
Ex: Let A = {2 4 | Then
[ 1 2 1
ColA:Span{_2},{4}}:Span{{2]}.

Question: How to find the smallest amount of vectors that span a subspace?
e Def: basis

Ex: LetA:{1 23

2 3 4
(D NulA: We need to find all the solutions of Ax = 0. Consider the augmented matrix
1 230 1 2 3 0 10 —-10
[4 0}_{2 3 4 0}”{0 ~-1 -2 0}”{0 1 2 0}

The solution is in the form

] . Find a basis for ColA\NulA.

T T3 1
X=|xy | = | =223 | = | —2 | x3, x3is a free parameter.
T3 Z3 1
1 1
So NulA=Span —2 , and the set -2 is a basis for NulA.
1 1

@) ColA: We need to find linearly independent columns of A. Based on the echelon of
[ A0 } calculated above, we can get the echelon form of A directly

A_{@z?)]w[@oq]
12 ® 4 0o O 2 |

The third column can be written as a linear combination of the first two columns, and
the first two columns are linear independent. So

ais=smd [ L[] [} =oed 2 ][5}

and the set { { ; ] , [ g ] } is a basis for ColA.

& Thm: The pivot columns of A form a basis for ColA.
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2.9 Dimension and rank
e Def: coordinate vector

EX:X:[5

6 } = be; + 6ey where e; = [ (1) } and e, = [ (1) 1 form a basis for R2.

5. . . .
Hence, [ is the coordinate vector of x relative to the standard basis {ej, es}.

6

o= [{ o[- [1]

D {by, by} is also a basis for R*: [bl bg]:{; i}N{%) (%1

@ Hence, we can find the coordinate vector of x relative to the new basis {by, by},

that is, find [ “ } such that x = ¢;b; + cba:

Co
[135 10 -1 a] [-1
[ b2x}_[246}”{01 2}’ SO[@]_{Q]'
e Def: dimension

Ex: R" has the standard basis {eq, - ,e,}, so dim R" = n.

1 2 3 4
Ex:Let A=1]0 0 1 2
0 001

(D ColA={the set generated by the pivot columns}=Span{a;,as,a,}, so dim ColA=3
@ NulA={all the solutions of Ax = 0}:

12340 D20 0 0 —22 -2
(A 0]=|00120[~|00® 0 0]|,s0ox= %2 :éxz
00010 000 @O0 0 X
—9
Hence, NulA = Span (1) , and dim NulA=1
0

—> dim ColA,,«,(No. of basic variables)+dim NulA,,.,(No. of free variables)= n(No.
of variables)

e Def: rankA=dim ColA
e Thm (The rank theorem): For A, «,, rankA+dim NulA =n

e Thm (The basis theorem): Let H be a p-dimensional subspace of R". Any linearly
independent set of exactly p vectors in H is a basis for H.
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3.1

Chapter 3

Determinants of A4,,.,

Def: submatrix A;;

Ex: Consider the 2 x 2 matrix A = [ i 1 Aqy = [ags], A1 = [ag1], Asa = [a11]

21 a22
1 2 3
EXZFOI'A: 234 ,A11:|::23§:| ’A12:|:i;)l:|
3 4 5 2X2 2%2

Def: determinant of A: detA = ajydet Ay — ajadetArg + -+ + ag,(—1)det Ay,

In particular, det[a;;] = a1;.

Ex: For A = |i ZH 312 :| s detA = alldetAH — algdetA12 = a11Q92 — Q12021
21 22

Thm: A, ., is invertible <= detA # 0
Def: the (i, j)-cofactor of A is denoted by Ci; = (—1)"detA,;
— Then the definition of detA above can be rewritten as

detA = CL11011 + CL12012 + -+ alnclm

which is called the cofactor expansion across the first row.

Thm: detA can be calculated by the cofactor expansion across any row of down any
column

detA = a;1Cin + apCiz + -+ + @i Ciyy
= aleU + a2jc2j + -+ Clnanj

Ex: Calculate the following determinant

10231
2 01 2 3 ;83; 101
003 0 0]|22rew 3(-1)343 L9 34 Hhrow 3.9(—1)*3 2 0 3
12234 0020 124
00120
2nd column_ 1\3+2 11 .
2nd column (_6)2(—1) 23’_12
2 2 3

Ex: | 0 4 5 |=teumn o_p)i+ 3 2’:2.4-6
006




e Thm: If A,,, is a triangular matrix, then its determinant is the product of the main
diagonals, that is, detA = II" ;a;;.
e Thm (Row operations): Let A be a square matrix.

@D If a scalar multiple of one row of A is added to another row to produce B, then
det B =detA.

@ If two rows of A are interchanged to produce B, then detB = —detA.
@ If a scalar k is multiplied to one row of A to produce B, then detB = kdetA.

Ex:
5 6 7 5 6 7 5 6 7
5 6 8 ““’@1056 8 ““’@10001
50 260 150 5 2 15 0 20 8
5 6 7
M—10 0 20 8 | = —1000
0 0 1

3.2 Properties of determinants

e Thm: Let A be a square matrix, then detA” = detA.
— detAT = cofactor expansion across the ith row of AT

= cofactor expansion down the ith column of A
= detA

e Thm (Multiplicative property): Let A and B be n X n square matrices. Then

det(AB) = detA-detB
= If A is invertible, then 1 = |I| = |[AA™!| = |A||A~!|. Hence, |[A7}| =
—> In general, det(A + B) # detA+detB

Al

e Thm (Linearity property): Assume that the jth column of A, is allowed to vary

A= [ a aj_1 X ajq a, } Define the mapping 7' : R — R by T'(x) =
detA. Then T is linear: T(cx) = ¢T'(x) and T'(x+y) =T(x) + T(y).
B S I I O PN | Ty | _ | T n ain Y1
a1 CX3 a1 X2 Qg1 T2 + Y2 Qg1 T3 ag1 Y2

Ex:

17 17 17 17 17+0 17 17 17 17 17 0 17

25 26 25 25 25+4+1 25| =125 25 25 |+ |25 1 25

55 88 56 55 95+ 33 56 55 55 56 55 33 56
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17 0 17+0 17 0 17 170 0 17 0 0
=125 1 25+0|=(25 1 25 |+4+(25 1 O0|=|25 1 0 |=17.
55 33 55 +1 55 33 55 55 33 1 95 33 1

e Def: Let A be an n X n matrix and b is vector in R”. Denote

Az‘(b):[éh o a1 b oagy - an}

& Thm (Cramer’s rule): If A, is invertible, then for each b in R", the system Ax = b
has a unique solution x with entries

T detA

Ex: Consider {2 4 | = | 16

Next we use Cramer’s rule to check these results.

} . We have got 1 = 4 and = = 2 in Chapter 1.

6 1
$:detA1(b):‘16 4':§:4
! detA 11 2

54

1 6
_detAg(b)_’21 '_4_2
T T qetA 1 1] 2

b4

3.3 Volume and linear transformation

Recall: For Agys = [ CCZ Z }, if A is invertible, then A=' = -1 [ d —=b }

e Def: The adjugate (adjoint) of A, ., is

Cnu Cou - Oy
adjid=| 7 .
Cln CQn T Cnn

where C;; = (—1)""detA;; is the (7, j)-cofactor of A.

Ex: Given A = [ z Z ], calculate adjA.
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Answer: Cy; = (—1)'*det[d] = d, C12 = (—1)'"2det[c] = —¢
021 = (—1)2+1det[b] = —b, 022 = (—1)2+2d€t[(1] =a

Hence, adjA = l d b }
—c a
— (Ayx2) ' = gazadjA
Thm (An inverse formula): Let A be an n x n invertible matrix. Then

1
~ detA

adjA

= The (i, ) entry of A~ is d%

Ex: For A = [ g (1) }, the area determined by the columns [ ]8 } and [ (1) } is |k|.
. k 01 .
—> Moreover, the parallelogram determined by two vectors 0 and L] the

same as the parallelogram determined by four points (0,0), (k,0), (0,1) and (k,1).
Thm: For A, ., the volume determined by its columns is |detA|.

Thm: Let T : R” — R" be a linear mapping with 7'(x) = Ax. Then for any region S
in R",

{The volume of T'(S)} = |detA| - {The volume of S}.
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Review of Chapter 3
1. Determinant of A,,«,:

detA = a;1Ci1 + ainCio + -+ - + a;nCin, (the cofactor expansion across the ith row)

= a1;C1; + a9;Cy; + - -+ + a,;Cy (the cofactor expansion down the jth column)

2. Properties of determinants:

(D row operations: three kinds of elementary row operations
@ transpose: |[AT| = |A]
@ multiplication: |AB| = |A| - |B|
@ linearity: H a;, xX+y ” = H a; X H+|[ a; y ”
3. Solve Ax = b:

D [ A b ]
@ If A is invertible (detA # 0), then x = A~'b

@ If A is invertible (detA # 0), then the 4th entry in x is z; = =325

4. Calculate A~1:

O[AT]~[T A]
@ Al= deﬁadj/l (this can be used to calculate the (7, 7) entry of A™1)

5. Matlab code (for the ones who are interested):
Define a vector:  >>b = [1;2]
Define a matrix: >> A =[1,2;3,4]
Determinant of A:  >> det(A)
Inverse of A: >> inv(A)
Adjoint of A: >> adjoint(A)
Solution of Ax =b if: >> A\b
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4 Chapter 4

4.1 Vector spaces and subspaces

e Def: vector spaces

Ex: R" is a vector space with zero object | :
0 nx1

Ex: The polynomial space P,, = {all polynomials of the form p(t) = ag+ait+- - -+a,t"}

is a vector space with zero object 0 (constant).

Ex: The matrix space M,,», = { all m x n matrices A} is a vector space with zero
0 --- 0
object | : :
0 - 0
e Def: For general vector spaces V and W, a linear transformation 7" : V — W satisfies
(i) T(u+v)=T(u)+T(v) for u,v € V;
(ii) T(cu) = ¢I'(u) foru e V.
e Def: subspace H of general vector space V'

Ex: {0} and V are subspaces of V'
Ex: For vy, vy € V, the spanning set H = Span{vy, vo} is a subspace of V.

1 1 2
Ex: Determine if w = | 2 | isin the subspace spanned by vi =| 2 | and vy =| 3
1 3 4

<= Determine if w € Span{vy, vy}.

N O =

1 21 1 2
<= Consider the augmented matrix [ Vi Vo W } =12 3 2| ~/[01
3 41 00

The system above is not consistent, so w is not in the spanning set.

4.2 Column/Null spaces and linear transformation

e Def: ColA,,«, = Span{a;,--- ,a,}
={b € R"™: b = Ax for some z € R"}
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2s + 3t

Ex: Given a set S = " Zﬁ_;jt :r,8,t real . Find A such that S = ColA.

3r—s—t

Answer: Note that

0 2 [ 3 ]
1 1 —2
S = 4 r+ 1 s+ 0 t:r,s,treal
3 -1 =y
0 2 [ 3
1 1 —2
= Span Al 1 1] o
3 —1 | -1 ]
0 2 3
1 1 =2
As a result, A = 411 0
3 —1 —1
1 2 1
Ex: Given A= | 2 3 | andb=| 2 |. Is bin ColA?
3 4 1

<= Determine if b € Span{a;,ay}

1 21 1 21
<= Consider the augmented matrix [ a; a, b } =123 2|~010
3 41 00 2

The system is not consistent, so b is not in ColA.

Ex: Given A as above. Find k such that ColA is a subspace of R¥.

Answer: k=3

Def: NulA,,x, = {x € R" : Ax =0}

: 1 2 3 4 .

Ex: Given A = [ 9 3 4 5 } Find NulA.

Answer: Consider the augmented matrix of the homogeneous system
12340 1 2 3 4 0 10 -1 -2 0]
23450 0 -1 -2 =3 0 01 2 3 0]

T = T3+ 2.1'4 1 B 2
= — 92722 —3 _ _
Its solutions are in the form 2 “ = — x = 2 T3 + 3 Zy4.
13 = x3 (free) 1 0
xy = x4 (free) 0 |1
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4.3

Hence, NulA = Span HE _03
0 1
1
Ex: Given A as above and u = :1 . Isuin NulA?
1

Answer:

(D One way is to find NulA first, and then check if u is in the spanning set. It will
need a lot of calculations.

1
: . . 1 2 3 4 -1 0
@) The simplest way is to check if Au=0: Au= {2 3 4 5] N [O ] , SO
1
u is in NulA.
Linearly independent sets and bases
Def: The set of vectors {vy,---,v,} in V is linearly independent if ¢;vi+- - -+¢,v, =0
has only the trivial solution ¢; =--- =¢, = 0.
1 2
Ex: Is the set 21,13 in R? linearly independent?
3 4
1 20 1 00
Answer: Consider the augmented matrix | 2 3 0 | ~ [ 0 1 0 |. There is only
340 000

the trivial solution, so the set above is a linearly independent set.
Ex: It the set {1,¢,#*} in Py linearly independent?

Answer: Consider the homogeneous equation c; - 1 + cot + c3t? = 0. It has only the
trivial solution ¢; = ¢o = ¢3 = 0. So the set is a linear independent set.

Def: Let H be a subspace of V. Then the set B = {vy,--- ,v,} is a basis for H if

D B is a linearly independent set,

@ H =Span{vy,--- ,v,}.

Ex: R" =Span{ey,--- ,e,}. The set {e1,--- ,e,} is called the standard basis for R".
Ex: P, = {co+cit + cot> + - +cut™ 1 o, c1, -+, ¢ realh =Span{l,t,t%, .-+ t"}.
The set {1,¢,t%,--- ,t"} is called the standard basis for P,,.
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Ex (8 in the textbook): Given the set —4 1,1 3 |, =51{,| 2 in R3.

(1) Is it a basis for R3?
No, because any basis for R? should contain exactly 3 vectors.
(2) Find a basis for the set spanned by above vectors.

It suffices to find the linearly independent vectors in above set:

10 3 0 1 0 3 0 1 03 0] DO 0 3 0
-4 3 -5 2 | ~|[0 3 7 2 ~1015 2|~10 @O 5 2
3 -1 4 =2 0 -1 -5 — 03 7 2] 0 0 & —4
1 0 3 0 3
So -4, 3 |,| -5 is a basis for Span 03 [, =5, 2
3 -1 4 -1 4 -2
O 3
Since there is exactly three vectors in the set —4 1 3 [, =9 , it is also
3 -1 4

a basis for R3.

e Thm (The spanning set thm): For {vy,-,v,} in V, if v;, is a linear combination of the
other vectors, then

Spa‘n{vla e 7Up} = Span{vh oy Uk—1, Uk, " o 7Up}‘

Ex: According to theorem above, Span{u,2u} = Span{u} = Span{2u}
Ex: ColA = Span{ all the columns } = Span{ pivot columns }
Ex: Find a basis for the set of vectors in the plane x + 2y + z = 0.

Answer: Denote the set above by

x x x
S=q|ly|o+2+2=0p=q |y |:[1 2 1]y |=0p=Nul[l 2 1].
z z z
We only need to find a basis for Nul[ 2 1 }:
(2=—2y—=z T —2 ~1
(D 21 0]=(y=y(free) = |y |=|1 [y+]| 0 |=
| 2 = z (free) z 0 1
-2 —1 ]
So 1 |, O is a basis for S.
0 1
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4.5 Dimension of vector spaces

e Def: dimV — number of vectors in a basis
Ex: dimR"” = n with a standard basis {e;,--- ,e,}

Ex: dimP,, = n + 1 with a standard basis {1,¢,--- , "}

e Thm: If V is a vector space with a basis B = {vy,---,v,}, then
(1) any basis for V' has exactly p vectors;

(2) any set of more than p vectors in V' is linearly dependent.

Ex: R? has a standard basis {[ (1) 1 , { (1) ]}

Is {[ ; } , { g ] , [ i }} a linearly independent set? No

Is the set above a basis for R?? No
Ex: P; has a standard basis {1,t}.
Are the following sets bases for P, ?
{1,1+t}  Yes

{2,t} Yes
{t,2+1t}  Yes
{t, 2t} No, cause one is a scalar multiple of the other one

{1,t,1+t} No, cause there is more than 2 vectors

a—+2b
Ex: Define a set S = 2a +4b | :a,breal . What is dimS?
—a —2b
1 2
Answer: S = 2 |a+ | 4 |b:a,breal
—1 —2
1 2 1
= Span 2 |, = Span 2
~1 —2 1
So dimS=1.
a
Ex: Define a set T' = b |:a+b+c=0,. What is dim7T?
c
a a
Answer: T=< [ b |:[1 1 1]|b|=0p=Nul[1 1 1]
c c
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= b :b,creal ) = 1 b+ 0 | c:b,creal
c 1
-1 -1
= Span 1 1,1 0
0 1
So dim7T'=2.
123 4 5
000 -2 6
Ex: A= 000 0 0 . Then
000 0 0],

dim ColA = 2, and ColA is a subspace of R*
dim NulA = 3, and NulA is a subspace of R®

e Thm: If H is a subspace of a finite-dimensional vector space V', then
(1) dimH < dimV;
(2) H is also a finite-dimensional vector space;
(3) any basis for H can be extended to a basis for V.

Ex: Given A as above. Then ColA is a subspace of R*. We now check the above three
results:

(1) dim ColA < dimR* holds;
(2) holds apparently;

1 4
. . 0 —2
(3) The pivot columns form a basis ol | o for ColA.
(L O 0
([ 1 4 0 0
0 —2 0 0
. . 4'
Now we extend it to a basis for R*: E 0 S B I
|0 0 0 1
4.6 Rank
For A,,xn = [ a; --- a, }, ColA = Span{ay,--- ,a,}.
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Iy

o Def: For A,,x, = : |, the row space is RowA = Span{ry,--- ,r,,}, which is a

subspace of R".
— RowA = ColAT

Ex: A= [ il ], then RowA = Span{r;, ry}.
2
If we use the three kinds of elementary row operations:

A row interchange

~ A = [ ? }, then RowA4; = Span{I‘Q,rl};
1

scalar multiple Crq
A ~ Ay = [ . ], then RowAy = Span{cry, ra};
2

row replacement I
A ~ Ag -
Iy + cry

The above row spaces are the same: RowA = RowA; = RowA,; = RowAs;.

] , then RowAs = Span{ry,ry + cri }.

That is, elementary row operations won’t change the row space.

e Thm: If matrices A and B are row equivalent, then they have the same row space.

If B is in echelon form, then its non-zero rows form a basis for RowA = RowB.

1 1111
. 1 2345 .
Ex: Given A = 53 45 6| Find bases for ColA, RowA and NulA.
1 21 21
(D echelon form:
1111 1] 1 1 1 1 1 d 1 1 11
A 01 2 3 4 01 2 3 4 0o O 2 3 4
01 2 3 4 00 0 0 o0 0 0 @O 1 2
01010 00 —2 -2 —4 0O 0 0 00
1 1] 1
1 2 3
ColA = Span s 13l |4
1 2| |1
RowA = Span{(1,1,1,1,1),(0,1,2,3,4),(0,0,1,1,2)}
@) reduced echelon form:
D 1 0 0 -1 Dd o0 0 -1 -1
A o O o0 1 0 N o ® 0 1 0
0o 0o @O 1 2 o 0o O 1 2
0O 0 0 0 O 0O 0 0 0 0



T1 = T4+ X5 1 1

Tg = — T4 -1 0
T3=—x4— 205 = x=| —1 |24+ | =2 | 25
xy = x4 (free) 1 0
x5 = x5 (free) 0 1
\
1 1
-1 0
NulA = Span -1, -2
1 0
0 1

Def: rankA = dimColA
Ex: Given A as above. We have

dimColA = dimRowA = number of pivot positions = 3.

Thm (The rank thm): For A,,x,, it holds

dimColA = dimRowA = rankA and rankA+dimNulA = n.
= For (A" )uxm, rankAT+dimNulAT = m, where

rankA" = dimColA" = dimRowA = dimColA = rankA.

Ex: If the null space of a 7 x 6 matrix A is 5-dimensional, what are dimColA and
dimRowA?

Answer: dimColA = dimRowA = 6—dimNulA=1.

Thm: Let A be an n x n matrix. Then

A is invertible <= det(A) #0

A~T,

dimColA = dimRowA = rankA =n
dimNulA =0

NulA = {0}

ColA =R"

rrone
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5.1

Chapter 5

Eigenvalues and eigenvectors

Def: eigenvalues and eigenvectors

1 36 7
Ex: Isx=| —2 | an eigenvectorof A= |3 3 7 |?
1 5 6 5
—2
Answer: Calculate Ax = 4 = —2X.
-2

So x is an eigenvector of A corresponding to the eigenvalue —2.

3 8

Answer: If ) is an eigenvalue, then (A — A\ )x = 0 has nontrivial solutions.

Ex: Is A = 2 is an eigenvalue of A = [ 5 2 1?

3 6 0 0 00

The system has a free variable, so has nontrivial solutions.

Consider the augmented matrix [ A—=X O ] = { 20 } ~ { © 20 }

Hence, A = 2 is an eigenvalue of A.

Calculation:
@ Eigenvalues: |[A — A | =0 ((A— A)x = 0 has nontrivial solutions)
: 3 2 . 3—A 2
Ex: Given A = [ 3 3 ] Consider |A — A —‘ 3 g_ =A=2)(A—=9)=0.

So its eigenvalues are \; = 2 and Ay = 9.
@ Eigenvectors: nontrivial solutions of (A — A)x =0
—> The eigenspace for A is actually Nul(A — A\I)\{0}

Ex: For \; =2, consider | A — A\ I O]:{é 2 g]w{%) g 8]

1 1 9 except 0.

All the nontrivial solutions are of the form x = [

{x = [ _12 } Ty X F 0} is called the eigenspace corresponding to \; = 2.

_ 1
For)\2:9,similarly,[A—)\2] 0}:{ 36 _21 g}w{%) 03 8]

1
All the nontrivial solutions are of the form x = [ i } Ty = [ il)) } t except 0.
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5.2

{x = [ ; } t:x#£ 0} is called the eigenspace corresponding to Ay = 9.

Thm: The eigenvectors corresponding to distinct eigenvalues are linearly independent.
1 2 3
Ex: Given A= | 0 0 4 |. Find its eigenvalues.
00 5
1—X 2 3
Answer: [A—=X|=| 0 —-X 4 |=(1-XN(=N)(B-X)=0.
0 0 5—2X

Its eigenvalues are A = 1,0, 5.
Thm: The eigenvalues of a triangular matrix are its diagonals.

Thm: Let A be an n x n matrix. Then
A is invertible <= [A| #0 (i.e. [A—0I| #0) <= 0 is not an eigenvalue of A
A is not invertible <= |A| =0 (i.e. |A—0I| =0) <= 0is an eigenvalue of A

Ex: Without calculation, we know that the matrix [ } ; } has eigenvalue 0 cause it

is not invertible.

The characteristic equation

Thm (Properties of determinants): Let A and B be n X n matrices. Then
D A is invertible <= |A| #0 <= 0 is not an eigenvalue of A

@ |AB|=|A|-|Bl, [AT]=|A], |A™Y =5

@ If A is triangular, then |A| = ay1a9 - - - any, (product of the diagonals)

@ A= ™ row rep}gcement B— |: ™ :|’ then |B| _ ’A‘

T9 o + Cry

A= ™ row intre\lschange B— |: T2 :|7 then ‘B| _ —|A‘
T9 1

A= | M1 | rowscaling 5 [ i ], then |B| = c|A|
) T2

® linearity property (see below)

18 56 17+1 56 17 56 1 56
17 56 17+0 56 17 56 0 56

Ex: If A is of size n x n, then |[cA| = ¢"|A|.

linearity

Ex:

‘:56
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e Def: |A — \I| = 0: Characteristic equation
|A — AI|: Characteristic polynomial (CP)
1 2 3
Ex: Let A= | 0 4 5 |. Then its characteristic polynomial is
0 06

1-XA 2 3
CP=|A—M|=| 0 4-=X 5 |=(1=XA-A(6-2N),
0 0 6-A\

and its eigenvalues are A = 1,4, 6.

4 2

3
Ex: Let A= | 0 4 5 |. Then its characteristic polynomial is
0 0 6

4—X 2 3
CP=[A-M|=| 0 4-X 5 |=(-)\?*6-)N),
0 0 6-—2A

and its eigenvalues are A = 4,4, 6.

e Def: The multiplicity of A =4 in the above example is 2.
Ex: For Aj.4, it has eigenvalues 1,2,2,6. What’s its CP?
Answer: CP= (1 —\)(2—X)(6 — \)

5 =2 6 —1
0 3 h O . : .
Ex: Let A = 00 5 4 | Find h such that the eigenspace for A = 5 is two.
0 0 0 1
Answer: The eigenspace for A = 5 is Nul(A — 57)\{0}. It suffices to consider the null

space Nul(A — 51):

0 -2 6 —1 0 0 -2 6 —-10
0 -2 h 0 0 0 0 h—6 1 0
o0 0 4 0|~ ]lo o 0o 1 0
0 0 0 —4 0 00 0 0 0

The eigenspace is of dimension two if there is two free variables, that is, h = 6.
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5.3 Diagonalization

e Def: similar (A = PBP™!)

e Thm: If A and B are similar, then they have the same characteristic polynomial and

hence the same eigenvalues.

1 2 3 0 1 -2
) _ 1 _ _ -1 _
Ex: If A = PBP WlthP{Ol]andB{O2].ThenP [0 11

and

ko opkpel |1 2 30 1 -2
AT=PBP _[01 0 2° 0 1 |-

Def: diagonalizable (A = PDP~! with D a diagonal matrix)
Thm (The diagonalization thm): An n x n matrix is diagonalizable <= A has n
linearly independent eigenvectors.

, Pr be the n linearly indepedent eigenvectors. Then there must be
-, Ap such that

Reason: Let py,---
corresponding eigenvalues Ay, - -

Ap1 = \ip1
: — [ 4Aps Ap, | =[ My AnPr |
Apn:/\lpn
A 0 0
— Al p p. | =[P pn ]l 0 .0
0 0 A,
— AP =PD
— A= PDP!
A 0 0
with P = [ p, p, Jand D= | o . 0
0 0 X\,
1 2] .. :
Ex: Is A= 0 3 } diagonalizable?

Answer: Its eigenvalues are A = 1, 3. Next we calculate the corresponding eigenvectors.

(0 20 0@ 0 1 e
[0 2 o}”{o 0 O}:X_{O]‘waecanchoos@pl_{0].

.| D 10
For)\l—B.{O 0 0 == X

For A\ = 1:

:[1]1'2. Wecanchoosepgz[i]
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10
NowwegetD—{O 3

So A is diagonalizable.

} andP:[pl P2 } = {(1) i} such that A+ PDP~1.

Thm: An n x n matrix with n distinct eigenvalues is diagonalizable.

2 01
Ex: Is A= |1 3 1 | diagonalizable?
00 2
2—X 0 1
tsCP=| 1 3-X 1 |=(2-=X)?3—=2)\). Soit has eigenvalues A\ = 2,2, 3.
0 0 2—-2A
[0 0 10 D1 0 0 —-1
ForA=2.11110|~]00® 0| =x= 1 | 2. We can choose
00 00 0 0 0 0 0
-1
P1 = 1
-1 0 1 0 D 0 0 O
For A =3 1 01 0|~ 0 0@ O0|=x=/|1/|xe Wecan choose
0 0 -1 0 0 0 0 0
0
p:= | 1
0
We can not find p3 to get an invertible matrix P. So A is NOT diagonalizable.
3 01
Ex: IsA= |1 2 1 | diagonalizable?
00 2
3—A 0 1
tsCP=| 1 2—-X 1 |=(2-=X)?@B3—N\). So it has eigenvalues \ = 2,2, 3.
0 0 2—-2A
1010 (D 0 1 0 0 -1
For A = 2: 1 01 0] ~ 0 00 0| =x=1|1]a+ 0 | x3. We
0000 0 000 0 1
0 -1
can choose py = | 1 | and py = 0 which are linearly independent
0 1
0 0 1 0 D -1 0 0 1
For A = 3: 1 =11 0|~ 0 0 @O O0O| =x=1]1]x3 Wecan
0 0 -1 0 0 0 0 O 0



1

choose p3 = | 1
0
2 00
Now we get the invertible matrix P = [ P1 P2 P3 } and D=0 2 0
00 3
So A is diagonalizable.
e Thm: Let A be an n x n matrix with distinct eigenvalues Ay,--- , A, (p < n).

(D The dimension of the eigenspace for Ay (1 < k < p) is less than or equal to the
multiplicity of Ag.

@): A is diagonalizable <= the dimension of the eigenspace for \; is equal to the
multiplicity of \x (i.e., the sum of the dimensions of the eigenspaces is n)

5.4 Eigenvectors and linear transformations

Recall that 7 : R" — R™ is linear <= T(x) = Ax with A= [ T(e;) --- T(e,) |

mxn’

e Def: If V has a basis B = {by,---,b,} (that is, dimV = n), then any x € V is
X = x1by + -+ + x,b,. Define the coordinate vector
xy
[X}B = : e R".

Tn

Ex: Let V = P, which has the standard basis B = {1,¢,t*}. For the polynomial
p(t) = 3 — ¢, what is its coordinate vector [p(t)]B?
3
Answer: [p(t)}B =10
-1

e Def: Assume that V is a vector space with basis B = {by,--- ,b,} (i.e., dim V =n),

and W is a vector space with basis C = {c1, -+ ,c,} (i.e.,, dim W = m). Then
T:x — T(x)
1 \J
[x] 5 - T(x)],
with A = [ [T(bl)]c e [T(bn)}c } the matrix for T relative to B and C.

In particular, if V =W and B = C, we denote the standard matrix A by [T} 5
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& Ex: Let T : P, — P; be a linear transformation defined by T'(ag + a1t + ast?) =

agp+ (ay — aq)t for any real numbers ag, a; and as. What is the standard matrix relative
to the standard bases for Py and P;?

Answer:

D Find B and C:

The standard basis for Py is B = {1,¢,t*} and the standard basis for P; is C = {1,t}.
@ Find A= [ [T(by)], --- [T(bn)], ]:

Note that in this example by = 1, by = t and by = t?. According to the map 7" defined
above, we have

T(by)=T(1)=1 (in this case ay = 1,a; = ay = 0),

T(by) =T(t) = —t (in this case a1 = 1,a9 = ag = 0),
T(bs3) =T(t*) =t (in this case as = 1,a9 = a; = 0),
and hence
70l = 1= | o |
Vle 1,6} 0]’
0]
[T(bQ)]c - [_ﬂ{u} - { —1 |
Tl = oy = | 1
2le 1,6} 1]
: : 1 0 0
Finally, we get the standard matrix A = 0 -1 1|
p(=1)
Ex: Let T : P, — R3 be a linear transformation defined by T(p(t)) = | p(0)
p(1)

What is the standard matrix relative to the standard bases for P, and R3?
Answer:
D Find B and C:

The standard basis for Py is B = {1,¢,#°} and the standard basis for R? is C =
{elye27e3}-

@ Find A= [ [T(by)], --- [T(by)], ]:
1 1
Th)=T(1)= |1 —  [T(by)],=| 1
1 1
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—1 ] [ —1
Thy)=T{t) =] 0 —  [T(by)],=1] 0
I 1
1] [ 1
T(bs)=T(t")=| 0| = [T(by)],=
1] |1
1 -1 1
SoA=|1 0 0
1 1 1
Ex: If A, ., = PDP~!is diagonalizable with an invertible matrix P = [ P1 -° Pn }
A0 0
and a diagonal matrix D = | 0 |, it defines a linear transformation
0 0 X\,

T:R"—R" with T(x)= Ax.

Define a new basis B = {p1,--- ,pn} for R". What is the standard matrix [T]z?
Answer:
D: Find B and C:

In this example, the domain and codomain are the same, so their bases are the same:
B=C={p1, - ,pn} as is given above.

@ Find [T]s = [ [T(p1)]x - [TP)], ]:

T(p1) = Ap: = Mip1 =  [T(p1)]z =

T(ps) = Apy = op2 = [T(p1)], =

T(p3) = Aps = A\3sp3 —> [T(pl)}g = 0
An
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A 0 O
SoTls=1| 0 -. 0o |=D.
0O 0 X\,

e Thm (Diagonal representation thm): Suppose A = PDP~! with a diagonal matrix
D. If B is the basis for R” formed from columns of P, then D is the B-matrix for the
mapping 1" : x — AX.

More generally, if A = PCP~! where C' may not be a diagonal matrix, and B is
the basis for R" formed from columns of P, then C' is the B-matrix for the mapping

T:x— Ax.
— The standard matrix C' can be calculated by C = P~1AP.
Ex: Let T : x — Ax with A = _31 _41 . Define a basis B = {pi,p2} with

p1 = [ _21 ] and ps = { ; ] What is the standard matrix [T]z?

Answer: According to the thm above, [Tz = C = P7'AP with
21 Lo1T2 -1
P—[_l 2} and thus P —5{1 2].
2 -1 3 4 2 1] |15
1 2 -1 -1 -1 2 |0 1}

Appendix B Complex numbers

So [T]B = P 1AP = %

Question: What is the eigenvalues of the matrix A = [ 0 _01 }?

1
i . . -2 -1 9
Consider the characteristic polynomial: |A — AI| = L = A+ 1
What are the roots of A2 +1 = 0?
e Def: Denote by i the imaginary unit such that i> = —1. A complex number is in the
form z = a + bi with @ = Rez being the real part and b = Imz being the imaginary

part.
Ex: For the complex number z = 3 + 2i, its real part is Rez = 3, and its imaginary
part is Imz = 2.
e Properties:
D 21 = 29 <= Rez; = Rezy and Imz; = Imzy
@ summation: (a + bi) + (c+di) = (a+c¢) + (b+ d)i
@ multiplication: (a + bi) - (¢ + di) = (ac — bd) + (bc + ad)i

37



@ the conjugate of z =a+biis Z =a — bi
2l =vVzZ=+a?+b?

. - . - -1 _1_ z _ a . b .
©) the inverse of z = a + bi is 2 =L =5= a0 — 2l

®) the absolute value of z = a + bi is

Ex: For z = 3+ 4i, we have 2 =3 — 4i, |2| =5, 27! = 2 — 4i.
e Geometric discription:

Imaginary
axis Imz
b z=a+bi

|z| sin @

|

|

| To .
i Real axis ‘ |z cos @ h
|

|

|

a

Based on these figures, we get a = |z| cos ¢ and b = |z sin ¢.

Hence, there are two ways to determine a complex number:

(1) z=a+bi

(2) z = |z|cosp + (|z|sinp) i = |z]el?

Ex: If z = |z|e?, then 2F = |z|Fe* = |2|F cos(kyp) + |2|" sin(kep)i

Ex: Find all real and complex roots of the equation 28 = 28,

Answer: Assume that z = |z[e!¥. It then suffices to determine |z| and ¢.

Note that 28 = |z|® cos(8¢) + |z|®sin(8¢p)i = 28. Their real (resp. imaginary) parts
should be the same, that is

Firstly, |z|®sin(8¢) = 0 = 8¢ = kr for any integer k.

Secondly, |z|® cos(8p) = 28. If 8¢ = kmr, cos(8p) = +1. However, cos(8¢) can not be
—1, otherwise we will get a contradiction —|z|® = 28. So we finally get 8¢ = 2k, that
is, ¢ = % such that cos(8¢) = 1. Hence, |z| = 2.

So z = 26“%, k can be any integer.

5.5 Complex eigenvalues

e Ex: Let A= { 1 _32 1 What are its eigenvalues and corresponding eigenvectors?
(D Find all the eigenvalues: |A—\I| = 1 3 =N —4\+5=(A—-2)"+1.

— A has eigenvalues A =2 +1i
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@) Find corresponding eigenvectors:

For A\ =2 +1, [A_)\lf 0]:{_11_1 1__21 8}N{(1) 181 8}

— Solutions x = [ _11+1 } 2. Choose p; = [ _11+1} = { _11 } + [ (1) } 1.

For dp=2—1, [ A-2l 0}:[_1;” 1_+2i 81~{1 0 0}

— Solutions x = [ _11_1 } x5. Choose p; = [ _11_1 } = { -1 } + [ -1 } i

— In this example, we have Ay = \; and p, = p1.
— If Ap = Ap, then Ap = \p. (If \ is an eigenvalue of A, then X is also an eigenvalue)
For a real matrix A, its complex eigenvalues occur in conjugate pairs.

Ex: For A5 given above, consider one of the eigenvalues A = 2 — i and its corre-

. . -1 -1 1.
sponding eigenvector p = 1 + 0 |t

-1 -1
1 0

e miap [0 1)1 =2][=1 =1] [2 =17/ [ Rex Imx
Answer: C = P AP—[_l —1 1 3 1 0| |1 2 | —ImA ReA

Thm: Let A be a real 2 x 2 matrix with a complex eigenvalue A = a — bi (b # 0)
and an associated eigenvector p. Then A = PCP~! with P = [ Rep Imp } and

a —b
c=|5 7
Ex: For C = { Z _ab } with |C'— M| = (a — \)? + V?, its eigenvalues are A\ = a + bi
with |A| = va? + 2. Then

a b .
o T cosf —sinf
czwllz ;llzw[ |

B sinf cos6

Denote P = [ Rep Imp | = { 1 . Is there a matrix C such that A = PCP~1?

A

which is a composition of a rotation through the angle 6 and a scaling by |A|.

V3 -1

Ex: Let C = [ 1 V3 } What are the rotation angle ¢ and the scaling constant
|A[?

Answer: [\ =1/(vV3)2 +12 =2.

The angle 6 satisfies cosf = ‘4;\' = ‘/7?;

us

and sinf = % Hence, 6 = %.
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5.7 Applications to differential equations

e For y/(t) = My(t), t > 0, all its solutions are in the form y(t) = ce* with a free
parameter c¢. No matter what c is, y(¢) above is a solution of the differential equation.

If, in addition, the initial value is given y(0) = yp, then the constant ¢ is determined

and the solution is unique: y(t) = yoe.

If A <0, the solution y(t) will go to 0 as t — +o0.
If A > 0, the solution y(t) will go to positive or negative infinity as t — +o0.

e For a system of linear differential equations

U0 = dun (1) sl [ "
vall) =Aawall) w00 | o 20 v = by,
(0) = M0 i) ] L
y(t) = cre™
it has solutions
Yn(t) = cpe™!

e What are the solutions of X'(t) = AX(t) if A is not a diagonal matrix as above?
If A= PDP', then X'(t) = PDP'X(t) < [P"'X(1)] = D[P~'X(#)].

Denote Y (t) = P71 X (t), we get Y'(t) = DY (t). Solve this auxiliary equation to get
Y (t) and then get X (t) = PY(t).

& Ex: Solve X'(t) = AX(t) with A = lé :i} and X (0) = {g}

Answer:
D Find D and P:

\A—)\I\—()\+1)()\+2):>)\——1,—2:>D—{_01 _02}

cone [ 3 8] [Hne

3 -3 0 0 0 0 1
_ 3 -2 0 1 =20 [z [
FOMl__Q’{za -2 O]N[O 0 0}:”‘_{1 R I
12
SoP-{lS].
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@ Solve Y'(t) = DY (t) and get X(t) = PY(t):

t) = —1
yi(t) Cle_ — Y(t) = €L -t 4 0 e~2. Hence,
ya(t) = coe™™

wormo= [} (5] (2] =a ool

= X(t) = c1p1e™M! + capae?!
@ Use X(0) to determine ¢; and cy:
Based on the formula above and the initial condition,

X(O)za[ﬂm{g}:{;]

Based on D, {

1 3 2 01 -1 01 -1

e Def: For X'(t) = AX(t), denote by A the eigenvalues of A.
1. If A <0, the origin is an attractor/sink.
The direction of greatest attraction is corresponding to the most negative eigenvalue.
2. If A > 0, the origin is a repeller/source.
The direction of greatest repulsion is corresponding to the largest positive eigenvalue.

3. If X has both positive and negative values, the origin is a saddle point.
o If Ay, has a pair of complex eigenvalues A and \ with p and P, then
X(t) = e1peM 4 copeM are complex solutions!

Denote X; = pe and X, = pe. It holds X, = X.

# = Re [pe)‘t}
_—

X — X

ol 72 5 2 = Im [pe’\t}

—> X(t) = &Re [peM] + ¢Im [pe*] are the real solutions!

Ex: Find all the real solutions of X'(t) = AX(t) with A = [ :§1’> _21 ]

@ Find all the eigenvalues: |[A — X|= (A +2)*+1= A= —-2+i

Since the eigenvalues are complex and form a conjugate pair, we only need to use
one of them.
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@) Choose A and calculate p: Choose A = —2 + i, and solve

| -1-i 2 0 1 —-1+i O 1=
[A—)\I 0]—{ 1 1—10}N[0 0 0:|:>X—|: }xz

togetp:[lzi}:{”Jr[_()l}i.
@ Calculate Re [peM] and Im [peM]:
(]3]
=e ({ 1 } + { _01 } i) (cost +sint i)
=e ({ 1 } cost — { _01 } sint) + e q i } sint + l _01 ] cost>i
{ 1 ]cost— { —01 ] sint)
HEERDD

e In this case, the origin is a spiral point.

= Re [pe] =

Im [pet] =

{ the trajectories of the solution spiral inward if ReA < 0

the trajectories of the solution spiral outward if ReA > 0
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6 Chapter 6

6.1 Inner product, length, and orthogonality

Uy U1
e Def: For two vectors u = : and v = : in R"™, their inner product is
Up Un
U1
R . _
u-v=u'v=_[u - wu, || i | =wmur+ A+ uu,
Un
—> Properties:
DQu-v=v-uy, @U+v)-w=u-w+v-w, (cu)-v=u-(cv)=cu-v

@Qu-u>0foranyuinR", uwu-u=0 <= u=0
U

e Def: Foru= | : | in R", the length (norm) of u is

Unp

lall = vu-u=y/ui+--+uj

—> Properties:
D If |Ju|| = 1, then u is called a unit vector.

@ If |Ju|| # 1, then it can be normalized as u = ||_111Hu'

e Def: For u,v in R”, the distance between u and v is

dist(u,v) = |[Jlu—v||

Ex: Givenu:{i} andV:l_

11 ] . Calculate the following quantities.

u-v=1, |ul|=v3+42=5, dist(u,v):Hu—v||:H[;l]H:5

e Def: For u,v in R", they are orthogonal if u-v = 0.
—> Properties:
D 0 is orthogonal to any vectors in R".

@ u and v are orthogonal <= |u+ v|]* = ||ul|* + |v|]?
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Ex: Givenu= | 2 | and v = 1 |. Thenu-v =0, and
3
17117
lu+v|*= 3 =1+3>+3%=19,
3

lu2=1+22+32 =14, |v|*=(-22+12+0?=5.
Hence, it holds [[u + v||? = |[ul|* + ||v]*.

e Def: Let W be a subspace of R". A vector z in R” is called orthogonal to W if z is
orthogonal to each vector in W. Denote the set

W+ = {z : z is orthogonal to W}

—> Properties:
D W+ is also a subspace of R", which is orthogonal to W.

@ (RowA)" = NulA = (ColAT)"

6.2 Orthogonal sets

o Def: A set of vectors {uy,--- ,u,} in R” is an orthogonal set if any two vectors inside
are orthogonal.

e Thm: An orthogonal set of nonzero vectors is also a linearly independent set.

1 0 1

Ex: The set 01, is linearly independent, but is not orthogonal.
0

is both linearly independent and orthogonal.

OO O
1
I

W oo wo

[ 1
The set 0|,

- 0 - —
e Def: An orthogonal basis for a subspace W is a basis that is also an orthogonal set.

An orthonormal basis for W is a basis that is also an orthogonal set containing only
unit vectors.

1 0 1
Ex: Of(,[21],]10 is a basis.
0 0 3
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is an orthogonal basis.

is an orthonormal basis.

e Thm: Let {uy,---,u,} be an orthogonal basis for W. Then for each y in W,

y=cu+---+cu, with  ¢; = . j=1,2,---,p.

e Def: Given two vectors y and u. Rewrite y = y + z such that ¥ = cu is a scalar
multiple of u, and z is orthogonal to u.

Then ¥y = cu = ¥2u is the orthogonal projection of y onto u.

The distance from y to the line through u is ||z|| = ||y — ¥
Ex: Let y = [ i } and u = { _24 } . What is the orthogonal projection of y onto u?

Answer: The projection

Aiy-uu710 -4 | =2
y_u-u 20| 2 | | 1|

eres- (2L

such that y - z = 0. That is y and z are orthogonal.

and

e Thm: The matrix U =| u; --- u has orthonormal columns <= U'U = I.
P Imxp
Reason:
T T T
u, T T T
uu; uwuy - WU,
T .
UTu=| ¢ |[w o ow )= L R o
- : : . :
u
P T T - T
u,u; u,u u,u,
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6.3 Orthogonal projections

e Thm (The orthogonal decomposition thm): Let W be a subspace of R". Then any
vectory =y +z withy € W and z € W,

If W has an orthogonal basis {uy,--- ,u,}, then the orthogonal projection of y onto
W, which is also denoted by ¥ = projyy, is
u, y-u,

~ . M
y:prOJWy: 111—{—'--—|—
u; - U u, - Up

u,.

—> Remark: If y is in W, then projyy =y and z = 0.

-1 1 -1
Ex: Given y = 4 [,uy=|11] and uy, = 1 |. Find the orthogonal projec-
3 0 0

tion of y onto W =Span{uy, us}.

Answer: Noting that u; - uy = 0, {uy,us} is an orthogonal basis for W. Hence, the
orthogonal decomposition thm can be used directly:

u u 3 ! d -1 -1
S’\:y Suy 2112:§ 1 —0—5 1 | =1 4
u; - uqp Uo - U2 0 0 0

e Thm (The best approximation thm): Let W be a subspace of R™. Then the orthogonal
projection y of y onto W is the closest point(best approximation) in W to y. That is,

ly =¥ < |ly —v| foranyveW.

= ||z|| = ||y — ¥|| denotes the distance from y to W.
5 -3 -3

e Ex: Giveny=| -9 |,u;=| =5 | and uy = 2
5 1 1

(D Is {u;,us} an orthogonal basis? u; -us =0 Yes.

@ Find the orthogonal projection of y onto W =Span{u;, us}:

-3 -3 3
~ : . 35 —28
yZYU1U1+yuZU2:_ -5 | + — 2 = -9
u; - U U2 - U2 35 1 14 1 -1
3
@ Find the closest point to y in W =Span{u;, us}: same as above | —9
—1
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3
@ Find the best approximation of y in W =Span{u;, u,}: same as above | —9

-1
2
® What is the distance from y to W? |jz|| = ||y — ¥|| = 0 ||| =v40
6
e Thm: If {u;,--- ,u,} is an orthonormal basis for a subspace W in R", then

y= wu+---+(y-u,)u,

fU=[uw - wu, |, thenUTU=1I.

6.4 The Gram—Schmidt process
e Ex: Let W = Span{x;,x2} with {x1,x2} being a basis. To obtain an orthogonal basis

for W, define
u; = X1
. X2 - Uy
Uy = X9 — prOJu1X2 = X9 — u;
u; - uq

Then {u;,us} is an orthogonal basis for W.

1 1
For example, x; = | 1 | and xo = | 0 |. Then
0 1
1
u; = X1 = 1
0
1
X9 - U1 1 1 1 51
Uy = X9 — u; = 0 — 5 1 — -3
-t 1 0 1

and apparently u; - us = 0.

& Thm (The Gram-Schmidt process): Given a basis {x,--- ,x,} for W. Then

u; = X1

X9 - Uy
U2 = X9 — 1

u; - uq

X3 X3 - U2
Uz = X3 — u; — Us

u; - Uz - U2
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Xy, - Ug Xy - Up—1
/4 P P
'L'I.1 —_ . e e — —u 1

u, = X, —
P P
u; - uyg U, iUy

form an orthogonal basis for W. In addition,

Span{xy,--- ,xx} = Span{uy,--- ,uy} forany k=1,2,---,p.

5 9
e Ex: Given A = _13 _75 . Then the column space ColA = Span{a;,as} has a
1 5}

basis {a;, a2} since the columns a;, as of A are linearly independent.

(D Find an orthogonal basis for ColA.

5
1
u; = a; = _3
1
9 5 -1
u_a_az'lhu_ 7 _E 1 _ 5
e T 36| -3 |1
5 1 3

@ Find an orthonormal basis for ColA.

_ - - -
I |
T R S A
I T RS
- 1
1 I T O
V2—mu2—6 1 = %
L 31 L 3 |

@ Denote a matrix @ = [ Vi Vo }, which satisfies QTQ = I. If A = QR, then

5 9
s Lo _ 11 1 7 6 12
e[ ]5 5]- %)
¢ b a2l | T loe
1 5

which is a triangular matrix with positive diagonals.
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e Thm (The QR factorization): If A,,.,, has linearly independent columns, then A = QR
with columns of @),,,«, forming an orthonormal basis for ColA and R, «,, being an upper
triangular matrix with positive diagonals.

— [t implies that R is invertible.

6.5 Least-squares problems

If Ax = b has no solution but A has linearly independent columns, then A = QR and
Q'QRx=Q'b <= Rx=Q'b <= x=R'Q'b

Apparently, x above can not be a solution of Ax =b. What is the meaning of x?

e Def: A least-squares solution of Ax = b is a vector X € R"™ such that

IIb — AX|| < ||b — Ax|| for any x € R".

T
— For any x = : in R", Ax =ayx; +---+ a,x, € ColA. Then

Tn

AX = projegub is the orthogonal projection of b onto ColA
b — AX is orthogonal to ColA

That is, b — AX is orthogonal to ay,- - , a,:
a;-(b—AX)=a](b— AX) =0
: = AT(b-AxX)=0
a, - (b—AX)=a'(b—AX) =0
= ATAX=A"b (normal equation)

e Thm: The least-squares solutions of Ax = b coincide with the solutions of the normal
equation ATAX = A"b.

1 2 1
Ex: Given A=|1 2 | andb= | 2
1 2 3
1 21 1 21
(D Does Ax = b have solutions? [A b]: 1 2 2| ~1]0 0 1] Nosolution!
1 2 3 0 0 2

@ Find the least-squares solutions of Ax = b: Consider ATAX = A'b.
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ATA:[l 1 1}

1
(3 6 oo [111 6
2 2 2 _[6 12}7 Ab_{z 2 2} 2 _[12]

3 6 6 1 2 2
6 12 12 000

— = =
DO DO DN

The augmented matrix is [ ATA ATb } = [ }, and the

2—2332

. } with x5 being a free parameter.
2

solutions are in the form X = [

= There are infinitely many least-squares solutions since A" A is not invertible.

-1 2 4
Ex: Given A = 2 =3 | and b = | 1 |. Find the least-squares solution of
-1 3 2

x = b.

Answer: Consider the normal equation AT AxX = A"b.

T — —_
Ad= 23 ~11 22

[ -1 2 -1 _[ 6 —11]
[ 2 3 3 || 5 4

. 2[4
o [-1 2 4 [ -4
A b__ 2 -3 3 ; o

The augmented matrix is [ ATA ATb } =

~ 3
hence x = [21

— There is a unique least-squares solution of Ax = b since A" A is invertible.

6 —11 —4 1 0 3
—-11 22 11 01 2

], and

Thm: Ax = b has a unique least-squares solution

<= AT A is invertible

<= A has linearly independent columns

Remark: In this case, A has linearly independent columns, then A = QR and
ATA=(QR)"(QR)=R'Q"QR=R"R

is also invertible since R is invertible. Then the unique least-squares solution of Ax = b

is

X=(ATA)'ATb=(R"R) " R'Q"b=R'Qb,

which answers the question proposed at the beginning of this lesson.

20



6.7 Inner product spaces

e Def: An inner product on a general vector space V' is a function (u,v) such that
L (u,v) =(v,u), (u+v,w)=(uw)+(v,w), (cu,v)=(u,cv)=c(u,v)
2. (u,u) >0and (u,u) =0if u=0
A vector space equipped with an inner product is called an inner product space.
Ex: R" withu-v=u'v

Ex: P,: Define an inner product by evaluation at —1,0, 1
(p(t),q(t)) = p(=1)q(=1) + p(0)q(0) + p(1)q(1)

For example, let 21 (¢) = 1+t and x5(t) = 1 — . Then
(x1(t), z2(t)) = x1(=1)z2(—1) + 21(0)22(0) + 21 (1)z2(1) = 1
(1(t), 21 () =0+1+4=5

— norm(length): ||21(t)|| = \/{z1(t), z1(t)) = V/5
= distance between z;(t) and zo(t): |21 (t) — z2(t)|| = /(2t,2t) = VA+ 0+ 4 =/8

e Gram—Schmidt process: basis {x;,---,x,} — orthogonal basis {uy,--- ,u
P P
X1 =m
o <X27 ul)
2 <u17 u1>
(xp, u1) (Xp,1p-1)
X - u ==,
! To(uw) ' (wp-1,wp1) 7 :

Ex: As above, transform {z;(t),z2(¢)} into an orthogonal basis {u;(t), us(t)}.
Answer: uy(t) = ax1(t) =1+t

wa(t) = za(t) - puma®) = 1 -0 - 30+ =3 - 5t

e Best approximation: W has an orthogonal basis {uy,--- ,u,}, then for any vector y,

y =y + z with

(y, w) (y, up)

S/'\: u +...+
<u17 u1> ' <up7 up>

P

Ex: As above, find the best approximation of y(t) = t* in W = {1(t), zo(t)}.
Answer: (D Find an orthogonal basis: {z1(t), z2(t)} — {ui(t), ua(t)}
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@ Find the best approximation (orthogonal projection)

o (), w(?) (y(t), u2(1)) 2 8/5 (4 6\ 2
70) = (0 + R0 = 200+ gl (52 = %

e Thm (The Cauchy—Schwarz inequality): [(u,v)| < |[ul|||v||
Reason: [(u, v)| = [(cv +2,v)| = [e(v, v)| = [[ev[[|v]| < [lullf}v]]
e Thm (The triangle inequality): |[u+ v| < |[u]| + [|v]]

& Ex: Let V = C[—1,1] be the space of all continuous functions on [—1, 1]. Define an
inner product

Let 21(t) = 1 and z5(t) = 2t — 1. Then (z(t), 25(t)) = [, (2t — 1)dt = —2 # 0.
That is, {x1, 22} are linearly independent but not orthogonal.

Find an orthogonal basis for W = Span{x;, z»}:

pit) = au(t) =1
IR TGN Q)]
polt) = w2t) = T

Then {1, 2t} is an orthogonal basis for W.

p(t)=(2t—1)— _721 =2t

02



Chapter 7

Diagonalization of symmetric matrices

Def: A symmetric matrix is a square matrix such that AT = A.

Ex: Are the following matrices symmetric?

a b c
[Ol]Yes {1 3}No b d e | Yes
1 0 -3 1

c e f

Def: P is an orthogonal matrix if P~! = PT, that is, columns of P are orthonormal.

Ex: Are the following matrices orthogonal matrices?

01 10 0 0 1 010
{1 O]Yes |:02:|NO P= 0 Yes = P 1=10 0 1
1 1 0 0

Def: A is called orthogonally diagonalizable if A = PDPT with an orthogonal matrix
P and a diagonal matrix D.

Thm A is orthogonally diagonalizable <= A is symmetric (AT = A)

3 =2 4
Ex: Let A= | —2 6 2 | with distinct eigenvalues —2, 7.
4 2 3

Decompose A such that A= PDP":

(D Find linearly independent eigenvectors:

5 —2 40 D 0 1 0
For\y=-2,[A-M] 0]=| -2 8 20|~ 0 @ 5 0
4 2 50 0 0 00
-1 -2
It has solutions x = —% x3. We can choose the first eigenvector vi = | —1
1 2
-4 -2 4 0 O3 -10
For o=7,[A=X] O]=|-2 -1 2 0|~| 0 0 0 0
4 2 -4 0 0 0 0 0
_% 1
It has solutions x = 1 o+ | 0 | x3.
0 1
-1 1
We can choose another two eigenvectors vy = 2 and vy = | 0
0 1
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@) Find orthogonal eigenvectors:

Note that vi - vo = 0, vi - v3 = 0 and vy - v3 = —1. Based on the Gram—Schmidt
process:
o
u; = vy = —1
- 2 -
e
Uy — Vo = 2
- O —
_ 4
V3 - Uy 1 -1 1 g
U3 = V3 — U — 0 — ? 2 = 5
Uz - 2 1 0 1

@ Find orthonormal eigenvectors:

2
1 1| 72 T3
pi=g—wm=,5|-1|=]|—3
™ 73] "
3
1
1 1 _21 G
P2 = U2 = —= =| =
fua ™~ V5 | 7
4 _4_
1 5 |3 3y5
Ps = uz = % =1 35
[[us]] 3V5 | ] Ve
3

-2 0 0
Then P = [ P1 P2 P3 } and D = 0 7 0 | such that A= PDPT.
0 0 7
e Spectral decomposition of A= PDPT with P=[p; --- p, |:
A 00 P!
A=[pi - P 0 - 0 | =Mpip] + -+ AuPub,

0 0 X\ || p.

= Matrices p;p; above are called projection matrices:

) x = p; (p/ %) = pi (p; - x) = —Pip,
(PP ) x=pi (P, x) = Pi (Pi - X) m—
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