Outline of MA265

Instructor: Xu Wang

This is an outline of MA265 Linear Algebra. All the definitions can be found in the textbook and are omitted here for brevity.

1 Chapter 1

1.1 Systems of linear equations

- Def: linear equation

Ex: Are they linear equations?
$\sqrt{3} x_{1}+x_{2}=1, \quad \sqrt{x_{1}}+x_{2}=2, \quad x_{1} x_{2}+x_{3}=1$

- Def: linear system

Ex: Construct a linear system according to the following problem: An unknown amount of chickens and rabbits were locked in a cage. The total amount of them is 6 , and there are 16 feet in total. What is the amount of chickens and rabbits, respectively? (Hint: assume that there are x_{1} chickens and x_{2} rabbits.)

$$
\left\{\begin{array}{c}
x_{1}+x_{2}=6 \tag{1}\\
2 x_{1}+4 x_{2}=16
\end{array} \stackrel{\text { Collect all coefficients }}{\Longleftrightarrow}\left[\begin{array}{ccc}
1 & 1 & 6 \\
2 & 4 & 16
\end{array}\right] \quad\right. \text { (augmented matrix) }
$$

To get the solution

$$
\left\{\begin{array}{l}
x_{1}=* \tag{2}\\
x_{2}=* *
\end{array} \stackrel{\text { corresponding matrix }}{\Longleftrightarrow}\left[\begin{array}{ccc}
1 & 0 & * \\
0 & 1 & * *
\end{array}\right],\right.
$$

we only need to transform the matrix in (1) into the form in (2).

\& Elementary row operations

1. Interchange two rows.
2. Multiply a row by a scalar.
3. Replace a row by the sum of itself and a multiple of another row.

Ex:

$$
\left[\begin{array}{ccc}
1 & 1 & 6 \\
2 & 4 & 16
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 6 \\
0 & 2 & 4
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 6 \\
0 & 1 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 4 \\
0 & 1 & 2
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{l}
x_{1}=4 \\
x_{2}=2
\end{array}\right. \text { One solution }
$$

Ex:

$$
\left[\begin{array}{ccc}
1 & 1 & 6 \\
2 & 2 & 12
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1 & 6 \\
0 & 0 & 0
\end{array}\right] \Longleftrightarrow \begin{cases}x_{1}=6-x_{2} \\
x_{2} \text { is free } & \text { Infinitely many solutions }\end{cases}
$$

Ex:

$$
\left[\begin{array}{lll}
1 & 1 & 6 \\
1 & 1 & 8
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 1 & 6 \\
0 & 0 & 2
\end{array}\right] \Longleftrightarrow\left\{\begin{array}{r}
x_{1}+x_{2}=6 \\
0=2
\end{array} \quad\right. \text { No solution }
$$

- Def: solution/solution set

1. only one solution 2 . infinitely many solutions 3 . no solution

- Def: row equivalent

Properties: systems are equivalent \Longleftrightarrow corresponding matrices are row equivalent \Longleftrightarrow they have the same solution set

1.2 Row reduction and echelon forms

- Def: Nonzero row/column

Def: leading entry

- Def: echelon form (3 conditions)/reduced echelon form (5 conditions)

Ex: Find echelon forms and the reduced echelon form of the original matrix:

$$
\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
2 & 2 & 3 & 4 \\
0 & 1 & 2 & 3
\end{array}\right] \sim\left[\begin{array}{llll}
2 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{llll}
1 & 1 & \frac{3}{2} & 2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -\frac{1}{2} & -1 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

- Thm: Each matrix may be row equivalent to more than one matrix in echelon form, but is row equivalent to only one matrix in reduced echelon form.
- Def: pivot position/pivot column
\& Thm: A linear system is consistent if and only if its rightmost column is not a pivot column.

Ex: Recall examples in Lesson 1.1:
$\left[\begin{array}{ccc}\text { (1) } & 1 & 6 \\ 2 & \text { (4) } & 16\end{array}\right] \sim\left[\begin{array}{ccc}(1) & 0 & 4 \\ 0 & (1) & 2\end{array}\right]$ the rightmost column is NOT a pivot colum, so consistent
$\left[\begin{array}{ccc}(1) & 1 & 6 \\ 2 & (2) & 12\end{array}\right] \sim\left[\begin{array}{ccc}(1) & 1 & 6 \\ 0 & 0 & 0\end{array}\right]$ the rightmost column is NOT a pivot column, co consistent $\left[\begin{array}{ccc}(1) & 1 & 6 \\ 1 & 1 & 8\end{array}\right] \sim\left[\begin{array}{ccc}(1) & 1 & 6 \\ 0 & 0 & (2)\end{array}\right]$ the rightmost column is a pivot column, so inconsistent

- Remark: For a linear system:
consistent + no free variable \Longleftrightarrow only one solution e.g. the first matrix above consistent + free variable \Longleftrightarrow infinitely many solutions e.g. the second one above

1.3 Vector equations

A linear system has the following equivalent expressions.

$$
\left[\begin{array}{ccc}
1 & 1 & 6 \\
2 & 4 & 16
\end{array}\right] \stackrel{\text { row view }}{\stackrel{~}{x}+x_{2}=6} \begin{gathered}
x_{1} \\
2 x_{1}+4 x_{2}=16
\end{gathered} \xrightarrow{\text { column view }}\left[\begin{array}{l}
1 \\
2
\end{array}\right] x_{1}+\left[\begin{array}{l}
1 \\
4
\end{array}\right] x_{2}=\left[\begin{array}{c}
6 \\
16
\end{array}\right]
$$

- Def: (column) vector

1. Vectors in $\mathbb{R}^{2}: \mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right], \quad \mathbf{v}=\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$
(1) $\mathbf{u}=\mathbf{v}$ if and only if $u_{1}=v_{1}$ and $u_{2}=v_{2}, \quad$ e.g. $\left[\begin{array}{l}1 \\ 2\end{array}\right] \neq\left[\begin{array}{l}2 \\ 1\end{array}\right]$
(2) $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}u_{1}+v_{1} \\ u_{2}+v_{2}\end{array}\right]$
(3) $c \mathbf{u}=\left[\begin{array}{l}c u_{1} \\ c u_{2}\end{array}\right], \quad c$ is a scalar
2. Vectors in $\mathbb{R}^{3}: \mathbf{u}=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right]$
3. Vectors in $\mathbb{R}^{n}: \mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$

Geometric description: Identify a geometric point (a, b) with a vector $\left[\begin{array}{l}a \\ b\end{array}\right]$. Four vectors $\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}$ and the origin could form a parallelogram.

- Def: linear combination

Ex: For the vector equation $\left[\begin{array}{l}1 \\ 2\end{array}\right] x_{1}+\left[\begin{array}{l}1 \\ 4\end{array}\right] x_{2}=\left[\begin{array}{c}6 \\ 16\end{array}\right]$, we have already known its solution $\left\{\begin{array}{l}x_{1}=4 \\ x_{2}=2 .\end{array}\right.$ That is,

$$
4\left[\begin{array}{l}
1 \\
2
\end{array}\right]+2\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
6 \\
16
\end{array}\right], \quad \text { so }\left[\begin{array}{c}
6 \\
16
\end{array}\right] \text { is a linear combination of }\left[\begin{array}{l}
1 \\
2
\end{array}\right] \text { and }\left[\begin{array}{l}
1 \\
4
\end{array}\right] .
$$

- Thm: Vector \mathbf{y} is a linear combination of vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}$
\Longleftrightarrow The vector equation $\mathbf{v}_{1} x_{1}+\cdots \mathbf{v}_{p} x_{p}=\mathbf{y}$ has a solution
\Longleftrightarrow The augmented matrix $\left[\begin{array}{llll}\mathbf{v}_{1} & \cdots & \mathbf{v}_{p} & \mathbf{y}\end{array}\right]$ is consistent
- Def: Given vectors v_{1}, \cdots, v_{p},

$$
\begin{aligned}
\operatorname{Span}\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\} & =\left\{\text { all linear combinations of } \mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\} \\
& =\left\{c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}: c_{1}, \cdots, c_{p} \text { are scalars }\right\} \\
& =\text { subset spanned (generated) by vectors } \mathbf{v}_{1}, \cdots, \mathbf{v}_{p}
\end{aligned}
$$

Geometric description:

Span\{u\} denotes a straight line
$\operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ denotes a plane

1.4 Matrix equations $A \mathbf{x}=\mathbf{b}$

- Def: product between A and \mathbf{x}
$\mathbf{E x}:\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]_{2 \times 3}\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]_{3 \times 1}=\left[\begin{array}{l}1 \\ 2\end{array}\right] \times 1+\left[\begin{array}{l}2 \\ 3\end{array}\right] \times 2+\left[\begin{array}{l}3 \\ 4\end{array}\right] \times 3=\left[\begin{array}{l}14 \\ 20\end{array}\right]$
Ex: $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \quad I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$: identity matrix
$\mathbf{E x}$: For vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$, we can rewrite $\mathbf{v}_{1}+\mathbf{v}_{2}-2 \mathbf{v}_{3}=\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{v}_{3}\end{array}\right]\left[\begin{array}{c}1 \\ 1 \\ -2\end{array}\right]$
- Properties: $A(\mathbf{u}+\mathbf{v})=A \mathbf{u}+A \mathbf{v}, \quad A$ is a matrix and \mathbf{u}, \mathbf{v} are vectors

$$
A(c \mathbf{u})=c A \mathbf{u}, \quad c: \text { scalar }
$$

Ex: Let $A=\left[\begin{array}{cc}1 & 2 \\ -2 & 3\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. Then

$$
\begin{aligned}
& A(\mathbf{u}+\mathbf{v})=\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right)=\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
6 \\
2
\end{array}\right] \\
& A \mathbf{u}+A \mathbf{v}=\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{cc}
1 & 2 \\
-2 & 3
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]+\left[\begin{array}{l}
5 \\
4
\end{array}\right]=\left[\begin{array}{l}
6 \\
2
\end{array}\right]
\end{aligned}
$$

- Thm: Let A be an $m \times n$ matrix with columns $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ and $\mathbf{b} \in \mathbb{R}^{m}$.

The solution set of $A \mathbf{x}=\mathbf{b} \Longleftrightarrow$ The solution set of $\mathbf{a}_{1} x_{1}+\cdots+\mathbf{a}_{p} x_{p}=\mathbf{b}$
\Longleftrightarrow The solution set of the system determined by the augmented matrix $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$

- Question: Determine if for each vector $\mathbf{b} \in \mathbb{R}^{m}, A \mathbf{x}=\mathbf{b}$ is consistent

Ex: $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right], b=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
$\left[\begin{array}{lll}1 & 1 & b_{1} \\ 2 & 2 & b_{2}\end{array}\right] \sim\left[\begin{array}{ccc}1 & 1 & b_{1} \\ 0 & 0 & b_{2}-2 b_{1}\end{array}\right]$ is consistent if and only if $b_{2}-2 b_{1}=0$
Ex: $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}\right], b=\left[\begin{array}{l}b_{1} \\ b_{2}\end{array}\right]$
$\left[\begin{array}{lll}1 & 1 & b_{1} \\ 2 & 4 & b_{2}\end{array}\right] \sim\left[\begin{array}{ccc}1 & 1 & b_{1} \\ 0 & 2 & b_{2}-2 b_{1}\end{array}\right]$ is consistent for any \mathbf{b}
\& Thm: The following statements are equivalent:
For each $\mathbf{b} \in \mathbb{R}^{m}, A \mathbf{x}=\mathbf{b}$ is consistent
\Longleftrightarrow For each $\mathbf{b} \in \mathbb{R}^{m}, \mathbf{b}$ is a linear combination of $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$
$\Longleftrightarrow \mathbb{R}^{m}=\operatorname{Span}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$
$\Longleftrightarrow A$ has a pivot position in every row

1.5 Solution sets of $A \mathrm{x}=\mathrm{b}$

- Def: A homogeneous linear system is in the form $A \mathbf{x}=\mathbf{0}$. It must be consistent with the trivial solution $\mathbf{x}=\mathbf{0}$.
If $\mathbf{x} \neq 0$, it is called a nontrivial solution.
Remark: $A \mathrm{x}=\mathbf{0}$ has nontrivial solutions $\Longleftrightarrow A \mathbf{x}=\mathbf{0}$ has infinitely many solutions

$$
\Longleftrightarrow A \mathbf{x}=\mathbf{0} \text { has free variables }
$$

Ex: $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 3\end{array}\right]$. Find all the solutions of $A \mathbf{x}=\mathbf{0}$.
$\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \\ 1 & 2 & 3 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 0 & -1 & 0 \\ 0 & (1) & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Longleftrightarrow\left\{\begin{array}{l}x_{1}=x_{3} \\ x_{2}=-2 x_{3} \\ x_{3}=x_{3} \text { (free) }\end{array}\right.$
$\mathbf{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=x_{3}\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], x_{3}$ can be chosen as any real numbers.

- Def: $\mathbf{x}=t \mathbf{v}, t \in \mathbb{R}$, is call the parametric vector form of the solution.

Ex: Find all solutions of $x_{1}-x_{2}-x_{3}=0$.
$\left[\begin{array}{llll}(1) & -1 & -1 & 0\end{array}\right] \Longleftrightarrow\left\{\begin{array}{l}x_{1}=x_{2}+x_{3} \\ x_{2}=x_{2} \text { (free) } \\ x_{3}=x_{3} \text { (free) }\end{array} \Longleftrightarrow \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] x_{2}+\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] x_{3}\right.$
$\mathbf{E x}:$ Given $\mathbf{x}_{0}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Find matrix A such that $A \mathbf{x}_{0}=\mathbf{0}$.
Suppose that x_{3} is a free variable and all the solution can be written as $\mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] x_{3}$.
Then $\left\{\begin{array}{l}x_{1}=x_{3} \\ x_{2}=x_{3} \\ x_{3}=x_{3}(\text { free })\end{array} \Longleftrightarrow\left\{\begin{array}{r}x_{1}-x_{3}=0 \\ x_{2}-x_{3}=0 \\ 0=0\end{array} \Longleftrightarrow\right.\right.$ augmented matrix $\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
So we can choose $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 0\end{array}\right]$
Ex: Find all the solutions of $A \mathbf{x}=\mathbf{b}$ with $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 1 & 2 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$.
$\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 0 \\ 1 & 2 & 3 & 1\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & 3 & 1 \\ 0 & -1 & -2 & -2 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 0 & -1 & -3 \\ 0 & (1) & 2 & 2 \\ 0 & 0 & 0 & 0\end{array}\right] \Longleftrightarrow\left\{\begin{array}{l}x_{1}=-3+x_{3} \\ x_{2}=2-2 x_{3} \\ x_{3}=x_{3} \text { (free) }\end{array}\right.$
All the solutions are in the form $\mathbf{x}=\left[\begin{array}{c}-3 \\ 2 \\ 0\end{array}\right]+x_{3}\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$
Compare it with the first example on this page, we get the following Thm.

- Thm: Assume that $A \mathbf{x}=\mathbf{b}$ has a solution \mathbf{p}. Then any solution of $A \mathbf{x}=\mathbf{b}$ has the form $\mathbf{x}=\mathbf{p}+\mathbf{v}$, where \mathbf{v} is any solution of the homogeneous system $A \mathbf{x}=\mathbf{0}$.

1.7 Linear independence

- Def: 1 . linearly independent

2. linearly dependent

Ex: Determine if the columns of $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]$ are linearly dependent
Augmented matrix $\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 3 & 4 & 0 \\ 3 & 4 & 5 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 0 & -1 & -2 & 0 \\ 0 & -2 & -4 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 2 & 3 & 0 \\ 0 & (1) & 2 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$.
There is infinitely many solutions for $A \mathbf{x}=\mathbf{0}$, so of course there is nontrivial ones, since there is one free variable. Thus, the columns of A are linear dependent.
Ex: Determine if $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 4 \\ 6\end{array}\right]$ are linear dependent.
Method 1: consider the augmented matrix $\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{0}\end{array}\right]$ as above
Method 2: note that $v_{2}=2 v_{1}$, so they are linearly dependent. See also what follows.

- Thm: Vectors $\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}$ are linearly dependent \Longleftrightarrow One of them is a linear combination of the others.
- Thm: Any set of vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ in \mathbb{R}^{n} is linearly dependent if $p>n$.

Reason: Consider linear system $\mathbf{v}_{1} x_{1}+\cdots+\mathbf{v}_{p} x_{p}=\mathbf{0}$. There is p variables in total. There is at most n pivot variables since there is n equations. As a result, there is at least $p-n(>0)$ free variables. So the system has nontrivial solutions, and thus the vectors are linearly dependent.

- Thm: Any set of vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ containing the zero vector is linearly dependent. Reason: Without loss of generality, we assume that $\mathbf{v}_{1}=0$. Then apparently

$$
\mathbf{v}_{1} \cdot 1+\mathbf{v}_{2} \cdot 0+\cdots+\mathbf{v}_{2} \cdot 0=\mathbf{0}
$$

is always true, that is, $\mathbf{v}_{1} x_{1}+\cdots+\mathbf{v}_{p} x_{p}=\mathbf{0}$ has a nontrivial solution $\left\{\begin{array}{r}x_{1}=1 \\ x_{2}=0 \\ \vdots \\ x_{p}=0\end{array}\right.$

1.8 Linear transformations

- Def: transformation (mapping)

$$
\begin{aligned}
T: & \mathbb{R}^{n} \rightarrow \mathbb{R}^{m} \\
& \mathbf{x} \mapsto T(\mathbf{x})
\end{aligned}
$$

Ex: Define the following transformation

$$
\begin{aligned}
T: & \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \mathbf{x} \mapsto\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

What is $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right), T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$?
Answer: $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}1 \\ 1\end{array}\right]$
Ex: Define another transformation

$$
\begin{aligned}
T: & \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \\
& \mathbf{x} \mapsto 2 \mathbf{x}
\end{aligned}
$$

What is $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right), T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)$ and $T\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)$?
Answer: $T\left(\left[\begin{array}{l}1 \\ 1\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 2\end{array}\right], T\left(\left[\begin{array}{l}1 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}2 \\ 0\end{array}\right], T\left(\left[\begin{array}{l}0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

- Def: matrix transformation $(T(\mathbf{x})=A \mathbf{x})$
- Def: linear transformation
\& For a matrix transformation $T(\mathbf{x})=A \mathbf{x}$, we have the following three kinds of problems.

1. Given $A, \mathbf{u} \Longrightarrow T(\mathbf{u})$

Ex: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathbf{u}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. What is the image $T(\mathbf{u})$?
Answer: $T(\mathbf{u})=A \mathbf{u}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=\left[\begin{array}{c}5 \\ 11\end{array}\right]$.
2. Given $A, T(\mathbf{u}) \Longrightarrow \mathbf{u}$

Ex: $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], T(\mathbf{u})=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. What is \mathbf{u} ?
Answer: Since \mathbf{u} satisfies $T(\mathbf{u})=A \mathbf{u}$, we have $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right] \mathbf{u}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$. Then it suffices to consider the augmented matrix and do the row reduction:

$$
\left[\begin{array}{lll}
1 & 2 & 1 \\
3 & 4 & 3
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right], \text { that is, } \mathbf{u}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

3. For each \mathbf{x}, the image $T(\mathbf{x})$ is given $\Longrightarrow A$
$\mathbf{E x}$: For each $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], T(\mathbf{x})=\left[\begin{array}{c}x_{1}-x_{2} \\ 2 x_{2} \\ x_{1}+x_{3}\end{array}\right]$. What is A ?
Answer: Rewrite $T(\mathbf{x})=\left[\begin{array}{c}x_{1}-x_{2} \\ 2 x_{2} \\ x_{1}+x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \mathbf{x}_{\mathbf{1}}+\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right] \mathbf{x}_{\mathbf{2}}+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \mathbf{x}_{\mathbf{3}}=$ $\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, so $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1\end{array}\right]$.
Ex: Consider $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$. Let $\mathbf{e}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{\mathbf{2}}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ be the two columns of the identity matrix. If we know $T\left(\mathbf{e}_{\mathbf{1}}\right)=\left[\begin{array}{l}1 \\ 2\end{array}\right]$ and $T\left(\mathbf{e}_{2}\right)=\left[\begin{array}{l}3 \\ 4\end{array}\right]$, what is A ?

$$
\begin{aligned}
& \text { Answer: For each } \mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\mathbf{e}_{\mathbf{1}} x_{1}+\mathbf{e}_{\mathbf{2}} x_{2} \text {, we have } \\
& T(\mathbf{x})=T\left(\mathbf{e}_{\mathbf{1}} x_{1}+\mathbf{e}_{\mathbf{2}} x_{2}\right)=T\left(\mathbf{e}_{\mathbf{1}}\right) x_{1}+T\left(\mathbf{e}_{\mathbf{2}}\right) x_{2}=\left[\begin{array}{ll}
T\left(\mathbf{e}_{\mathbf{1}}\right) & T\left(\mathbf{e}_{\mathbf{2}}\right)
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] . \\
& \text { So } A=\left[\begin{array}{ll}
T\left(\mathbf{e}_{\mathbf{1}}\right) & T\left(\mathbf{e}_{\mathbf{2}}\right)
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
2 & 4
\end{array}\right] .
\end{aligned}
$$

1.9 The matrix of a linear transformation

- Thm: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation. Then there exists a unique matrix A such that $T(\mathbf{x})=A \mathbf{x}$ for any $\mathbf{x} \in \mathbb{R}^{n}$. In fact,

$$
A=\left[\begin{array}{lll}
T\left(\mathbf{e}_{\mathbf{1}}\right) & \cdots & T\left(\mathbf{e}_{\mathbf{n}}\right)
\end{array}\right],
$$

where $\mathbf{e}_{\mathbf{1}}, \cdots, \mathbf{e}_{\mathbf{n}}$ are the columns of the identity matrix $I_{n \times n}$.

- Geometric description in $\mathbb{R}^{2}: \mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

1. Reflections: $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
2. Contractions and expansions: $A=\left[\begin{array}{cc}1 & 0 \\ 0 & k\end{array}\right]$
3. Shears: $A=\left[\begin{array}{cc}1 & k \\ 0 & 1\end{array}\right]$
4. Rotation: $A=\left[\begin{array}{cc}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$
5. Projections: $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$

- Def: onto mapping

Ex: The mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad$ is NOT onto.

$$
\mathbf{x} \mapsto\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

\& Thm: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
T is onto. \Longleftrightarrow For each $\mathbf{b} \in \mathbb{R}^{m}, A \mathbf{x}=\mathbf{b}$ is consistent.
$\Longleftrightarrow A$ has a pivot position in every row.
$\Longleftrightarrow \mathbb{R}^{m}=\operatorname{Span}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$ with $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$ being the columns of A

- Def: one-to-one mapping

Ex: The mapping $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \quad$ is NOT one-to-one.

$$
\mathbf{x} \mapsto\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

\& Thm: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a linear transformation.
T is one-to-one. $\Longleftrightarrow A \mathrm{x}=0$ has only the trivial solution.
\Longleftrightarrow The columns of A are linearly independent.

2 Chapter 2

2.1 Matrix operations

$A_{m \times n}=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right]$ with $\mathbf{a}_{i}=\left[\begin{array}{c}a_{1 i} \\ a_{2 i} \\ \vdots \\ a_{m i}\end{array}\right] \Longrightarrow A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]\left(=\left[a_{i j}\right]_{m \times n}\right)$
Diagnal matrix: a square matrix with zero non-diagonal entries, for example, $I_{n}=\left[\begin{array}{lll}1 & & \\ & \ddots & \\ & & 1\end{array}\right]_{n \times n}$

1. Sum and scalar multiple
$A=B$: same size \& same corresponding entries
$A+B$: the sum has the same size as A and $B \&$ adding corresponding entries $c A$: same size as $A \&$ each entry in A is multiplied by c
Properties: $A+B=B+A, c(A+B)=c A+c B$
2. Multiplication

Def: Given $A_{m \times n}$ and $B_{n \times p}=\left[\begin{array}{lll}\mathbf{b}_{1} & \cdots & \mathbf{b}_{p}\end{array}\right]$, the product is defined by

$$
A B=\left[\begin{array}{lll}
A \mathbf{b}_{1} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

Ex: Given $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]_{2 \times 3}$ and $B=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]_{3 \times 3}$. What is $A B$?
Answer: $A B=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}3 & 3 & 2 \\ 3 & 3 & 4\end{array}\right]_{2 \times 3}$
\Longrightarrow The (i, j)-entry in $A B$ can be calculated as $(A B)_{i j}=\operatorname{row}_{i}(A) \cdot \operatorname{column}_{j}(B)$
Ex: Since any given matrix could define a linear transformation, we have

$$
\begin{array}{rlrl}
A_{m \times n} \Longleftrightarrow T_{A}: \mathbb{R}^{n} & \rightarrow \mathbb{R}^{m}, \quad B_{n \times p} \Longleftrightarrow T_{B}: \mathbb{R}^{p} & \rightarrow \mathbb{R}^{n} \\
\mathbf{x} & \mapsto A \mathbf{x}, & \mathbf{x} & \mapsto B \mathbf{x}
\end{array}
$$

That is, for any $\mathbf{x} \in \mathbb{R}^{p}, \mathbf{x} \stackrel{T_{B}}{\longmapsto} B \mathbf{x} \stackrel{T_{A}}{\longmapsto} A B \mathbf{x}$, which define a new mapping

$$
\begin{aligned}
(A B)_{m \times p} \Longleftrightarrow T_{A B}: \mathbb{R}^{p} & \rightarrow \mathbb{R}^{n} \\
\mathbf{x} & \mapsto A B \mathbf{x}
\end{aligned}
$$

Properties: $A(B C)=(A B) C, A(B+C)=A B+A C, c(A B)=(c A) B=A(c B)$
\& In general, $A B \neq B A$ e.g. $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right], B=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
\& In general, $A B=A C \nRightarrow B=C \quad$ e.g. A, B as above, $C=\left[\begin{array}{ll}2 & 3 \\ 2 & 3\end{array}\right]$
\& In general, $A B=0 \nRightarrow A=0$ or $B=0 \quad A$ as above, $B=\left[\begin{array}{cc}1 & 1 \\ -1 & -1\end{array}\right]$
3. Transpose

Def: Given $A_{m \times n}$. Its transpose, denoted by A^{\top}, is an $n \times m$ matrix whose columns are the corresponding rows of A
Properties: $\left(A^{\top}\right)^{\top}=A,(A+B)^{\top}=A^{\top}+B^{\top},(c A)^{\top}=c A^{\top},(A B)^{\top}=B^{\top} A^{\top}$

$2.2 \& 2.3$ Inverse of a matrix

- Def: invertible
\& If $A B=A C$ and A is invertible $\Longrightarrow B=C$
$\&$ If $A B=0$ and A is invertible (resp. B is invertible) $\Longrightarrow B=0$ (resp. $A=0$)
- Properties: $\left(A^{-1}\right)^{-1}=A,(A B)^{-1}=B^{-1} A^{-1},\left(A^{\top}\right)^{-1}=\left(A^{-1}\right)^{\top}$
- Thm: Let $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$. If $a d-b c \neq 0$, then A is invertible and $A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$. If $a d-b c=0$, then A is not invertible.
$\mathbf{E x}$: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$. What is A^{-1} ?
Answer: $a d-b c=1 \times 5-2 \times 3=-1$, so A is invertible and

$$
A^{-1}=\frac{1}{-1}\left[\begin{array}{cc}
5 & -2 \\
-3 & 1
\end{array}\right]=\left[\begin{array}{cc}
-5 & 2 \\
3 & -1
\end{array}\right]
$$

- Thm: If $A_{n \times n}$ is invertible, then for each vector $\mathbf{b} \in \mathbb{R}^{n}, A \mathbf{x}=\mathbf{b}$ has a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$.
\Longrightarrow In this case, A has a pivot position in every row.
\& Thm: $A_{n \times n}$ is invertible $\Longleftrightarrow A$ is row equivalent to I_{n}
- Def: elementary matrix
$\mathbf{E x}: E_{1}=\left[\begin{array}{ll}1 & 0 \\ r & 1\end{array}\right], E_{2}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right], E_{3}=\left[\begin{array}{ll}r & 0 \\ 0 & 1\end{array}\right]$
For any 2×2 matrix A, we have

$$
E_{1} A=\left[\begin{array}{ll}
1 & 0 \\
r & 1
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{cc}
a & b \\
r a+c & r b+d
\end{array}\right]
$$

$\Longrightarrow E A$ is obtained by performing the same row operation to A
\& Calculation of A^{-1} : If $A_{n \times n}$ is invertible, then $A \sim I_{n}$ and there exists a matrix A^{-1} such that $A^{-1} A=I_{n}$. That is, A^{-1} is a kind of row operations that transform A to I_{n}. Moreover,

$$
A^{-1}\left[\begin{array}{ll}
A & I_{n}
\end{array}\right]=\left[\begin{array}{ll}
I_{n} & A^{-1}
\end{array}\right]
$$

That is, under the operation A^{-1}, we have $\left[\begin{array}{ll}A & I_{n}\end{array}\right] \sim\left[\begin{array}{ll}I_{n} & A^{-1}\end{array}\right]$
Ex: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 5\end{array}\right]$.
$\left[\begin{array}{ll}A & I_{n}\end{array}\right]=\left[\begin{array}{llll}1 & 2 & 1 & 0 \\ 3 & 5 & 0 & 1\end{array}\right] \sim\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ 0 & -1 & -3 & 1\end{array}\right] \sim\left[\begin{array}{cccc}1 & 0 & -5 & 2 \\ 0 & 1 & 3 & -1\end{array}\right]=\left[\begin{array}{cc}I_{n} & A^{-1}\end{array}\right]$
So $A^{-1}=\left[\begin{array}{cc}-5 & 2 \\ 3 & -1\end{array}\right]$.

2.8 Subspaces of \mathbb{R}^{n}

- Def: subspace
$\mathbf{E x}:$ For $\mathbf{u} \in \mathbb{R}^{3}, \operatorname{Span}\{\mathbf{u}\}$ is a subspace of \mathbb{R}^{3}.
For $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}, \operatorname{Span}\{\mathbf{u}, \mathbf{v}\}$ is a subspace of \mathbb{R}^{3}.
Ex: $\mathbb{R}^{n},\{\mathbf{0}\}$ are both subspaces of \mathbb{R}^{n}.
- Def: column space of $A: \operatorname{Col} A$
\Longrightarrow For $A_{m \times n}, \operatorname{Col} A$ is a subspace of \mathbb{R}^{m}
- Def: null space of $A: \operatorname{Nul} A$
\Longrightarrow For $A_{m \times n}, \operatorname{Nul} A$ is a subspace of \mathbb{R}^{n}
Ex: Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$. Is \mathbf{u} in $\operatorname{Col} A$ or $\operatorname{Nul} A$?
(1) Consider $\left[\begin{array}{ll}A & \mathbf{u}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 1 \\ 3 & 4 & 4\end{array}\right] \sim\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 2 & -1\end{array}\right]$. The rightmost column is not a pivot column, so the system is consistent. Equivalently, there is a solution \mathbf{x} such that $A \mathbf{x}=\mathbf{u}$, that is, \mathbf{u} is a linear combination of the columns of A. Hence, \mathbf{u} is in $\operatorname{Col} A$.
(2) Consider $A \mathbf{u}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}1 \\ 4\end{array}\right]=\left[\begin{array}{c}9 \\ 19\end{array}\right]$. That is, \mathbf{u} is not a solution of the homogeneous system $A \mathbf{x}=\mathbf{0}$, so \mathbf{u} is not in $\operatorname{Nul} A$.
Ex: Let $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]$. Then

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
4
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right]\right\} .
$$

Question: How to find the smallest amount of vectors that span a subspace?

- Def: basis

Ex: Let $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4\end{array}\right]$. Find a basis for $\operatorname{Col} A \backslash \operatorname{Nul} A$.
(1) $\operatorname{Nul} A$: We need to find all the solutions of $A \mathbf{x}=\mathbf{0}$. Consider the augmented matrix

$$
\left[\begin{array}{ll}
A & \mathbf{0}
\end{array}\right]=\left[\begin{array}{llll}
1 & 2 & 3 & 0 \\
2 & 3 & 4 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 0 \\
0 & -1 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & 2 & 0
\end{array}\right]
$$

The solution is in the form

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{3} \\
-2 x_{3} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right] x_{3}, \quad x_{3} \text { is a free parameter. }
$$

So $\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$, and the set $\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$ is a basis for $\operatorname{Nul} A$.
(2) $\operatorname{Col} A$: We need to find linearly independent columns of A. Based on the echelon of $\left[\begin{array}{ll}A & \mathbf{0}\end{array}\right]$ calculated above, we can get the echelon form of A directly

$$
A=\left[\begin{array}{ccc}
(1) & 2 & 3 \\
2 & (3) & 4
\end{array}\right] \sim\left[\begin{array}{ccc}
(1) & 0 & -1 \\
0 & (1) & 2
\end{array}\right] .
$$

The third column can be written as a linear combination of the first two columns, and the first two columns are linear independent. So

$$
\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right],\left[\begin{array}{l}
3 \\
4
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}
$$

and the set $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right]\right\}$ is a basis for $\operatorname{Col} A$.
\& Thm: The pivot columns of A form a basis for $\operatorname{Col} A$.

2.9 Dimension and rank

- Def: coordinate vector
$\mathbf{E x}: \mathbf{x}=\left[\begin{array}{l}5 \\ 6\end{array}\right]=5 \mathbf{e}_{1}+6 \mathbf{e}_{2}$ where $\mathbf{e}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\mathbf{e}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ form a basis for \mathbb{R}^{2}.
Hence, $\left[\begin{array}{l}5 \\ 6\end{array}\right]$ is the coordinate vector of \mathbf{x} relative to the standard basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}\right\}$.
$\mathbf{E x}: \mathbf{x}=\left[\begin{array}{l}5 \\ 6\end{array}\right], \mathbf{b}_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{b}_{2}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$.
(1) $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$ is also a basis for $\mathbb{R}^{2}:\left[\begin{array}{ll}\mathbf{b}_{1} & \mathbf{b}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 3 \\ 2 & 4\end{array}\right] \sim\left[\begin{array}{cc}(1) & 0 \\ 0 & (1)\end{array}\right]$
(2) Hence, we can find the coordinate vector of \mathbf{x} relative to the new basis $\left\{\mathbf{b}_{1}, \mathbf{b}_{2}\right\}$, that is, find $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ such that $\mathbf{x}=c_{1} \mathbf{b}_{1}+c_{2} \mathbf{b}_{2}$:

$$
\left[\begin{array}{lll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{x}
\end{array}\right]=\left[\begin{array}{lll}
1 & 3 & 5 \\
2 & 4 & 6
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 2
\end{array}\right], \quad \text { so }\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
-1 \\
2
\end{array}\right] .
$$

- Def: dimension

Ex: \mathbb{R}^{n} has the standard basis $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$, so $\operatorname{dim} \mathbb{R}^{n}=n$.
Ex: Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1\end{array}\right]$.
(1) $\operatorname{Col} A=\{$ the set generated by the pivot columns $\}=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{3}, \mathbf{a}_{4}\right\}$, so $\operatorname{dim} \operatorname{Col} A=3$
(2) $\operatorname{Nul} A=\{$ all the solutions of $A \mathbf{x}=\mathbf{0}\}$:
$\left[\begin{array}{ll}A & \mathbf{0}\end{array}\right]=\left[\begin{array}{lllll}1 & 2 & 3 & 4 & 0 \\ 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 1 & 0\end{array}\right] \sim\left[\begin{array}{ccccc}(1) & 2 & 0 & 0 & 0 \\ 0 & 0 & (1) & 0 & 0 \\ 0 & 0 & 0 & (1) & 0\end{array}\right]$, so $\mathbf{x}=\left[\begin{array}{c}-2 x_{2} \\ x_{2} \\ 0 \\ 0\end{array}\right]=\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right] x_{2}$ Hence, $\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0 \\ 0\end{array}\right]\right\}$, and $\operatorname{dim} \operatorname{Nul} A=1$
$\Longrightarrow \operatorname{dim} \operatorname{Col} A_{m \times n}($ No. of basic variables $)+\operatorname{dim} \operatorname{Nul} A_{m \times n}($ No. of free variables $)=n($ No. of variables)

- Def: $\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A$
- Thm (The rank theorem): For $A_{m \times n}, \operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n$
- Thm (The basis theorem): Let H be a p-dimensional subspace of \mathbb{R}^{n}. Any linearly independent set of exactly p vectors in H is a basis for H.

3 Chapter 3

3.1 Determinants of $A_{n \times n}$

- Def: submatrix $A_{i j}$

Ex: Consider the 2×2 matrix $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right] . A_{11}=\left[a_{22}\right], A_{12}=\left[a_{21}\right], A_{22}=\left[a_{11}\right]$
Ex: For $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5\end{array}\right]_{3 \times 3}, A_{11}=\left[\begin{array}{ll}2 & 4 \\ 3 & 5\end{array}\right]_{2 \times 2}, A_{12}=\left[\begin{array}{ll}3 & 4 \\ 4 & 5\end{array}\right]_{2 \times 2}$

- Def: determinant of $A: \operatorname{det} A=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}+\cdots+a_{1 n}(-1)^{1+n} \operatorname{det} A_{1 n}$

In particular, $\operatorname{det}\left[a_{11}\right]=a_{11}$.
Ex: For $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right], \operatorname{det} A=a_{11} \operatorname{det} A_{11}-a_{12} \operatorname{det} A_{12}=a_{11} a_{22}-a_{12} a_{21}$

- Thm: $A_{n \times n}$ is invertible $\Longleftrightarrow \operatorname{det} A \neq 0$
- Def: the (i, j)-cofactor of A is denoted by $C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$
\Longrightarrow Then the definition of $\operatorname{det} A$ above can be rewritten as

$$
\operatorname{det} A=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

which is called the cofactor expansion across the first row.

- Thm: $\operatorname{det} A$ can be calculated by the cofactor expansion across any row of down any column

$$
\begin{aligned}
\operatorname{det} A & =a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \\
& =a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j}
\end{aligned}
$$

Ex: Calculate the following determinant

$$
\begin{aligned}
& \left|\begin{array}{lllll}
1 & 0 & 2 & 3 & 1 \\
2 & 0 & 1 & 2 & 3 \\
0 & 0 & 3 & 0 & 0 \\
1 & 2 & 2 & 3 & 4 \\
0 & 0 & 1 & 2 & 0
\end{array}\right| \xlongequal{\text { 3rd row }} 3(-1)^{3+3}\left|\begin{array}{cccc}
1 & 0 & 3 & 1 \\
2 & 0 & 2 & 3 \\
1 & 2 & 3 & 4 \\
0 & 0 & 2 & 0
\end{array}\right| \xlongequal{\text { 4th row }} 3 \cdot 2(-1)^{4+3}\left|\begin{array}{ccc}
1 & 0 & 1 \\
2 & 0 & 3 \\
1 & 2 & 4
\end{array}\right| \\
& \xlongequal{2 n d \text { column }}(-6) 2(-1)^{3+2}\left|\begin{array}{ll}
1 & 1 \\
2 & 3
\end{array}\right|=12
\end{aligned}
$$

Ex: $\left|\begin{array}{lll}2 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right| \xlongequal{\text { 1st column }} 2(-1)^{1+1}\left|\begin{array}{ll}4 & 5 \\ 0 & 6\end{array}\right|=2 \cdot 4 \cdot 6$

- Thm: If $A_{n \times n}$ is a triangular matrix, then its determinant is the product of the main diagonals, that is, $\operatorname{det} A=\Pi_{i=1}^{n} a_{i i}$.
- Thm (Row operations): Let A be a square matrix.
(1) If a scalar multiple of one row of A is added to another row to produce B, then $\operatorname{det} B=\operatorname{det} A$.
(2) If two rows of A are interchanged to produce B, then $\operatorname{det} B=-\operatorname{det} A$.
(3) If a scalar k is multiplied to one row of A to produce B, then $\operatorname{det} B=k \operatorname{det} A$.

Ex:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
5 & 6 & 7 \\
5 & 6 & 8 \\
50 & 260 & 150
\end{array}\right| \xlongequal{\text { use (3) }} 10\left|\begin{array}{ccc}
5 & 6 & 7 \\
5 & 6 & 8 \\
5 & 26 & 15
\end{array}\right| \xlongequal{\text { use (1) }} 10\left|\begin{array}{ccc}
5 & 6 & 7 \\
0 & 0 & 1 \\
0 & 20 & 8
\end{array}\right| \\
& \xlongequal{\text { use (2) }}-10\left|\begin{array}{ccc}
5 & 6 & 7 \\
0 & 20 & 8 \\
0 & 0 & 1
\end{array}\right|=-1000
\end{aligned}
$$

3.2 Properties of determinants

- Thm: Let A be a square matrix, then $\operatorname{det} A^{\top}=\operatorname{det} A$.
$\Longrightarrow \operatorname{det} A^{\top}=$ cofactor expansion across the i th row of A^{\top} $=$ cofactor expansion down the i th column of A $=\operatorname{det} A$
- Thm (Multiplicative property): Let A and B be $n \times n$ square matrices. Then $\operatorname{det}(A B)=\operatorname{det} A \cdot \operatorname{det} B$
\Longrightarrow If A is invertible, then $1=|I|=\left|A A^{-1}\right|=|A|\left|A^{-1}\right|$. Hence, $\left|A^{-1}\right|=\frac{1}{|A|}$.
\Longrightarrow In general, $\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B$
- Thm (Linearity property): Assume that the j th column of $A_{n \times n}$ is allowed to vary $A=\left[\begin{array}{lllllll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{j-1} & \mathbf{x} & \mathbf{a}_{j+1} & \cdots & \mathbf{a}_{n}\end{array}\right]$. Define the mapping $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $T(\mathbf{x})=$ $\operatorname{det} A$. Then T is linear: $T(c \mathbf{x})=c T(\mathbf{x})$ and $T(\mathbf{x}+\mathbf{y})=T(\mathbf{x})+T(\mathbf{y})$.
$\Longrightarrow\left|\begin{array}{ll}a_{11} & c x_{1} \\ a_{21} & c x_{2}\end{array}\right|=c\left|\begin{array}{ll}a_{11} & x_{1} \\ a_{21} & x_{2}\end{array}\right|$ and $\left|\begin{array}{ll}a_{11} & x_{1}+y_{1} \\ a_{21} & x_{2}+y_{2}\end{array}\right|=\left|\begin{array}{ll}a_{11} & x_{1} \\ a_{21} & x_{2}\end{array}\right|+\left|\begin{array}{ll}a_{11} & y_{1} \\ a_{21} & y_{2}\end{array}\right|$
Ex:

$$
\left|\begin{array}{lll}
17 & 17 & 17 \\
25 & 26 & 25 \\
55 & 88 & 56
\end{array}\right|=\left|\begin{array}{ccc}
17 & 17+0 & 17 \\
25 & 25+1 & 25 \\
55 & 55+33 & 56
\end{array}\right|=\left|\begin{array}{ccc}
17 & 17 & 17 \\
25 & 25 & 25 \\
55 & 55 & 56
\end{array}\right|+\left|\begin{array}{ccc}
17 & 0 & 17 \\
25 & 1 & 25 \\
55 & 33 & 56
\end{array}\right|
$$

$$
=\left|\begin{array}{ccc}
17 & 0 & 17+0 \\
25 & 1 & 25+0 \\
55 & 33 & 55+1
\end{array}\right|=\left|\begin{array}{ccc}
17 & 0 & 17 \\
25 & 1 & 25 \\
55 & 33 & 55
\end{array}\right|+\left|\begin{array}{ccc}
17 & 0 & 0 \\
25 & 1 & 0 \\
55 & 33 & 1
\end{array}\right|=\left|\begin{array}{ccc}
17 & 0 & 0 \\
25 & 1 & 0 \\
55 & 33 & 1
\end{array}\right|=17 .
$$

- Def: Let A be an $n \times n$ matrix and \mathbf{b} is vector in \mathbb{R}^{n}. Denote

$$
A_{i}(\mathbf{b})=\left[\begin{array}{lllllll}
\mathbf{a}_{1} & \cdots & \mathbf{a}_{i-1} & \mathbf{b} & \mathbf{a}_{i+1} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

2. Thm (Cramer's rule): If $A_{n \times n}$ is invertible, then for each \mathbf{b} in \mathbb{R}^{n}, the system $A \mathbf{x}=\mathbf{b}$ has a unique solution \mathbf{x} with entries

$$
x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}
$$

Ex: Consider $\left[\begin{array}{ll}1 & 1 \\ 2 & 4\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}6 \\ 16\end{array}\right]$. We have got $x_{1}=4$ and $x=2$ in Chapter 1 . Next we use Cramer's rule to check these results.

$$
\begin{aligned}
& x_{1}=\frac{\operatorname{det} A_{1}(\mathbf{b})}{\operatorname{det} A}=\frac{\left|\begin{array}{cc}
6 & 1 \\
16 & 4
\end{array}\right|}{\left|\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right|}=\frac{8}{2}=4 \\
& x_{2}=\frac{\operatorname{det} A_{2}(\mathbf{b})}{\operatorname{det} A}=\frac{\left|\begin{array}{cc}
1 & 6 \\
2 & 16
\end{array}\right|}{\left|\begin{array}{ll}
1 & 1 \\
2 & 4
\end{array}\right|}=\frac{4}{2}=2
\end{aligned}
$$

3.3 Volume and linear transformation

Recall: For $A_{2 \times 2}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, if A is invertible, then $A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

- Def: The adjugate (adjoint) of $A_{n \times n}$ is

$$
\operatorname{adj} A=\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & & \vdots \\
C_{1 n} & C_{2 n} & \cdots & C_{n n}
\end{array}\right]
$$

where $C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$ is the (i, j)-cofactor of A.
Ex: Given $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, calculate $\operatorname{adj} A$.

Answer: $C_{11}=(-1)^{1+1} \operatorname{det}[d]=d, C_{12}=(-1)^{1+2} \operatorname{det}[c]=-c$

$$
C_{21}=(-1)^{2+1} \operatorname{det}[b]=-b, C_{22}=(-1)^{2+2} \operatorname{det}[a]=a
$$

Hence, $\operatorname{adj} A=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$
$\Longrightarrow\left(A_{2 \times 2}\right)^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A$

- Thm (An inverse formula): Let A be an $n \times n$ invertible matrix. Then

$$
A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A
$$

\Longrightarrow The (i, j) entry of A^{-1} is $\frac{C_{j i}}{\operatorname{det} A}$.
Ex: For $A=\left[\begin{array}{cc}k & 0 \\ 0 & 1\end{array}\right]$, the area determined by the columns $\left[\begin{array}{c}k \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is $|k|$.
\Longrightarrow Moreover, the parallelogram determined by two vectors $\left[\begin{array}{l}k \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is the same as the parallelogram determined by four points $(0,0),(k, 0),(0,1)$ and $(k, 1)$.

- Thm: For $A_{n \times n}$, the volume determined by its columns is $|\operatorname{det} A|$.
- Thm: Let $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a linear mapping with $T(\mathbf{x})=A \mathbf{x}$. Then for any region S in \mathbb{R}^{n},
$\{$ The volume of $T(S)\}=|\operatorname{det} A| \cdot\{$ The volume of $S\}$.

Review of Chapter 3

1. Determinant of $A_{n \times n}$:

$$
\begin{aligned}
\operatorname{det} A & =a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\cdots+a_{i n} C_{i n} \quad \text { (the cofactor expansion across the } i \text { th row) } \\
& =a_{1 j} C_{1 j}+a_{2 j} C_{2 j}+\cdots+a_{n j} C_{n j} \quad \text { (the cofactor expansion down the } j \text { th column) }
\end{aligned}
$$

2. Properties of determinants:
(1) row operations: three kinds of elementary row operations
(2) transpose: $\left|A^{\top}\right|=|A|$
(3) multiplication: $|A B|=|A| \cdot|B|$
(4) linearity: $\left|\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{x}+\mathbf{y}\end{array}\right]\right|=\left|\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{x}\end{array}\right]\right|+\left|\left[\begin{array}{ll}\mathbf{a}_{1} & \mathbf{y}\end{array}\right]\right|$
3. Solve $A \mathbf{x}=\mathbf{b}$:
(1) $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]$
(2) If A is invertible $(\operatorname{det} A \neq 0)$, then $\mathbf{x}=A^{-1} \mathbf{b}$
(3) If A is invertible $(\operatorname{det} A \neq 0)$, then the i th entry in \mathbf{x} is $x_{i}=\frac{\operatorname{det} A_{i}(\mathbf{b})}{\operatorname{det} A}$
4. Calculate A^{-1} :
(1) $\left[\begin{array}{ll}A & I\end{array}\right] \sim\left[\begin{array}{ll}I & A^{-1}\end{array}\right]$
(2) $A^{-1}=\frac{1}{\operatorname{det} A} \operatorname{adj} A \quad$ (this can be used to calculate the (i, j) entry of A^{-1})
5. Matlab code (for the ones who are interested):

Define a vector: $\quad \gg \mathbf{b}=[1 ; 2]$
Define a matrix: $\quad \gg A=[1,2 ; 3,4]$
Determinant of $A: \quad \gg \operatorname{det}(A)$
Inverse of $A: \quad \gg \operatorname{inv}(A)$
Adjoint of $A: \quad \gg \operatorname{adjoint}(A)$
Solution of $A \mathbf{x}=\mathbf{b}$ if: $\quad \gg A \backslash \mathbf{b}$

4 Chapter 4

4.1 Vector spaces and subspaces

- Def: vector spaces

Ex: \mathbb{R}^{n} is a vector space with zero object $\left[\begin{array}{c}0 \\ \vdots \\ 0\end{array}\right]_{n \times 1}$
Ex: The polynomial space $\mathbb{P}_{n}=\left\{\right.$ all polynomials of the form $\left.p(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}\right\}$ is a vector space with zero object 0 (constant).
Ex: The matrix space $\mathbb{M}_{m \times n}=\{$ all $m \times n$ matrices $A\}$ is a vector space with zero object $\left[\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{array}\right]_{m \times n}$

- Def: For general vector spaces V and W, a linear transformation $T: V \rightarrow W$ satisfies
(i) $T(\mathbf{u}+\mathbf{v})=T(\mathbf{u})+T(\mathbf{v})$ for $\mathbf{u}, \mathbf{v} \in V$;
(ii) $T(c \mathbf{u})=c T(\mathbf{u})$ for $\mathbf{u} \in V$.
- Def: subspace H of general vector space V

Ex: $\{\mathbf{0}\}$ and V are subspaces of V
$\mathbf{E x}:$ For $\mathbf{v}_{1}, \mathbf{v}_{2} \in V$, the spanning set $H=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ is a subspace of V.
$\mathbf{E x}$: Determine if $\mathbf{w}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ is in the subspace spanned by $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}_{2}=\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]$.
\Longleftrightarrow Determine if $w \in \operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$.
\Longleftrightarrow Consider the augmented matrix $\left[\begin{array}{lll}\mathbf{v}_{1} & \mathbf{v}_{2} & \mathbf{w}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 1\end{array}\right] \sim\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
The system above is not consistent, so \mathbf{w} is not in the spanning set.

4.2 Column/Null spaces and linear transformation

- Def: $\operatorname{Col} A_{m \times n}=\operatorname{Span}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$

$$
=\left\{\mathbf{b} \in \mathbb{R}^{m}: \mathbf{b}=A \mathbf{x} \text { for some } x \in \mathbb{R}^{n}\right\}
$$

Ex: Given a set $S=\left\{\left[\begin{array}{c}2 s+3 t \\ r+s-2 t \\ 4 r+s \\ 3 r-s-t\end{array}\right]: r, s, t\right.$ real $\}$. Find A such that $S=\operatorname{Col} A$.
Answer: Note that

$$
S=\left\{\left[\begin{array}{l}
0 \\
1 \\
4 \\
3
\end{array}\right] r+\left[\begin{array}{c}
2 \\
1 \\
1 \\
-1
\end{array}\right] s+\left[\begin{array}{c}
3 \\
-2 \\
0 \\
-1
\end{array}\right] t: r, s, t \text { real }\right\}
$$

$$
=\operatorname{Span}\left\{\left[\begin{array}{l}
0 \\
1 \\
4 \\
3
\end{array}\right],\left[\begin{array}{c}
2 \\
1 \\
1 \\
-1
\end{array}\right],\left[\begin{array}{c}
3 \\
-2 \\
0 \\
-1
\end{array}\right]\right\}
$$

As a result, $A=\left[\begin{array}{ccc}0 & 2 & 3 \\ 1 & 1 & -2 \\ 4 & 1 & 0 \\ 3 & -1 & -1\end{array}\right]$
Ex: Given $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 3 \\ 3 & 4\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$. Is \mathbf{b} in $\operatorname{Col} A$?
\Longleftrightarrow Determine if $\mathbf{b} \in \operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$
\Longleftrightarrow Consider the augmented matrix $\left[\begin{array}{lll}\mathbf{a}_{1} & \mathbf{a}_{2} & \mathbf{b}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 1 \\ 2 & 3 & 2 \\ 3 & 4 & 1\end{array}\right] \sim\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$
The system is not consistent, so \mathbf{b} is not in $\operatorname{Col} A$.
Ex: Given A as above. Find k such that $\operatorname{Col} A$ is a subspace of \mathbb{R}^{k}.
Answer: $k=3$

- Def: Nul $A_{m \times n}=\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x}=\mathbf{0}\right\}$

Ex: Given $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5\end{array}\right]$. Find $\operatorname{Nul} A$.
Answer: Consider the augmented matrix of the homogeneous system

$$
\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 0 \\
2 & 3 & 4 & 5 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 2 & 3 & 4 & 0 \\
0 & -1 & -2 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & -1 & -2 & 0 \\
0 & 1 & 2 & 3 & 0
\end{array}\right]
$$

Its solutions are in the form $\left\{\begin{array}{l}x_{1}=x_{3}+2 x_{4} \\ x_{2}=-2 x_{3}-3 x_{4} \\ x_{3}=x_{3} \text { (free) } \\ x_{4}=x_{4} \text { (free) }\end{array} \Longleftrightarrow \mathbf{x}=\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right] x_{3}+\left[\begin{array}{c}2 \\ -3 \\ 0 \\ 1\end{array}\right] x_{4}\right.$.

Hence, $\operatorname{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ -3 \\ 0 \\ 1\end{array}\right]\right\}$.
Ex: Given A as above and $\mathbf{u}=\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]$. Is \mathbf{u} in $\operatorname{Nul} A$?
Answer:
(1) One way is to find $\operatorname{Nul} A$ first, and then check if \mathbf{u} is in the spanning set. It will need a lot of calculations.
(2) The simplest way is to check if $A \mathbf{u}=\mathbf{0}: A \mathbf{u}=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$, so \mathbf{u} is in $\operatorname{Nul} A$.

4.3 Linearly independent sets and bases

- Def: The set of vectors $\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$ in V is linearly independent if $c_{1} \mathbf{v}_{1}+\cdots+c_{p} \mathbf{v}_{p}=0$ has only the trivial solution $c_{1}=\cdots=c_{p}=0$.
$\mathbf{E x}$: Is the set $\left\{\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 3 \\ 4\end{array}\right]\right\}$ in \mathbb{R}^{3} linearly independent?
Answer: Consider the augmented matrix $\left[\begin{array}{lll}1 & 2 & 0 \\ 2 & 3 & 0 \\ 3 & 4 & 0\end{array}\right] \sim\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$. There is only the trivial solution, so the set above is a linearly independent set.
$\mathbf{E x}$: It the set $\left\{1, t, t^{2}\right\}$ in \mathbb{P}_{2} linearly independent?
Answer: Consider the homogeneous equation $c_{1} \cdot 1+c_{2} t+c_{3} t^{2}=0$. It has only the trivial solution $c_{1}=c_{2}=c_{3}=0$. So the set is a linear independent set.
- Def: Let H be a subspace of V. Then the set $\mathcal{B}=\left\{v_{1}, \cdots, v_{p}\right\}$ is a basis for H if
(1) \mathcal{B} is a linearly independent set,
(2) $H=\operatorname{Span}\left\{v_{1}, \cdots, v_{p}\right\}$.
$\mathbf{E x}: \mathbb{R}^{n}=\operatorname{Span}\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$. The set $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$ is called the standard basis for \mathbb{R}^{n}.
$\mathbf{E x}: \mathbb{P}_{n}=\left\{c_{0}+c_{1} t+c_{2} t^{2}+\cdots+c_{n} t^{n}: c_{0}, c_{1}, \cdots, c_{n}\right.$ real $\}=\operatorname{Span}\left\{1, t, t^{2}, \cdots, t^{n}\right\}$.
The set $\left\{1, t, t^{2}, \cdots, t^{n}\right\}$ is called the standard basis for \mathbb{P}_{n}.
$\mathbf{E x}\left(8\right.$ in the textbook): Given the set $\left\{\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -5 \\ 4\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -2\end{array}\right]\right\}$ in \mathbb{R}^{3}.
(1) Is it a basis for \mathbb{R}^{3} ?

No, because any basis for \mathbb{R}^{3} should contain exactly 3 vectors.
(2) Find a basis for the set spanned by above vectors.

It suffices to find the linearly independent vectors in above set:
$\left[\begin{array}{cccc}1 & 0 & 3 & 0 \\ -4 & 3 & -5 & 2 \\ 3 & -1 & 4 & -2\end{array}\right] \sim\left[\begin{array}{cccc}1 & 0 & 3 & 0 \\ 0 & 3 & 7 & 2 \\ 0 & -1 & -5 & -2\end{array}\right] \sim\left[\begin{array}{cccc}1 & 0 & 3 & 0 \\ 0 & 1 & 5 & 2 \\ 0 & 3 & 7 & 2\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 0 & 3 & 0 \\ 0 & (1) & 5 & 2 \\ 0 & 0 & -8 & -4\end{array}\right]$
So $\left\{\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -5 \\ 4\end{array}\right]\right\}$ is a basis for $\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -5 \\ 4\end{array}\right],\left[\begin{array}{c}0 \\ 2 \\ -2\end{array}\right]\right\}$.
Since there is exactly three vectors in the set $\left\{\left[\begin{array}{c}1 \\ -4 \\ 3\end{array}\right],\left[\begin{array}{c}0 \\ 3 \\ -1\end{array}\right],\left[\begin{array}{c}3 \\ -5 \\ 4\end{array}\right]\right\}$, it is also a basis for \mathbb{R}^{3}.

- Thm (The spanning set thm): For $\left\{v_{1}, \cdot, v_{p}\right\}$ in V, if v_{k} is a linear combination of the other vectors, then

$$
\operatorname{Span}\left\{v_{1}, \cdots, v_{p}\right\}=\operatorname{Span}\left\{v_{1}, \cdots, v_{k-1}, v_{k+1}, \cdots, v_{p}\right\} .
$$

Ex: According to theorem above, $\operatorname{Span}\{u, 2 u\}=\operatorname{Span}\{u\}=\operatorname{Span}\{2 u\}$
Ex: $\operatorname{Col} A=\operatorname{Span}\{$ all the columns $\}=\operatorname{Span}\{$ pivot columns $\}$
Ex: Find a basis for the set of vectors in the plane $x+2 y+z=0$.
Answer: Denote the set above by
$S=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]: x+2 y+z=0\right\}=\left\{\left[\begin{array}{l}x \\ y \\ z\end{array}\right]:\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=0\right\}=\operatorname{Nul}\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$.
We only need to find a basis for $\operatorname{Nul}\left[\begin{array}{lll}1 & 2 & 1\end{array}\right]$:
$\left[\begin{array}{llll}\text { (1) } & 2 & 1 & 0\end{array}\right] \Longrightarrow\left\{\begin{array}{l}x=-2 y-z \\ y=y \text { (free) } \\ z=z \text { (free) }\end{array} \Longrightarrow\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right] y+\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right] z\right.$.
So $\left\{\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$ is a basis for S.

4.5 Dimension of vector spaces

- Def: $\operatorname{dim} V=$ number of vectors in a basis
$\mathbf{E x}: \operatorname{dim} \mathbb{R}^{n}=n$ with a standard basis $\left\{\mathbf{e}_{1}, \cdots, \mathbf{e}_{n}\right\}$
$\mathbf{E x}: \operatorname{dim} \mathbb{P}_{n}=n+1$ with a standard basis $\left\{1, t, \cdots, t^{n}\right\}$
- Thm: If V is a vector space with a basis $\mathcal{B}=\left\{\mathbf{v}_{1}, \cdots, \mathbf{v}_{p}\right\}$, then
(1) any basis for V has exactly p vectors;
(2) any set of more than p vectors in V is linearly dependent.

Ex: \mathbb{R}^{2} has a standard basis $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$.
Is $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 3\end{array}\right],\left[\begin{array}{l}3 \\ 4\end{array}\right]\right\}$ a linearly independent set? No
Is the set above a basis for \mathbb{R}^{2} ? No
Ex: \mathbb{P}_{1} has a standard basis $\{1, t\}$.
Are the following sets bases for \mathbb{P}_{1} ?
$\{1,1+t\} \quad$ Yes
$\{2, t\} \quad$ Yes
$\{t, 2+t\} \quad$ Yes
$\{t, 2 t\} \quad$ No, cause one is a scalar multiple of the other one
$\{1, t, 1+t\} \quad$ No, cause there is more than 2 vectors
Ex: Define a set $S=\left\{\left[\begin{array}{c}a+2 b \\ 2 a+4 b \\ -a-2 b\end{array}\right]: a, b\right.$ real $\}$. What is $\operatorname{dim} S$?
Answer: $S=\left\{\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right] a+\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right] b: a, b\right.$ real $\}$

$$
=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right]\right\}=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]\right\}
$$

So $\operatorname{dim} S=1$.
Ex: Define a set $T=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]: a+b+c=0\right\}$. What is $\operatorname{dim} T$?
Answer: $T=\left\{\left[\begin{array}{l}a \\ b \\ c\end{array}\right]:\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=0\right\}=\operatorname{Nul}\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$

$$
\begin{aligned}
& =\left\{\left[\begin{array}{c}
-b-c \\
b \\
c
\end{array}\right]: b, c \text { real }\right\}=\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] b+\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] c: b, c \text { real }\right\} \\
& =\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]\right\}
\end{aligned}
$$

So $\operatorname{dim} T=2$.
$\mathbf{E x}: A=\left[\begin{array}{ccccc}1 & 2 & 3 & 4 & 5 \\ 0 & 0 & 0 & -2 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]_{4 \times 5}$. Then
$\operatorname{dim} \operatorname{Col} A=2$, and $\operatorname{Col} A$ is a subspace of \mathbb{R}^{4} $\operatorname{dim} \operatorname{Nul} A=3$, and $\operatorname{Nul} A$ is a subspace of \mathbb{R}^{5}

- Thm: If H is a subspace of a finite-dimensional vector space V, then
(1) $\operatorname{dim} H \leq \operatorname{dim} V$;
(2) H is also a finite-dimensional vector space;
(3) any basis for H can be extended to a basis for V.

Ex: Given A as above. Then $\operatorname{Col} A$ is a subspace of \mathbb{R}^{4}. We now check the above three results:
(1) $\operatorname{dim} \operatorname{Col} A \leq \operatorname{dim} \mathbb{R}^{4}$ holds;
(2) holds apparently;
(3) The pivot columns form a basis $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ -2 \\ 0 \\ 0\end{array}\right]\right\}$ for $\operatorname{Col} A$.

Now we extend it to a basis for $\mathbb{R}^{4}:\left\{\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{c}4 \\ -2 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]\right\}$.

4.6 Rank

For $A_{m \times n}=\left[\begin{array}{lll}\mathbf{a}_{1} & \cdots & \mathbf{a}_{n}\end{array}\right], \operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}\right\}$.

- Def: For $A_{m \times n}=\left[\begin{array}{c}\mathbf{r}_{1} \\ \vdots \\ \mathbf{r}_{m}\end{array}\right]$, the row space is $\operatorname{Row} A=\operatorname{Span}\left\{\mathbf{r}_{1}, \cdots, \mathbf{r}_{m}\right\}$, which is a subspace of \mathbb{R}^{n}.
$\Longrightarrow \operatorname{Row} A=\operatorname{Col} A^{\top}$
Ex: $A=\left[\begin{array}{l}\mathbf{r}_{1} \\ \mathbf{r}_{2}\end{array}\right]$, then Row $A=\operatorname{Span}\left\{\mathbf{r}_{1}, \mathbf{r}_{2}\right\}$.
If we use the three kinds of elementary row operations:
$A \stackrel{\text { row interchange }}{\sim} A_{1}=\left[\begin{array}{l}\mathbf{r}_{2} \\ \mathbf{r}_{1}\end{array}\right]$, then $\operatorname{Row} A_{1}=\operatorname{Span}\left\{\mathbf{r}_{2}, \mathbf{r}_{1}\right\} ;$
$A \stackrel{\text { scalar multiple }}{\sim} A_{2}=\left[\begin{array}{c}c \mathbf{r}_{1} \\ \mathbf{r}_{2}\end{array}\right]$, then Row $A_{2}=\operatorname{Span}\left\{c \mathbf{r}_{1}, \mathbf{r}_{2}\right\} ;$
$A \stackrel{\text { row replacement }}{\sim} A_{3}=\left[\begin{array}{c}\mathbf{r}_{1} \\ \mathbf{r}_{2}+c \mathbf{r}_{1}\end{array}\right]$, then Row $A_{3}=\operatorname{Span}\left\{\mathbf{r}_{1}, \mathbf{r}_{2}+c \mathbf{r}_{1}\right\}$.
The above row spaces are the same: $\operatorname{Row} A=\operatorname{Row} A_{1}=\operatorname{Row} A_{2}=\operatorname{Row} A_{3}$.
That is, elementary row operations won't change the row space.
- Thm: If matrices A and B are row equivalent, then they have the same row space. If B is in echelon form, then its non-zero rows form a basis for $\operatorname{Row} A=\operatorname{Row} B$.
Ex: Given $A=\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 1 & 2 & 1\end{array}\right]$. Find bases for $\operatorname{Col} A, \operatorname{Row} A$ and $\operatorname{Nul} A$.
(1) echelon form:

$$
\begin{gathered}
A \sim\left[\begin{array}{lllll}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 0 & 1 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
0 & 1 & 2 & 3 & 4 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & -2 & -2 & -4
\end{array}\right] \sim\left[\begin{array}{ccccc}
(1) & 1 & 1 & 1 & 1 \\
0 & (1) & 2 & 3 & 4 \\
0 & 0 & (1) & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \\
\operatorname{Col} A=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
2 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
4 \\
1
\end{array}\right]\right\}
\end{gathered}
$$

Row $A=\operatorname{Span}\{(1,1,1,1,1),(0,1,2,3,4),(0,0,1,1,2)\}$
(2) reduced echelon form:

$$
A \sim\left[\begin{array}{ccccc}
(1) & 1 & 0 & 0 & -1 \\
0 & (1) & 0 & 1 & 0 \\
0 & 0 & (1) & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
(1) & 0 & 0 & -1 & -1 \\
0 & (1) & 0 & 1 & 0 \\
0 & 0 & (1) & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$$
\left\{\begin{array}{l}
x_{1}=x_{4}+x_{5} \\
x_{2}=-x_{4} \\
x_{3}=-x_{4}-2 x_{5} \\
x_{4}=x_{4} \text { (free) } \\
x_{5}=x_{5} \text { (free) }
\end{array} \Longrightarrow \mathbf{x}=\left[\begin{array}{c}
1 \\
-1 \\
-1 \\
1 \\
0
\end{array}\right] x_{4}+\left[\begin{array}{c}
1 \\
0 \\
-2 \\
0 \\
1
\end{array}\right] x_{5}\right.
$$

$\mathrm{Nul} A=\operatorname{Span}\left\{\left[\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -2 \\ 0 \\ 1\end{array}\right]\right\}$

- Def: $\operatorname{rank} A=\operatorname{dimCol} A$

Ex: Given A as above. We have
$\operatorname{dim} \operatorname{Col} A=\operatorname{dimRow} A=$ number of pivot positions $=3$.
\& Thm (The rank thm): For $A_{m \times n}$, it holds
$\operatorname{dimCol} A=\operatorname{dimRow} A=\operatorname{rank} A \quad$ and $\quad \operatorname{rank} A+\operatorname{dimNul} A=n$.
\Longrightarrow For $\left(A^{\top}\right)_{n \times m}, \quad \operatorname{rank} A^{\top}+\operatorname{dimNul} A^{\top}=m$, where
$\operatorname{rank} A^{\top}=\operatorname{dimCol} A^{\top}=\operatorname{dimRow} A=\operatorname{dimCol} A=\operatorname{rank} A$.
Ex: If the null space of a 7×6 matrix A is 5 -dimensional, what are $\operatorname{dimCol} A$ and $\operatorname{dimRow} A$?

Answer: $\operatorname{dimCol} A=\operatorname{dimRow} A=6-\operatorname{dimNul} A=1$.

- Thm: Let A be an $n \times n$ matrix. Then
A is invertible $\Longleftrightarrow \operatorname{det}(A) \neq 0$

$$
\begin{aligned}
& \Longleftrightarrow A \sim I_{n} \\
& \Longleftrightarrow \operatorname{dimCol} A=\operatorname{dimRow} A=\operatorname{rank} A=n \\
& \Longleftrightarrow \operatorname{dimNul} A=0 \\
& \Longleftrightarrow \operatorname{Nul} A=\{\mathbf{0}\} \\
& \Longleftrightarrow \operatorname{Col} A=\mathbb{R}^{n}
\end{aligned}
$$

5 Chapter 5

5.1 Eigenvalues and eigenvectors

- Def: eigenvalues and eigenvectors
$\mathbf{E x}:$ Is $\mathbf{x}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ an eigenvector of $A=\left[\begin{array}{ccc}3 & 6 & 7 \\ 3 & 3 & 7 \\ 5 & 6 & 5\end{array}\right]$?
Answer: Calculate $A \mathbf{x}=\left[\begin{array}{c}-2 \\ 4 \\ -2\end{array}\right]=-2 \mathbf{x}$.
So \mathbf{x} is an eigenvector of A corresponding to the eigenvalue -2 .
Ex: Is $\lambda=2$ is an eigenvalue of $A=\left[\begin{array}{ll}3 & 2 \\ 3 & 8\end{array}\right]$?
Answer: If λ is an eigenvalue, then $(A-\lambda I) \mathbf{x}=\mathbf{0}$ has nontrivial solutions.
Consider the augmented matrix $\left[\begin{array}{ll}A-\lambda I & \mathbf{0}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 6 & 0\end{array}\right] \sim\left[\begin{array}{ccc}(1) & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$
The system has a free variable, so has nontrivial solutions.
Hence, $\lambda=2$ is an eigenvalue of A.

\& Calculation:

(1) Eigenvalues: $|A-\lambda I|=0 \quad((A-\lambda I) \mathbf{x}=\mathbf{0}$ has nontrivial solutions $)$

Ex: Given $A=\left[\begin{array}{ll}3 & 2 \\ 3 & 8\end{array}\right]$. Consider $|A-\lambda I|=\left|\begin{array}{cc}3-\lambda & 2 \\ 3 & 8-\lambda\end{array}\right|=(\lambda-2)(\lambda-9)=0$.
So its eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=9$.
(2) Eigenvectors: nontrivial solutions of $(A-\lambda I) \mathbf{x}=\mathbf{0}$
\Longrightarrow The eigenspace for λ is actually $\operatorname{Nul}(A-\lambda I) \backslash\{\mathbf{0}\}$
Ex: For $\lambda_{1}=2$, consider $\left[\begin{array}{ll}A-\lambda_{1} I & \mathbf{0}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 6 & 0\end{array}\right] \sim\left[\begin{array}{ccc}(1) & 2 & 0 \\ 0 & 0 & 0\end{array}\right]$.
All the nontrivial solutions are of the form $\mathbf{x}=\left[\begin{array}{c}-2 \\ 1\end{array}\right] x_{2}$ except $\mathbf{0}$.
$\left\{\mathbf{x}=\left[\begin{array}{c}-2 \\ 1\end{array}\right] x_{2}: \mathbf{x} \neq \mathbf{0}\right\}$ is called the eigenspace corresponding to $\lambda_{1}=2$.
For $\lambda_{2}=9$, similarly, $\left[\begin{array}{ll}A-\lambda_{2} I & \mathbf{0}\end{array}\right]=\left[\begin{array}{ccc}-6 & 2 & 0 \\ 3 & -1 & 0\end{array}\right] \sim\left[\begin{array}{ccc}(1) & -\frac{1}{3} & 0 \\ 0 & 0 & 0\end{array}\right]$.
All the nontrivial solutions are of the form $\mathbf{x}=\left[\begin{array}{c}\frac{1}{3} \\ 1\end{array}\right] x_{2}=\left[\begin{array}{l}1 \\ 3\end{array}\right] t$ except $\mathbf{0}$.
$\left\{\mathbf{x}=\left[\begin{array}{l}1 \\ 3\end{array}\right] t: \mathbf{x} \neq \mathbf{0}\right\}$ is called the eigenspace corresponding to $\lambda_{2}=9$.

- Thm: The eigenvectors corresponding to distinct eigenvalues are linearly independent.

Ex: Given $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 0 & 4 \\ 0 & 0 & 5\end{array}\right]$. Find its eigenvalues.
Answer: $|A-\lambda I|=\left|\begin{array}{ccc}1-\lambda & 2 & 3 \\ 0 & -\lambda & 4 \\ 0 & 0 & 5-\lambda\end{array}\right|=(1-\lambda)(-\lambda)(5-\lambda)=0$.
Its eigenvalues are $\lambda=1,0,5$.

- Thm: The eigenvalues of a triangular matrix are its diagonals.
- Thm: Let A be an $n \times n$ matrix. Then
A is invertible $\Longleftrightarrow|A| \neq 0$ (i.e. $|A-0 I| \neq 0) \Longleftrightarrow 0$ is not an eigenvalue of A A is not invertible $\Longleftrightarrow|A|=0$ (i.e. $|A-0 I|=0) \Longleftrightarrow 0$ is an eigenvalue of A Ex: Without calculation, we know that the matrix $\left[\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right]$ has eigenvalue 0 cause it is not invertible.

5.2 The characteristic equation

- Thm (Properties of determinants): Let A and B be $n \times n$ matrices. Then
(1) A is invertible $\Longleftrightarrow|A| \neq 0 \Longleftrightarrow 0$ is not an eigenvalue of A
(2) $|A B|=|A| \cdot|B|, \quad\left|A^{\top}\right|=|A|, \quad\left|A^{-1}\right|=\frac{1}{|A|}$
(3) If A is triangular, then $|A|=a_{11} a_{22} \cdots a_{n n}$ (product of the diagonals)
(4) $A=\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right] \stackrel{\text { row replacement }}{\sim} B=\left[\begin{array}{c}r_{1} \\ r_{2}+c r_{1}\end{array}\right]$, then $|B|=|A|$ $A=\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right] \stackrel{\text { row interchange }}{\sim} B=\left[\begin{array}{l}r_{2} \\ r_{1}\end{array}\right]$, then $|B|=-|A|$ $A=\left[\begin{array}{l}r_{1} \\ r_{2}\end{array}\right] \stackrel{\text { row scaling }}{\sim} B=\left[\begin{array}{c}c r_{1} \\ r_{2}\end{array}\right]$, then $|B|=c|A|$
(5) linearity property (see below)

Ex: $\left|\begin{array}{ll}18 & 56 \\ 17 & 56\end{array}\right|=\left|\begin{array}{ll}17+1 & 56 \\ 17+0 & 56\end{array}\right| \stackrel{\text { linearity }}{=}\left|\begin{array}{cc}17 & 56 \\ 17 & 56\end{array}\right|+\left|\begin{array}{cc}1 & 56 \\ 0 & 56\end{array}\right|=56$
Ex: If A is of size $n \times n$, then $|c A|=c^{n}|A|$.

- Def: $|A-\lambda I|=0$: Characteristic equation

$$
|A-\lambda I|: \text { Characteristic polynomial (CP) }
$$

Ex: Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$. Then its characteristic polynomial is

$$
\mathrm{CP}=|A-\lambda I|=\left|\begin{array}{ccc}
1-\lambda & 2 & 3 \\
0 & 4-\lambda & 5 \\
0 & 0 & 6-\lambda
\end{array}\right|=(1-\lambda)(4-\lambda)(6-\lambda),
$$

and its eigenvalues are $\lambda=1,4,6$.
Ex: Let $A=\left[\begin{array}{ccc}4 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$. Then its characteristic polynomial is

$$
\mathrm{CP}=|A-\lambda I|=\left|\begin{array}{ccc}
4-\lambda & 2 & 3 \\
0 & 4-\lambda & 5 \\
0 & 0 & 6-\lambda
\end{array}\right|=(4-\lambda)^{2}(6-\lambda)
$$

and its eigenvalues are $\lambda=4,4,6$.

- Def: The multiplicity of $\lambda=4$ in the above example is 2 .

Ex: For $A_{4 \times 4}$, it has eigenvalues $1,2,2,6$. What's its CP?
Answer: $\mathrm{CP}=(1-\lambda)(2-\lambda)^{2}(6-\lambda)$
Ex: Let $A=\left[\begin{array}{cccc}5 & -2 & 6 & -1 \\ 0 & 3 & h & 0 \\ 0 & 0 & 5 & 4 \\ 0 & 0 & 0 & 1\end{array}\right]$. Find h such that the eigenspace for $\lambda=5$ is two.
Answer: The eigenspace for $\lambda=5$ is $\operatorname{Nul}(A-5 I) \backslash\{\mathbf{0}\}$. It suffices to consider the null space $\operatorname{Nul}(A-5 I)$:

$$
\left[\begin{array}{ccccc}
0 & -2 & 6 & -1 & 0 \\
0 & -2 & h & 0 & 0 \\
0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & -4 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
0 & -2 & 6 & -1 & 0 \\
0 & 0 & h-6 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

The eigenspace is of dimension two if there is two free variables, that is, $h=6$.

5.3 Diagonalization

- Def: similar $\left(A=P B P^{-1}\right)$
- Thm: If A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues.
Ex: If $A=P B P^{-1}$ with $P=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$. Then $P^{-1}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right]$ and

$$
A^{k}=P B^{k} P^{-1}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
3^{k} & 0 \\
0 & 2^{k}
\end{array}\right]\left[\begin{array}{cc}
1 & -2 \\
0 & 1
\end{array}\right]
$$

- Def: diagonalizable ($A=P D P^{-1}$ with D a diagonal matrix)
\& Thm (The diagonalization thm): An $n \times n$ matrix is diagonalizable $\Longleftrightarrow A$ has n linearly independent eigenvectors.
Reason: Let $\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}$ be the n linearly indepedent eigenvectors. Then there must be corresponding eigenvalues $\lambda_{1}, \cdots, \lambda_{n}$ such that

$$
\left.\begin{array}{rl}
\left\{\begin{array}{c}
A \mathbf{p}_{1}=\lambda_{1} \mathbf{p}_{1} \\
\vdots \\
A \mathbf{p}_{n}=\lambda_{1} \mathbf{p}_{n}
\end{array}\right. & \Longrightarrow\left[\begin{array}{lll}
A \mathbf{p}_{1} & \cdots & A \mathbf{p}_{n}
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{1} \mathbf{p}_{1} & \cdots
\end{array} \lambda_{n} \mathbf{p}_{n}\right.
\end{array}\right] \quad \begin{aligned}
& \Longrightarrow A\left[\begin{array}{lll}
\mathbf{p}_{1} & \cdots & \mathbf{p}_{n}
\end{array}\right]=\left[\begin{array}{lll}
\mathbf{p}_{1} & \cdots & \mathbf{p}_{n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right] \\
& \Longrightarrow A P=P D \\
& \Longrightarrow A=P D P^{-1}
\end{aligned}
$$

with $P=\left[\begin{array}{lll}\mathbf{p}_{1} & \cdots & \mathbf{p}_{n}\end{array}\right]$ and $D=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n}\end{array}\right]$.
Ex: Is $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 3\end{array}\right]$ diagonalizable?
Answer: Its eigenvalues are $\lambda=1,3$. Next we calculate the corresponding eigenvectors.
For $\lambda_{1}=1:\left[\begin{array}{lll}0 & 2 & 0 \\ 0 & 2 & 0\end{array}\right] \sim\left[\begin{array}{ccc}0 & (1) & 0 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right] x_{1}$. We can choose $\mathbf{p}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$.
For $\lambda_{1}=3$: $\left[\begin{array}{ccc}(1) & -1 & 0 \\ 0 & 0 & 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}1 \\ 1\end{array}\right] x_{2}$. We can choose $\mathbf{p}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.

Now we get $D=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$ and $P=\left[\begin{array}{ll}\mathbf{p}_{1} & \mathbf{p}_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ such that $A+P D P^{-1}$.
So A is diagonalizable.

- Thm: An $n \times n$ matrix with n distinct eigenvalues is diagonalizable.

Ex: Is $A=\left[\begin{array}{ccc}2 & 0 & 1 \\ 1 & 3 & 1 \\ 0 & 0 & 2\end{array}\right]$ diagonalizable?
Its $\mathrm{CP}=\left|\begin{array}{ccc}2-\lambda & 0 & 1 \\ 1 & 3-\lambda & 1 \\ 0 & 0 & 2-\lambda\end{array}\right|=(2-\lambda)^{2}(3-\lambda)$. So it has eigenvalues $\lambda=2,2,3$.
For $\lambda=2$: $\left[\begin{array}{llll}0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 1 & 0 & 0 \\ 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] x_{2}$. We can choose
$\mathbf{p}_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$.
For $\lambda=3$: $\left[\begin{array}{cccc}-1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 0 & 0 & 0 \\ 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] x_{2}$. We can choose
$\mathbf{p}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$.
We can not find \mathbf{p}_{3} to get an invertible matrix P. So A is NOT diagonalizable.
Ex: Is $A=\left[\begin{array}{lll}3 & 0 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$ diagonalizable?
Its $\mathrm{CP}=\left|\begin{array}{ccc}3-\lambda & 0 & 1 \\ 1 & 2-\lambda & 1 \\ 0 & 0 & 2-\lambda\end{array}\right|=(2-\lambda)^{2}(3-\lambda)$. So it has eigenvalues $\lambda=2,2,3$.
For $\lambda=2$: $\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \sim\left[\begin{array}{cccc}1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] x_{2}+\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right] x_{3}$. We can choose $\mathbf{p}_{1}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{p}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$, which are linearly independent.
For $\lambda=3$: $\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & -1 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & -1 & 0 & 0 \\ 0 & 0 & (1) & 0 \\ 0 & 0 & 0 & 0\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] x_{2}$. We can
choose $\mathbf{p}_{3}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$.
Now we get the invertible matrix $P=\left[\begin{array}{lll}\mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}\end{array}\right]$ and $D=\left[\begin{array}{ccc}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$. So A is diagonalizable.

- Thm: Let A be an $n \times n$ matrix with distinct eigenvalues $\lambda_{1}, \cdots, \lambda_{p}(p \leq n)$.
(1) The dimension of the eigenspace for $\lambda_{k}(1 \leq k \leq p)$ is less than or equal to the multiplicity of λ_{k}.
(2): A is diagonalizable \Longleftrightarrow the dimension of the eigenspace for λ_{k} is equal to the multiplicity of λ_{k} (i.e., the sum of the dimensions of the eigenspaces is n)

5.4 Eigenvectors and linear transformations

Recall that $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is linear $\Longleftrightarrow T(\mathbf{x})=A \mathbf{x}$ with $A=\left[\begin{array}{lll}T\left(\mathbf{e}_{1}\right) & \cdots & T\left(\mathbf{e}_{n}\right)\end{array}\right]_{m \times n}$.

- Def: If V has a basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{n}\right\}$ (that is, $\operatorname{dim} V=n$), then any $\mathbf{x} \in V$ is $\mathbf{x}=x_{1} \mathbf{b}_{1}+\cdots+x_{n} \mathbf{b}_{n}$. Define the coordinate vector

$$
[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \in \mathbb{R}^{n}
$$

Ex: Let $V=\mathbb{P}_{2}$ which has the standard basis $\mathcal{B}=\left\{1, t, t^{2}\right\}$. For the polynomial $p(t)=3-t^{2}$, what is its coordinate vector $[p(t)]_{\mathcal{B}}$?
Answer: $[p(t)]_{\mathcal{B}}=\left[\begin{array}{c}3 \\ 0 \\ -1\end{array}\right]$

- Def: Assume that V is a vector space with basis $\mathcal{B}=\left\{\mathbf{b}_{1}, \cdots, \mathbf{b}_{n}\right\}$ (i.e., $\operatorname{dim} V=n$), and W is a vector space with basis $\mathcal{C}=\left\{\mathbf{c}_{1}, \cdots, \mathbf{c}_{m}\right\}$ (i.e., $\operatorname{dim} W=m$). Then

$$
\begin{array}{cc}
T: \mathbf{x} \longrightarrow T(\mathbf{x}) \\
\downarrow & \downarrow \\
{[\mathbf{x}]_{\mathcal{B}} \xrightarrow{A} \xrightarrow{A}[T(\mathbf{x})]_{\mathcal{C}}}
\end{array}
$$

In particular, if $V=W$ and $\mathcal{B}=\mathcal{C}$, we denote the standard matrix A by $[T]_{\mathcal{B}}$.
\& $\mathbf{E x}$: Let $T: \mathbb{P}_{2} \rightarrow \mathbb{P}_{1}$ be a linear transformation defined by $T\left(a_{0}+a_{1} t+a_{2} t^{2}\right)=$ $a_{0}+\left(a_{2}-a_{1}\right) t$ for any real numbers a_{0}, a_{1} and a_{2}. What is the standard matrix relative to the standard bases for \mathbb{P}_{2} and \mathbb{P}_{1} ?
Answer:
(1) Find \mathcal{B} and \mathcal{C} :

The standard basis for \mathbb{P}_{2} is $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and the standard basis for \mathbb{P}_{1} is $\mathcal{C}=\{1, t\}$.
(2) Find $A=\left[\begin{array}{lll}{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}} & \cdots & {\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}}\end{array}\right]$:

Note that in this example $\mathbf{b}_{1}=1, \mathbf{b}_{2}=t$ and $\mathbf{b}_{3}=t^{2}$. According to the map T defined above, we have

$$
\begin{aligned}
T\left(\mathbf{b}_{1}\right)=T(1)=1 & \left(\text { in this case } a_{0}=1, a_{1}=a_{2}=0\right) \\
T\left(\mathbf{b}_{2}\right)=T(t)=-t & \left(\text { in this case } a_{1}=1, a_{0}=a_{2}=0\right) \\
T\left(\mathbf{b}_{3}\right)=T\left(t^{2}\right)=t & \left(\text { in this case } a_{2}=1, a_{0}=a_{1}=0\right)
\end{aligned}
$$

and hence

$$
\begin{gathered}
{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}=[1]_{\{1, t\}}=\left[\begin{array}{c}
1 \\
0
\end{array}\right],} \\
{\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}}=[-t]_{\{1, t\}}=\left[\begin{array}{c}
0 \\
-1
\end{array}\right],} \\
{\left[T\left(\mathbf{b}_{2}\right)\right]_{\mathcal{C}}=[t]_{\{1, t\}}=\left[\begin{array}{c}
0 \\
1
\end{array}\right] .}
\end{gathered}
$$

Finally, we get the standard matrix $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & -1 & 1\end{array}\right]$.
Ex: Let $T: \mathbb{P}_{2} \rightarrow \mathbb{R}^{3}$ be a linear transformation defined by $T(p(t))=\left[\begin{array}{c}p(-1) \\ p(0) \\ p(1)\end{array}\right]$. What is the standard matrix relative to the standard bases for \mathbb{P}_{2} and \mathbb{R}^{3} ?

Answer:
(1) Find \mathcal{B} and \mathcal{C} :

The standard basis for \mathbb{P}_{2} is $\mathcal{B}=\left\{1, t, t^{2}\right\}$ and the standard basis for \mathbb{R}^{3} is $\mathcal{C}=$ $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}\right\}$.
(2) Find $A=\left[\begin{array}{lll}{\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}} & \cdots & {\left[T\left(\mathbf{b}_{n}\right)\right]_{\mathcal{C}}}\end{array}\right]$:

$$
T\left(\mathbf{b}_{1}\right)=T(1)=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \Longrightarrow \quad\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

$$
\begin{gathered}
T\left(\mathbf{b}_{2}\right)=T(t)=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \quad \Longrightarrow \quad\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \\
T\left(\mathbf{b}_{3}\right)=T\left(t^{2}\right)=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \quad \Longrightarrow \quad\left[T\left(\mathbf{b}_{1}\right)\right]_{\mathcal{C}}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right] \\
\text { So } A=\left[\begin{array}{ccc}
1 & -1 & 1 \\
1 & 0 & 0 \\
1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

Ex: If $A_{n \times n}=P D P^{-1}$ is diagonalizable with an invertible matrix $P=\left[\begin{array}{lll}\mathbf{p}_{1} & \cdots & \mathbf{p}_{n}\end{array}\right]$ and a diagonal matrix $D=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n}\end{array}\right]$, it defines a linear transformation

$$
T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n} \quad \text { with } \quad T(\mathbf{x})=A \mathbf{x}
$$

Define a new basis $\mathcal{B}=\left\{\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right\}$ for \mathbb{R}^{n}. What is the standard matrix $[T]_{\mathcal{B}}$?
Answer:
(1): Find \mathcal{B} and \mathcal{C} :

In this example, the domain and codomain are the same, so their bases are the same: $\mathcal{B}=\mathcal{C}=\left\{\mathbf{p}_{1}, \cdots, \mathbf{p}_{n}\right\}$ as is given above.
(2) Find $[T]_{\mathcal{B}}=\left[\begin{array}{lll}{\left[T\left(\mathbf{p}_{1}\right)\right]_{\mathcal{B}}} & \cdots & {\left[\begin{array}{ll}\left.T\left(\mathbf{p}_{n}\right)\right]_{\mathcal{B}}\end{array}\right] \text { : }}\end{array}\right.$

$$
\begin{aligned}
& T\left(\mathbf{p}_{1}\right)=A \mathbf{p}_{2}=\lambda_{1} \mathbf{p}_{1} \quad \Longrightarrow \quad\left[T\left(\mathbf{p}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{c}
\lambda_{1} \\
0 \\
\vdots \\
0
\end{array}\right] \\
& T\left(\mathbf{p}_{2}\right)=A \mathbf{p}_{2}=\lambda_{2} \mathbf{p}_{2} \quad \Longrightarrow \quad\left[T\left(\mathbf{p}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{c}
0 \\
\lambda_{2} \\
\vdots \\
0
\end{array}\right] \\
& \vdots \\
& T\left(\mathbf{p}_{3}\right)=A \mathbf{p}_{3}=\lambda_{3} \mathbf{p}_{3} \quad \Longrightarrow \quad\left[T\left(\mathbf{p}_{1}\right)\right]_{\mathcal{B}}=\left[\begin{array}{c}
0 \\
\vdots \\
0 \\
\lambda_{n}
\end{array}\right]
\end{aligned}
$$

So $[T]_{\mathcal{B}}=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda_{n}\end{array}\right]=D$.

- Thm (Diagonal representation thm): Suppose $A=P D P^{-1}$ with a diagonal matrix D. If \mathcal{B} is the basis for \mathbb{R}^{n} formed from columns of P, then D is the \mathcal{B}-matrix for the mapping $T: \mathbf{x} \mapsto A \mathbf{x}$.
More generally, if $A=P C P^{-1}$ where C may not be a diagonal matrix, and \mathcal{B} is the basis for \mathbb{R}^{n} formed from columns of P, then C is the \mathcal{B}-matrix for the mapping $T: \mathbf{x} \mapsto A \mathbf{x}$.
\Longrightarrow The standard matrix C can be calculated by $C=P^{-1} A P$.
Ex: Let $T: \mathbf{x} \mapsto A \mathbf{x}$ with $A=\left[\begin{array}{cc}3 & 4 \\ -1 & -1\end{array}\right]$. Define a basis $\mathcal{B}=\left\{\mathbf{p}_{1}, \mathbf{p}_{2}\right\}$ with $\mathbf{p}_{1}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$ and $\mathbf{p}_{2}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. What is the standard matrix $[T]_{\mathcal{B}}$?
Answer: According to the thm above, $[T]_{\mathcal{B}}=C=P^{-1} A P$ with

$$
P=\left[\begin{array}{cc}
2 & 1 \\
-1 & 2
\end{array}\right] \quad \text { and thus } \quad P^{-1}=\frac{1}{5}\left[\begin{array}{cc}
2 & -1 \\
1 & 2
\end{array}\right] .
$$

So $[T]_{\mathcal{B}}=P^{-1} A P=\frac{1}{5}\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\left[\begin{array}{cc}3 & 4 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}2 & 1 \\ -1 & 2\end{array}\right]=\left[\begin{array}{ll}1 & 5 \\ 0 & 1\end{array}\right]$.

Appendix B Complex numbers

Question: What is the eigenvalues of the matrix $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$? Consider the characteristic polynomial: $|A-\lambda I|=\left|\begin{array}{cc}-\lambda & -1 \\ 1 & -\lambda\end{array}\right|=\lambda^{2}+1$.
What are the roots of $\lambda^{2}+1=0$?

- Def: Denote by \mathbf{i} the imaginary unit such that $\mathbf{i}^{2}=-1$. A complex number is in the form $z=a+b \mathbf{i}$ with $a=\operatorname{Re} z$ being the real part and $b=\operatorname{Im} z$ being the imaginary part.
Ex: For the complex number $z=3+2 \mathbf{i}$, its real part is $\operatorname{Re} z=3$, and its imaginary part is $\operatorname{Im} z=2$.

- Properties:

(1) $z_{1}=z_{2} \Longleftrightarrow \operatorname{Re} z_{1}=\operatorname{Re} z_{2}$ and $\operatorname{Im} z_{1}=\operatorname{Im} z_{2}$
(2) summation: $(a+b \mathbf{i})+(c+d \mathbf{i})=(a+c)+(b+d) \mathbf{i}$
(3) multiplication: $(a+b \mathbf{i}) \cdot(c+d \mathbf{i})=(a c-b d)+(b c+a d) \mathbf{i}$
(4) the conjugate of $z=a+b \mathbf{i}$ is $\bar{z}=a-b \mathbf{i}$
(5) the absolute value of $z=a+b \mathbf{i}$ is $|z|=\sqrt{z \cdot \bar{z}}=\sqrt{a^{2}+b^{2}}$
(6) the inverse of $z=a+b \mathbf{i}$ is $z^{-1}=\frac{1}{z}=\frac{\bar{z}}{z \cdot \bar{z}}=\frac{a}{a^{2}+b^{2}}-\frac{b}{a^{2}+b^{2}} \mathbf{i}$
$\mathbf{E x}:$ For $z=3+4 \mathbf{i}$, we have $\bar{z}=3-4 \mathbf{i},|z|=5, z^{-1}=\frac{3}{25}-\frac{4}{25} \mathbf{i}$.

- Geometric discription:

Based on these figures, we get $a=|z| \cos \varphi$ and $b=|z| \sin \varphi$.
Hence, there are two ways to determine a complex number:
(1) $z=a+b \mathbf{i}$
(2) $z=|z| \cos \varphi+(|z| \sin \varphi) \mathbf{i}=|z| e^{\mathbf{i} \varphi}$

Ex: If $z=|z| e^{\varphi}$, then $z^{k}=|z|^{k} e^{\mathbf{i} k \varphi}=|z|^{k} \cos (k \varphi)+|z|^{k} \sin (k \varphi) \mathbf{i}$
Ex: Find all real and complex roots of the equation $z^{8}=2^{8}$.
Answer: Assume that $z=|z| e^{\mathrm{i} \varphi}$. It then suffices to determine $|z|$ and φ.
Note that $z^{8}=|z|^{8} \cos (8 \varphi)+|z|^{8} \sin (8 \varphi) \mathbf{i}=2^{8}$. Their real (resp. imaginary) parts should be the same, that is
Firstly, $|z|^{8} \sin (8 \varphi)=0 \Longrightarrow 8 \varphi=k \pi$ for any integer k.
Secondly, $|z|^{8} \cos (8 \varphi)=2^{8}$. If $8 \varphi=k \pi, \cos (8 \varphi)= \pm 1$. However, $\cos (8 \varphi)$ can not be -1 , otherwise we will get a contradiction $-|z|^{8}=2^{8}$. So we finally get $8 \varphi=2 k \pi$, that is, $\varphi=\frac{k \pi}{4}$ such that $\cos (8 \varphi)=1$. Hence, $|z|=2$.
So $z=2 e^{\mathrm{i} \frac{k \pi}{4}}, k$ can be any integer.

5.5 Complex eigenvalues

- Ex: Let $A=\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right]$. What are its eigenvalues and corresponding eigenvectors?
(1) Find all the eigenvalues: $|A-\lambda I|=\left|\begin{array}{cc}1-\lambda & -2 \\ 1 & 3-\lambda\end{array}\right|=\lambda^{2}-4 \lambda+5=(\lambda-2)^{2}+1$. $\Longrightarrow A$ has eigenvalues $\lambda=2 \pm \mathbf{i}$
(2) Find corresponding eigenvectors:

$$
\begin{aligned}
& \text { For } \lambda_{1}=2+\mathbf{i}, \quad\left[\begin{array}{cc}
A-\lambda_{1} I & \mathbf{0}
\end{array}\right]=\left[\begin{array}{ccc}
-1-\mathbf{i} & -2 & 0 \\
1 & 1-\mathbf{i} & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1-\mathbf{i} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Longrightarrow \text { Solutions } \mathbf{x}=\left[\begin{array}{c}
-1+\mathbf{i} \\
1
\end{array}\right] x_{2} . \text { Choose } \mathbf{p}_{1}=\left[\begin{array}{c}
-1+\mathbf{i} \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mathbf{i} . \\
& \text { For } \lambda_{2}=2-\mathbf{i}, \quad\left[\begin{array}{ll}
A-\lambda_{2} I & \mathbf{0}
\end{array}\right]=\left[\begin{array}{ccc}
-1+\mathbf{i} & -2 & 0 \\
1 & 1+\mathbf{i} & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 1+\mathbf{i} & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \Longrightarrow \text { Solutions } \mathbf{x}=\left[\begin{array}{c}
-1-\mathbf{i} \\
1
\end{array}\right] x_{2} . \text { Choose } \mathbf{p}_{1}=\left[\begin{array}{c}
-1-\mathbf{i} \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{i} .
\end{aligned}
$$

\Longrightarrow In this example, we have $\lambda_{2}=\overline{\lambda_{1}}$ and $\mathbf{p}_{2}=\overline{\mathbf{p}_{1}}$.
\Longrightarrow If $A \mathbf{p}=\lambda \mathbf{p}$, then $A \overline{\mathbf{p}}=\bar{\lambda} \overline{\mathbf{p}}$. (If λ is an eigenvalue of A, then $\bar{\lambda}$ is also an eigenvalue)
For a real matrix A, its complex eigenvalues occur in conjugate pairs.

- Ex: For $A_{2 \times 2}$ given above, consider one of the eigenvalues $\lambda=2-\mathbf{i}$ and its corresponding eigenvector $\mathbf{p}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]+\left[\begin{array}{c}-1 \\ 0\end{array}\right] \mathbf{i}$.
Denote $P=\left[\begin{array}{ll}\operatorname{Rep} & \operatorname{Imp}\end{array}\right]=\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right]$. Is there a matrix C such that $A=P C P^{-1}$?
Answer: $C=P^{-1} A P=\left[\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}1 & -2 \\ 1 & 3\end{array}\right]\left[\begin{array}{cc}-1 & -1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}2 & -1 \\ 1 & 2\end{array}\right]\left(=\left[\begin{array}{cc}\operatorname{Re} \lambda & \operatorname{Im} \lambda \\ -\operatorname{Im} \lambda & \operatorname{Re} \lambda\end{array}\right]\right)$
- Thm: Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b \mathbf{i}(b \neq 0)$ and an associated eigenvector \mathbf{p}. Then $A=P C P^{-1}$ with $P=[\operatorname{Rep} \operatorname{Imp}]$ and $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$.
Ex: For $C=\left[\begin{array}{cc}a & -b \\ b & a\end{array}\right]$ with $|C-\lambda I|=(a-\lambda)^{2}+b^{2}$, its eigenvalues are $\lambda=a \pm b \mathbf{i}$ with $|\lambda|=\sqrt{a^{2}+b^{2}}$. Then

$$
C=|\lambda|\left[\begin{array}{cc}
\frac{a}{|\lambda|} & -\frac{b}{|\lambda|} \\
\frac{b}{|\lambda|} & \frac{a}{|\lambda|}
\end{array}\right]=|\lambda|\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right],
$$

which is a composition of a rotation through the angle θ and a scaling by $|\lambda|$.
Ex: Let $C=\left[\begin{array}{cc}\sqrt{3} & -1 \\ 1 & \sqrt{3}\end{array}\right]$. What are the rotation angle θ and the scaling constant $|\lambda| ?$
Answer: $|\lambda|=\sqrt{(\sqrt{3})^{2}+1^{2}}=2$.
The angle θ satisfies $\cos \theta=\frac{a}{|\lambda|}=\frac{\sqrt{3}}{2}$ and $\sin \theta=\frac{1}{2}$. Hence, $\theta=\frac{\pi}{6}$.

5.7 Applications to differential equations

- For $y^{\prime}(t)=\lambda y(t), t \geq 0$, all its solutions are in the form $y(t)=c e^{\lambda t}$ with a free parameter c. No matter what c is, $y(t)$ above is a solution of the differential equation. If, in addition, the initial value is given $y(0)=y_{0}$, then the constant c is determined and the solution is unique: $y(t)=y_{0} e^{\lambda t}$.
If $\lambda<0$, the solution $y(t)$ will go to 0 as $t \rightarrow+\infty$.
If $\lambda>0$, the solution $y(t)$ will go to positive or negative infinity as $t \rightarrow+\infty$.
- For a system of linear differential equations
$\left\{\begin{array}{c}y_{1}^{\prime}(t)=\lambda_{1} y_{1}(t) \\ y_{2}^{\prime}(t)=\lambda_{2} y_{2}(t) \\ \vdots \\ y_{n}^{\prime}(t)=\lambda_{n} y_{n}(t)\end{array} \Longleftrightarrow\left[\begin{array}{c}y_{1}^{\prime}(t) \\ y_{2}^{\prime}(t) \\ \vdots \\ y_{n}^{\prime}(t)\end{array}\right]=\left[\begin{array}{cccc}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]\left[\begin{array}{c}y_{1}(t) \\ y_{2}(t) \\ \vdots \\ y_{n}(t)\end{array}\right] \Longleftrightarrow Y^{\prime}(t)=D Y(t)\right.$,
it has solutions $\left\{\begin{array}{c}y_{1}(t)=c_{1} e^{\lambda_{1} t} \\ \vdots \\ y_{n}(t)=c_{n} e^{\lambda_{n} t}\end{array}\right.$
- What are the solutions of $X^{\prime}(t)=A X(t)$ if A is not a diagonal matrix as above?

If $A=P D P^{-1}$, then $X^{\prime}(t)=P D P^{-1} X(t) \Longleftrightarrow\left[P^{-1} X(t)\right]^{\prime}=D\left[P^{-1} X(t)\right]$.
Denote $Y(t)=P^{-1} X(t)$, we get $Y^{\prime}(t)=D Y(t)$. Solve this auxiliary equation to get $Y(t)$ and then get $X(t)=P Y(t)$.
\& Ex: Solve $X^{\prime}(t)=A X(t)$ with $A=\left[\begin{array}{ll}1 & -2 \\ 3 & -4\end{array}\right]$ and $X(0)=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
Answer:
(1) Find D and P :

$$
\begin{aligned}
& |A-\lambda I|=(\lambda+1)(\lambda+2) \Longrightarrow \lambda=-1,-2 \Longrightarrow D=\left[\begin{array}{cc}
-1 & 0 \\
0 & -2
\end{array}\right] \\
& \text { For } \lambda_{1}=-1,\left[\begin{array}{lll}
2 & -2 & 0 \\
3 & -3 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] x_{2} \Longrightarrow \mathbf{p}_{1}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
& \text { For } \lambda_{1}=-2,\left[\begin{array}{lll}
3 & -2 & 0 \\
3 & -2 & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -\frac{2}{3} & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{c}
\frac{2}{3} \\
1
\end{array}\right] x_{2} \Longrightarrow \mathbf{p}_{2}=\left[\begin{array}{l}
2 \\
3
\end{array}\right] \\
& \text { So } P=\left[\begin{array}{ll}
1 & 2 \\
1 & 3
\end{array}\right] .
\end{aligned}
$$

(2) Solve $Y^{\prime}(t)=D Y(t)$ and get $X(t)=P Y(t)$:

Based on $D,\left\{\begin{array}{c}y_{1}(t)=c_{1} e^{-t} \\ y_{2}(t)=c_{2} e^{-2 t}\end{array} \longrightarrow Y(t)=\left[\begin{array}{c}c_{1} \\ 0\end{array}\right] e^{-t}+\left[\begin{array}{c}0 \\ c_{2}\end{array}\right] e^{-2 t}\right.$. Hence,
$X(t)=P Y(t)=\left[\begin{array}{ll}1 & 2 \\ 1 & 3\end{array}\right]\left(\left[\begin{array}{c}c_{1} \\ 0\end{array}\right] e^{-t}+\left[\begin{array}{c}0 \\ c_{2}\end{array}\right] e^{-2 t}\right)=c_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] e^{-t}+c_{2}\left[\begin{array}{l}2 \\ 3\end{array}\right] e^{-2 t}$
$\Longrightarrow X(t)=c_{1} \mathbf{p}_{1} e^{\lambda_{1} t}+c_{2} \mathbf{p}_{2} e^{\lambda_{2} t}$
(3) Use $X(0)$ to determine c_{1} and c_{2} :

Based on the formula above and the initial condition,

$$
X(0)=c_{1}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
2
\end{array}\right]
$$

Solve $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right] \sim\left[\begin{array}{ccc}1 & 2 & 3 \\ 0 & 1 & -1\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & 5 \\ 0 & 1 & -1\end{array}\right]$, and get $c_{1}=5$ and $c_{2}=-1$.

- Def: For $X^{\prime}(t)=A X(t)$, denote by λ the eigenvalues of A.

1. If $\lambda<0$, the origin is an attractor/sink.

The direction of greatest attraction is corresponding to the most negative eigenvalue.
2 . If $\lambda>0$, the origin is a repeller/source.
The direction of greatest repulsion is corresponding to the largest positive eigenvalue.
3. If λ has both positive and negative values, the origin is a saddle point.

- If $A_{2 \times 2}$ has a pair of complex eigenvalues λ and $\bar{\lambda}$ with \mathbf{p} and $\overline{\mathbf{p}}$, then
$X(t)=c_{1} \mathbf{p} e^{\lambda t}+c_{2} \overline{\mathbf{p}} e^{\bar{\lambda} t}$ are complex solutions!
Denote $X_{1}=\mathbf{p} e^{\lambda t}$ and $X_{2}=\overline{\mathbf{p}} e^{\bar{\lambda} t}$. It holds $X_{2}=\overline{X_{1}}$.
$\Longrightarrow\left\{\begin{array}{l}\frac{X_{1}+X_{2}}{2}=\operatorname{Re}\left[\mathbf{p} e^{\lambda t}\right] \\ \frac{X_{1}-X_{2}}{2 \mathbf{i}}=\operatorname{Im}\left[\mathbf{p} e^{\lambda t}\right]\end{array}\right.$
$\Longrightarrow X(t)=\tilde{c}_{1} \operatorname{Re}\left[\mathbf{p} e^{\lambda t}\right]+\tilde{c}_{2} \operatorname{Im}\left[\mathbf{p} e^{\lambda t}\right]$ are the real solutions!
Ex: Find all the real solutions of $X^{\prime}(t)=A X(t)$ with $A=\left[\begin{array}{cc}-3 & 2 \\ -1 & -1\end{array}\right]$.
(1) Find all the eigenvalues: $|A-\lambda I|=(\lambda+2)^{2}+1 \Longrightarrow \lambda=-2 \pm \mathbf{i}$

Since the eigenvalues are complex and form a conjugate pair, we only need to use one of them.
(2) Choose λ and calculate \mathbf{p} : Choose $\lambda=-2+\mathbf{i}$, and solve

$$
\left[\begin{array}{cc}
A-\lambda I & \mathbf{0}
\end{array}\right]=\left[\begin{array}{ccc}
-1-\mathbf{i} & 2 & 0 \\
-1 & 1-\mathbf{i} & 0
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & -1+\mathbf{i} & 0 \\
0 & 0 & 0
\end{array}\right] \Longrightarrow \mathbf{x}=\left[\begin{array}{c}
1-\mathbf{i} \\
1
\end{array}\right] x_{2}
$$

to get $\mathbf{p}=\left[\begin{array}{c}1-\mathbf{i} \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]+\left[\begin{array}{c}-1 \\ 0\end{array}\right] \mathbf{i}$.
(3) Calculate $\operatorname{Re}\left[\mathbf{p} e^{\lambda t}\right]$ and $\operatorname{Im}\left[\mathbf{p} e^{\lambda t}\right]$:

$$
\begin{aligned}
& \mathbf{p} e^{\lambda t}=\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{i}\right) e^{-2 t+\mathbf{i} t} \\
&=e^{-2 t}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \mathbf{i}\right)(\cos t+\sin t \mathbf{i}) \\
&=e^{-2 t}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cos t-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin t\right)+e^{-2 t}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] \sin t+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \cos t\right) \mathbf{i} \\
& \Longrightarrow \operatorname{Re}\left[\mathbf{p} e^{\lambda t}\right]=e^{-2 t}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] \cos t-\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \sin t\right) \\
& \operatorname{Im}\left[\mathbf{p} e^{\lambda t}\right]=e^{-2 t}\left(\left[\begin{array}{l}
1 \\
1
\end{array}\right] \sin t+\left[\begin{array}{c}
-1 \\
0
\end{array}\right] \cos t\right)
\end{aligned}
$$

- In this case, the origin is a spiral point.
$\left\{\begin{array}{l}\text { the trajectories of the solution spiral inward if } \operatorname{Re} \lambda<0 \\ \text { the trajectories of the solution spiral outward if } \operatorname{Re} \lambda>0\end{array}\right.$

6 Chapter 6

6.1 Inner product, length, and orthogonality

- Def: For two vectors $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ in \mathbb{R}^{n}, their inner product is

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

\Longrightarrow Properties:
(1) $\mathbf{u} \cdot \mathbf{v}=\mathbf{v} \cdot \mathbf{u}, \quad(\mathbf{u}+\mathbf{v}) \cdot \mathbf{w}=\mathbf{u} \cdot \mathbf{w}+\mathbf{v} \cdot \mathbf{w}, \quad(c \mathbf{u}) \cdot v=\mathbf{u} \cdot(c \mathbf{v})=c \mathbf{u} \cdot \mathbf{v}$
(2) $\mathbf{u} \cdot \mathbf{u} \geq 0$ for any \mathbf{u} in $\mathbb{R}^{n} ; \quad \mathbf{u} \cdot \mathbf{u}=0 \Longleftrightarrow \mathbf{u}=\mathbf{0}$

- Def: For $\mathbf{u}=\left[\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right]$ in \mathbb{R}^{n}, the length (norm) of \mathbf{u} is

$$
\|\mathbf{u}\|=\sqrt{\mathbf{u} \cdot \mathbf{u}}=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}
$$

\Longrightarrow Properties:
(1) If $\|\mathbf{u}\|=1$, then \mathbf{u} is called a unit vector.
(2) If $\|\mathbf{u}\| \neq 1$, then it can be normalized as $\widehat{\mathbf{u}}=\frac{1}{\|\mathbf{u}\|} \mathbf{u}$.

- Def: For \mathbf{u}, \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v} is

$$
\operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|
$$

Ex: Given $\mathbf{u}=\left[\begin{array}{l}3 \\ 4\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Calculate the following quantities.
$\mathbf{u} \cdot \mathbf{v}=1, \quad\|\mathbf{u}\|=\sqrt{3^{2}+4^{2}}=5, \quad \operatorname{dist}(\mathbf{u}, \mathbf{v})=\|\mathbf{u}-\mathbf{v}\|=\left\|\left[\begin{array}{l}4 \\ 3\end{array}\right]\right\|=5$

- Def: For \mathbf{u}, \mathbf{v} in \mathbb{R}^{n}, they are orthogonal if $\mathbf{u} \cdot \mathbf{v}=0$.
\Longrightarrow Properties:
(1) $\mathbf{0}$ is orthogonal to any vectors in \mathbb{R}^{n}.
(2) \mathbf{u} and \mathbf{v} are orthogonal $\Longleftrightarrow\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$

Ex: Given $\mathbf{u}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right]$. Then $\mathbf{u} \cdot \mathbf{v}=0$, and

$$
\begin{aligned}
& \|\mathbf{u}+\mathbf{v}\|^{2}=\left\|\left[\begin{array}{c}
-1 \\
3 \\
3
\end{array}\right]\right\|^{2}=1+3^{2}+3^{2}=19 \\
& \|\mathbf{u}\|^{2}=1+2^{2}+3^{2}=14, \quad\|\mathbf{v}\|^{2}=(-2)^{2}+1^{2}+0^{2}=5
\end{aligned}
$$

Hence, it holds $\|\mathbf{u}+\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}$.

- Def: Let W be a subspace of \mathbb{R}^{n}. A vector \mathbf{z} in \mathbb{R}^{n} is called orthogonal to W if \mathbf{z} is orthogonal to each vector in W. Denote the set

$$
W^{\perp}=\{\mathbf{z}: \mathbf{z} \text { is orthogonal to } W\}
$$

\Longrightarrow Properties:
(1) W^{\perp} is also a subspace of \mathbb{R}^{n}, which is orthogonal to W.
(2) $(\operatorname{Row} A)^{\perp}=\operatorname{Nul} A=\left(\operatorname{Col} A^{\top}\right)^{\perp}$

6.2 Orthogonal sets

- Def: A set of vectors $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$ in \mathbb{R}^{n} is an orthogonal set if any two vectors inside are orthogonal.
- Thm: An orthogonal set of nonzero vectors is also a linearly independent set.

Ex: The set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]\right\}$ is linearly independent, but is not orthogonal. The set $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]\right\}$ is both linearly independent and orthogonal.

- Def: An orthogonal basis for a subspace W is a basis that is also an orthogonal set.

An orthonormal basis for W is a basis that is also an orthogonal set containing only unit vectors.
$\mathbf{E x}:\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]\right\}$ is a basis.

$$
\begin{aligned}
& \left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
3
\end{array}\right]\right\} \text { is an orthogonal basis. } \\
& \left\{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]\right\} \text { is an orthonormal basis. }
\end{aligned}
$$

- Thm: Let $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$ be an orthogonal basis for W. Then for each \mathbf{y} in W,

$$
\mathbf{y}=c_{1} \mathbf{u}_{1}+\cdots+c_{p} \mathbf{u}_{p} \quad \text { with } \quad c_{j}=\frac{\mathbf{y} \cdot \mathbf{u}_{j}}{\mathbf{u}_{j} \cdot \mathbf{u}_{j}}, \quad j=1,2, \cdots, p
$$

- Def: Given two vectors \mathbf{y} and \mathbf{u}. Rewrite $\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}$ such that $\widehat{\mathbf{y}}=c \mathbf{u}$ is a scalar multiple of \mathbf{u}, and \mathbf{z} is orthogonal to \mathbf{u}.
Then $\widehat{\mathbf{y}}=c \mathbf{u}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}$ is the orthogonal projection of \mathbf{y} onto \mathbf{u}.
The distance from \mathbf{y} to the line through \mathbf{u} is $\|\mathbf{z}\|=\|\mathbf{y}-\widehat{\mathbf{y}}\|$.
Ex: Let $\mathbf{y}=\left[\begin{array}{l}1 \\ 7\end{array}\right]$ and $\mathbf{u}=\left[\begin{array}{c}-4 \\ 2\end{array}\right]$. What is the orthogonal projection of \mathbf{y} onto \mathbf{u} ? Answer: The projection

$$
\widehat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u}=\frac{\mathbf{1 0}}{\mathbf{2 0}}\left[\begin{array}{c}
-4 \\
2
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

and

$$
\mathbf{z}=\mathbf{y}-\widehat{\mathbf{y}}=\left[\begin{array}{l}
1 \\
7
\end{array}\right]-\left[\begin{array}{c}
-2 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right]
$$

such that $\mathbf{y} \cdot \mathbf{z}=0$. That is $\widehat{\mathbf{y}}$ and \mathbf{z} are orthogonal.

- Thm: The matrix $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]_{m \times p}$ has orthonormal columns $\Longleftrightarrow U^{\top} U=I$. Reason:

$$
U^{\top} U=\left[\begin{array}{c}
\mathbf{u}_{1}^{\top} \\
\vdots \\
\mathbf{u}_{p}^{\top}
\end{array}\right]\left[\begin{array}{lll}
\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}
\end{array}\right]=\left[\begin{array}{cccc}
\mathbf{u}_{1}^{\top} \mathbf{u}_{1} & \mathbf{u}_{1}^{\top} \mathbf{u}_{2} & \cdots & \mathbf{u}_{1}^{\top} \mathbf{u}_{p} \\
\mathbf{u}_{1}^{\top} \mathbf{u}_{2} & \mathbf{u}_{2}^{\top} \mathbf{u}_{2} & \cdots & \mathbf{u}_{2}^{\top} \mathbf{u}_{p} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{u}_{p}^{\top} \mathbf{u}_{1} & \mathbf{u}_{p}^{\top} \mathbf{u}_{2} & \cdots & \mathbf{u}_{p}^{\top} \mathbf{u}_{p}
\end{array}\right]=I
$$

6.3 Orthogonal projections

- Thm (The orthogonal decomposition thm): Let W be a subspace of \mathbb{R}^{n}. Then any vector $\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}$ with $\widehat{\mathbf{y}} \in W$ and $\mathbf{z} \in W^{\perp}$.
If W has an orthogonal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$, then the orthogonal projection of \mathbf{y} onto W, which is also denoted by $\widehat{\mathbf{y}}=\operatorname{proj}_{W} \mathbf{y}$, is

$$
\widehat{\mathbf{y}}=\operatorname{proj}_{W} \mathbf{y}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\cdots+\frac{\mathbf{y} \cdot \mathbf{u}_{p}}{\mathbf{u}_{p} \cdot \mathbf{u}_{p}} \mathbf{u}_{p} .
$$

\Longrightarrow Remark: If \mathbf{y} is in W, then $\operatorname{proj}_{W} \mathbf{y}=\mathbf{y}$ and $\mathbf{z}=\mathbf{0}$.
$\mathbf{E x}:$ Given $\mathbf{y}=\left[\begin{array}{c}-1 \\ 4 \\ 3\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$. Find the orthogonal projection of \mathbf{y} onto $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$.

Answer: Noting that $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0,\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for W. Hence, the orthogonal decomposition thm can be used directly:

$$
\widehat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{3}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+\frac{5}{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
-1 \\
4 \\
0
\end{array}\right]
$$

- Thm (The best approximation thm): Let W be a subspace of \mathbb{R}^{n}. Then the orthogonal projection $\widehat{\mathbf{y}}$ of \mathbf{y} onto W is the closest point(best approximation) in W to \mathbf{y}. That is,

$$
\|\mathbf{y}-\widehat{\mathbf{y}}\| \leq\|\mathbf{y}-\mathbf{v}\| \quad \text { for any } \mathbf{v} \in W
$$

$\Longrightarrow\|\mathbf{z}\|=\|\mathbf{y}-\widehat{\mathbf{y}}\|$ denotes the distance from \mathbf{y} to W.

- Ex: Given $\mathbf{y}=\left[\begin{array}{c}5 \\ -9 \\ 5\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{c}-3 \\ -5 \\ 1\end{array}\right]$ and $\mathbf{u}_{2}=\left[\begin{array}{c}-3 \\ 2 \\ 1\end{array}\right]$.
(1) Is $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ an orthogonal basis? $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0 \quad$ Yes.
(2) Find the orthogonal projection of \mathbf{y} onto $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$:

$$
\widehat{\mathbf{y}}=\frac{\mathbf{y} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}+\frac{\mathbf{y} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\frac{35}{35}\left[\begin{array}{c}
-3 \\
-5 \\
1
\end{array}\right]+\frac{-28}{14}\left[\begin{array}{c}
-3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{c}
3 \\
-9 \\
-1
\end{array}\right]
$$

(3) Find the closest point to \mathbf{y} in $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$: same as above $\left[\begin{array}{c}3 \\ -9 \\ -1\end{array}\right]$
(4) Find the best approximation of \mathbf{y} in $W=\operatorname{Span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$: same as above $\left[\begin{array}{c}3 \\ -9 \\ -1\end{array}\right]$
(5) What is the distance from \mathbf{y} to $W ?\|\mathbf{z}\|=\|\mathbf{y}-\widehat{\mathbf{y}}\|=\left\|\left[\begin{array}{l}2 \\ 0 \\ 6\end{array}\right]\right\|=\sqrt{40}$

- Thm: If $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$ is an orthonormal basis for a subspace W in \mathbb{R}^{n}, then

$$
\widehat{\mathbf{y}}=\left(\mathbf{y} \cdot \mathbf{u}_{1}\right) \mathbf{u}_{1}+\cdots+\left(\mathbf{y} \cdot \mathbf{u}_{p}\right) \mathbf{u}_{p}
$$

If $U=\left[\begin{array}{lll}\mathbf{u}_{1} & \cdots & \mathbf{u}_{p}\end{array}\right]$, then $U^{\top} U=I$.

6.4 The Gram-Schmidt process

- Ex: Let $W=\operatorname{Span}\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ with $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}\right\}$ being a basis. To obtain an orthogonal basis for W, define

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{x}_{1} \\
& \mathbf{u}_{2}=\mathbf{x}_{2}-\operatorname{proj}_{\mathbf{u}_{1}} \mathbf{x}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}
\end{aligned}
$$

Then $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is an orthogonal basis for W.
For example, $\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\mathbf{x}_{2}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$. Then

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] \\
& \mathbf{u}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\frac{1}{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{2} \\
-\frac{1}{2} \\
1
\end{array}\right]
\end{aligned}
$$

and apparently $\mathbf{u}_{1} \cdot \mathbf{u}_{2}=0$.
of Thm (The Gram-Schmidt process): Given a basis $\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{p}\right\}$ for W. Then

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{x}_{1} \\
& \mathbf{u}_{2}=\mathbf{x}_{2}-\frac{\mathbf{x}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1} \\
& \mathbf{u}_{3}=\mathbf{x}_{3}-\frac{\mathbf{x}_{3} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\frac{\mathbf{x}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}
\end{aligned}
$$

$$
\mathbf{u}_{p}=\mathbf{x}_{p}-\frac{\mathbf{x}_{p} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}-\cdots-\frac{\mathbf{x}_{p} \cdot \mathbf{u}_{p-1}}{\mathbf{u}_{p-1} \cdot \mathbf{u}_{p-1}} \mathbf{u}_{p-1}
$$

form an orthogonal basis for W. In addition,

$$
\operatorname{Span}\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{k}\right\}=\operatorname{Span}\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{k}\right\} \quad \text { for any } \quad k=1,2, \cdots, p
$$

- Ex: Given $A=\left[\begin{array}{cc}5 & 9 \\ 1 & 7 \\ -3 & -5 \\ 1 & 5\end{array}\right]$. Then the column space $\operatorname{Col} A=\operatorname{Span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ has a basis $\left\{\mathbf{a}_{1}, \mathbf{a}_{2}\right\}$ since the columns $\mathbf{a}_{1}, \mathbf{a}_{2}$ of A are linearly independent.
(1) Find an orthogonal basis for $\operatorname{Col} A$.

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{a}_{1}=\left[\begin{array}{c}
5 \\
1 \\
-3 \\
1
\end{array}\right] \\
& \mathbf{u}_{2}=\mathbf{a}_{2}-\frac{\mathbf{a}_{2} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}} \mathbf{u}_{1}=\left[\begin{array}{c}
9 \\
7 \\
-5 \\
5
\end{array}\right]-\frac{72}{36}\left[\begin{array}{c}
5 \\
1 \\
-3 \\
1
\end{array}\right]=\left[\begin{array}{c}
-1 \\
5 \\
1 \\
3
\end{array}\right]
\end{aligned}
$$

(2) Find an orthonormal basis for $\operatorname{Col} A$.

$$
\begin{aligned}
& \mathbf{v}_{1}=\frac{1}{\left\|\mathbf{u}_{1}\right\|} \mathbf{u}_{1}=\frac{1}{6}\left[\begin{array}{c}
5 \\
1 \\
-3 \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{5}{6} \\
\frac{1}{6} \\
-\frac{1}{2} \\
\frac{1}{6}
\end{array}\right] \\
& \mathbf{v}_{2}=\frac{1}{\left\|\mathbf{u}_{2}\right\|} \mathbf{u}_{2}=\frac{1}{6}\left[\begin{array}{c}
-1 \\
5 \\
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{6} \\
\frac{5}{6} \\
\frac{1}{6} \\
\frac{1}{2}
\end{array}\right]
\end{aligned}
$$

(3) Denote a matrix $Q=\left[\begin{array}{ll}\mathbf{v}_{1} & \mathbf{v}_{2}\end{array}\right]$, which satisfies $Q^{\top} Q=I$. If $A=Q R$, then

$$
R=Q^{\top} A=\left[\begin{array}{cccc}
\frac{5}{6} & \frac{1}{6} & -\frac{1}{2} & \frac{1}{6} \\
-\frac{1}{6} & \frac{5}{6} & \frac{1}{6} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
5 & 9 \\
1 & 7 \\
-3 & -5 \\
1 & 5
\end{array}\right]=\left[\begin{array}{cc}
6 & 12 \\
0 & 6
\end{array}\right]
$$

which is a triangular matrix with positive diagonals.

- Thm (The $Q R$ factorization): If $A_{m \times n}$ has linearly independent columns, then $A=Q R$ with columns of $Q_{m \times n}$ forming an orthonormal basis for $\operatorname{Col} A$ and $R_{n \times n}$ being an upper triangular matrix with positive diagonals.
\Longrightarrow It implies that R is invertible.

6.5 Least-squares problems

If $A \mathbf{x}=\mathbf{b}$ has no solution but A has linearly independent columns, then $A=Q R$ and

$$
Q^{\top} Q R \mathbf{x}=Q^{\top} \mathbf{b} \Longleftrightarrow R \mathbf{x}=Q^{\top} \mathbf{b} \Longleftrightarrow \mathbf{x}=R^{-1} Q^{\top} \mathbf{b}
$$

Apparently, \mathbf{x} above can not be a solution of $A \mathbf{x}=\mathbf{b}$. What is the meaning of \mathbf{x} ?

- Def: A least-squares solution of $A \mathbf{x}=\mathbf{b}$ is a vector $\widehat{\mathbf{x}} \in \mathbb{R}^{n}$ such that

$$
\begin{aligned}
& \|\mathbf{b}-A \widehat{\mathbf{x}}\| \leq\|\mathbf{b}-A \mathbf{x}\| \quad \text { for any } \quad \mathbf{x} \in \mathbb{R}^{n} . \\
\Longrightarrow & \text { For any } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right] \text { in } \mathbb{R}^{n}, A \mathbf{x}=\mathbf{a}_{1} x_{1}+\cdots+\mathbf{a}_{n} x_{n} \in \operatorname{Col} A . \text { Then } \\
& A \widehat{\mathbf{x}}=\operatorname{proj}_{\operatorname{Col} A} \mathbf{b} \quad \text { is the orthogonal projection of } \mathbf{b} \text { onto } \operatorname{Col} A \\
& \mathbf{b}-A \widehat{\mathbf{x}} \quad \text { is orthogonal to } \operatorname{Col} A
\end{aligned}
$$

That is, $\mathbf{b}-A \widehat{\mathbf{x}}$ is orthogonal to $\mathbf{a}_{1}, \cdots, \mathbf{a}_{n}$:

$$
\left.\begin{array}{rl}
\mathbf{a}_{1} \cdot(\mathbf{b}-A \widehat{\mathbf{x}})=\mathbf{a}_{1}^{\top}(\mathbf{b}-A \widehat{\mathbf{x}})=0 \\
\vdots \\
\mathbf{a}_{n} \cdot(\mathbf{b}-A \widehat{\mathbf{x}})=\mathbf{a}_{n}^{\top}(\mathbf{b}-A \widehat{\mathbf{x}})=0
\end{array}\right\} \quad \Longleftrightarrow A^{\top}(\mathbf{b}-A \widehat{\mathbf{x}})=\mathbf{0} .
$$

- Thm: The least-squares solutions of $A \mathbf{x}=\mathbf{b}$ coincide with the solutions of the normal equation $A^{\top} A \widehat{\mathbf{x}}=A^{\top} \mathbf{b}$.
Ex: Given $A=\left[\begin{array}{ll}1 & 2 \\ 1 & 2 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$.
(1) Does $A \mathbf{x}=\mathbf{b}$ have solutions? $\left[\begin{array}{ll}A & \mathbf{b}\end{array}\right]=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3\end{array}\right] \sim\left[\begin{array}{lll}1 & 2 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 2\end{array}\right]$ No solution!
(2) Find the least-squares solutions of $A \mathbf{x}=\mathbf{b}$: Consider $A^{\top} A \widehat{\mathbf{x}}=A^{\top} \mathbf{b}$.

$$
A^{\top} A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
3 & 6 \\
6 & 12
\end{array}\right], \quad A^{\top} \mathbf{b}=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
6 \\
12
\end{array}\right]
$$

The augmented matrix is $\left[\begin{array}{ll}A^{\top} A & A^{\top} \mathbf{b}\end{array}\right]=\left[\begin{array}{ccc}3 & 6 & 6 \\ 6 & 12 & 12\end{array}\right] \sim\left[\begin{array}{lll}1 & 2 & 2 \\ 0 & 0 & 0\end{array}\right]$, and the solutions are in the form $\widehat{\mathbf{x}}=\left[\begin{array}{c}2-2 x_{2} \\ x_{2}\end{array}\right]$ with x_{2} being a free parameter.
\Longrightarrow There are infinitely many least-squares solutions since $A^{\top} A$ is not invertible.
\& Ex: Given $A=\left[\begin{array}{cc}-1 & 2 \\ 2 & -3 \\ -1 & 3\end{array}\right]$ and $\mathbf{b}=\left[\begin{array}{l}4 \\ 1 \\ 2\end{array}\right]$. Find the least-squares solution of $A \mathrm{x}=\mathrm{b}$.
Answer: Consider the normal equation $A^{\top} A \widehat{\mathbf{x}}=A^{\top} \mathbf{b}$.

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -3 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & 2 \\
2 & -3 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
6 & -11 \\
-11 & 22
\end{array}\right] \\
& A^{\top} \mathbf{b}=\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-4 \\
11
\end{array}\right]
\end{aligned}
$$

The augmented matrix is $\left[\begin{array}{ll}A^{\top} A & A^{\top} \mathbf{b}\end{array}\right]=\left[\begin{array}{ccc}6 & -11 & -4 \\ -11 & 22 & 11\end{array}\right] \sim\left[\begin{array}{lll}1 & 0 & 3 \\ 0 & 1 & 2\end{array}\right]$, and hence $\widehat{\mathbf{x}}=\left[\begin{array}{l}3 \\ 2\end{array}\right]$.
\Longrightarrow There is a unique least-squares solution of $A \mathbf{x}=\mathbf{b}$ since $A^{\top} A$ is invertible.

- Thm: $A \mathbf{x}=\mathbf{b}$ has a unique least-squares solution
$\Longleftrightarrow A^{\top} A$ is invertible
$\Longleftrightarrow A$ has linearly independent columns
Remark: In this case, A has linearly independent columns, then $A=Q R$ and

$$
A^{\top} A=(Q R)^{\top}(Q R)=R^{\top} Q^{\top} Q R=R^{\top} R
$$

is also invertible since R is invertible. Then the unique least-squares solution of $A \mathbf{x}=\mathbf{b}$ is

$$
\widehat{\mathbf{x}}=\left(A^{\top} A\right)^{-1} A^{\top} \mathbf{b}=\left(R^{\top} R\right)^{-1} R^{\top} Q^{\top} \mathbf{b}=R^{-1} Q^{\top} \mathbf{b}
$$

which answers the question proposed at the beginning of this lesson.

6.7 Inner product spaces

- Def: An inner product on a general vector space V is a function $\langle u, v\rangle$ such that

1. $\langle\mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{v}, \mathbf{u}\rangle, \quad\langle\mathbf{u}+\mathbf{v}, \mathbf{w}\rangle=\langle\mathbf{u}, \mathbf{w}\rangle+\langle\mathbf{v}, \mathbf{w}\rangle, \quad\langle c \mathbf{u}, \mathbf{v}\rangle=\langle\mathbf{u}, c \mathbf{v}\rangle=c\langle\mathbf{u}, \mathbf{v}\rangle$
2. $\langle\mathbf{u}, \mathbf{u}\rangle \geq 0$ and $\langle\mathbf{u}, \mathbf{u}\rangle=0$ iff $\mathbf{u}=\mathbf{0}$

A vector space equipped with an inner product is called an inner product space.
Ex: \mathbb{R}^{n} with $\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\top} \mathbf{v}$
Ex: \mathbb{P}_{2} : Define an inner product by evaluation at $-1,0,1$

$$
\langle p(t), q(t)\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1)
$$

For example, let $x_{1}(t)=1+t$ and $x_{2}(t)=1-t$. Then

$$
\begin{aligned}
& \left\langle x_{1}(t), x_{2}(t)\right\rangle=x_{1}(-1) x_{2}(-1)+x_{1}(0) x_{2}(0)+x_{1}(1) x_{2}(1)=1 \\
& \left\langle x_{1}(t), x_{1}(t)\right\rangle=0+1+4=5 \\
\Longrightarrow & \text { norm(length): }\left\|x_{1}(t)\right\|=\sqrt{\left\langle x_{1}(t), x_{1}(t)\right\rangle}=\sqrt{5} \\
\Longrightarrow & \text { distance between } x_{1}(t) \text { and } x_{2}(t):\left\|x_{1}(t)-x_{2}(t)\right\|=\sqrt{\langle 2 t, 2 t\rangle}=\sqrt{4+0+4}=\sqrt{8}
\end{aligned}
$$

- Gram-Schmidt process: basis $\left\{\mathbf{x}_{1}, \cdots, \mathbf{x}_{p}\right\} \longrightarrow$ orthogonal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$

$$
\begin{aligned}
\mathbf{x}_{1} & =\mathbf{u}_{1} \\
\mathbf{x}_{2}= & \mathbf{x}_{2}-\frac{\left\langle\mathbf{x}_{2}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1} \\
& \vdots \\
\mathbf{x}_{p} & =\mathbf{x}_{p}-\frac{\left\langle\mathbf{x}_{p}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}-\cdots-\frac{\left\langle\mathbf{x}_{p}, \mathbf{u}_{p-1}\right\rangle}{\left\langle\mathbf{u}_{p-1}, \mathbf{u}_{p-1}\right\rangle} \mathbf{u}_{p-1}
\end{aligned}
$$

Ex: As above, transform $\left\{x_{1}(t), x_{2}(t)\right\}$ into an orthogonal basis $\left\{u_{1}(t), u_{2}(t)\right\}$.
Answer: $u_{1}(t)=x_{1}(t)=1+t$

$$
u_{2}(t)=x_{2}(t)-\frac{\left\langle x_{2}(t), u_{1}(t)\right\rangle}{\left\langle u_{1}(t), u_{1}(t)\right\rangle} u_{1}(t)=(1-t)-\frac{1}{5}(1+t)=\frac{4}{5}-\frac{6}{5} t
$$

- Best approximation: W has an orthogonal basis $\left\{\mathbf{u}_{1}, \cdots, \mathbf{u}_{p}\right\}$, then for any vector \mathbf{y}, $\mathbf{y}=\widehat{\mathbf{y}}+\mathbf{z}$ with

$$
\widehat{\mathbf{y}}=\frac{\left\langle\mathbf{y}, \mathbf{u}_{1}\right\rangle}{\left\langle\mathbf{u}_{1}, \mathbf{u}_{1}\right\rangle} \mathbf{u}_{1}+\cdots+\frac{\left\langle\mathbf{y}, \mathbf{u}_{p}\right\rangle}{\left\langle\mathbf{u}_{p}, \mathbf{u}_{p}\right\rangle} \mathbf{u}_{p}
$$

Ex: As above, find the best approximation of $y(t)=t^{2}$ in $W=\left\{x_{1}(t), x_{2}(t)\right\}$.
Answer: (1) Find an orthogonal basis: $\left\{x_{1}(t), x_{2}(t)\right\} \rightarrow\left\{u_{1}(t), u_{2}(t)\right\}$
(2) Find the best approximation (orthogonal projection)

$$
\widehat{y}(t)=\frac{\left\langle y(t), u_{1}(t)\right\rangle}{\left\langle u_{1}(t), u_{1}(t)\right\rangle} u_{1}(t)+\frac{\left\langle y(t), u_{2}(t)\right\rangle}{\left\langle u_{2}(t), u_{2}(t)\right\rangle} u_{2}(t)=\frac{2}{5}(1+t)+\frac{8 / 5}{24 / 5}\left(\frac{4}{5}-\frac{6}{5} t\right)=\frac{2}{3} .
$$

- Thm (The Cauchy-Schwarz inequality): $|\langle\mathbf{u}, \mathbf{v}\rangle| \leq\|\mathbf{u}\|\|\mathbf{v}\|$

Reason: $|\langle\mathbf{u}, \mathbf{v}\rangle|=|\langle c \mathbf{v}+\mathbf{z}, \mathbf{v}\rangle|=|c\langle\mathbf{v}, \mathbf{v}\rangle|=\|c \mathbf{v}\|\|\mathbf{v}\| \leq\|\mathbf{u}\|\|\mathbf{v}\|$

- Thm (The triangle inequality): $\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|$
\& Ex: Let $V=C[-1,1]$ be the space of all continuous functions on $[-1,1]$. Define an inner product

$$
\langle p(t), q(t)\rangle=\int_{-1}^{1} p(t) q(t) d t
$$

Let $x_{1}(t)=1$ and $x_{2}(t)=2 t-1$. Then $\left\langle x_{1}(t), x_{2}(t)\right\rangle=\int_{-1}^{1}(2 t-1) d t=-2 \neq 0$.
That is, $\left\{x_{1}, x_{2}\right\}$ are linearly independent but not orthogonal.
Find an orthogonal basis for $W=\operatorname{Span}\left\{x_{1}, x_{2}\right\}$:

$$
\begin{aligned}
& p_{1}(t)=x_{1}(t)=1 \\
& p_{2}(t)=x_{2}(t)-\frac{\left\langle x_{2}(t), p_{1}(t)\right\rangle}{\left\langle p_{1}(t), p_{1}(t)\right\rangle} p_{1}(t)=(2 t-1)-\frac{-2}{2} 1=2 t
\end{aligned}
$$

Then $\{1,2 t\}$ is an orthogonal basis for W.

7 Chapter 7

7.1 Diagonalization of symmetric matrices

- Def: A symmetric matrix is a square matrix such that $A^{\top}=A$.

Ex: Are the following matrices symmetric?
$\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ Yes $\left[\begin{array}{cc}1 & 3 \\ -3 & 1\end{array}\right]$ No $\left[\begin{array}{lll}a & b & c \\ b & d & e \\ c & e & f\end{array}\right]$ Yes

- Def: P is an orthogonal matrix if $P^{-1}=P^{\top}$, that is, columns of P are orthonormal.

Ex: Are the following matrices orthogonal matrices?

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \text { Yes }\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right] \text { No } \quad P=\left[\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right] \text { Yes } \Longrightarrow P^{-1}=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

- Def: A is called orthogonally diagonalizable if $A=P D P^{\top}$ with an orthogonal matrix P and a diagonal matrix D.
- $\operatorname{Thm} A$ is orthogonally diagonalizable $\Longleftrightarrow A$ is symmetric $\left(A^{\top}=A\right)$

Ex: Let $A=\left[\begin{array}{ccc}3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3\end{array}\right]$ with distinct eigenvalues $-2,7$.
Decompose A such that $A=P D P^{\top}$:
(1) Find linearly independent eigenvectors:

For $\lambda_{1}=-2,\left[\begin{array}{ll}A-\lambda_{1} I & \mathbf{0}\end{array}\right]=\left[\begin{array}{cccc}5 & -2 & 4 & 0 \\ -2 & 8 & 2 & 0 \\ 4 & 2 & 5 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & 0 & 1 & 0 \\ 0 & (1) & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
It has solutions $\mathbf{x}=\left[\begin{array}{c}-1 \\ -\frac{1}{2} \\ 1\end{array}\right] x_{3}$. We can choose the first eigenvector $\mathbf{v}_{1}=\left[\begin{array}{c}-2 \\ -1 \\ 2\end{array}\right]$
For $\lambda_{2}=7,\left[\begin{array}{ll}A-\lambda_{2} I & \mathbf{0}\end{array}\right]=\left[\begin{array}{cccc}-4 & -2 & 4 & 0 \\ -2 & -1 & 2 & 0 \\ 4 & 2 & -4 & 0\end{array}\right] \sim\left[\begin{array}{cccc}(1) & \frac{1}{2} & -1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
It has solutions $\mathbf{x}=\left[\begin{array}{c}-\frac{1}{2} \\ 1 \\ 0\end{array}\right] x_{2}+\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] x_{3}$.
We can choose another two eigenvectors $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 2 \\ 0\end{array}\right]$ and $\mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$
(2) Find orthogonal eigenvectors:

Note that $\mathbf{v}_{1} \cdot \mathbf{v}_{2}=0, \mathbf{v}_{1} \cdot \mathbf{v}_{3}=0$ and $\mathbf{v}_{2} \cdot \mathbf{v}_{3}=-1$. Based on the Gram-Schmidt process:

$$
\begin{aligned}
& \mathbf{u}_{1}=\mathbf{v}_{1}=\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right] \\
& \mathbf{u}_{2}=\mathbf{v}_{2}=\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right] \\
& \mathbf{u}_{3}=\mathbf{v}_{3}-\frac{\mathbf{v}_{3} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}} \mathbf{u}_{2}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]-\frac{-1}{5}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{5} \\
\frac{2}{5} \\
1
\end{array}\right]
\end{aligned}
$$

(3) Find orthonormal eigenvectors:

$$
\begin{aligned}
& \mathbf{p}_{1}=\frac{1}{\left\|\mathbf{u}_{1}\right\|} \mathbf{u}_{1}=\frac{1}{3}\left[\begin{array}{c}
-2 \\
-1 \\
2
\end{array}\right]=\left[\begin{array}{c}
-\frac{2}{3} \\
-\frac{1}{3} \\
\frac{2}{3}
\end{array}\right] \\
& \mathbf{p}_{2}=\frac{1}{\left\|\mathbf{u}_{2}\right\|} \mathbf{u}_{2}=\frac{1}{\sqrt{5}}\left[\begin{array}{c}
-1 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}} \\
0
\end{array}\right] \\
& \mathbf{p}_{3}=\frac{1}{\left\|\mathbf{u}_{3}\right\|} \mathbf{u}_{3}=\frac{5}{3 \sqrt{5}}\left[\begin{array}{c}
\frac{4}{5} \\
\frac{2}{5} \\
1
\end{array}\right]=\left[\begin{array}{c}
\frac{4}{3 \sqrt{5}} \\
\frac{2}{3 \sqrt{5}} \\
\frac{\sqrt{5}}{3}
\end{array}\right]
\end{aligned}
$$

Then $P=\left[\begin{array}{lll}\mathbf{p}_{1} & \mathbf{p}_{2} & \mathbf{p}_{3}\end{array}\right]$ and $D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7\end{array}\right]$ such that $A=P D P^{\top}$.

- Spectral decomposition of $A=P D P^{\top}$ with $P=\left[\begin{array}{lll}\mathbf{p}_{1} & \cdots & \mathbf{p}_{n}\end{array}\right]$:

$$
A=\left[\begin{array}{lll}
\mathbf{p}_{1} & \cdots & \mathbf{p}_{n}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & \lambda_{n}
\end{array}\right]\left[\begin{array}{c}
\mathbf{p}_{1}^{\top} \\
\vdots \\
\mathbf{p}_{n}^{\top}
\end{array}\right]=\lambda_{1} \mathbf{p}_{1} \mathbf{p}_{1}^{\top}+\cdots+\lambda_{n} \mathbf{p}_{n} \mathbf{p}_{n}^{\top}
$$

\Longrightarrow Matrices $\mathbf{p}_{i} \mathbf{p}_{i}^{\top}$ above are called projection matrices:

$$
\left(\mathbf{p}_{i} \mathbf{p}_{i}^{\top}\right) \mathbf{x}=\mathbf{p}_{i}\left(\mathbf{p}_{i}^{\top} \mathbf{x}\right)=\mathbf{p}_{i}\left(\mathbf{p}_{i} \cdot \mathbf{x}\right)=\frac{\mathbf{x} \cdot \mathbf{p}_{i}}{\mathbf{p}_{i} \cdot \mathbf{p}_{i}} \mathbf{p}_{i}
$$

