Outline of MA265

Instructor: Xu Wang

This is an outline of MA265 Linear Algebra. All the definitions can be found in the textbook and are omitted here for brevity.

1 Chapter 1

1.1 Systems of linear equations

• **Def**: linear equation

Ex: Are they linear equations?

 $\sqrt{3}x_1 + x_2 = 1,$ $\sqrt{x_1} + x_2 = 2,$ $x_1x_2 + x_3 = 1$

• **Def**: linear system

Ex: Construct a linear system according to the following problem: An unknown amount of chickens and rabbits were locked in a cage. The total amount of them is 6, and there are 16 feet in total. What is the amount of chickens and rabbits, respectively? (Hint: assume that there are x_1 chickens and x_2 rabbits.)

$$\begin{cases} x_1 + x_2 = 6\\ 2x_1 + 4x_2 = 16 \end{cases} \xrightarrow{\text{Collect all coefficients}} \begin{bmatrix} 1 & 1 & 6\\ 2 & 4 & 16 \end{bmatrix} \text{ (augmented matrix)} \tag{1}$$

To get the solution

$$\begin{cases} x_1 = * & \text{corresponding matrix} \\ x_2 = * * & & \\ \end{cases} \begin{bmatrix} 1 & 0 & * \\ 0 & 1 & * * \end{bmatrix},$$
(2)

we only need to transform the matrix in (1) into the form in (2).

& Elementary row operations

- 1. Interchange two rows.
- 2. Multiply a row by a scalar.

3. Replace a row by the sum of itself and a multiple of another row.

 $\mathbf{E}\mathbf{x}$:

$$\begin{bmatrix} 1 & 1 & 6 \\ 2 & 4 & 16 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 6 \\ 0 & 2 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 6 \\ 0 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 2 \end{bmatrix} \iff \begin{cases} x_1 = 4 \\ x_2 = 2 \end{cases}$$
 One solution

 $\mathbf{E}\mathbf{x}$:

$$\begin{bmatrix} 1 & 1 & 6 \\ 2 & 2 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 6 \\ 0 & 0 & 0 \end{bmatrix} \iff \begin{cases} x_1 = 6 - x_2 \\ x_2 \text{ is free} \end{cases}$$
 Infinitely many solutions

 $\mathbf{E}\mathbf{x}$:

$$\begin{bmatrix} 1 & 1 & 6 \\ 1 & 1 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 6 \\ 0 & 0 & 2 \end{bmatrix} \iff \begin{cases} x_1 + x_2 = 6 \\ 0 = 2 \end{cases}$$
 No solution

• **Def**: solution/solution set

1. only one solution 2. infinitely many solutions 3. no solution

• **Def**: row equivalent

Properties: systems are equivalent \iff corresponding matrices are row equivalent \iff they have the same solution set

1.2 Row reduction and echelon forms

- Def: Nonzero row/column Def: leading entry
- **Def**: echelon form (3 conditions)/reduced echelon form (5 conditions)

Ex: Find echelon forms and the reduced echelon form of the original matrix:

 $\begin{bmatrix} 0 & 0 & 0 & 0 \\ 2 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 2 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & \frac{3}{2} & 2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -\frac{1}{2} & -1 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

- Thm: Each matrix may be row equivalent to more than one matrix in echelon form, but is row equivalent to only one matrix in reduced echelon form.
- **Def**: pivot position/pivot column
- Thm: A linear system is consistent if and only if its rightmost column is not a pivot column.

Ex: Recall examples in Lesson 1.1:

 $\begin{bmatrix} \begin{array}{ccc} \mathbb{1} & 1 & 6 \\ 2 & \begin{array}{ccc} 4 & 16 \end{array} \end{bmatrix} \sim \begin{bmatrix} \begin{array}{ccc} \mathbb{1} & 0 & 4 \\ 0 & \begin{array}{ccc} 1 & 2 \end{array} \end{bmatrix} \quad \text{the rightmost column is NOT a pivot colum, so consistent}$

 $\begin{bmatrix} (1) & 1 & 6 \\ 2 & (2) & 12 \end{bmatrix} \sim \begin{bmatrix} (1) & 1 & 6 \\ 0 & 0 & 0 \end{bmatrix}$ the rightmost column is NOT a pivot column, co consistent $\begin{bmatrix} (1) & 1 & 6 \\ 1 & 1 & (8) \end{bmatrix} \sim \begin{bmatrix} (1) & 1 & 6 \\ 0 & 0 & (2) \end{bmatrix}$ the rightmost column is a pivot column, so inconsistent

• **Remark**: For a linear system:

1.3 Vector equations

A linear system has the following equivalent expressions.

$$\begin{bmatrix} 1 & 1 & 6 \\ 2 & 4 & 16 \end{bmatrix} \xleftarrow{\text{row view}} \begin{cases} x_1 + x_2 = 6 \\ 2x_1 + 4x_2 = 16 \end{cases} \xrightarrow{\text{column view}} \begin{bmatrix} 1 \\ 2 \end{bmatrix} x_1 + \begin{bmatrix} 1 \\ 4 \end{bmatrix} x_2 = \begin{bmatrix} 6 \\ 16 \end{bmatrix}$$

• **Def**: (column) vector

1. Vectors in
$$\mathbb{R}^2$$
: $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$
(1) $\mathbf{u} = \mathbf{v}$ if and only if $u_1 = v_1$ and $u_2 = v_2$, e.g. $\begin{bmatrix} 1 \\ 2 \end{bmatrix} \neq \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
(2) $\mathbf{u} + \mathbf{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \end{bmatrix}$
(3) $c\mathbf{u} = \begin{bmatrix} cu_1 \\ cu_2 \end{bmatrix}$, c is a scalar
2. Vectors in \mathbb{R}^3 : $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$
3. Vectors in \mathbb{R}^n : $\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix}$

Geometric description: Identify a geometric point (a, b) with a vector $\begin{bmatrix} a \\ b \end{bmatrix}$. Four vectors $\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}$ and the origin could form a parallelogram.

• **Def**: linear combination

Ex: For the vector equation
$$\begin{bmatrix} 1\\2 \end{bmatrix} x_1 + \begin{bmatrix} 1\\4 \end{bmatrix} x_2 = \begin{bmatrix} 6\\16 \end{bmatrix}$$
, we have already known its solution $\begin{cases} x_1 = 4\\x_2 = 2. \end{cases}$ That is,
 $4\begin{bmatrix} 1\\2 \end{bmatrix} + 2\begin{bmatrix} 1\\4 \end{bmatrix} = \begin{bmatrix} 6\\16 \end{bmatrix}$, so $\begin{bmatrix} 6\\16 \end{bmatrix}$ is a linear combination of $\begin{bmatrix} 1\\2 \end{bmatrix}$ and $\begin{bmatrix} 1\\4 \end{bmatrix}$.

• Thm: Vector \mathbf{y} is a linear combination of vectors $\mathbf{v}_1, \cdots, \mathbf{v}_p$

- \iff The vector equation $\mathbf{v}_1 x_1 + \cdots \mathbf{v}_p x_p = \mathbf{y}$ has a solution
- \iff The augmented matrix $\begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_p & \mathbf{y} \end{bmatrix}$ is consistent
- **Def**: Given vectors v_1, \cdots, v_p ,

$$Span\{\mathbf{v}_{1},\cdots,\mathbf{v}_{p}\} = \{all linear combinations of \mathbf{v}_{1},\cdots,\mathbf{v}_{p}\} \\ = \{c_{1}\mathbf{v}_{1}+\cdots+c_{p}\mathbf{v}_{p}:c_{1},\cdots,c_{p} \text{ are scalars}\} \\ = subset spanned (generated) by vectors \mathbf{v}_{1},\cdots,\mathbf{v}_{p}\}$$

Geometric description:

 $Span\{u\}$ denotes a straight line $Span\{u, v\}$ denotes a plane

1.4 Matrix equations $A\mathbf{x} = \mathbf{b}$

• **Def**: product between A and \mathbf{x}

$$\mathbf{Ex:} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}_{2\times 3} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}_{3\times 1} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \times 1 + \begin{bmatrix} 2 \\ 3 \end{bmatrix} \times 2 + \begin{bmatrix} 3 \\ 4 \end{bmatrix} \times 3 = \begin{bmatrix} 14 \\ 20 \end{bmatrix}$$
$$\mathbf{Ex:} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \quad I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}: \text{ identity matrix}$$

Ex: For vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$, we can rewrite $\mathbf{v}_1 + \mathbf{v}_2 - 2\mathbf{v}_3 = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} \begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}$

• Properties: $A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v}$, A is a matrix and \mathbf{u}, \mathbf{v} are vectors $A(c\mathbf{u}) = cA\mathbf{u}$, c: scalar Ex: Let $A = \begin{bmatrix} 1 & 2 \\ -2 & 2 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}$. Then

Ex: Let
$$A = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix}$$
, $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. Then

$$A(\mathbf{u} + \mathbf{v}) = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \left(\begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right) = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

$$A\mathbf{u} + A\mathbf{v} = \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ -2 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

- Thm: Let A be an $m \times n$ matrix with columns $\mathbf{a}_1, \cdots, \mathbf{a}_n$ and $\mathbf{b} \in \mathbb{R}^m$. The solution set of $A\mathbf{x} = \mathbf{b} \iff$ The solution set of $\mathbf{a}_1 x_1 + \cdots + \mathbf{a}_p x_p = \mathbf{b}$ \iff The solution set of the system determined by the augmented matrix $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$
- Question: Determine if for each vector $\mathbf{b} \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ is consistent

$$\mathbf{Ex:} \ A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}, \ b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & b_1 \\ 2 & 2 & b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 0 & b_2 - 2b_1 \end{bmatrix} \text{ is consistent if and only if } b_2 - 2b_1 = 0$$
$$\mathbf{Ex:} \ A = \begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}, \ b = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 1 & b_1 \\ 2 & 4 & b_2 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 2 & b_2 - 2b_1 \end{bmatrix} \text{ is consistent for any } \mathbf{b}$$

& Thm: The following statements are equivalent:

For each $\mathbf{b} \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ is consistent

- \iff For each $\mathbf{b} \in \mathbb{R}^m$, \mathbf{b} is a linear combination of $\mathbf{a}_1, \cdots, \mathbf{a}_n$
- $\iff \mathbb{R}^m = \operatorname{Span}\{\mathbf{a}_1, \cdots, \mathbf{a}_n\}$
- \iff A has a pivot position in every row

1.5 Solution sets of $A\mathbf{x} = \mathbf{b}$

• Def: A homogeneous linear system is in the form $A\mathbf{x} = \mathbf{0}$. It must be consistent with the trivial solution $\mathbf{x} = \mathbf{0}$.

If $\mathbf{x} \neq \mathbf{0}$, it is called a nontrivial solution.

Remark: $A\mathbf{x} = \mathbf{0}$ has nontrivial solutions $\iff A\mathbf{x} = \mathbf{0}$ has infinitely many solutions

$$\iff A\mathbf{x} = \mathbf{0} \text{ has free variables}$$

Ex: $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$. Find all the solutions of $A\mathbf{x} = \mathbf{0}$.
 $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \\ 1 & 2 & 3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 0 & -1 & 0 \\ 0 & (1) & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \iff \begin{cases} x_1 = x_3 \\ x_2 = -2x_3 \\ x_3 = x_3 \text{ (free)} \end{cases}$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$, x_3 can be chosen as any real numbers.

Def: x = tv, t ∈ ℝ, is call the parametric vector form of the solution.
Ex: Find all solutions of x₁ − x₂ − x₃ = 0.

$$\begin{bmatrix} \textcircled{1} & -1 & -1 & 0 \end{bmatrix} \iff \begin{cases} x_1 = x_2 + x_3 \\ x_2 = x_2 \text{ (free)} \iff \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3$$
$$\mathbf{Ex: Given } \mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. \text{ Find matrix } A \text{ such that } A\mathbf{x}_0 = \mathbf{0}.$$

Suppose that x_3 is a free variable and all the solution can be written as $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} x_3$.

Then
$$\begin{cases} x_1 = x_3 \\ x_2 = x_3 \\ x_3 = x_3 \text{ (free)} \end{cases} \iff \begin{cases} x_1 - x_3 = 0 \\ x_2 - x_3 = 0 \\ 0 = 0 \end{cases} \text{ augmented matrix } \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

So we can choose $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}$

 $\begin{bmatrix} 0 & 0 & 0 \end{bmatrix}$ **Ex**: Find all the solutions of $A\mathbf{x} = \mathbf{b}$ with $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. $\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 0 \\ 1 & 2 & 3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -3 \\ 0 & (1) & 2 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \iff \begin{cases} x_1 = -3 + x_3 \\ x_2 = 2 - 2x_3 \\ x_3 = x_3 \text{ (free)} \end{cases}$ All the solutions are in the form $\mathbf{x} = \begin{bmatrix} -3 \\ 2 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

Compare it with the first example on this page, we get the following Thm.

• Thm: Assume that $A\mathbf{x} = \mathbf{b}$ has a solution \mathbf{p} . Then any solution of $A\mathbf{x} = \mathbf{b}$ has the form $\mathbf{x} = \mathbf{p} + \mathbf{v}$, where \mathbf{v} is any solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$.

1.7 Linear independence

- **Def**: 1. linearly independent
 - 2. linearly dependent

Ex: Determine if the columns of $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}$ are linearly dependent Augmented matrix $\begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \\ 3 & 4 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & -2 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 2 & 3 & 0 \\ 0 & (1) & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

There is infinitely many solutions for $A\mathbf{x} = \mathbf{0}$, so of course there is nontrivial ones, since there is one free variable. Thus, the columns of A are linear dependent.

Ex: Determine if
$$\mathbf{v}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 and $\mathbf{v}_2 = \begin{bmatrix} 2\\ 4\\ 6 \end{bmatrix}$ are linear dependent.

Method 1: consider the augmented matrix $\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{0} \end{bmatrix}$ as above

Method 2: note that $v_2 = 2v_1$, so they are linearly dependent. See also what follows.

- Thm: Vectors $\mathbf{v}_1, \cdots, \mathbf{v}_p$ are linearly dependent \iff One of them is a linear combination of the others.
- Thm: Any set of vectors $\{\mathbf{v}_1, \cdots, \mathbf{v}_p\}$ in \mathbb{R}^n is linearly dependent if p > n.

Reason: Consider linear system $\mathbf{v}_1 x_1 + \cdots + \mathbf{v}_p x_p = \mathbf{0}$. There is p variables in total. There is at most n pivot variables since there is n equations. As a result, there is at least p - n(> 0) free variables. So the system has nontrivial solutions, and thus the vectors are linearly dependent.

Thm: Any set of vectors {v₁, · · · , v_p} containing the zero vector is linearly dependent.
 Reason: Without loss of generality, we assume that v₁ = 0. Then apparently

$$\mathbf{v}_1 \cdot 1 + \mathbf{v}_2 \cdot 0 + \dots + \mathbf{v}_2 \cdot 0 = \mathbf{0}$$

is always true, that is, $\mathbf{v}_1 x_1 + \dots + \mathbf{v}_p x_p = \mathbf{0}$ has a nontrivial solution $\begin{cases} x_1 = 1 \\ x_2 = 0 \\ \vdots \\ x_p = 0 \end{cases}$

1.8 Linear transformations

• **Def**: transformation (mapping)

$$T: \mathbb{R}^n \to \mathbb{R}^m \qquad \mathbb{R}^n: \text{ domain}, \qquad \mathbb{R}^m: \text{ codomain} \\ \mathbf{x} \mapsto T(\mathbf{x}) \qquad T(\mathbf{x}): \text{ image of } \mathbf{x}, \qquad \text{range of } T: \text{ all the images} \end{cases}$$

Ex: Define the following transformation

$$T: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\mathbf{x} \mapsto \begin{bmatrix} 1\\1 \end{bmatrix}$$
What is $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right), T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right)$ and $T\left(\begin{bmatrix} 0\\0 \end{bmatrix}\right)$?
Answer: $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} 1\\1 \end{bmatrix}, T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\1 \end{bmatrix}, T\left(\begin{bmatrix} 0\\0 \end{bmatrix}\right) = \begin{bmatrix} 1\\1 \end{bmatrix}$
Ex: Define another transformation
$$T = \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$T: \mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\mathbf{x} \mapsto 2\mathbf{x}$$
What is $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right), T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) \text{ and } T\left(\begin{bmatrix} 0\\0 \end{bmatrix}\right)$?
Answer: $T\left(\begin{bmatrix} 1\\1 \end{bmatrix}\right) = \begin{bmatrix} 2\\2 \end{bmatrix}, T\left(\begin{bmatrix} 1\\0 \end{bmatrix}\right) = \begin{bmatrix} 2\\0 \end{bmatrix}, T\left(\begin{bmatrix} 0\\0 \end{bmatrix}\right) = \begin{bmatrix} 0\\0 \end{bmatrix}$

- **Def**: matrix transformation $(T(\mathbf{x}) = A\mathbf{x})$
- **Def**: linear transformation
- ♣ For a matrix transformation T(x) = Ax, we have the following three kinds of problems.
 1. Given A, u ⇒ T(u)

Ex: $T : \mathbb{R}^2 \to \mathbb{R}^2$ with $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. What is the image $T(\mathbf{u})$? Answer: $T(\mathbf{u}) = A\mathbf{u} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 5 \\ 11 \end{bmatrix}$. 2. Given $A, T(\mathbf{u}) \Longrightarrow \mathbf{u}$

Ex: $T : \mathbb{R}^2 \to \mathbb{R}^2$ with $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $T(\mathbf{u}) = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. What is \mathbf{u} ?

Answer: Since **u** satisfies $T(\mathbf{u}) = A\mathbf{u}$, we have $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \mathbf{u} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Then it suffices to consider the augmented matrix and do the row reduction:

$$\begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}, \text{ that is, } \mathbf{u} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}.$$
3. For each \mathbf{x} , the image $T(\mathbf{x})$ is given $\Longrightarrow A$
Ex: For each $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, T(\mathbf{x}) = \begin{bmatrix} x_1 - x_2 \\ 2x_2 \\ x_1 + x_3 \end{bmatrix}.$ What is A ?
Answer: Rewrite $T(\mathbf{x}) = \begin{bmatrix} x_1 - x_2 \\ 2x_2 \\ x_1 + x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \mathbf{x}_1 + \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix} \mathbf{x}_2 + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \mathbf{x}_3 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \text{ so } A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}.$
Ex: Consider $T : \mathbb{R}^2 \to \mathbb{R}^2$. Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ be the two columns of the identity matrix. If we know $T(\mathbf{e}_1) = \begin{bmatrix} 1 \\ 2 \\ x_2 \end{bmatrix}$ and $T(\mathbf{e}_2) = \begin{bmatrix} 3 \\ 4 \\ 3 \end{bmatrix}$, what is A ?
Answer: For each $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \mathbf{e}_1 x_1 + \mathbf{e}_2 x_2$, we have
 $T(\mathbf{x}) = T(\mathbf{e}_1 x_1 + \mathbf{e}_2 x_2) = T(\mathbf{e}_1) x_1 + T(\mathbf{e}_2) x_2 = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}.$
So $A = \begin{bmatrix} T(\mathbf{e}_1) & T(\mathbf{e}_2) \end{bmatrix} = \begin{bmatrix} 1 & 3 \\ 2 & 4 \end{bmatrix}.$

1.9 The matrix of a linear transformation

• Thm: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then there exists a unique matrix A such that $T(\mathbf{x}) = A\mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^n$. In fact,

$$A = \left[\begin{array}{ccc} T(\mathbf{e_1}) & \cdots & T(\mathbf{e_n}) \end{array} \right],$$

where $\mathbf{e_1}, \cdots, \mathbf{e_n}$ are the columns of the identity matrix $I_{n \times n}$.

• Geometric description in \mathbb{R}^2 : $\mathbf{e_1} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e_2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

1. Reflections: $A = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$

2. Contractions and expansions: $A = \begin{bmatrix} 1 & 0 \\ 0 & k \end{bmatrix}$

- 3. Shears: $A = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix}$ 4. Rotation: $A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$ 5. Projections: $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$

& Thm: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

T is onto. \iff For each $\mathbf{b} \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ is consistent.

 \iff A has a pivot position in every row.

 $\iff \mathbb{R}^m = Span\{\mathbf{a}_1, \cdots, \mathbf{a}_n\}$ with $\mathbf{a}_1, \cdots, \mathbf{a}_n$ being the columns of A

• **Def**: one-to-one mapping

Ex: The mapping $T : \mathbb{R}^2 \to \mathbb{R}^2$ is NOT one-to-one.

$$\mathbf{x} \mapsto \left[\begin{array}{c} 1\\1 \end{array} \right]$$

& Thm: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation.

T is one-to-one. $\iff A\mathbf{x} = 0$ has only the trivial solution.

 \iff The columns of A are linearly independent.

2 Chapter 2

2.1 Matrix operations

$$A_{m \times n} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix} \text{ with } \mathbf{a}_i = \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{mi} \end{bmatrix} \Longrightarrow A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \left(= [a_{ij}]_{m \times n} \right)$$

Diagnal matrix: a square matrix with zero non-diagonal entries, for example, $I_n = \begin{bmatrix} 1 \\ & \ddots \\ & 1 \end{bmatrix}_{n \times n}$

1. Sum and scalar multiple

A = B: same size & same corresponding entries A + B: the sum has the same size as A and B & adding corresponding entries cA: same size as A & each entry in A is multiplied by c**Properties**: A + B = B + A, c(A + B) = cA + cB

2. Multiplication

Def: Given $A_{m \times n}$ and $B_{n \times p} = \begin{bmatrix} \mathbf{b}_1 & \cdots & \mathbf{b}_p \end{bmatrix}$, the product is defined by

$$AB = \left[\begin{array}{ccc} A\mathbf{b}_1 & \cdots & A\mathbf{b}_p \end{array} \right]$$

Ex: Given
$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}_{2 \times 3}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}_{3 \times 3}$. What is AB ?
Answer: $AB = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 & 2 \\ 3 & 3 & 4 \end{bmatrix}_{2 \times 3}$

 \implies The (i, j)-entry in AB can be calculated as $(AB)_{ij} = \operatorname{row}_i(A) \cdot \operatorname{column}_j(B)$ **Ex**: Since any given matrix could define a linear transformation, we have

$$A_{m \times n} \iff T_A : \mathbb{R}^n \to \mathbb{R}^m, \qquad B_{n \times p} \iff T_B : \mathbb{R}^p \to \mathbb{R}^n$$

 $\mathbf{x} \mapsto A\mathbf{x}, \qquad \mathbf{x} \mapsto B\mathbf{x}$

That is, for any $\mathbf{x} \in \mathbb{R}^p$, $\mathbf{x} \xrightarrow{T_B} B\mathbf{x} \xrightarrow{T_A} AB\mathbf{x}$, which define a new mapping

$$(AB)_{m \times p} \iff T_{AB} : \mathbb{R}^p \to \mathbb{R}^n$$

 $\mathbf{x} \mapsto AB\mathbf{x}$

Properties: A(BC) = (AB)C, A(B+C) = AB + AC, c(AB) = (cA)B = A(cB) ***** In general, $AB \neq BA$ e.g. $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ ***** In general, $AB = AC \Rightarrow B = C$ e.g. A, B as above, $C = \begin{bmatrix} 2 & 3 \\ 2 & 3 \end{bmatrix}$ ***** In general, $AB = 0 \Rightarrow A = 0$ or B = 0 A as above, $B = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$

3. Transpose

Def: Given $A_{m \times n}$. Its transpose, denoted by A^{\top} , is an $n \times m$ matrix whose columns are the corresponding rows of A

Properties: $(A^{\top})^{\top} = A, (A+B)^{\top} = A^{\top} + B^{\top}, (cA)^{\top} = cA^{\top}, (AB)^{\top} = B^{\top}A^{\top}$

2.2 & 2.3 Inverse of a matrix

- **Def**: invertible
 - If AB = AC and A is invertible $\implies B = C$
 - ♣ If AB = 0 and A is invertible (resp. B is invertible) $\implies B = 0$ (resp. A = 0)
- **Properties**: $(A^{-1})^{-1} = A$, $(AB)^{-1} = B^{-1}A^{-1}$, $(A^{\top})^{-1} = (A^{-1})^{\top}$
- Thm: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$. If $ad-bc \neq 0$, then A is invertible and $A^{-1} = \frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$. If ad-bc = 0, then A is not invertible. Ex: Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$. What is A^{-1} ? Answer: $ad - bc = 1 \times 5 - 2 \times 3 = -1$, so A is invertible and

$$A^{-1} = \frac{1}{-1} \begin{bmatrix} 5 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$$

• Thm: If $A_{n \times n}$ is invertible, then for each vector $\mathbf{b} \in \mathbb{R}^n$, $A\mathbf{x} = \mathbf{b}$ has a unique solution $\mathbf{x} = A^{-1}\mathbf{b}$.

 \implies In this case, A has a pivot position in every row.

♣ Thm: $A_{n \times n}$ is invertible $\iff A$ is row equivalent to I_n

• **Def**: elementary matrix

Ex: $E_1 = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix}, E_2 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, E_3 = \begin{bmatrix} r & 0 \\ 0 & 1 \end{bmatrix}$

For any 2×2 matrix A, we have

$$E_1 A = \begin{bmatrix} 1 & 0 \\ r & 1 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} a & b \\ ra+c & rb+d \end{bmatrix}$$

 $\implies EA$ is obtained by performing the same row operation to A

A Calculation of A^{-1} : If $A_{n \times n}$ is invertible, then $A \sim I_n$ and there exists a matrix A^{-1} such that $A^{-1}A = I_n$. That is, A^{-1} is a kind of row operations that transform A to I_n . Moreover,

$$A^{-1}\left[\begin{array}{cc}A & I_n\end{array}\right] = \left[\begin{array}{cc}I_n & A^{-1}\end{array}\right]$$

That is, under the operation A^{-1} , we have $\begin{bmatrix} A & I_n \end{bmatrix} \sim \begin{bmatrix} I_n & A^{-1} \end{bmatrix}$

Ex: Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$$
.

$$\begin{bmatrix} A & I_n \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 & 0 \\ 3 & 5 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & -1 & -3 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -5 & 2 \\ 0 & 1 & 3 & -1 \end{bmatrix} = \begin{bmatrix} I_n & A^{-1} \end{bmatrix}$$

So $A^{-1} = \begin{bmatrix} -5 & 2 \\ 3 & -1 \end{bmatrix}$.

2.8 Subspaces of \mathbb{R}^n

• Def: subspace

Ex: For $\mathbf{u} \in \mathbb{R}^3$, Span $\{\mathbf{u}\}$ is a subspace of \mathbb{R}^3 .

For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$, Span $\{\mathbf{u}, \mathbf{v}\}$ is a subspace of \mathbb{R}^3 .

Ex: \mathbb{R}^n , $\{\mathbf{0}\}$ are both subspaces of \mathbb{R}^n .

• **Def**: column space of A: ColA

 \implies For $A_{m \times n}$, ColA is a subspace of \mathbb{R}^m

• **Def**: null space of A: NulA

$$\implies$$
 For $A_{m \times n}$, NulA is a subspace of \mathbb{R}^n

Ex: Let
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 and $\mathbf{u} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$. Is \mathbf{u} in Col A or Nul A ?

① Consider $\begin{bmatrix} A & \mathbf{u} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 4 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 2 & -1 \end{bmatrix}$. The rightmost column is not a pivot column, so the system is consistent. Equivalently, there is a solution \mathbf{x} such that $A\mathbf{x} = \mathbf{u}$, that is, \mathbf{u} is a linear combination of the columns of A. Hence, \mathbf{u} is in ColA.

(2) Consider $A\mathbf{u} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 9 \\ 19 \end{bmatrix}$. That is, \mathbf{u} is not a solution of the homogeneous system $A\mathbf{x} = \mathbf{0}$, so \mathbf{u} is not in NulA.

Ex: Let
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
. Then
 $\operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 2 \\ 4 \end{bmatrix} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$

Question: How to find the smallest amount of vectors that span a subspace?

• Def: basis

Ex: Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \end{bmatrix}$. Find a basis for ColA\NulA.

(1) NulA: We need to find all the solutions of $A\mathbf{x} = \mathbf{0}$. Consider the augmented matrix

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 1 & 2 & 0 \end{bmatrix}$$

The solution is in the form

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_3 \\ -2x_3 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} x_3, \quad x_3 \text{ is a free parameter.}$$

So NulA=Span $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$, and the set $\left\{ \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix} \right\}$ is a basis for NulA.

(2) ColA: We need to find linearly independent columns of A. Based on the echelon of $\begin{bmatrix} A & \mathbf{0} \end{bmatrix}$ calculated above, we can get the echelon form of A directly

$$A = \begin{bmatrix} \textcircled{1} & 2 & 3 \\ 2 & \textcircled{3} & 4 \end{bmatrix} \sim \begin{bmatrix} \textcircled{1} & 0 & -1 \\ 0 & \textcircled{1} & 2 \end{bmatrix}$$

The third column can be written as a linear combination of the first two columns, and the first two columns are linear independent. So

$$\operatorname{Col} A = \operatorname{Span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\} = \operatorname{Span} \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\},$$

and the set $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}$ is a basis for Col*A*.

♣ Thm: The pivot columns of A form a basis for ColA.

2.9 Dimension and rank

- Def: coordinate vector $\mathbf{E}\mathbf{x}: \ \mathbf{x} = \begin{bmatrix} 5\\6 \end{bmatrix} = 5\mathbf{e}_1 + 6\mathbf{e}_2 \text{ where } \mathbf{e}_1 = \begin{bmatrix} 1\\0 \end{bmatrix} \text{ and } \mathbf{e}_2 = \begin{bmatrix} 0\\1 \end{bmatrix} \text{ form a basis for } \mathbb{R}^2.$ Hence, $\begin{bmatrix} 5\\6 \end{bmatrix}$ is the coordinate vector of \mathbf{x} relative to the standard basis $\{\mathbf{e}_1, \mathbf{e}_2\}.$ $\mathbf{E}\mathbf{x}: \ \mathbf{x} = \begin{bmatrix} 5\\6 \end{bmatrix}, \ \mathbf{b}_1 = \begin{bmatrix} 1\\2 \end{bmatrix}, \ \mathbf{b}_2 = \begin{bmatrix} 3\\4 \end{bmatrix}.$ (1) $\{\mathbf{b}_1, \mathbf{b}_2\}$ is also a basis for \mathbb{R}^2 : $\begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \end{bmatrix} = \begin{bmatrix} 1 & 3\\2 & 4 \end{bmatrix} \sim \begin{bmatrix} (1) & 0\\0 \ (1) \end{bmatrix}$ (2) Hence, we can find the coordinate vector of \mathbf{x} relative to the new basis $\{\mathbf{b}_1, \mathbf{b}_2\},$ that is, find $\begin{bmatrix} c_1\\c_2 \end{bmatrix}$ such that $\mathbf{x} = c_1\mathbf{b}_1 + c_2\mathbf{b}_2$: $\begin{bmatrix} \mathbf{b}_1 \ \mathbf{b}_2 \ \mathbf{x} \end{bmatrix} = \begin{bmatrix} 1 & 3 & 5\\2 & 4 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1\\0 & 1 & 2 \end{bmatrix}, \text{ so } \begin{bmatrix} c_1\\c_2 \end{bmatrix} = \begin{bmatrix} -1\\2 \end{bmatrix}.$
- **Def**: dimension

Ex: \mathbb{R}^n has the standard basis $\{\mathbf{e}_1, \cdots, \mathbf{e}_n\}$, so dim $\mathbb{R}^n = n$.

Ex: Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.

① ColA={the set generated by the pivot columns}=Span{a₁, a₃, a₄}, so dim ColA=3
② NulA={all the solutions of Ax = 0}:

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 2 & 0 & 0 & 0 \\ 0 & 0 & (1) & 0 & 0 \\ 0 & 0 & 0 & (1) & 0 \end{bmatrix}, \text{ so } \mathbf{x} = \begin{bmatrix} -2x_2 \\ x_2 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} x_2$$
Hence, Nul $A = \text{Span} \left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$, and dim Nul $A = 1$

 \implies dim Col $A_{m \times n}$ (No. of basic variables)+dim Nul $A_{m \times n}$ (No. of free variables)= n(No. of variables)

- **Def**: rankA=dim ColA
- Thm (The rank theorem): For $A_{m \times n}$, rankA+dim NulA = n
- Thm (The basis theorem): Let H be a p-dimensional subspace of \mathbb{R}^n . Any linearly independent set of exactly p vectors in H is a basis for H.

3 Chapter 3

3.1 Determinants of $A_{n \times n}$

• **Def**: submatrix A_{ij}

Ex: Consider the 2 × 2 matrix
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
. $A_{11} = [a_{22}], A_{12} = [a_{21}], A_{22} = [a_{11}]$
Ex: For $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}_{3\times 3}$, $A_{11} = \begin{bmatrix} 2 & 4 \\ 3 & 5 \end{bmatrix}_{2\times 2}$, $A_{12} = \begin{bmatrix} 3 & 4 \\ 4 & 5 \end{bmatrix}_{2\times 2}$

• **Def**: determinant of A: $\det A = a_{11} \det A_{11} - a_{12} \det A_{12} + \dots + a_{1n} (-1)^{1+n} \det A_{1n}$ In particular, $\det[a_{11}] = a_{11}$.

Ex: For
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
, det $A = a_{11} \det A_{11} - a_{12} \det A_{12} = a_{11} a_{22} - a_{12} a_{21}$

- Thm: $A_{n \times n}$ is invertible $\iff \det A \neq 0$
- **Def**: the (i, j)-cofactor of A is denoted by $C_{ij} = (-1)^{i+j} \det A_{ij}$
 - \Longrightarrow Then the definition of det A above can be rewritten as

$$\det A = a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n},$$

which is called the cofactor expansion across the first row.

• **Thm**: det*A* can be calculated by the cofactor expansion across any row of down any column

$$\det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$$

= $a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$

Ex: Calculate the following determinant

$$\begin{vmatrix} 1 & 0 & 2 & 3 & 1 \\ 2 & 0 & 1 & 2 & 3 \\ 0 & 0 & 3 & 0 & 0 \\ 1 & 2 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 & 0 \end{vmatrix} \xrightarrow{3rd \ row} 3(-1)^{3+3} \begin{vmatrix} 1 & 0 & 3 & 1 \\ 2 & 0 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 0 & 0 & 2 & 0 \end{vmatrix} \xrightarrow{4th \ row} 3 \cdot 2(-1)^{4+3} \begin{vmatrix} 1 & 0 & 1 \\ 2 & 0 & 3 \\ 1 & 2 & 4 \\ 0 & 0 & 2 & 0 \end{vmatrix}$$
$$\xrightarrow{2nd \ column} (-6)2(-1)^{3+2} \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 12$$
$$\mathbf{Ex:} \begin{vmatrix} 2 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{vmatrix} \xrightarrow{1st \ column} 2(-1)^{1+1} \begin{vmatrix} 4 & 5 \\ 0 & 6 \end{vmatrix} = 2 \cdot 4 \cdot 6$$

- Thm: If $A_{n \times n}$ is a triangular matrix, then its determinant is the product of the main diagonals, that is, $\det A = \prod_{i=1}^{n} a_{ii}$.
- Thm (Row operations): Let A be a square matrix.

(1) If a scalar multiple of one row of A is added to another row to produce B, then $\det B = \det A$.

(2) If two rows of A are interchanged to produce B, then det B = -det A.

(3) If a scalar k is multiplied to one row of A to produce B, then detB = kdetA. Ex:

$$\begin{vmatrix} 5 & 6 & 7 \\ 5 & 6 & 8 \\ 50 & 260 & 150 \end{vmatrix} \xrightarrow{use ③} 10 \begin{vmatrix} 5 & 6 & 7 \\ 5 & 6 & 8 \\ 5 & 26 & 15 \end{vmatrix} \xrightarrow{use ①} 10 \begin{vmatrix} 5 & 6 & 7 \\ 0 & 20 & 8 \\ 0 & 0 & 1 \end{vmatrix} = -1000$$

3.2 Properties of determinants

• Thm: Let A be a square matrix, then $det A^{\top} = det A$.

 $\implies \det A^{\top} = \text{cofactor expansion across the } i\text{th row of } A^{\top}$

= cofactor expansion down the *i*th column of A

 $= \det A$

- Thm (Multiplicative property): Let A and B be $n \times n$ square matrices. Then $det(AB) = detA \cdot detB$
 - \implies If A is invertible, then $1 = |I| = |AA^{-1}| = |A||A^{-1}|$. Hence, $|A^{-1}| = \frac{1}{|A|}$.
 - \implies In general, $\det(A + B) \neq \det A + \det B$
- Thm (Linearity property): Assume that the *j*th column of $A_{n \times n}$ is allowed to vary $A = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{j-1} & \mathbf{x} & \mathbf{a}_{j+1} & \cdots & \mathbf{a}_n \end{bmatrix}$. Define the mapping $T : \mathbb{R}^n \to \mathbb{R}$ by $T(\mathbf{x}) = \det A$. Then *T* is linear: $T(c\mathbf{x}) = cT(\mathbf{x})$ and $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$.

$$\implies \begin{vmatrix} a_{11} & cx_1 \\ a_{21} & cx_2 \end{vmatrix} = c \begin{vmatrix} a_{11} & x_1 \\ a_{21} & x_2 \end{vmatrix} \text{ and } \begin{vmatrix} a_{11} & x_1 + y_1 \\ a_{21} & x_2 + y_2 \end{vmatrix} = \begin{vmatrix} a_{11} & x_1 \\ a_{21} & x_2 \end{vmatrix} + \begin{vmatrix} a_{11} & y_1 \\ a_{21} & y_2 \end{vmatrix}$$
Ex:

$$\begin{vmatrix} 17 & 17 & 17 \\ 25 & 26 & 25 \\ 55 & 88 & 56 \end{vmatrix} = \begin{vmatrix} 17 & 17 + 0 & 17 \\ 25 & 25 + 1 & 25 \\ 55 & 55 + 33 & 56 \end{vmatrix} = \begin{vmatrix} 17 & 17 & 17 \\ 25 & 25 & 25 \\ 55 & 55 & 56 \end{vmatrix} + \begin{vmatrix} 17 & 0 & 17 \\ 25 & 1 & 25 \\ 55 & 33 & 56 \end{vmatrix}$$

$$= \begin{vmatrix} 17 & 0 & 17+0 \\ 25 & 1 & 25+0 \\ 55 & 33 & 55+1 \end{vmatrix} = \begin{vmatrix} 17 & 0 & 17 \\ 25 & 1 & 25 \\ 55 & 33 & 55 \end{vmatrix} + \begin{vmatrix} 17 & 0 & 0 \\ 25 & 1 & 0 \\ 55 & 33 & 1 \end{vmatrix} = \begin{vmatrix} 17 & 0 & 0 \\ 25 & 1 & 0 \\ 55 & 33 & 1 \end{vmatrix} = 17.$$

• **Def**: Let A be an $n \times n$ matrix and **b** is vector in \mathbb{R}^n . Denote

 $A_i(\mathbf{b}) = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_n \end{bmatrix}$

***** Thm (Cramer's rule): If $A_{n \times n}$ is invertible, then for each **b** in \mathbb{R}^n , the system $A\mathbf{x} = \mathbf{b}$ has a unique solution **x** with entries

$$x_i = \frac{\det A_i(\mathbf{b})}{\det A}$$

Ex: Consider $\begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 6 \\ 16 \end{bmatrix}$. We have got $x_1 = 4$ and x = 2 in Chapter 1. Next we use Cramer's rule to check these results.

$$x_{1} = \frac{\det A_{1}(\mathbf{b})}{\det A} = \frac{\begin{vmatrix} 6 & 1 \\ 16 & 4 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix}} = \frac{8}{2} = 4$$
$$x_{2} = \frac{\det A_{2}(\mathbf{b})}{\det A} = \frac{\begin{vmatrix} 1 & 6 \\ 2 & 16 \end{vmatrix}}{\begin{vmatrix} 1 & 1 \\ 2 & 4 \end{vmatrix}} = \frac{4}{2} = 2$$

3.3 Volume and linear transformation

Recall: For $A_{2\times 2} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, if A is invertible, then $A^{-1} = \frac{1}{\det A} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$

• **Def**: The adjugate (adjoint) of $A_{n \times n}$ is

$$\operatorname{adj} A = \begin{bmatrix} C_{11} & C_{21} & \cdots & C_{n1} \\ C_{12} & C_{22} & \cdots & C_{n2} \\ \vdots & \vdots & & \vdots \\ C_{1n} & C_{2n} & \cdots & C_{nn} \end{bmatrix}$$

where $C_{ij} = (-1)^{i+j} \det A_{ij}$ is the (i, j)-cofactor of A. **Ex**: Given $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, calculate adjA.

Answer:
$$C_{11} = (-1)^{1+1} \det[d] = d$$
, $C_{12} = (-1)^{1+2} \det[c] = -c$
 $C_{21} = (-1)^{2+1} \det[b] = -b$, $C_{22} = (-1)^{2+2} \det[a] = a$
Hence, $\operatorname{adj} A = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$
 $\implies (A_{2\times 2})^{-1} = \frac{1}{\det A} \operatorname{adj} A$

• Thm (An inverse formula): Let A be an $n \times n$ invertible matrix. Then

$$A^{-1} = \frac{1}{\det A} \operatorname{adj} A$$

 $\implies \text{The } (i,j) \text{ entry of } A^{-1} \text{ is } \frac{C_{ji}}{\det A}.$ **Ex**: For $A = \begin{bmatrix} k & 0 \\ 0 & 1 \end{bmatrix}$, the area determined by the columns $\begin{bmatrix} k \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ is |k|. $\implies \text{Moreover, the parallelogram determined by two vectors } \begin{bmatrix} k \\ 0 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ is the same as the parallelogram determined by four points } (0,0), (k,0), (0,1) \text{ and } (k,1).$

- Thm: For $A_{n \times n}$, the volume determined by its columns is $|\det A|$.
- Thm: Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear mapping with $T(\mathbf{x}) = A\mathbf{x}$. Then for any region S in \mathbb{R}^n ,

{The volume of T(S)} = $|\det A| \cdot \{\text{The volume of } S\}$.

Review of Chapter 3

1. Determinant of $A_{n \times n}$:

 $det A = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$ (the cofactor expansion across the *i*th row) = $a_{1j}C_{1j} + a_{2j}C_{2j} + \dots + a_{nj}C_{nj}$ (the cofactor expansion down the *j*th column)

- 2. Properties of determinants:
 - (1) row operations: three kinds of elementary row operations
 - (2) transpose: $|A^{\top}| = |A|$
 - (3) multiplication: $|AB| = |A| \cdot |B|$
 - (4) linearity: $\left| \begin{bmatrix} \mathbf{a}_1 & \mathbf{x} + \mathbf{y} \end{bmatrix} \right| = \left| \begin{bmatrix} \mathbf{a}_1 & \mathbf{x} \end{bmatrix} \right| + \left| \begin{bmatrix} \mathbf{a}_1 & \mathbf{y} \end{bmatrix} \right|$
- 3. Solve $A\mathbf{x} = \mathbf{b}$:
 - $\textcircled{1} \begin{bmatrix} A & \mathbf{b} \end{bmatrix}$
 - (2) If A is invertible $(\det A \neq 0)$, then $\mathbf{x} = A^{-1}\mathbf{b}$
 - (3) If A is invertible (det $A \neq 0$), then the *i*th entry in **x** is $x_i = \frac{\det A_i(\mathbf{b})}{\det A}$
- 4. Calculate A^{-1} :

$$\begin{array}{ccc} \left[\begin{array}{cc} A & I \end{array}\right] \sim \left[\begin{array}{ccc} I & A^{-1} \end{array}\right] \\ \end{array} \\ \begin{array}{ccc} 2 & A^{-1} = \frac{1}{\det A} \mathrm{adj}A & (\text{this can be used to calculate the } (i,j) \text{ entry of } A^{-1}) \end{array}$$

5. Matlab code (for the ones who are interested):

Define a vector: $>> \mathbf{b} = [1; 2]$ Define a matrix: >> A = [1, 2; 3, 4]Determinant of A: >> det(A)Inverse of A: >> inv(A)Adjoint of A: >> adjoint(A)Solution of $A\mathbf{x} = \mathbf{b}$ if: $>> A \setminus \mathbf{b}$

Chapter 4 4

4.1Vector spaces and subspaces

• **Def**: vector spaces

Ex: \mathbb{R}^n is a vector space with zero object $\begin{bmatrix} 0\\ \vdots\\ 0 \end{bmatrix}$

Ex: The polynomial space $\mathbb{P}_n = \{ \text{all polynomials of the form } p(t) = a_0 + a_1 t + \dots + a_n t^n \}$ is a vector space with zero object 0 (constant).

Ex: The matrix space $\mathbb{M}_{m \times n} = \{ \text{ all } m \times n \text{ matrices } A \}$ is a vector space with zero $\begin{bmatrix} 0 & \cdots & 0 \end{bmatrix}$

object
$$\begin{bmatrix} \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{bmatrix}_{m \times n}$$

- **Def**: For general vector spaces V and W, a linear transformation $T: V \to W$ satisfies (i) $T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v})$ for $\mathbf{u}, \mathbf{v} \in V$; (ii) $T(c\mathbf{u}) = cT(\mathbf{u})$ for $\mathbf{u} \in V$.
- **Def**: subspace *H* of general vector space *V* **Ex**: $\{\mathbf{0}\}$ and V are subspaces of V **Ex**: For $\mathbf{v}_1, \mathbf{v}_2 \in V$, the spanning set $H = \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$ is a subspace of V. **Ex**: Determine if $\mathbf{w} = \begin{bmatrix} 1\\ 2\\ 1 \end{bmatrix}$ is in the subspace spanned by $\mathbf{v}_1 = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$ and $\mathbf{v}_2 = \begin{bmatrix} 2\\ 3\\ 4 \end{bmatrix}$. \iff Determine if $w \in \text{Span}\{\mathbf{v}_1, \mathbf{v}_2\}.$ $\iff \text{Consider the augmented matrix} \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{w} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

The system above is not consistent, so w is not in the spanning set.

4.2Column/Null spaces and linear transformation

• **Def**: $\operatorname{Col} A_{m \times n} = \operatorname{Span} \{ \mathbf{a}_1, \cdots, \mathbf{a}_n \}$ $= \{ \mathbf{b} \in \mathbb{R}^m : \mathbf{b} = A\mathbf{x} \text{ for some } x \in \mathbb{R}^n \}$ **Ex**: Given a set $S = \left\{ \begin{bmatrix} 2s+3t\\r+s-2t\\4r+s\\3r-s-t \end{bmatrix} : r, s, t \text{ real} \right\}$. Find A such that S = ColA.

Answer: Note that

$$S = \left\{ \begin{bmatrix} 0\\1\\4\\3 \end{bmatrix} r + \begin{bmatrix} 2\\1\\1\\-1 \end{bmatrix} s + \begin{bmatrix} 3\\-2\\0\\-1 \end{bmatrix} t : r, s, t \text{ real} \right\}$$
$$= \operatorname{Span} \left\{ \begin{bmatrix} 0\\1\\4\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\1\\-1 \end{bmatrix}, \begin{bmatrix} 3\\-2\\0\\-1 \end{bmatrix} \right\}$$
As a result, $A = \begin{bmatrix} 0 & 2 & 3\\1 & 1 & -2\\4 & 1 & 0\\3 & -1 & -1 \end{bmatrix}$
Ex: Given $A = \begin{bmatrix} 1 & 2\\2 & 3\\3 & 4 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 1\\2\\1 \end{bmatrix}$. Is \mathbf{b} in ColA?
 \iff Determine if $\mathbf{b} \in \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$
$$\iff$$
 Consider the augmented matrix $\begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1\\2 & 3 & 2\\3 & 4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1\\0 & 1 & 0\\0 & 0 & 2 \end{bmatrix}$ The system is not consistent, so \mathbf{b} is not in ColA.
Ex: Given A as above. Find k such that ColA is a subspace of \mathbb{R}^k .
Answer: $k = 3$
Def: Nul $A_{m \times n} = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} = \mathbf{0}\}$

 $\begin{aligned} \mathbf{Ex: Given } A &= \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix}. \text{ Find Nul} A. \\ \text{Answer: Consider the augmented matrix of the homogeneous system} \\ &\begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 2 & 3 & 4 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 0 & -1 & -2 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 & -2 & 0 \\ 0 & 1 & 2 & 3 & 0 \end{bmatrix} \\ \text{Its solutions are in the form} \begin{cases} x_1 = x_3 + 2x_4 \\ x_2 = -2x_3 - 3x_4 \\ x_3 = x_3 \text{ (free)} \\ x_4 = x_4 \text{ (free)} \end{cases} \Leftrightarrow \mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \end{bmatrix} x_3 + \begin{bmatrix} 2 \\ -3 \\ 0 \\ 1 \end{bmatrix} x_4. \end{aligned}$

Hence, Nul
$$A$$
 = Span $\left\{ \begin{bmatrix} 1\\ -2\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 2\\ -3\\ 0\\ 1 \end{bmatrix} \right\}$.
Ex: Given A as above and $\mathbf{u} = \begin{bmatrix} 1\\ -1\\ -1\\ 1 \end{bmatrix}$. Is \mathbf{u} in Nul A ?

Answer:

(1) One way is to find NulA first, and then check if \mathbf{u} is in the spanning set. It will need a lot of calculations.

(2) The simplest way is to check if $A\mathbf{u} = \mathbf{0}$: $A\mathbf{u} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$, so \mathbf{u} is in NulA.

4.3 Linearly independent sets and bases

• **Def**: The set of vectors $\{\mathbf{v}_1, \cdots, \mathbf{v}_p\}$ in V is linearly independent if $c_1\mathbf{v}_1 + \cdots + c_p\mathbf{v}_p = 0$ has only the trivial solution $c_1 = \cdots = c_p = 0$.

Ex: Is the set $\left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 2\\3\\4 \end{bmatrix} \right\}$ in \mathbb{R}^3 linearly independent?

Answer: Consider the augmented matrix $\begin{bmatrix} 1 & 2 & 0 \\ 2 & 3 & 0 \\ 3 & 4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. There is only

the trivial solution, so the set above is a linearly independent set.

Ex: It the set $\{1, t, t^2\}$ in \mathbb{P}_2 linearly independent?

Answer: Consider the homogeneous equation $c_1 \cdot 1 + c_2t + c_3t^2 = 0$. It has only the trivial solution $c_1 = c_2 = c_3 = 0$. So the set is a linear independent set.

Def: Let H be a subspace of V. Then the set B = {v₁, ..., v_p} is a basis for H if
① B is a linearly independent set,
② H =Span{v₁, ..., v_p}.
Ex: ℝⁿ =Span{e₁, ..., e_n}. The set {e₁, ..., e_n} is called the standard basis for ℝⁿ.
Ex: ℙ_n = {c₀ + c₁t + c₂t² + ... + c_ntⁿ : c₀, c₁, ..., c_n real} =Span{1, t, t², ..., tⁿ}.
The set {1, t, t², ..., tⁿ} is called the standard basis for ℙ_n.

Ex (8 in the textbook): Given the set $\left\{ \begin{bmatrix} 1\\ -4\\ 3 \end{bmatrix}, \begin{bmatrix} 0\\ 3\\ -1 \end{bmatrix}, \begin{bmatrix} 3\\ -5\\ 4 \end{bmatrix}, \begin{bmatrix} 0\\ 2\\ -2 \end{bmatrix} \right\}$ in \mathbb{R}^3 .

- (1) Is it a basis for \mathbb{R}^3 ?
- No, because any basis for \mathbb{R}^3 should contain exactly 3 vectors.
- (2) Find a basis for the set spanned by above vectors.

It suffices to find the linearly independent vectors in above set:

$$\begin{bmatrix} 1 & 0 & 3 & 0 \\ -4 & 3 & -5 & 2 \\ 3 & -1 & 4 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 3 & 7 & 2 \\ 0 & -1 & -5 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 5 & 2 \\ 0 & 3 & 7 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & (1) & 5 & 2 \\ 0 & 0 & (8) & -4 \end{bmatrix}$$

So $\left\{ \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -2 \end{bmatrix} \right\}$.
Since there is exactly three vectors in the set $\left\{ \begin{bmatrix} 1 \\ -4 \\ 3 \end{bmatrix}, \begin{bmatrix} 0 \\ 3 \\ -1 \end{bmatrix}, \begin{bmatrix} 3 \\ -5 \\ 4 \end{bmatrix} \right\}$, it is also
a basis for \mathbb{R}^3 .

• Thm (The spanning set thm): For $\{v_1, \cdot, v_p\}$ in V, if v_k is a linear combination of the other vectors, then

$$\operatorname{Span}\{v_1,\cdots,v_p\}=\operatorname{Span}\{v_1,\cdots,v_{k-1},v_{k+1},\cdots,v_p\}.$$

Ex: According to theorem above, $\text{Span}\{u, 2u\} = \text{Span}\{u\} = \text{Span}\{2u\}$

Ex: $ColA = Span\{$ all the columns $\} = Span\{$ pivot columns $\}$

Ex: Find a basis for the set of vectors in the plane x + 2y + z = 0.

Answer: Denote the set above by

$$S = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : x + 2y + z = 0 \right\} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{bmatrix} 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 0 \right\} = \operatorname{Nul} \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}.$$

We only need to find a basis for Nul $\begin{vmatrix} 1 & 2 & 1 \end{vmatrix}$:

$$\begin{bmatrix} ① & 2 & 1 & 0 \end{bmatrix} \Longrightarrow \begin{cases} x = -2y - z \\ y = y \text{ (free)} \implies \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} y + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} z.$$

So $\left\{ \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \right\}$ is a basis for $S.$

4.5 Dimension of vector spaces

- Def: dimV = number of vectors in a basis
 Ex: dimℝⁿ = n with a standard basis {e₁, · · · , e_n}
 Ex: dimℙ_n = n + 1 with a standard basis {1, t, · · · , tⁿ}
- Thm: If V is a vector space with a basis $\mathcal{B} = {\mathbf{v}_1, \cdots, \mathbf{v}_p}$, then (1) any basis for V has exactly p vectors;
 - (2) any set of more than p vectors in V is linearly dependent.

Ex: \mathbb{R}^2 has a standard basis $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$. Is $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix}, \begin{bmatrix} 3\\4 \end{bmatrix} \right\}$ a linearly independent set? No Is the set above a basis for \mathbb{R}^2 ? No **Ex**: \mathbb{P}_1 has a standard basis $\{1, t\}$. Are the following sets bases for \mathbb{P}_1 ? $\{1, 1+t\}$ Yes $\{2, t\}$ Yes $\{t, 2+t\}$ Yes $\{t, 2t\}$ No, cause one is a scalar multiple of the other one $\{1, t, 1+t\}$ No, cause there is more than 2 vectors **Ex**: Define a set $S = \left\{ \left| \begin{array}{c} a+2b\\ 2a+4b\\ -a-2b \end{array} \right| : a, b \text{ real} \right\}$. What is dim S? Answer: $S = \left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix} a + \begin{bmatrix} 2\\4\\-2 \end{bmatrix} b : a, b \text{ real} \right\}$ $= \operatorname{Span}\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 2\\4\\-2 \end{bmatrix} \right\} = \operatorname{Span}\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix} \right\}$

So $\dim S=1$.

Ex: Define a set
$$T = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : a + b + c = 0 \right\}$$
. What is dim *T*?
Answer: $T = \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} : \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = 0 \right\} = \text{Nul} \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

$$= \left\{ \begin{bmatrix} -b-c\\b\\c \end{bmatrix} : b,c \text{ real} \right\} = \left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix} b + \begin{bmatrix} -1\\0\\1 \end{bmatrix} c : b,c \text{ real} \right\}$$
$$= \operatorname{Span} \left\{ \begin{bmatrix} -1\\1\\0 \end{bmatrix}, \begin{bmatrix} -1\\0\\1 \end{bmatrix} \right\}$$

So $\dim T=2$.

dim ColA = 2, and ColA is a subspace of \mathbb{R}^4 dim NulA = 3, and NulA is a subspace of \mathbb{R}^5

• Thm: If H is a subspace of a finite-dimensional vector space V, then

(1) $\dim H \leq \dim V;$

- (2) H is also a finite-dimensional vector space;
- (3) any basis for H can be extended to a basis for V.

Ex: Given A as above. Then ColA is a subspace of \mathbb{R}^4 . We now check the above three results:

- (1) dim $\operatorname{Col} A \leq \dim \mathbb{R}^4$ holds;
- (2) holds apparently;

(3) The pivot columns form a basis
$$\left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\-2\\0\\0\\0 \end{bmatrix} \right\} \text{ for Col}A.$$

Now we extend it to a basis for \mathbb{R}^4 :
$$\left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\-2\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix} \right\}.$$

4.6 Rank

For $A_{m \times n} = \begin{bmatrix} \mathbf{a}_1 & \cdots & \mathbf{a}_n \end{bmatrix}$, $\operatorname{Col} A = \operatorname{Span} \{ \mathbf{a}_1, \cdots, \mathbf{a}_n \}$.

• **Def**: For $A_{m \times n} = \begin{bmatrix} \mathbf{r}_1 \\ \vdots \\ \mathbf{r}_m \end{bmatrix}$, the row space is $\operatorname{Row} A = \operatorname{Span} \{\mathbf{r}_1, \cdots, \mathbf{r}_m\}$, which is a subspace of \mathbb{R}^n .

$$\implies \operatorname{Row} A = \operatorname{Col} A^{\top}$$

Ex: $A = \begin{bmatrix} \mathbf{r}_1 \\ \mathbf{r}_2 \end{bmatrix}$, then $\operatorname{Row} A = \operatorname{Span} \{ \mathbf{r}_1, \mathbf{r}_2 \}$.

If we use the three kinds of elementary row operations:

$$A^{\text{row interchange}} A_{1} = \begin{bmatrix} \mathbf{r}_{2} \\ \mathbf{r}_{1} \end{bmatrix}, \text{ then } \operatorname{Row} A_{1} = \operatorname{Span} \{\mathbf{r}_{2}, \mathbf{r}_{1}\};$$

$$A^{\text{scalar multiple}} \sim A_{2} = \begin{bmatrix} c\mathbf{r}_{1} \\ \mathbf{r}_{2} \end{bmatrix}, \text{ then } \operatorname{Row} A_{2} = \operatorname{Span} \{c\mathbf{r}_{1}, \mathbf{r}_{2}\};$$

$$A^{\text{row replacement}} \sim A_{3} = \begin{bmatrix} \mathbf{r}_{1} \\ \mathbf{r}_{2} + c\mathbf{r}_{1} \end{bmatrix}, \text{ then } \operatorname{Row} A_{3} = \operatorname{Span} \{\mathbf{r}_{1}, \mathbf{r}_{2} + c\mathbf{r}_{1}\}.$$

The above row spaces are the same: $\operatorname{Row} A = \operatorname{Row} A_1 = \operatorname{Row} A_2 = \operatorname{Row} A_3$. That is, elementary row operations won't change the row space.

• Thm: If matrices A and B are row equivalent, then they have the same row space. If B is in echelon form, then its non-zero rows form a basis for RowA = RowB.

Ex: Given
$$A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 1 & 2 & 1 \end{bmatrix}$$
. Find bases for Col*A*, Row*A* and Nul*A*.

1 echelon form:

$$A \sim \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -2 & -2 & -4 \end{bmatrix} \sim \begin{bmatrix} (1) & 1 & 1 & 1 & 1 & 1 \\ 0 & (1) & 2 & 3 & 4 \\ 0 & 0 & (1) & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
$$ColA = Span\left\{ \begin{bmatrix} 1 \\ 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 4 \\ 1 \end{bmatrix} \right\}$$
$$RowA = Span\{(1, 1, 1, 1, 1), (0, 1, 2, 3, 4), (0, 0, 1, 1, 2)\}$$

(2) reduced echelon form:

$$A \sim \begin{bmatrix} (1) & 1 & 0 & 0 & -1 \\ 0 & (1) & 0 & 1 & 0 \\ 0 & 0 & (1) & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 0 & 0 & -1 & -1 \\ 0 & (1) & 0 & 1 & 0 \\ 0 & 0 & (1) & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{cases} x_{1} = x_{4} + x_{5} \\ x_{2} = -x_{4} \\ x_{3} = -x_{4} - 2x_{5} \Longrightarrow \mathbf{x} = \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 0 \end{bmatrix} x_{4} + \begin{bmatrix} 1 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} x_{5} \\ x_{5} = x_{5} \text{ (free)} \end{cases}$$
Nul $A = \text{Span} \left\{ \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -2 \\ 0 \\ 1 \end{bmatrix} \right\}$

Def: rankA = dimColA
Ex: Given A as above. We have
dimColA = dimRowA = number of pivot positions = 3.

♣ Thm (The rank thm): For $A_{m \times n}$, it holds dimColA = dimRowA = rankA and rankA+dimNulA = n. ⇒ For $(A^{\top})_{n \times m}$, rank A^{\top} +dimNul A^{\top} = m, where rank A^{\top} = dimCol A^{\top} = dimRowA = dimColA = rankA. Ex: If the null space of a 7 × 6 matrix A is 5-dimensional, what are dimColA and dimRowA?

Answer: $\dim \text{Col}A = \dim \text{Row}A = 6 - \dim \text{Nul}A = 1$.

• Thm: Let A be an $n \times n$ matrix. Then

 $\begin{array}{l} A \text{ is invertible } \iff \det(A) \neq 0 \\ \iff A \sim I_n \\ \iff \dim \text{Col}A = \dim \text{Row}A = \text{rank}A = n \\ \iff \dim \text{Nul}A = 0 \\ \iff \text{Nul}A = \{\mathbf{0}\} \\ \iff \text{Col}A = \mathbb{R}^n \end{array}$

5 Chapter 5

5.1 Eigenvalues and eigenvectors

• Def: eigenvalues and eigenvectors

Ex: Is
$$\mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector of $A = \begin{bmatrix} 3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5 \end{bmatrix}$?
Answer: Calculate $A\mathbf{x} = \begin{bmatrix} -2 \\ 4 \\ -2 \end{bmatrix} = -2\mathbf{x}.$

So \mathbf{x} is an eigenvector of A corresponding to the eigenvalue -2.

Ex: Is $\lambda = 2$ is an eigenvalue of $A = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$?

Answer: If λ is an eigenvalue, then $(A - \lambda I)\mathbf{x} = \mathbf{0}$ has nontrivial solutions.

Consider the augmented matrix $\begin{bmatrix} A - \lambda I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} \mathbf{1} & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ The system has a free variable, so has nontrivial solutions.

Hence, $\lambda = 2$ is an eigenvalue of A.

• Calculation:

(1) Eigenvalues: $|A - \lambda I| = 0$ $((A - \lambda I)\mathbf{x} = \mathbf{0}$ has nontrivial solutions) **Ex**: Given $A = \begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$. Consider $|A - \lambda I| = \begin{vmatrix} 3 - \lambda & 2 \\ 3 & 8 - \lambda \end{vmatrix} = (\lambda - 2)(\lambda - 9) = 0$. So its eigenvalues are $\lambda_1 = 2$ and $\lambda_2 = 9$. (2) Eigenvectors: nontrivial solutions of $(A - \lambda I)\mathbf{x} = \mathbf{0}$ \implies The eigenspace for λ is actually Nul $(A - \lambda I) \setminus \{\mathbf{0}\}$ **Ex**: For $\lambda_1 = 2$, consider $\begin{bmatrix} A - \lambda_1 I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. All the nontrivial solutions are of the form $\mathbf{x} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} x_2$ except $\mathbf{0}$. $\left\{ \mathbf{x} = \begin{bmatrix} -2 \\ 1 \end{bmatrix} x_2 : \mathbf{x} \neq \mathbf{0} \right\}$ is called the eigenspace corresponding to $\lambda_1 = 2$. For $\lambda_2 = 9$, similarly, $\begin{bmatrix} A - \lambda_2 I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -6 & 2 & 0 \\ 3 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & -\frac{1}{3} & 0 \\ 0 & 0 & 0 \end{bmatrix}$. All the nontrivial solutions are of the form $\mathbf{x} = \begin{bmatrix} \frac{1}{3} \\ 1 \end{bmatrix} x_2 = \begin{bmatrix} 1 \\ 3 \end{bmatrix} t$ except $\mathbf{0}$. $\left\{ \mathbf{x} = \begin{bmatrix} 1\\3 \end{bmatrix} t : \mathbf{x} \neq \mathbf{0} \right\} \text{ is called the eigenspace corresponding to } \lambda_2 = 9.$

• Thm: The eigenvectors corresponding to distinct eigenvalues are linearly independent.

Ex: Given
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$
. Find its eigenvalues.
Answer: $|A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 & 3 \\ 0 & -\lambda & 4 \\ 0 & 0 & 5 - \lambda \end{vmatrix} = (1 - \lambda)(-\lambda)(5 - \lambda) = 0.$

Its eigenvalues are $\lambda = 1, 0, 5$.

- Thm: The eigenvalues of a triangular matrix are its diagonals.
- Thm: Let A be an n × n matrix. Then
 A is invertible ⇔ |A| ≠ 0 (i.e. |A 0I| ≠ 0) ⇔ 0 is not an eigenvalue of A
 A is not invertible ⇔ |A| = 0 (i.e. |A 0I| = 0) ⇔ 0 is an eigenvalue of A
 Ex: Without calculation, we know that the matrix

 1 2
 1 2
 has eigenvalue 0 cause it
 is not invertible.

5.2 The characteristic equation

- Thm (Properties of determinants): Let A and B be n × n matrices. Then
 ① A is invertible ⇔ |A| ≠ 0 ⇔ 0 is not an eigenvalue of A
 ② |AB| = |A| ⋅ |B|, |A^T| = |A|, |A⁻¹| = ¹/_{|A|}
 - (3) If A is triangular, then $|A| = a_{11}a_{22}\cdots a_{nn}$ (product of the diagonals)

(5) linearity property (see below)

Ex:
$$\begin{vmatrix} 18 & 56 \\ 17 & 56 \end{vmatrix} = \begin{vmatrix} 17+1 & 56 \\ 17+0 & 56 \end{vmatrix} \stackrel{\text{linearity}}{=} \begin{vmatrix} 17 & 56 \\ 17 & 56 \end{vmatrix} + \begin{vmatrix} 1 & 56 \\ 0 & 56 \end{vmatrix} = 56$$

Ex: If A is of size $n \times n$, then $|cA| = c^n |A|$.

• **Def**: $|A - \lambda I| = 0$: Characteristic equation

 $|A - \lambda I|$: Characteristic polynomial (CP) **Ex**: Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$. Then its characteristic polynomial is

$$CP = |A - \lambda I| = \begin{vmatrix} 1 - \lambda & 2 & 3 \\ 0 & 4 - \lambda & 5 \\ 0 & 0 & 6 - \lambda \end{vmatrix} = (1 - \lambda)(4 - \lambda)(6 - \lambda),$$

and its eigenvalues are $\lambda = 1, 4, 6$.

Ex: Let $A = \begin{bmatrix} 4 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$. Then its characteristic polynomial is

$$CP = |A - \lambda I| = \begin{vmatrix} 4 - \lambda & 2 & 3 \\ 0 & 4 - \lambda & 5 \\ 0 & 0 & 6 - \lambda \end{vmatrix} = (4 - \lambda)^2 (6 - \lambda),$$

and its eigenvalues are $\lambda = 4, 4, 6$.

• **Def**: The multiplicity of $\lambda = 4$ in the above example is 2.

Ex: For $A_{4\times 4}$, it has eigenvalues 1,2,2,6. What's its CP?

Answer: CP= $(1 - \lambda)(2 - \lambda)^2(6 - \lambda)$ **Ex**: Let $A = \begin{bmatrix} 5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1 \end{bmatrix}$. Find h such that the eigenspace for $\lambda = 5$ is two.

Answer: The eigenspace for $\lambda = 5$ is Nul $(A - 5I) \setminus \{0\}$. It suffices to consider the null space Nul(A - 5I):

0	-2	6	-1	0		0	-2	6	-1	0
0	-2	h	0	0	~	0	0	h-6	1	0
0	0	0	4	0		0	0	0	1	0
0	0	0	-4	0		0	0	0	0	0

The eigenspace is of dimension two if there is two free variables, that is, h = 6.

5.3 Diagonalization

- **Def**: similar $(A = PBP^{-1})$
- Thm: If A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues.

Ex: If $A = PBP^{-1}$ with $P = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}$. Then $P^{-1} = \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}$ and

$$A^{k} = PB^{k}P^{-1} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 3^{k} & 0 \\ 0 & 2^{k} \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 0 & 1 \end{bmatrix}.$$

- **Def**: diagonalizable $(A = PDP^{-1} \text{ with } D \text{ a diagonal matrix})$
- ***** Thm (The diagonalization thm): An $n \times n$ matrix is diagonalizable $\iff A$ has n linearly independent eigenvectors.

Reason: Let $\mathbf{p}_1, \dots, \mathbf{p}_n$ be the *n* linearly independent eigenvectors. Then there must be corresponding eigenvalues $\lambda_1, \dots, \lambda_n$ such that

$$\begin{cases} A\mathbf{p}_{1} = \lambda_{1}\mathbf{p}_{1} \\ \vdots \qquad \Longrightarrow \begin{bmatrix} A\mathbf{p}_{1} & \cdots & A\mathbf{p}_{n} \end{bmatrix} = \begin{bmatrix} \lambda_{1}\mathbf{p}_{1} & \cdots & \lambda_{n}\mathbf{p}_{n} \end{bmatrix} \\ A\mathbf{p}_{n} = \lambda_{1}\mathbf{p}_{n} \end{cases} \implies A\begin{bmatrix} \mathbf{p}_{1} & \cdots & \mathbf{p}_{n} \end{bmatrix} = \begin{bmatrix} \mathbf{p}_{1} & \cdots & \mathbf{p}_{n} \end{bmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n} \end{bmatrix} \\ \implies AP = PD \\ \implies A = PDP^{-1} \end{cases}$$
with $P = \begin{bmatrix} \mathbf{p}_{1} & \cdots & \mathbf{p}_{n} \end{bmatrix}$ and $D = \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n} \end{bmatrix}$.
Ex: Is $A = \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ diagonalizable?
Answer: Its eigenvalues are $\lambda = 1, 3$. Next we calculate the corresponding eigenvectors.

For
$$\lambda_1 = 1$$
: $\begin{bmatrix} 0 & 2 & 0 \\ 0 & 2 & 0 \end{bmatrix} \sim \begin{bmatrix} 0 & (1) & 0 \\ 0 & 0 & 0 \end{bmatrix} \Longrightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} x_1$. We can choose $\mathbf{p}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.
For $\lambda_1 = 3$: $\begin{bmatrix} (1) & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Longrightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} x_2$. We can choose $\mathbf{p}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

Now we get $D = \begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$ and $P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$ such that $A + PDP^{-1}$. So A is diagonalizable.

• Thm: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

$$\begin{aligned} \mathbf{E}\mathbf{x}: \text{ Is } A &= \begin{bmatrix} 2 & 0 & 1 \\ 1 & 3 & 1 \\ 0 & 0 & 2 \end{bmatrix} \text{ diagonalizable?} \\ \text{ Its } \text{CP} &= \begin{vmatrix} 2-\lambda & 0 & 1 \\ 1 & 3-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{vmatrix} = (2-\lambda)^2(3-\lambda). \text{ So it has eigenvalues } \lambda = 2, 2, 3. \end{aligned}$$

$$\begin{aligned} \text{For } \lambda &= 2: \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 1 & 0 & 0 \\ 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \mathbf{x} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} x_2. \text{ We can choose} \end{aligned}$$

$$\begin{aligned} \mathbf{p}_1 &= \begin{bmatrix} -1 \\ 1 \\ 0 \\ 0 \end{bmatrix}. \end{aligned}$$

$$\begin{aligned} \text{For } \lambda &= 3: \begin{bmatrix} -1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 0 & 0 & 0 \\ 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} x_2. \text{ We can choose} \end{aligned}$$

$$\begin{aligned} \mathbf{p}_2 &= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}. \end{aligned}$$

We can not find \mathbf{p}_3 to get an invertible matrix P. So A is NOT diagonalizable.

$$\begin{aligned} \mathbf{E}\mathbf{x}: \text{ Is } A &= \begin{bmatrix} 3 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 2 \end{bmatrix} \text{ diagonalizable?} \\ \text{ Its } \text{ CP} &= \begin{vmatrix} 3-\lambda & 0 & 1 \\ 1 & 2-\lambda & 1 \\ 0 & 0 & 2-\lambda \end{vmatrix} = (2-\lambda)^2(3-\lambda). \text{ So it has eigenvalues } \lambda = 2, 2, 3. \end{aligned}$$

$$\begin{aligned} \text{ For } \lambda &= 2: \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \mathbf{x} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} x_2 + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} x_3. \text{ We} \end{aligned}$$

$$\begin{aligned} \text{ can choose } \mathbf{p}_1 &= \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \text{ and } \mathbf{p}_2 = \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \text{ which are linearly independent.} \end{aligned}$$

$$\begin{aligned} \text{ For } \lambda &= 3: \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \sim \begin{bmatrix} (1) & -1 & 0 & 0 \\ 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \implies \mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} x_2. \text{ We can } \end{aligned}$$

choose
$$\mathbf{p}_3 = \begin{bmatrix} 1\\ 1\\ 0 \end{bmatrix}$$
.

Now we get the invertible matrix $P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix}$ and $D = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}$.

So A is diagonalizable.

Thm: Let A be an n × n matrix with distinct eigenvalues λ₁, ..., λ_p (p ≤ n).
① The dimension of the eigenspace for λ_k (1 ≤ k ≤ p) is less than or equal to the multiplicity of λ_k.

(2): A is diagonalizable \iff the dimension of the eigenspace for λ_k is equal to the multiplicity of λ_k (i.e., the sum of the dimensions of the eigenspaces is n)

5.4 Eigenvectors and linear transformations

Recall that $T : \mathbb{R}^n \to \mathbb{R}^m$ is linear $\iff T(\mathbf{x}) = A\mathbf{x}$ with $A = \begin{bmatrix} T(\mathbf{e}_1) & \cdots & T(\mathbf{e}_n) \end{bmatrix}_{m \times n}$.

• Def: If V has a basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ (that is, dimV = n), then any $\mathbf{x} \in V$ is $\mathbf{x} = x_1 \mathbf{b}_1 + \dots + x_n \mathbf{b}_n$. Define the coordinate vector

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n.$$

Ex: Let $V = \mathbb{P}_2$ which has the standard basis $\mathcal{B} = \{1, t, t^2\}$. For the polynomial $p(t) = 3 - t^2$, what is its coordinate vector $[p(t)]_{\mathcal{B}}$?

Answer:
$$[p(t)]_{\mathcal{B}} = \begin{bmatrix} 3\\0\\-1 \end{bmatrix}$$

• Def: Assume that V is a vector space with basis $\mathcal{B} = {\mathbf{b}_1, \dots, \mathbf{b}_n}$ (i.e., dim V = n), and W is a vector space with basis $\mathcal{C} = {\mathbf{c}_1, \dots, \mathbf{c}_m}$ (i.e., dim W = m). Then

$$T: \mathbf{x} \longrightarrow T(\mathbf{x})$$

$$\downarrow \qquad \downarrow$$

$$\left[\mathbf{x}\right]_{\mathcal{B}} \xrightarrow{A} \left[T(\mathbf{x})\right]_{\mathcal{C}}$$

with $A = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{C}} & \cdots & [T(\mathbf{b}_n)]_{\mathcal{C}} \end{bmatrix}$ the matrix for T relative to \mathcal{B} and \mathcal{C} . In particular, if V = W and $\mathcal{B} = \mathcal{C}$, we denote the standard matrix A by $[T]_{\mathcal{B}}$. **&** Ex: Let $T : \mathbb{P}_2 \to \mathbb{P}_1$ be a linear transformation defined by $T(a_0 + a_1t + a_2t^2) = a_0 + (a_2 - a_1)t$ for any real numbers a_0, a_1 and a_2 . What is the standard matrix relative to the standard bases for \mathbb{P}_2 and \mathbb{P}_1 ?

Answer:

(1) Find \mathcal{B} and \mathcal{C} :

The standard basis for \mathbb{P}_2 is $\mathcal{B} = \{1, t, t^2\}$ and the standard basis for \mathbb{P}_1 is $\mathcal{C} = \{1, t\}$. (2) Find $A = \begin{bmatrix} [T(\mathbf{b}_1)]_{\mathcal{C}} & \cdots & [T(\mathbf{b}_n)]_{\mathcal{C}} \end{bmatrix}$:

Note that in this example $\mathbf{b}_1 = 1$, $\mathbf{b}_2 = t$ and $\mathbf{b}_3 = t^2$. According to the map T defined above, we have

$$T(\mathbf{b}_1) = T(1) = 1 \quad \text{(in this case } a_0 = 1, a_1 = a_2 = 0\text{)},$$

$$T(\mathbf{b}_2) = T(t) = -t \quad \text{(in this case } a_1 = 1, a_0 = a_2 = 0\text{)},$$

$$T(\mathbf{b}_3) = T(t^2) = t \quad \text{(in this case } a_2 = 1, a_0 = a_1 = 0\text{)},$$

and hence

$$\begin{bmatrix} T(\mathbf{b}_1) \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} 1 \\ 1 \\ t_{1,t} \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix},$$
$$\begin{bmatrix} T(\mathbf{b}_2) \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} -t \end{bmatrix}_{\{1,t\}} = \begin{bmatrix} 0 \\ -1 \end{bmatrix},$$
$$\begin{bmatrix} T(\mathbf{b}_2) \end{bmatrix}_{\mathcal{C}} = \begin{bmatrix} t \end{bmatrix}_{\{1,t\}} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Finally, we get the standard matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 1 \end{bmatrix}$.

Ex: Let $T : \mathbb{P}_2 \to \mathbb{R}^3$ be a linear transformation defined by $T(p(t)) = \begin{bmatrix} p(-1) \\ p(0) \\ p(1) \end{bmatrix}$. What is the standard matrix relative to the standard bases for \mathbb{P}_2 and \mathbb{R}^3 ?

Answer:

(1) Find \mathcal{B} and \mathcal{C} :

The standard basis for \mathbb{P}_2 is $\mathcal{B} = \{1, t, t^2\}$ and the standard basis for \mathbb{R}^3 is $\mathcal{C} = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}.$

(2) Find $A = \begin{bmatrix} T(\mathbf{b}_1) \end{bmatrix}_{\mathcal{C}} \cdots \begin{bmatrix} T(\mathbf{b}_n) \end{bmatrix}_{\mathcal{C}} \end{bmatrix}$:

$$T(\mathbf{b}_1) = T(1) = \begin{bmatrix} 1\\1\\1 \end{bmatrix} \implies [T(\mathbf{b}_1)]_{\mathcal{C}} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$$

$$T(\mathbf{b}_2) = T(t) = \begin{bmatrix} -1\\0\\1 \end{bmatrix} \implies [T(\mathbf{b}_1)]_{\mathcal{C}} = \begin{bmatrix} -1\\0\\1 \end{bmatrix}$$
$$T(\mathbf{b}_3) = T(t^2) = \begin{bmatrix} 1\\0\\1 \end{bmatrix} \implies [T(\mathbf{b}_1)]_{\mathcal{C}} = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$$
So $A = \begin{bmatrix} 1 & -1 & 1\\1 & 0 & 0\\1 & 1 & 1 \end{bmatrix}$.

Ex: If $A_{n \times n} = PDP^{-1}$ is diagonalizable with an invertible matrix $P = \begin{bmatrix} \mathbf{p}_1 & \cdots & \mathbf{p}_n \end{bmatrix}$ and a diagonal matrix $D = \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix}$, it defines a linear transformation

 $T: \mathbb{R}^n \to \mathbb{R}^n$ with $T(\mathbf{x}) = A\mathbf{x}$.

Define a new basis $\mathcal{B} = \{\mathbf{p}_1, \cdots, \mathbf{p}_n\}$ for \mathbb{R}^n . What is the standard matrix $[T]_{\mathcal{B}}$? Answer:

(1): Find \mathcal{B} and \mathcal{C} :

In this example, the domain and codomain are the same, so their bases are the same: $\mathcal{B} = \mathcal{C} = \{\mathbf{p}_1, \cdots, \mathbf{p}_n\}$ as is given above.

(2) Find $[T]_{\mathcal{B}} = [[T(\mathbf{p}_1)]_{\mathcal{B}} \cdots [T(\mathbf{p}_n)]_{\mathcal{B}}]:$

$$T(\mathbf{p}_{1}) = A\mathbf{p}_{2} = \lambda_{1}\mathbf{p}_{1} \implies [T(\mathbf{p}_{1})]_{\mathcal{B}} = \begin{bmatrix} \lambda_{1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$
$$T(\mathbf{p}_{2}) = A\mathbf{p}_{2} = \lambda_{2}\mathbf{p}_{2} \implies [T(\mathbf{p}_{1})]_{\mathcal{B}} = \begin{bmatrix} 0 \\ \lambda_{2} \\ \vdots \\ 0 \end{bmatrix}$$
$$\vdots$$

$$T(\mathbf{p}_3) = A\mathbf{p}_3 = \lambda_3 \mathbf{p}_3 \implies \begin{bmatrix} T(\mathbf{p}_1) \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ \lambda_n \end{bmatrix}$$

So
$$[T]_{\mathcal{B}} = \begin{bmatrix} \lambda_1 & 0 & 0\\ 0 & \ddots & 0\\ 0 & 0 & \lambda_n \end{bmatrix} = D.$$

• Thm (Diagonal representation thm): Suppose $A = PDP^{-1}$ with a diagonal matrix D. If \mathcal{B} is the basis for \mathbb{R}^n formed from columns of P, then D is the \mathcal{B} -matrix for the mapping $T : \mathbf{x} \mapsto A\mathbf{x}$.

More generally, if $A = PCP^{-1}$ where C may not be a diagonal matrix, and \mathcal{B} is the basis for \mathbb{R}^n formed from columns of P, then C is the \mathcal{B} -matrix for the mapping $T : \mathbf{x} \mapsto A\mathbf{x}$.

 \implies The standard matrix C can be calculated by $C = P^{-1}AP$.

Ex: Let $T : \mathbf{x} \to A\mathbf{x}$ with $A = \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix}$. Define a basis $\mathcal{B} = \{\mathbf{p}_1, \mathbf{p}_2\}$ with $\mathbf{p}_1 = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{p}_2 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$. What is the standard matrix $[T]_{\mathcal{B}}$? Answer: According to the thm above, $[T]_{\mathcal{B}} = C = P^{-1}AP$ with

$$P = \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} \text{ and thus } P^{-1} = \frac{1}{5} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix}.$$

So $[T]_{\mathcal{B}} = P^{-1}AP = \frac{1}{5} \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}.$

Appendix B Complex numbers

Question: What is the eigenvalues of the matrix $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$? Consider the characteristic polynomial: $|A - \lambda I| = \begin{vmatrix} -\lambda & -1 \\ 1 & -\lambda \end{vmatrix} = \lambda^2 + 1$. What are the roots of $\lambda^2 + 1 = 0$?

• Def: Denote by i the imaginary unit such that $i^2 = -1$. A complex number is in the form z = a + bi with a = Rez being the real part and b = Imz being the imaginary part.

Ex: For the complex number $z = 3 + 2\mathbf{i}$, its real part is Rez = 3, and its imaginary part is Imz = 2.

• Properties:

(1) $z_1 = z_2 \iff \operatorname{Re} z_1 = \operatorname{Re} z_2$ and $\operatorname{Im} z_1 = \operatorname{Im} z_2$ (2) summation: $(a + b\mathbf{i}) + (c + d\mathbf{i}) = (a + c) + (b + d)\mathbf{i}$ (3) multiplication: $(a + b\mathbf{i}) \cdot (c + d\mathbf{i}) = (ac - bd) + (bc + ad)\mathbf{i}$ ④ the conjugate of z = a + bi is z̄ = a - bi
⑤ the absolute value of z = a + bi is |z| = √z ⋅ z̄ = √a² + b²
⑥ the inverse of z = a + bi is z⁻¹ = 1/z = z̄/z⋅z̄ = a/a²+b² - b/a²+b²i
Ex: For z = 3 + 4i, we have z̄ = 3 - 4i, |z| = 5, z⁻¹ = 3/25 - 4/25i.

• Geometric discription:

Based on these figures, we get $a = |z| \cos \varphi$ and $b = |z| \sin \varphi$.

Hence, there are two ways to determine a complex number:

(1) z = a + bi

(2) $z = |z| \cos \varphi + (|z| \sin \varphi) \mathbf{i} = |z| e^{\mathbf{i}\varphi}$

Ex: If $z = |z|e^{\varphi}$, then $z^k = |z|^k e^{\mathbf{i}k\varphi} = |z|^k \cos(k\varphi) + |z|^k \sin(k\varphi)\mathbf{i}$

Ex: Find all real and complex roots of the equation $z^8 = 2^8$.

Answer: Assume that $z = |z|e^{\mathbf{i}\varphi}$. It then suffices to determine |z| and φ .

Note that $z^8 = |z|^8 \cos(8\varphi) + |z|^8 \sin(8\varphi)\mathbf{i} = 2^8$. Their real (resp. imaginary) parts should be the same, that is

Firstly, $|z|^8 \sin(8\varphi) = 0 \Longrightarrow 8\varphi = k\pi$ for any integer k.

Secondly, $|z|^8 \cos(8\varphi) = 2^8$. If $8\varphi = k\pi$, $\cos(8\varphi) = \pm 1$. However, $\cos(8\varphi)$ can not be -1, otherwise we will get a contradiction $-|z|^8 = 2^8$. So we finally get $8\varphi = 2k\pi$, that is, $\varphi = \frac{k\pi}{4}$ such that $\cos(8\varphi) = 1$. Hence, |z| = 2.

So $z = 2e^{i\frac{k\pi}{4}}$, k can be any integer.

5.5 Complex eigenvalues

• Ex: Let $A = \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix}$. What are its eigenvalues and corresponding eigenvectors?

(1) Find all the eigenvalues:
$$|A - \lambda I| = \begin{vmatrix} 1 - \lambda & -2 \\ 1 & 3 - \lambda \end{vmatrix} = \lambda^2 - 4\lambda + 5 = (\lambda - 2)^2 + 1$$

 $\implies A$ has eigenvalues $\lambda = 2 \pm \mathbf{i}$

(2) Find corresponding eigenvectors:

For
$$\lambda_1 = 2 + \mathbf{i}$$
, $\begin{bmatrix} A - \lambda_1 I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -1 - \mathbf{i} & -2 & 0 \\ 1 & 1 - \mathbf{i} & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 - \mathbf{i} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 \implies Solutions $\mathbf{x} = \begin{bmatrix} -1 + \mathbf{i} \\ 1 \end{bmatrix} x_2$. Choose $\mathbf{p}_1 = \begin{bmatrix} -1 + \mathbf{i} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \mathbf{i}$.
For $\lambda_2 = 2 - \mathbf{i}$, $\begin{bmatrix} A - \lambda_2 I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -1 + \mathbf{i} & -2 & 0 \\ 1 & 1 + \mathbf{i} & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 + \mathbf{i} & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 \implies Solutions $\mathbf{x} = \begin{bmatrix} -1 - \mathbf{i} \\ 1 \end{bmatrix} x_2$. Choose $\mathbf{p}_1 = \begin{bmatrix} -1 - \mathbf{i} \\ 1 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{i}$.

- \implies In this example, we have $\lambda_2 = \overline{\lambda_1}$ and $\mathbf{p}_2 = \overline{\mathbf{p}_1}$.
- \implies If $A\mathbf{p} = \lambda \mathbf{p}$, then $A\overline{\mathbf{p}} = \overline{\lambda}\overline{\mathbf{p}}$. (If λ is an eigenvalue of A, then $\overline{\lambda}$ is also an eigenvalue) For a real matrix A, its complex eigenvalues occur in conjugate pairs.
- Ex: For $A_{2\times 2}$ given above, consider one of the eigenvalues $\lambda = 2 \mathbf{i}$ and its corresponding eigenvector $\mathbf{p} = \begin{bmatrix} -1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{i}$. Denote $P = \begin{bmatrix} \operatorname{Re}\mathbf{p} & \operatorname{Im}\mathbf{p} \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix}$. Is there a matrix C such that $A = PCP^{-1}$? Answer: $C = P^{-1}AP = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} -1 & -1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \left(= \begin{bmatrix} \operatorname{Re}\lambda & \operatorname{Im}\lambda \\ -\operatorname{Im}\lambda & \operatorname{Re}\lambda \end{bmatrix} \right)$

$$C = |\lambda| \begin{bmatrix} \frac{a}{|\lambda|} & -\frac{b}{|\lambda|} \\ \frac{b}{|\lambda|} & \frac{a}{|\lambda|} \end{bmatrix} = |\lambda| \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix},$$

which is a composition of a rotation through the angle θ and a scaling by $|\lambda|$.

Ex: Let $C = \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$. What are the rotation angle θ and the scaling constant $|\lambda|$?

Answer: $|\lambda| = \sqrt{(\sqrt{3})^2 + 1^2} = 2.$ The angle θ satisfies $\cos \theta = \frac{a}{|\lambda|} = \frac{\sqrt{3}}{2}$ and $\sin \theta = \frac{1}{2}$. Hence, $\theta = \frac{\pi}{6}$.

5.7 Applications to differential equations

• For $y'(t) = \lambda y(t)$, $t \ge 0$, all its solutions are in the form $y(t) = ce^{\lambda t}$ with a free parameter c. No matter what c is, y(t) above is a solution of the differential equation. If, in addition, the initial value is given $y(0) = y_0$, then the constant c is determined and the solution is unique: $y(t) = y_0 e^{\lambda t}$.

If $\lambda < 0$, the solution y(t) will go to 0 as $t \to +\infty$.

- If $\lambda > 0$, the solution y(t) will go to positive or negative infinity as $t \to +\infty$.
- For a system of linear differential equations

$$\begin{cases} y_1'(t) = \lambda_1 y_1(t) \\ y_2'(t) = \lambda_2 y_2(t) \\ \vdots \\ y_n'(t) = \lambda_n y_n(t) \end{cases} \longleftrightarrow \begin{bmatrix} y_1'(t) \\ y_2'(t) \\ \vdots \\ y_n'(t) \end{bmatrix} = \begin{bmatrix} \lambda_1 & & \\ \lambda_2 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix} \begin{bmatrix} y_1(t) \\ y_2(t) \\ \vdots \\ y_n(t) \end{bmatrix} \iff Y'(t) = DY(t),$$

it has solutions
$$\begin{cases} y_1(t) = c_1 e^{\lambda_1 t} \\ \vdots \\ y_n(t) = c_n e^{\lambda_n t} \end{cases}$$

• What are the solutions of X'(t) = AX(t) if A is not a diagonal matrix as above? If $A = PDP^{-1}$, then $X'(t) = PDP^{-1}X(t) \iff [P^{-1}X(t)]' = D[P^{-1}X(t)]$. Denote $Y(t) = P^{-1}X(t)$, we get Y'(t) = DY(t). Solve this auxiliary equation to get Y(t) and then get X(t) = PY(t).

♣ Ex: Solve
$$X'(t) = AX(t)$$
 with $A = \begin{bmatrix} 1 & -2 \\ 3 & -4 \end{bmatrix}$ and $X(0) = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

Answer:

(1) Find D and P:

$$|A - \lambda I| = (\lambda + 1)(\lambda + 2) \Longrightarrow \lambda = -1, -2 \Longrightarrow D = \begin{bmatrix} -1 & 0 \\ 0 & -2 \end{bmatrix}.$$
For $\lambda_1 = -1$, $\begin{bmatrix} 2 & -2 & 0 \\ 3 & -3 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Longrightarrow \mathbf{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} x_2 \Longrightarrow \mathbf{p}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
For $\lambda_1 = -2$, $\begin{bmatrix} 3 & -2 & 0 \\ 3 & -2 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -\frac{2}{3} & 0 \\ 0 & 0 & 0 \end{bmatrix} \Longrightarrow \mathbf{x} = \begin{bmatrix} \frac{2}{3} \\ 1 \end{bmatrix} x_2 \Longrightarrow \mathbf{p}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$
So $P = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix}.$

(2) Solve Y'(t) = DY(t) and get X(t) = PY(t): Based on D, $\begin{cases} y_1(t) = c_1 e^{-t} \\ y_2(t) = c_2 e^{-2t} \end{cases} \Rightarrow Y(t) = \begin{bmatrix} c_1 \\ 0 \end{bmatrix} e^{-t} + \begin{bmatrix} 0 \\ c_2 \end{bmatrix} e^{-2t}$. Hence, $X(t) = PY(t) = \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \left(\begin{bmatrix} c_1 \\ 0 \end{bmatrix} e^{-t} + \begin{bmatrix} 0 \\ c_2 \end{bmatrix} e^{-2t} \right) = c_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{-t} + c_2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} e^{-2t}$ $\Rightarrow X(t) = c_1 \mathbf{p}_1 e^{\lambda_1 t} + c_2 \mathbf{p}_2 e^{\lambda_2 t}$

(3) Use X(0) to determine c_1 and c_2 :

Based on the formula above and the initial condition,

$$X(0) = c_1 \begin{bmatrix} 1\\1 \end{bmatrix} + c_2 \begin{bmatrix} 2\\3 \end{bmatrix} = \begin{bmatrix} 3\\2 \end{bmatrix}$$

Solve $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & -1 \end{bmatrix}$, and get $c_1 = 5$ and $c_2 = -1$.

• **Def**: For X'(t) = AX(t), denote by λ the eigenvalues of A.

1. If $\lambda < 0$, the origin is an attractor/sink.

The direction of greatest attraction is corresponding to the most negative eigenvalue.

2. If $\lambda > 0$, the origin is a repeller/source.

The direction of greatest repulsion is corresponding to the largest positive eigenvalue.

3. If λ has both positive and negative values, the origin is a saddle point.

• If $A_{2\times 2}$ has a pair of complex eigenvalues λ and $\overline{\lambda}$ with \mathbf{p} and $\overline{\mathbf{p}}$, then $X(t) = c_1 \mathbf{p} e^{\lambda t} + c_2 \overline{\mathbf{p}} e^{\overline{\lambda} t}$ are complex solutions! Denote $X_1 = \mathbf{p} e^{\lambda t}$ and $X_2 = \overline{\mathbf{p}} e^{\overline{\lambda} t}$. It holds $X_2 = \overline{X_1}$.

$$\implies \begin{cases} \frac{X_1 + X_2}{2} = \operatorname{Re}\left[\mathbf{p}e^{\lambda t}\right] \\ \frac{X_1 - X_2}{2\mathbf{i}} = \operatorname{Im}\left[\mathbf{p}e^{\lambda t}\right] \\ \implies X(t) = \tilde{c}_1 \operatorname{Re}\left[\mathbf{p}e^{\lambda t}\right] + \tilde{c}_2 \operatorname{Im}\left[\mathbf{p}e^{\lambda t}\right] \text{ are the real solutions!} \end{cases}$$

Ex: Find all the real solutions of X'(t) = AX(t) with $A = \begin{bmatrix} -3 & 2 \\ -1 & -1 \end{bmatrix}$.

① Find all the eigenvalues: $|A - \lambda I| = (\lambda + 2)^2 + 1 \Longrightarrow \lambda = -2 \pm \mathbf{i}$ Since the eigenvalues are complex and form a conjugate pair, we only need to use one of them. ② Choose λ and calculate **p**: Choose $\lambda = -2 + \mathbf{i}$, and solve

$$\begin{bmatrix} A - \lambda I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -1 - \mathbf{i} & 2 & 0 \\ -1 & 1 - \mathbf{i} & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 + \mathbf{i} & 0 \\ 0 & 0 & 0 \end{bmatrix} \Longrightarrow \mathbf{x} = \begin{bmatrix} 1 - \mathbf{i} \\ 1 \end{bmatrix} x_2$$

to get $\mathbf{p} = \begin{bmatrix} 1 - \mathbf{i} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{i}.$
(3) Calculate Re $[\mathbf{p}e^{\lambda t}]$ and Im $[\mathbf{p}e^{\lambda t}]$:
 $\mathbf{p}e^{\lambda t} = \begin{pmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} -1 \\ 0 \end{bmatrix} \mathbf{i} \end{pmatrix} e^{-2t + \mathbf{i}t}$

$$\mathbf{p}e^{\lambda t} = \left(\left\lfloor \begin{array}{c} 1\\1 \\ \end{array} \right\rfloor + \left\lfloor \begin{array}{c} -1\\0 \\ \end{array} \right\rfloor \mathbf{i} \right) e^{-2t + \mathbf{i}t} \\ = e^{-2t} \left(\left\lfloor \begin{array}{c} 1\\1 \\ \end{array} \right\rfloor + \left\lfloor \begin{array}{c} -1\\0 \\ \end{array} \right\rfloor \mathbf{i} \right) (\cos t + \sin t \mathbf{i}) \\ = e^{-2t} \left(\left\lfloor \begin{array}{c} 1\\1 \\ \end{array} \right\rfloor \cos t - \left\lfloor \begin{array}{c} -1\\0 \\ \end{array} \right\rfloor \sin t \right) + e^{-2t} \left(\left\lfloor \begin{array}{c} 1\\1 \\ \end{array} \right\rfloor \sin t + \left\lfloor \begin{array}{c} -1\\0 \\ \end{array} \right\rfloor \cos t \right) \mathbf{i} \\ \Longrightarrow \operatorname{Re} \left[\mathbf{p}e^{\lambda t} \right] = e^{-2t} \left(\left\lfloor \begin{array}{c} 1\\1 \\ \end{array} \right\rfloor \cos t - \left\lfloor \begin{array}{c} -1\\0 \\ \end{array} \right\rfloor \sin t \right) \\ \operatorname{Im} \left[\mathbf{p}e^{\lambda t} \right] = e^{-2t} \left(\left\lfloor \begin{array}{c} 1\\1 \\ \end{array} \right\rfloor \sin t + \left\lfloor \begin{array}{c} -1\\0 \\ \end{array} \right\rfloor \cos t \right) \end{array}$$

• In this case, the origin is a spiral point.

 $\begin{cases} {\rm the\ trajectories\ of\ the\ solution\ spiral\ inward\ if\ Re}\lambda < 0 \\ {\rm the\ trajectories\ of\ the\ solution\ spiral\ outward\ if\ Re}\lambda > 0 \end{cases}$

6 Chapter 6

6.1 Inner product, length, and orthogonality

• Def: For two vectors $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix}$ in \mathbb{R}^n , their inner product is $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^\top \mathbf{v} = \begin{bmatrix} u_1 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + \cdots + u_n v_n$

 \implies Properties:

 $(1) \mathbf{u} \cdot \mathbf{v} = \mathbf{v} \cdot \mathbf{u}, \qquad (\mathbf{u} + \mathbf{v}) \cdot \mathbf{w} = \mathbf{u} \cdot \mathbf{w} + \mathbf{v} \cdot \mathbf{w}, \qquad (c\mathbf{u}) \cdot v = \mathbf{u} \cdot (c\mathbf{v}) = c\mathbf{u} \cdot \mathbf{v}$ $(2) \mathbf{u} \cdot \mathbf{u} \ge 0 \text{ for any } \mathbf{u} \text{ in } \mathbb{R}^n; \qquad \mathbf{u} \cdot \mathbf{u} = 0 \iff \mathbf{u} = \mathbf{0}$

• **Def**: For
$$\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix}$$
 in \mathbb{R}^n , the length (norm) of \mathbf{u} is
 $\|\mathbf{u}\| = \sqrt{\mathbf{u} \cdot \mathbf{u}} = \sqrt{u_1^2 + \dots + u_n^2}$

 \implies Properties:

- ① If $\|\mathbf{u}\| = 1$, then \mathbf{u} is called a unit vector.
- (2) If $\|\mathbf{u}\| \neq 1$, then it can be normalized as $\widehat{\mathbf{u}} = \frac{1}{\|\mathbf{u}\|}\mathbf{u}$.
- **Def**: For \mathbf{u}, \mathbf{v} in \mathbb{R}^n , the distance between \mathbf{u} and \mathbf{v} is

$$dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\|$$

Ex: Given $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Calculate the following quantities.

$$\mathbf{u} \cdot \mathbf{v} = 1, \quad \|\mathbf{u}\| = \sqrt{3^2 + 4^2} = 5, \quad dist(\mathbf{u}, \mathbf{v}) = \|\mathbf{u} - \mathbf{v}\| = \left\| \begin{bmatrix} 4\\3 \end{bmatrix} \right\| = 5$$

• **Def**: For \mathbf{u}, \mathbf{v} in \mathbb{R}^n , they are orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.

 \implies Properties:

- (1) **0** is orthogonal to any vectors in \mathbb{R}^n .
- (2) \mathbf{u} and \mathbf{v} are orthogonal $\iff \|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$

Ex: Given
$$\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} -2\\ 1\\ 0 \end{bmatrix}$. Then $\mathbf{u} \cdot \mathbf{v} = 0$, and
 $\|\mathbf{u} + \mathbf{v}\|^2 = \left\| \begin{bmatrix} -1\\ 3\\ 3 \end{bmatrix} \right\|^2 = 1 + 3^2 + 3^2 = 19,$
 $\|\mathbf{u}\|^2 = 1 + 2^2 + 3^2 = 14, \quad \|\mathbf{v}\|^2 = (-2)^2 + 1^2 + 0^2 = 5.$
Hence, it holds $\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2.$

• Def: Let W be a subspace of \mathbb{R}^n . A vector \mathbf{z} in \mathbb{R}^n is called orthogonal to W if \mathbf{z} is orthogonal to each vector in W. Denote the set

 $W^{\perp} = \{ \mathbf{z} : \mathbf{z} \text{ is orthogonal to } W \}$

 \implies Properties:

- $\bigcirc W^{\perp}$ is also a subspace of \mathbb{R}^n , which is orthogonal to W.
- $(2) (\operatorname{Row} A)^{\perp} = \operatorname{Nul} A = (\operatorname{Col} A^{\top})^{\perp}$

6.2 Orthogonal sets

- **Def**: A set of vectors $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ in \mathbb{R}^n is an orthogonal set if any two vectors inside are orthogonal.
- Thm: An orthogonal set of nonzero vectors is also a linearly independent set.

Ex: The set $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$ is linearly independent, but is not orthogonal. The set $\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3 \end{bmatrix} \right\}$ is both linearly independent and orthogonal.

• **Def**: An orthogonal basis for a subspace W is a basis that is also an orthogonal set. An orthonormal basis for W is a basis that is also an orthogonal set containing only unit vectors.

Ex:
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\3 \end{bmatrix} \right\}$$
 is a basis.

$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\3 \end{bmatrix} \right\}$$
is an orthogonal basis.
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$
is an orthonormal basis

• Thm: Let $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ be an orthogonal basis for W. Then for each \mathbf{y} in W,

$$\mathbf{y} = c_1 \mathbf{u}_1 + \dots + c_p \mathbf{u}_p$$
 with $c_j = \frac{\mathbf{y} \cdot \mathbf{u}_j}{\mathbf{u}_j \cdot \mathbf{u}_j}, \quad j = 1, 2, \cdots, p.$

• Def: Given two vectors \mathbf{y} and \mathbf{u} . Rewrite $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ such that $\hat{\mathbf{y}} = c\mathbf{u}$ is a scalar multiple of \mathbf{u} , and \mathbf{z} is orthogonal to \mathbf{u} .

Then $\hat{\mathbf{y}} = c\mathbf{u} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}}\mathbf{u}$ is the orthogonal projection of \mathbf{y} onto \mathbf{u} . The distance from \mathbf{y} to the line through \mathbf{u} is $\|\mathbf{z}\| = \|\mathbf{y} - \hat{\mathbf{y}}\|$.

Ex: Let $\mathbf{y} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$. What is the orthogonal projection of \mathbf{y} onto \mathbf{u} ? Answer: The projection

$$\widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{\mathbf{10}}{\mathbf{20}} \begin{bmatrix} -4\\2 \end{bmatrix} = \begin{bmatrix} -2\\1 \end{bmatrix},$$

and

$$\mathbf{z} = \mathbf{y} - \widehat{\mathbf{y}} = \begin{bmatrix} 1\\7 \end{bmatrix} - \begin{bmatrix} -2\\1 \end{bmatrix} = \begin{bmatrix} 3\\6 \end{bmatrix}$$

such that $\mathbf{y} \cdot \mathbf{z} = 0$. That is $\hat{\mathbf{y}}$ and \mathbf{z} are orthogonal.

• Thm: The matrix $U = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_p \end{bmatrix}_{m \times p}$ has orthonormal columns $\iff U^\top U = I$. Reason:

$$U^{\top}U = \begin{bmatrix} \mathbf{u}_{1}^{\top} \\ \vdots \\ \mathbf{u}_{p}^{\top} \end{bmatrix} \begin{bmatrix} \mathbf{u}_{1} & \cdots & \mathbf{u}_{p} \end{bmatrix} = \begin{bmatrix} \mathbf{u}_{1}^{\top}\mathbf{u}_{1} & \mathbf{u}_{1}^{\top}\mathbf{u}_{2} & \cdots & \mathbf{u}_{1}^{\top}\mathbf{u}_{p} \\ \mathbf{u}_{1}^{\top}\mathbf{u}_{2} & \mathbf{u}_{2}^{\top}\mathbf{u}_{2} & \cdots & \mathbf{u}_{2}^{\top}\mathbf{u}_{p} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{u}_{p}^{\top}\mathbf{u}_{1} & \mathbf{u}_{p}^{\top}\mathbf{u}_{2} & \cdots & \mathbf{u}_{p}^{\top}\mathbf{u}_{p} \end{bmatrix} = I$$

6.3 Orthogonal projections

• Thm (The orthogonal decomposition thm): Let W be a subspace of \mathbb{R}^n . Then any vector $\mathbf{y} = \widehat{\mathbf{y}} + \mathbf{z}$ with $\widehat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.

If W has an orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$, then the orthogonal projection of \mathbf{y} onto W, which is also denoted by $\hat{\mathbf{y}} = \text{proj}_W \mathbf{y}$, is

$$\widehat{\mathbf{y}} = \operatorname{proj}_W \mathbf{y} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \dots + \frac{\mathbf{y} \cdot \mathbf{u}_p}{\mathbf{u}_p \cdot \mathbf{u}_p} \mathbf{u}_p.$$

 \implies **Remark**: If **y** is in *W*, then $\text{proj}_W \mathbf{y} = \mathbf{y}$ and $\mathbf{z} = \mathbf{0}$.

Ex: Given $\mathbf{y} = \begin{bmatrix} -1 \\ 4 \\ 3 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$.

Answer: Noting that $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$, $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for W. Hence, the orthogonal decomposition thm can be used directly:

$$\widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{3}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} + \frac{5}{2} \begin{bmatrix} -1\\1\\0 \end{bmatrix} = \begin{bmatrix} -1\\4\\0 \end{bmatrix}.$$

• Thm (The best approximation thm): Let W be a subspace of \mathbb{R}^n . Then the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto W is the closest point(best approximation) in W to \mathbf{y} . That is,

$$\|\mathbf{y} - \widehat{\mathbf{y}}\| \le \|\mathbf{y} - \mathbf{v}\|$$
 for any $\mathbf{v} \in W$.

 \implies $\|\mathbf{z}\| = \|\mathbf{y} - \hat{\mathbf{y}}\|$ denotes the distance from \mathbf{y} to W.

• **Ex**: Given $\mathbf{y} = \begin{bmatrix} 5 \\ -9 \\ 5 \end{bmatrix}$, $\mathbf{u}_1 = \begin{bmatrix} -3 \\ -5 \\ 1 \end{bmatrix}$ and $\mathbf{u}_2 = \begin{bmatrix} -3 \\ 2 \\ 1 \end{bmatrix}$.

(1) Is $\{\mathbf{u}_1, \mathbf{u}_2\}$ an orthogonal basis? $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$ Yes.

(2) Find the orthogonal projection of \mathbf{y} onto $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$:

$$\widehat{\mathbf{y}} = \frac{\mathbf{y} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{y} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{35}{35} \begin{bmatrix} -3\\ -5\\ 1 \end{bmatrix} + \frac{-28}{14} \begin{bmatrix} -3\\ 2\\ 1 \end{bmatrix} = \begin{bmatrix} 3\\ -9\\ -1 \end{bmatrix}$$

(3) Find the closest point to **y** in $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$: same as above $\begin{bmatrix} 3\\ -9\\ -1 \end{bmatrix}$

(4) Find the best approximation of **y** in $W = \text{Span}\{\mathbf{u}_1, \mathbf{u}_2\}$: same as above $\begin{vmatrix} 3 \\ -9 \\ -1 \end{vmatrix}$

(5) What is the distance from \mathbf{y} to W? $\|\mathbf{z}\| = \|\mathbf{y} - \widehat{\mathbf{y}}\| = \|\begin{bmatrix} 2\\0\\6 \end{bmatrix}\| = \sqrt{40}$

• Thm: If $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W in \mathbb{R}^n , then

 $\widehat{\mathbf{y}} = (\mathbf{y} \cdot \mathbf{u}_1)\mathbf{u}_1 + \dots + (\mathbf{y} \cdot \mathbf{u}_p)\mathbf{u}_p.$ If $U = \begin{bmatrix} \mathbf{u}_1 & \cdots & \mathbf{u}_p \end{bmatrix}$, then $U^{\top}U = I$.

6.4 The Gram–Schmidt process

• Ex: Let $W = \text{Span}\{\mathbf{x}_1, \mathbf{x}_2\}$ with $\{\mathbf{x}_1, \mathbf{x}_2\}$ being a basis. To obtain an orthogonal basis for W, define

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{x}_1 \\ \mathbf{u}_2 &= \mathbf{x}_2 - \mathrm{proj}_{\mathbf{u}_1} \mathbf{x}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 \end{aligned}$$

Then $\{\mathbf{u}_1, \mathbf{u}_2\}$ is an orthogonal basis for W.

For example,
$$\mathbf{x}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$$
 and $\mathbf{x}_2 = \begin{bmatrix} 1\\0\\1 \end{bmatrix}$. Then
 $\mathbf{u}_1 = \mathbf{x}_1 = \begin{bmatrix} 1\\1\\0 \end{bmatrix}$
 $\mathbf{u}_2 = \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 = \begin{bmatrix} 1\\0\\1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1\\1\\0 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\-\frac{1}{2}\\1 \end{bmatrix}$

and apparently $\mathbf{u}_1 \cdot \mathbf{u}_2 = 0$.

\clubsuit Thm (The Gram–Schmidt process): Given a basis $\{\mathbf{x}_1, \cdots, \mathbf{x}_p\}$ for W. Then

$$\begin{split} \mathbf{u}_1 &= \mathbf{x}_1 \\ \mathbf{u}_2 &= \mathbf{x}_2 - \frac{\mathbf{x}_2 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 \\ \mathbf{u}_3 &= \mathbf{x}_3 - \frac{\mathbf{x}_3 \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \frac{\mathbf{x}_3 \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 \end{split}$$

$$\mathbf{u}_p = \mathbf{x}_p - rac{\mathbf{x}_p \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 - \dots - rac{\mathbf{x}_p \cdot \mathbf{u}_{p-1}}{\mathbf{u}_{p-1} \cdot \mathbf{u}_{p-1}} \mathbf{u}_{p-1}$$

form an orthogonal basis for W. In addition,

$$\operatorname{Span}{\mathbf{x}_1, \cdots, \mathbf{x}_k} = \operatorname{Span}{\mathbf{u}_1, \cdots, \mathbf{u}_k} \text{ for any } k = 1, 2, \cdots, p.$$

• Ex: Given $A = \begin{bmatrix} 5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5 \end{bmatrix}$. Then the column space $\operatorname{Col} A = \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2\}$ has a basis $\{\mathbf{a}_1, \mathbf{a}_2\}$ since the columns $\mathbf{a}_1, \mathbf{a}_2$ of A are linearly independent.

(1) Find an orthogonal basis for ColA.

$$\mathbf{u}_{1} = \mathbf{a}_{1} = \begin{bmatrix} 5\\1\\-3\\1 \end{bmatrix}$$
$$\mathbf{u}_{2} = \mathbf{a}_{2} - \frac{\mathbf{a}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} = \begin{bmatrix} 9\\7\\-5\\5 \end{bmatrix} - \frac{72}{36} \begin{bmatrix} 5\\1\\-3\\1 \end{bmatrix} = \begin{bmatrix} -1\\5\\1\\3 \end{bmatrix}$$

(2) Find an orthonormal basis for ColA.

$$\mathbf{v}_{1} = \frac{1}{\|\mathbf{u}_{1}\|} \mathbf{u}_{1} = \frac{1}{6} \begin{bmatrix} 5\\1\\-3\\1 \end{bmatrix} = \begin{bmatrix} \frac{5}{6}\\-\frac{1}{6}\\-\frac{1}{2}\\\frac{1}{6} \end{bmatrix}$$
$$\mathbf{v}_{2} = \frac{1}{\|\mathbf{u}_{2}\|} \mathbf{u}_{2} = \frac{1}{6} \begin{bmatrix} -1\\5\\1\\3 \end{bmatrix} = \begin{bmatrix} -\frac{1}{6}\\\frac{5}{6}\\\frac{1}{6}\\\frac{1}{2} \end{bmatrix}$$

(3) Denote a matrix $Q = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix}$, which satisfies $Q^{\top}Q = I$. If A = QR, then

$$R = Q^{\top} A = \begin{bmatrix} \frac{5}{6} & \frac{1}{6} & -\frac{1}{2} & \frac{1}{6} \\ -\frac{1}{6} & \frac{5}{6} & \frac{1}{6} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5 \end{bmatrix} = \begin{bmatrix} 6 & 12 \\ 0 & 6 \end{bmatrix},$$

which is a triangular matrix with positive diagonals.

• Thm (The QR factorization): If $A_{m \times n}$ has linearly independent columns, then A = QR with columns of $Q_{m \times n}$ forming an orthonormal basis for ColA and $R_{n \times n}$ being an upper triangular matrix with positive diagonals.

 \implies It implies that R is invertible.

6.5 Least-squares problems

If $A\mathbf{x} = \mathbf{b}$ has no solution but A has linearly independent columns, then A = QR and

$$Q^{\top}QR\mathbf{x} = Q^{\top}\mathbf{b} \iff R\mathbf{x} = Q^{\top}\mathbf{b} \iff \mathbf{x} = R^{-1}Q^{\top}\mathbf{b}$$

Apparently, **x** above can not be a solution of A**x** = **b**. What is the meaning of **x**?

• **Def**: A least-squares solution of $A\mathbf{x} = \mathbf{b}$ is a vector $\hat{\mathbf{x}} \in \mathbb{R}^n$ such that

$$\|\mathbf{b} - A\widehat{\mathbf{x}}\| \le \|\mathbf{b} - A\mathbf{x}\| \quad \text{for any} \quad \mathbf{x} \in \mathbb{R}^n.$$

$$\implies \text{For any } \mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \text{ in } \mathbb{R}^n, \ A\mathbf{x} = \mathbf{a}_1 x_1 + \dots + \mathbf{a}_n x_n \in \text{Col}A. \text{ Then}$$

 $A\widehat{\mathbf{x}} = \operatorname{proj}_{\operatorname{Col}A} \mathbf{b}$ is the orthogonal projection of \mathbf{b} onto $\operatorname{Col}A$ $\mathbf{b} - A\widehat{\mathbf{x}}$ is orthogonal to $\operatorname{Col}A$

That is, $\mathbf{b} - A\hat{\mathbf{x}}$ is orthogonal to $\mathbf{a}_1, \cdots, \mathbf{a}_n$:

• Thm: The least-squares solutions of $A\mathbf{x} = \mathbf{b}$ coincide with the solutions of the normal equation $A^{\top}A\widehat{\mathbf{x}} = A^{\top}\mathbf{b}$.

Ex: Given
$$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
(1) Does $A\mathbf{x} = \mathbf{b}$ have solutions? $\begin{bmatrix} A & \mathbf{b} \end{bmatrix} = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}$ No solution!
(2) Find the least-squares solutions of $A\mathbf{x} = \mathbf{b}$: Consider $A^{\top}A\widehat{\mathbf{x}} = A^{\top}\mathbf{b}$.

$$A^{\top}A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 6 \\ 6 & 12 \end{bmatrix}, \quad A^{\top}\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 6 \\ 12 \end{bmatrix}$$

The augmented matrix is $\begin{bmatrix} A^{\top}A & A^{\top}\mathbf{b} \end{bmatrix} = \begin{bmatrix} 3 & 6 & 6 \\ 6 & 12 & 12 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 2 \\ 0 & 0 & 0 \end{bmatrix}$, and the solutions are in the form $\widehat{\mathbf{x}} = \begin{bmatrix} 2 - 2x_2 \\ x_2 \end{bmatrix}$ with x_2 being a free parameter.

 \implies There are infinitely many least-squares solutions since $A^{\top}A$ is not invertible.

& Ex: Given $A = \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix}$. Find the least-squares solution of $A\mathbf{x} = \mathbf{b}$.

Answer: Consider the normal equation $A^{\top}A\widehat{\mathbf{x}} = A^{\top}\mathbf{b}$.

$$A^{\top}A = \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & 3 \end{bmatrix} \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 6 & -11 \\ -11 & 22 \end{bmatrix}$$
$$A^{\top}\mathbf{b} = \begin{bmatrix} -1 & 2 & -1 \\ 2 & -3 & 3 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} -4 \\ 11 \end{bmatrix}$$

The augmented matrix is $\begin{bmatrix} A^{\mathsf{T}}A & A^{\mathsf{T}}\mathbf{b} \end{bmatrix} = \begin{bmatrix} 6 & -11 & -4 \\ -11 & 22 & 11 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 \\ 0 & 1 & 2 \end{bmatrix}$, and hence $\widehat{\mathbf{x}} = \begin{bmatrix} 3 \\ 2 \end{bmatrix}$.

 \implies There is a unique least-squares solution of $A\mathbf{x} = \mathbf{b}$ since $A^{\top}A$ is invertible.

- Thm: $A\mathbf{x} = \mathbf{b}$ has a unique least-squares solution
 - $\iff A^{\top}A$ is invertible
 - \iff A has linearly independent columns

Remark: In this case, A has linearly independent columns, then A = QR and

$$A^{\top}A = (QR)^{\top}(QR) = R^{\top}Q^{\top}QR = R^{\top}R$$

is also invertible since R is invertible. Then the unique least-squares solution of $A\mathbf{x} = \mathbf{b}$ is

$$\widehat{\mathbf{x}} = (A^{\top}A)^{-1}A^{\top}\mathbf{b} = (R^{\top}R)^{-1}R^{\top}Q^{\top}\mathbf{b} = R^{-1}Q^{\top}\mathbf{b},$$

which answers the question proposed at the beginning of this lesson.

6.7 Inner product spaces

Def: An inner product on a general vector space V is a function ⟨u, v⟩ such that
1. ⟨u, v⟩ = ⟨v, u⟩, ⟨u + v, w⟩ = ⟨u, w⟩ + ⟨v, w⟩, ⟨cu, v⟩ = ⟨u, cv⟩ = c⟨u, v⟩
2. ⟨u, u⟩ ≥ 0 and ⟨u, u⟩ = 0 iff u = 0

A vector space equipped with an inner product is called an inner product space. **Ex**: \mathbb{R}^n with $\mathbf{u} \cdot \mathbf{v} = \mathbf{u}^\top \mathbf{v}$

Ex: \mathbb{P}_2 : Define an inner product by evaluation at -1, 0, 1

$$\langle p(t), q(t) \rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1)$$

For example, let $x_1(t) = 1 + t$ and $x_2(t) = 1 - t$. Then

$$\langle x_1(t), x_2(t) \rangle = x_1(-1)x_2(-1) + x_1(0)x_2(0) + x_1(1)x_2(1) = 1$$

- $\langle x_1(t), x_1(t) \rangle = 0 + 1 + 4 = 5$
- $\implies \text{norm(length): } ||x_1(t)|| = \sqrt{\langle x_1(t), x_1(t) \rangle} = \sqrt{5}$ $\implies \text{distance between } x_1(t) \text{ and } x_2(t) \text{: } ||x_1(t) x_2(t)|| = \sqrt{\langle 2t, 2t \rangle} = \sqrt{4 + 0 + 4} = \sqrt{8}$
- Gram–Schmidt process: basis $\{\mathbf{x}_1, \cdots, \mathbf{x}_p\} \longrightarrow$ orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$

$$\begin{aligned} \mathbf{x}_1 &= \mathbf{u}_1 \\ \mathbf{x}_2 &= \mathbf{x}_2 - \frac{\langle \mathbf{x}_2, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 \\ &\vdots \\ \mathbf{x}_p &= \mathbf{x}_p - \frac{\langle \mathbf{x}_p, \mathbf{u}_1 \rangle}{\langle \mathbf{u}_1, \mathbf{u}_1 \rangle} \mathbf{u}_1 - \dots - \frac{\langle \mathbf{x}_p, \mathbf{u}_{p-1} \rangle}{\langle \mathbf{u}_{p-1}, \mathbf{u}_{p-1} \rangle} \mathbf{u}_{p-1} \end{aligned}$$

Ex: As above, transform $\{x_1(t), x_2(t)\}$ into an orthogonal basis $\{u_1(t), u_2(t)\}$. Answer: $u_1(t) = x_1(t) = 1 + t$

$$u_2(t) = x_2(t) - \frac{\langle x_2(t), u_1(t) \rangle}{\langle u_1(t), u_1(t) \rangle} u_1(t) = (1-t) - \frac{1}{5}(1+t) = \frac{4}{5} - \frac{6}{5}t$$

• Best approximation: W has an orthogonal basis $\{\mathbf{u}_1, \cdots, \mathbf{u}_p\}$, then for any vector \mathbf{y} , $\mathbf{y} = \hat{\mathbf{y}} + \mathbf{z}$ with

$$\widehat{\mathbf{y}} = rac{\langle \mathbf{y}, \mathbf{u}_1
angle}{\langle \mathbf{u}_1, \mathbf{u}_1
angle} \mathbf{u}_1 + \dots + rac{\langle \mathbf{y}, \mathbf{u}_p
angle}{\langle \mathbf{u}_p, \mathbf{u}_p
angle} \mathbf{u}_p$$

Ex: As above, find the best approximation of $y(t) = t^2$ in $W = \{x_1(t), x_2(t)\}$. Answer: ① Find an orthogonal basis: $\{x_1(t), x_2(t)\} \rightarrow \{u_1(t), u_2(t)\}$ (2) Find the best approximation (orthogonal projection)

$$\widehat{y}(t) = \frac{\langle y(t), u_1(t) \rangle}{\langle u_1(t), u_1(t) \rangle} u_1(t) + \frac{\langle y(t), u_2(t) \rangle}{\langle u_2(t), u_2(t) \rangle} u_2(t) = \frac{2}{5}(1+t) + \frac{8/5}{24/5} \left(\frac{4}{5} - \frac{6}{5}t\right) = \frac{2}{3}$$

- Thm (The Cauchy–Schwarz inequality): $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$ Reason: $|\langle \mathbf{u}, \mathbf{v} \rangle| = |\langle c\mathbf{v} + \mathbf{z}, \mathbf{v} \rangle| = |c\langle \mathbf{v}, \mathbf{v} \rangle| = ||c\mathbf{v}|| ||\mathbf{v}|| \leq ||\mathbf{u}|| ||\mathbf{v}||$
- Thm (The triangle inequality): $\|\mathbf{u} + \mathbf{v}\| \le \|\mathbf{u}\| + \|\mathbf{v}\|$
- **&** Ex: Let V = C[-1, 1] be the space of all continuous functions on [-1, 1]. Define an inner product

$$\langle p(t),q(t)\rangle = \int_{-1}^1 p(t)q(t)dt.$$

Let $x_1(t) = 1$ and $x_2(t) = 2t - 1$. Then $\langle x_1(t), x_2(t) \rangle = \int_{-1}^{1} (2t - 1)dt = -2 \neq 0$. That is, $\{x_1, x_2\}$ are linearly independent but not orthogonal. Find an orthogonal basis for $W = \text{Span}\{x_1, x_2\}$:

$$p_1(t) = x_1(t) = 1$$

$$p_2(t) = x_2(t) - \frac{\langle x_2(t), p_1(t) \rangle}{\langle p_1(t), p_1(t) \rangle} p_1(t) = (2t - 1) - \frac{-2}{2} 1 = 2t$$

Then $\{1, 2t\}$ is an orthogonal basis for W.

7 Chapter 7

7.1 Diagonalization of symmetric matrices

Def: A symmetric matrix is a square matrix such that A^T = A.
Ex: Are the following matrices symmetric?

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{Yes} \qquad \begin{bmatrix} 1 & 3 \\ -3 & 1 \end{bmatrix} \text{No} \qquad \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix} \text{Yes}$$

Def: P is an orthogonal matrix if P⁻¹ = P^T, that is, columns of P are orthonormal.
 Ex: Are the following matrices orthogonal matrices?

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \text{Yes} \qquad \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \text{No} \qquad P = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \text{Yes} \Longrightarrow P^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$

- **Def**: A is called orthogonally diagonalizable if $A = PDP^{\top}$ with an orthogonal matrix P and a diagonal matrix D.
- Thm A is orthogonally diagonalizable \iff A is symmetric $(A^{\top} = A)$

Ex: Let $A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}$ with distinct eigenvalues -2, 7.

Decompose A such that $A = PDP^{\top}$:

① Find linearly independent eigenvectors:

For
$$\lambda_1 = -2$$
, $\begin{bmatrix} A - \lambda_1 I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} 5 & -2 & 4 & 0 \\ -2 & 8 & 2 & 0 \\ 4 & 2 & 5 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & (1) & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
It has solutions $\mathbf{x} = \begin{bmatrix} -1 \\ -\frac{1}{2} \\ 1 \end{bmatrix} x_3$. We can choose the first eigenvector $\mathbf{v}_1 = \begin{bmatrix} -2 \\ -1 \\ 2 \end{bmatrix}$
For $\lambda_2 = 7$, $\begin{bmatrix} A - \lambda_2 I & \mathbf{0} \end{bmatrix} = \begin{bmatrix} -4 & -2 & 4 & 0 \\ -2 & -1 & 2 & 0 \\ 4 & 2 & -4 & 0 \end{bmatrix} \sim \begin{bmatrix} 1 & \frac{1}{2} & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$
It has solutions $\mathbf{x} = \begin{bmatrix} -\frac{1}{2} \\ 1 \\ 0 \end{bmatrix} x_2 + \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} x_3$.
We can choose another two eigenvectors $\mathbf{v}_2 = \begin{bmatrix} -1 \\ 2 \\ 0 \end{bmatrix}$ and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$

(2) Find orthogonal eigenvectors:

Note that $\mathbf{v}_1 \cdot \mathbf{v}_2 = 0$, $\mathbf{v}_1 \cdot \mathbf{v}_3 = 0$ and $\mathbf{v}_2 \cdot \mathbf{v}_3 = -1$. Based on the Gram-Schmidt process:

$$\mathbf{u}_{1} = \mathbf{v}_{1} = \begin{bmatrix} -2\\ -1\\ 2 \end{bmatrix}$$
$$\mathbf{u}_{2} = \mathbf{v}_{2} = \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix}$$
$$\mathbf{u}_{3} = \mathbf{v}_{3} - \frac{\mathbf{v}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2} = \begin{bmatrix} 1\\ 0\\ 1 \end{bmatrix} - \frac{-1}{5} \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} \frac{4}{5}\\ \frac{2}{5}\\ 1 \end{bmatrix}$$

③ Find orthonormal eigenvectors:

$$\mathbf{p}_{1} = \frac{1}{\|\mathbf{u}_{1}\|} \mathbf{u}_{1} = \frac{1}{3} \begin{bmatrix} -2\\ -1\\ 2 \end{bmatrix} = \begin{bmatrix} -\frac{2}{3}\\ -\frac{1}{3}\\ \frac{2}{3} \end{bmatrix}$$
$$\mathbf{p}_{2} = \frac{1}{\|\mathbf{u}_{2}\|} \mathbf{u}_{2} = \frac{1}{\sqrt{5}} \begin{bmatrix} -1\\ 2\\ 0 \end{bmatrix} = \begin{bmatrix} -\frac{1}{\sqrt{5}}\\ \frac{2}{\sqrt{5}}\\ 0 \end{bmatrix}$$
$$\mathbf{p}_{3} = \frac{1}{\|\mathbf{u}_{3}\|} \mathbf{u}_{3} = \frac{5}{3\sqrt{5}} \begin{bmatrix} \frac{4}{5}\\ \frac{2}{5}\\ 1 \end{bmatrix} = \begin{bmatrix} \frac{4}{3\sqrt{5}}\\ \frac{2}{3\sqrt{5}}\\ \frac{\sqrt{5}}{3} \end{bmatrix}$$

Then $P = \begin{bmatrix} \mathbf{p}_1 & \mathbf{p}_2 & \mathbf{p}_3 \end{bmatrix}$ and $D = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}$ such that $A = PDP^{\top}$.

• Spectral decomposition of $A = PDP^{\top}$ with $P = [\mathbf{p}_1 \cdots \mathbf{p}_n]$:

$$A = \begin{bmatrix} \mathbf{p}_1 & \cdots & \mathbf{p}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_n \end{bmatrix} \begin{bmatrix} \mathbf{p}_1^\top \\ \vdots \\ \mathbf{p}_n^\top \end{bmatrix} = \lambda_1 \mathbf{p}_1 \mathbf{p}_1^\top + \cdots + \lambda_n \mathbf{p}_n \mathbf{p}_n^\top$$

 \implies Matrices $\mathbf{p}_i \mathbf{p}_i^{\top}$ above are called projection matrices:

$$\left(\mathbf{p}_{i}\mathbf{p}_{i}^{\top}\right)\mathbf{x} = \mathbf{p}_{i}\left(\mathbf{p}_{i}^{\top}\mathbf{x}\right) = \mathbf{p}_{i}\left(\mathbf{p}_{i}\cdot\mathbf{x}\right) = \frac{\mathbf{x}\cdot\mathbf{p}_{i}}{\mathbf{p}_{i}\cdot\mathbf{p}_{i}}\mathbf{p}_{i}$$