
Outline of MA265
Instructor: Xu Wang

This is an outline of MA265 Linear Algebra. All the definitions can be found in the
textbook and are omitted here for brevity.

1 Chapter 1

1.1 Systems of linear equations

• Def: linear equation

Ex: Are they linear equations?
√

3x1 + x2 = 1,
√
x1 + x2 = 2, x1x2 + x3 = 1

• Def: linear system

Ex: Construct a linear system according to the following problem: An unknown
amount of chickens and rabbits were locked in a cage. The total amount of them
is 6, and there are 16 feet in total. What is the amount of chickens and rabbits,
respectively? (Hint: assume that there are x1 chickens and x2 rabbits.){

x1 + x2 = 6

2x1 + 4x2 = 16

Collect all coefficients⇐===========⇒
[

1 1 6
2 4 16

]
(augmented matrix) (1)

To get the solution{
x1 = ∗
x2 = ∗ ∗

corresponding matrix⇐===========⇒
[

1 0 ∗
0 1 ∗∗

]
, (2)

we only need to transform the matrix in (1) into the form in (2).

♣ Elementary row operations

1. Interchange two rows.

2. Multiply a row by a scalar.

3. Replace a row by the sum of itself and a multiple of another row.

Ex:[
1 1 6
2 4 16

]
∼
[

1 1 6
0 2 4

]
∼
[

1 1 6
0 1 2

]
∼
[

1 0 4
0 1 2

]
⇐⇒

{
x1 = 4

x2 = 2
One solution
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Ex: [
1 1 6
2 2 12

]
∼
[

1 1 6
0 0 0

]
⇐⇒

{
x1 = 6− x2

x2 is free
Infinitely many solutions

Ex: [
1 1 6
1 1 8

]
∼
[

1 1 6
0 0 2

]
⇐⇒

{
x1 + x2 = 6

0 = 2
No solution

• Def: solution/solution set

1. only one solution 2. infinitely many solutions 3. no solution

• Def: row equivalent

Properties: systems are equivalent ⇐⇒ corresponding matrices are row equivalent

⇐⇒ they have the same solution set

1.2 Row reduction and echelon forms

• Def: Nonzero row/column

Def: leading entry

• Def: echelon form (3 conditions)/reduced echelon form (5 conditions)

Ex: Find echelon forms and the reduced echelon form of the original matrix: 0 0 0 0
2 2 3 4
0 1 2 3

 ∼
 2 2 3 4

0 1 2 3
0 0 0 0

 ∼
 1 1 3

2
2

0 1 2 3
0 0 0 0

 ∼
 1 0 −1

2
−1

0 1 2 3
0 0 0 0


• Thm: Each matrix may be row equivalent to more than one matrix in echelon form,

but is row equivalent to only one matrix in reduced echelon form.

• Def: pivot position/pivot column

♣ Thm: A linear system is consistent if and only if its rightmost column is not a pivot
column.

Ex: Recall examples in Lesson 1.1:[
1© 1 6
2 4© 16

]
∼
[

1© 0 4
0 1© 2

]
the rightmost column is NOT a pivot colum, so consistent
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[
1© 1 6
2 2© 12

]
∼
[

1© 1 6
0 0 0

]
the rightmost column is NOT a pivot column, co consistent[

1© 1 6
1 1 8©

]
∼
[

1© 1 6
0 0 2©

]
the rightmost column is a pivot column, so inconsistent

• Remark: For a linear system:

consistent + no free variable ⇐⇒ only one solution e.g. the first matrix above

consistent + free variable ⇐⇒ infinitely many solutions e.g. the second one above

1.3 Vector equations

A linear system has the following equivalent expressions.[
1 1 6
2 4 16

]
row view←−−−−−

{
x1 + x2 = 6

2x1 + 4x2 = 16

column view−−−−−−−→
[

1
2

]
x1 +

[
1
4

]
x2 =

[
6
16

]
• Def: (column) vector

1. Vectors in R2: u =

[
u1

u2

]
, v =

[
v1

v2

]
(1) u = v if and only if u1 = v1 and u2 = v2, e.g.

[
1
2

]
6=
[

2
1

]
(2) u + v =

[
u1 + v1

u2 + v2

]
(3) cu =

[
cu1

cu2

]
, c is a scalar

2. Vectors in R3: u =

 u1

u2

u3


3. Vectors in Rn: u =

 u1
...
un


Geometric description: Identify a geometric point (a, b) with a vector

[
a
b

]
. Four

vectors u, v, u + v and the origin could form a parallelogram.
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• Def: linear combination

Ex: For the vector equation
[

1
2

]
x1 +

[
1
4

]
x2 =

[
6
16

]
, we have already known its

solution

{
x1 = 4

x2 = 2.
That is,

4

[
1
2

]
+2

[
1
4

]
=

[
6
16

]
, so

[
6
16

]
is a linear combination of

[
1
2

]
and

[
1
4

]
.

• Thm: Vector y is a linear combination of vectors v1, · · · ,vp
⇐⇒ The vector equation v1x1 + · · ·vpxp = y has a solution

⇐⇒ The augmented matrix
[
v1 · · · vp y

]
is consistent

• Def: Given vectors v1, · · · , vp,

Span{v1, · · · ,vp} = {all linear combinations of v1, · · · ,vp}
= {c1v1 + · · ·+ cpvp : c1, · · · , cp are scalars}
= subset spanned (generated) by vectors v1, · · · ,vp

Geometric description:

Span{u} denotes a straight line

Span{u,v} denotes a plane

1.4 Matrix equations Ax = b

• Def: product between A and x

Ex:
[

1 2 3
2 3 4

]
2×3

 1
2
3


3×1

=

[
1
2

]
× 1 +

[
2
3

]
× 2 +

[
3
4

]
× 3 =

[
14
20

]

Ex:

 1 0 0
0 1 0
0 0 1

 x1

x2

x3

 =

 x1

x2

x3

 , I =

 1 0 0
0 1 0
0 0 1

: identity matrix

Ex: For vectors v1,v2,v3, we can rewrite v1 + v2 − 2v3 =
[
v1 v2 v3

]  1
1
−2


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• Properties: A(u + v) = Au + Av, A is a matrix and u,v are vectors

A(cu) = cAu, c: scalar

Ex: Let A =

[
1 2
−2 3

]
, u =

[
1
0

]
and v =

[
1
2

]
. Then

A(u + v) =

[
1 2
−2 3

]([
1
0

]
+

[
1
2

])
=

[
1 2
−2 3

] [
2
2

]
=

[
6
2

]
Au + Av =

[
1 2
−2 3

] [
1
0

]
+

[
1 2
−2 3

] [
1
2

]
=

[
1
−2

]
+

[
5
4

]
=

[
6
2

]
• Thm: Let A be an m× n matrix with columns a1, · · · , an and b ∈ Rm.

The solution set of Ax = b⇐⇒ The solution set of a1x1 + · · ·+ apxp = b

⇐⇒ The solution set of the system determined by the augmented matrix
[
A b

]
• Question: Determine if for each vector b ∈ Rm, Ax = b is consistent

Ex: A =

[
1 1
2 2

]
, b =

[
b1

b2

]
[

1 1 b1

2 2 b2

]
∼
[

1 1 b1

0 0 b2 − 2b1

]
is consistent if and only if b2 − 2b1 = 0

Ex: A =

[
1 1
2 4

]
, b =

[
b1

b2

]
[

1 1 b1

2 4 b2

]
∼
[

1 1 b1

0 2 b2 − 2b1

]
is consistent for any b

♣ Thm: The following statements are equivalent:

For each b ∈ Rm, Ax = b is consistent

⇐⇒ For each b ∈ Rm, b is a linear combination of a1, · · · , an
⇐⇒ Rm = Span{a1, · · · , an}
⇐⇒ A has a pivot position in every row

1.5 Solution sets of Ax = b

• Def: A homogeneous linear system is in the form Ax = 0. It must be consistent with
the trivial solution x = 0.

If x 6= 0, it is called a nontrivial solution.

Remark: Ax = 0 has nontrivial solutions ⇐⇒ Ax = 0 has infinitely many solutions
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⇐⇒ Ax = 0 has free variables

Ex: A =

 1 2 3
2 3 4
1 2 3

. Find all the solutions of Ax = 0.

 1 2 3 0
2 3 4 0
1 2 3 0

 ∼
 1 2 3 0

0 −1 −2 0
0 0 0 0

 ∼
 1© 0 −1 0

0 1© 2 0
0 0 0 0

 ⇐⇒


x1 = x3

x2 = − 2x3

x3 = x3(free)

x =

 x1

x2

x3

 = x3

 1
−2
1

, x3 can be chosen as any real numbers.

• Def: x = tv, t ∈ R, is call the parametric vector form of the solution.

Ex: Find all solutions of x1 − x2 − x3 = 0.

[
1© −1 −1 0

]
⇐⇒


x1 = x2 + x3

x2 = x2 (free)
x3 = x3 (free)

⇐⇒ x =

 1
1
0

x2 +

 1
0
1

x3

Ex: Given x0 =

 1
1
1

. Find matrix A such that Ax0 = 0.

Suppose that x3 is a free variable and all the solution can be written as x =

 1
1
1

x3.

Then


x1 = x3

x2 = x3

x3 = x3 (free)
⇐⇒


x1 − x3 = 0

x2 − x3 = 0

0 = 0

⇐⇒ augmented matrix

 1 0 −1 0
0 1 −1 0
0 0 0 0

.
So we can choose A =

 1 0 −1
0 1 −1
0 0 0


Ex: Find all the solutions of Ax = b with A =

 1 2 3
2 3 4
1 2 3

 and b =

 1
0
1

.
 1 2 3 1

2 3 4 0
1 2 3 1

 ∼
 1 2 3 1

0 −1 −2 −2
0 0 0 0

 ∼
 1© 0 −1 −3

0 1© 2 2
0 0 0 0

 ⇐⇒

x1 =− 3 + x3

x2 = 2− 2x3

x3 = x3 (free)

All the solutions are in the form x =

 −3
2
0

+ x3

 1
−2
1


Compare it with the first example on this page, we get the following Thm.
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• Thm: Assume that Ax = b has a solution p. Then any solution of Ax = b has the
form x = p + v, where v is any solution of the homogeneous system Ax = 0.

1.7 Linear independence

• Def: 1. linearly independent

2. linearly dependent

Ex: Determine if the columns of A =

 1 2 3
2 3 4
3 4 5

 are linearly dependent

Augmented matrix

 1 2 3 0
2 3 4 0
3 4 5 0

 ∼
 1 2 3 0

0 −1 −2 0
0 −2 −4 0

 ∼
 1© 2 3 0

0 1© 2 0
0 0 0 0

.
There is infinitely many solutions for Ax = 0, so of course there is nontrivial ones,
since there is one free variable. Thus, the columns of A are linear dependent.

Ex: Determine if v1 =

 1
2
3

 and v2 =

 2
4
6

 are linear dependent.

Method 1: consider the augmented matrix
[
v1 v2 0

]
as above

Method 2: note that v2 = 2v1, so they are linearly dependent. See also what follows.

• Thm: Vectors v1, · · · ,vp are linearly dependent ⇐⇒ One of them is a linear combi-
nation of the others.

• Thm: Any set of vectors {v1, · · · ,vp} in Rn is linearly dependent if p > n.

Reason: Consider linear system v1x1 + · · · + vpxp = 0. There is p variables in total.
There is at most n pivot variables since there is n equations. As a result, there is at
least p − n(> 0) free variables. So the system has nontrivial solutions, and thus the
vectors are linearly dependent.

• Thm: Any set of vectors {v1, · · · ,vp} containing the zero vector is linearly dependent.

Reason: Without loss of generality, we assume that v1 = 0. Then apparently

v1 · 1 + v2 · 0 + · · ·+ v2 · 0 = 0

is always true, that is, v1x1 + · · ·+ vpxp = 0 has a nontrivial solution


x1 = 1

x2 = 0

...
xp = 0
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1.8 Linear transformations

• Def: transformation (mapping)

T : Rn → Rm Rn : domain, Rm : codomain
x 7→ T (x) T (x) : image of x, range of T : all the images

Ex: Define the following transformation

T : R2 → R2

x 7→
[

1
1

]

What is T
([

1
1

])
, T
([

1
0

])
and T

([
0
0

])
?

Answer: T
([

1
1

])
=

[
1
1

]
, T
([

1
0

])
=

[
1
1

]
, T
([

0
0

])
=

[
1
1

]
Ex: Define another transformation

T : R2 → R2

x 7→ 2x

What is T
([

1
1

])
, T
([

1
0

])
and T

([
0
0

])
?

Answer: T
([

1
1

])
=

[
2
2

]
, T
([

1
0

])
=

[
2
0

]
, T
([

0
0

])
=

[
0
0

]
• Def: matrix transformation (T (x) = Ax)

• Def: linear transformation

♣ For a matrix transformation T (x) = Ax, we have the following three kinds of problems.

1. Given A, u =⇒ T (u)

Ex: T : R2 → R2 with A =

[
1 2
3 4

]
, u =

[
1
2

]
. What is the image T (u)?

Answer: T (u) = Au =

[
1 2
3 4

] [
1
2

]
=

[
5
11

]
.

2. Given A, T (u) =⇒ u

Ex: T : R2 → R2 with A =

[
1 2
3 4

]
, T (u) =

[
1
3

]
. What is u?

Answer: Since u satisfies T (u) = Au, we have
[

1 2
3 4

]
u =

[
1
3

]
. Then it suffices

to consider the augmented matrix and do the row reduction:
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[
1 2 1
3 4 3

]
∼
[

1 2 1
0 1 0

]
∼
[

1 0 1
0 1 0

]
, that is,u =

[
1
0

]
.

3. For each x, the image T (x) is given =⇒ A

Ex: For each x =

 x1

x2

x3

, T (x) =

 x1 − x2

2x2

x1 + x3

. What is A?

Answer: Rewrite T (x) =

 x1 − x2

2x2

x1 + x3

 =

 1
0
1

x1 +

 −1
2
0

x2 +

 0
0
1

x3 = 1 −1 0
0 2 0
1 0 1

 x1

x2

x3

, so A =

 1 −1 0
0 2 0
1 0 1

.
Ex: Consider T : R2 → R2. Let e1 =

[
1
0

]
and e2 =

[
0
1

]
be the two columns of the

identity matrix. If we know T (e1) =

[
1
2

]
and T (e2) =

[
3
4

]
, what is A?

Answer: For each x =

[
x1

x2

]
= e1x1 + e2x2, we have

T (x) = T (e1x1 + e2x2) = T (e1)x1 + T (e2)x2 =
[
T (e1) T (e2)

] [ x1

x2

]
.

So A =
[
T (e1) T (e2)

]
=

[
1 3
2 4

]
.

1.9 The matrix of a linear transformation

• Thm: Let T : Rn → Rm be a linear transformation. Then there exists a unique matrix
A such that T (x) = Ax for any x ∈ Rn. In fact,

A =
[
T (e1) · · · T (en)

]
,

where e1, · · · , en are the columns of the identity matrix In×n.

• Geometric description in R2: e1 =

[
1
0

]
, e2 =

[
0
1

]
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1. Reflections: A =

[
1 0
0 −1

]
2. Contractions and expansions: A =

[
1 0
0 k

]
3. Shears: A =

[
1 k
0 1

]
4. Rotation: A =

[
cosφ − sinφ
sinφ cosφ

]
5. Projections: A =

[
1 0
0 0

]
• Def: onto mapping

Ex: The mapping T : R2 → R2 is NOT onto.

x 7→
[

1
1

]
♣ Thm: Let T : Rn → Rm be a linear transformation.

T is onto. ⇐⇒ For each b ∈ Rm, Ax = b is consistent.

⇐⇒ A has a pivot position in every row.

⇐⇒ Rm = Span{a1, · · · , an} with a1, · · · , an being the columns of A

• Def: one-to-one mapping

Ex: The mapping T : R2 → R2 is NOT one-to-one.

x 7→
[

1
1

]
♣ Thm: Let T : Rn → Rm be a linear transformation.

T is one-to-one. ⇐⇒ Ax = 0 has only the trivial solution.

⇐⇒ The columns of A are linearly independent.

10



2 Chapter 2

2.1 Matrix operations

Am×n =
[
a1 · · · an

]
with ai =


a1i

a2i
...
ami

 =⇒ A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
am1 am2 · · · amn

( = [aij]m×n

)

Diagnal matrix: a square matrix with zero non-diagonal entries, for example, In =

 1
. . .

1


n×n

1. Sum and scalar multiple

A = B: same size & same corresponding entries

A+B: the sum has the same size as A and B & adding corresponding entries

cA: same size as A & each entry in A is multiplied by c

Properties: A+B = B + A, c(A+B) = cA+ cB

2. Multiplication

Def: Given Am×n and Bn×p =
[
b1 · · · bp

]
, the product is defined by

AB =
[
Ab1 · · · Abp

]

Ex: Given A =

[
1 2 1
2 1 2

]
2×3

and B =

 1 0 1
1 1 0
0 1 1


3×3

. What is AB?

Answer: AB =

[
1 2 1
2 1 2

] 1 0 1
1 1 0
0 1 1

 =

[
3 3 2
3 3 4

]
2×3

=⇒ The (i, j)-entry in AB can be calculated as (AB)ij = rowi(A) · columnj(B)

Ex: Since any given matrix could define a linear transformation, we have

Am×n ⇐⇒ TA : Rn → Rm, Bn×p ⇐⇒ TB : Rp → Rn

x 7→ Ax, x 7→ Bx

That is, for any x ∈ Rp, x TB7−→ Bx
TA7−→ ABx, which define a new mapping

(AB)m×p ⇐⇒ TAB : Rp → Rn

x 7→ ABx
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Properties: A(BC) = (AB)C, A(B + C) = AB + AC, c(AB) = (cA)B = A(cB)

♣ In general, AB 6= BA e.g. A =

[
1 1
0 0

]
, B =

[
1 2
3 4

]
♣ In general, AB = AC ; B = C e.g. A,B as above, C =

[
2 3
2 3

]
♣ In general, AB = 0 ; A = 0 or B = 0 A as above, B =

[
1 1
−1 −1

]
3. Transpose

Def: Given Am×n. Its transpose, denoted by A>, is an n ×m matrix whose columns
are the corresponding rows of A

Properties: (A>)> = A, (A+B)> = A> +B>, (cA)> = cA>, (AB)> = B>A>

2.2 & 2.3 Inverse of a matrix

• Def: invertible

♣ If AB = AC and A is invertible =⇒ B = C

♣ If AB = 0 and A is invertible (resp. B is invertible) =⇒ B = 0 (resp. A = 0)

• Properties: (A−1)
−1

= A, (AB)−1 = B−1A−1, (A>)−1 = (A−1)>

• Thm: LetA =

[
a b
c d

]
. If ad−bc 6= 0, thenA is invertible andA−1 = 1

ad−bc

[
d −b
−c a

]
.

If ad− bc = 0, then A is not invertible.

Ex: Let A =

[
1 2
3 5

]
. What is A−1?

Answer: ad− bc = 1× 5− 2× 3 = −1, so A is invertible and

A−1 =
1

−1

[
5 −2
−3 1

]
=

[
−5 2
3 −1

]
• Thm: If An×n is invertible, then for each vector b ∈ Rn, Ax = b has a unique solution
x = A−1b.

=⇒ In this case, A has a pivot position in every row.

♣ Thm: An×n is invertible ⇐⇒ A is row equivalent to In
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• Def: elementary matrix

Ex: E1 =

[
1 0
r 1

]
, E2 =

[
0 1
1 0

]
, E3 =

[
r 0
0 1

]
For any 2× 2 matrix A, we have

E1A =

[
1 0
r 1

] [
a b
c d

]
=

[
a b

ra+ c rb+ d

]
=⇒ EA is obtained by performing the same row operation to A

♣ Calculation of A−1: If An×n is invertible, then A ∼ In and there exists a matrix A−1

such that A−1A = In. That is, A−1 is a kind of row operations that transform A to In.
Moreover,

A−1
[
A In

]
=
[
In A−1

]
That is, under the operation A−1, we have

[
A In

]
∼
[
In A−1

]
Ex: Let A =

[
1 2
3 5

]
.

[
A In

]
=

[
1 2 1 0
3 5 0 1

]
∼
[

1 2 1 0
0 −1 −3 1

]
∼
[

1 0 −5 2
0 1 3 −1

]
=
[
In A−1

]
So A−1 =

[
−5 2
3 −1

]
.

2.8 Subspaces of Rn

• Def: subspace

Ex: For u ∈ R3, Span{u} is a subspace of R3.

For u,v ∈ R3, Span{u,v} is a subspace of R3.

Ex: Rn, {0} are both subspaces of Rn.

• Def: column space of A: ColA

=⇒ For Am×n, ColA is a subspace of Rm

• Def: null space of A: NulA

=⇒ For Am×n, NulA is a subspace of Rn

Ex: Let A =

[
1 2
3 4

]
and u =

[
1
4

]
. Is u in ColA or NulA?

13



1© Consider
[
A u

]
=

[
1 2 1
3 4 4

]
∼
[

1 2 1
0 2 −1

]
. The rightmost column is not a

pivot column, so the system is consistent. Equivalently, there is a solution x such that
Ax = u, that is, u is a linear combination of the columns of A. Hence, u is in ColA.

2© Consider Au =

[
1 2
3 4

] [
1
4

]
=

[
9
19

]
. That is, u is not a solution of the

homogeneous system Ax = 0, so u is not in NulA.

Ex: Let A =

[
1 2
2 4

]
. Then

ColA = Span
{[

1
2

]
,

[
2
4

]}
= Span

{[
1
2

]}
.

Question: How to find the smallest amount of vectors that span a subspace?

• Def: basis

Ex: Let A =

[
1 2 3
2 3 4

]
. Find a basis for ColA\NulA.

1© NulA: We need to find all the solutions of Ax = 0. Consider the augmented matrix[
A 0

]
=

[
1 2 3 0
2 3 4 0

]
∼
[

1 2 3 0
0 −1 −2 0

]
∼
[

1 0 −1 0
0 1 2 0

]
The solution is in the form

x =

 x1

x2

x3

 =

 x3

−2x3

x3

 =

 1
−2
1

x3, x3 is a free parameter.

So NulA=Span


 1
−2
1

, and the set


 1
−2
1

 is a basis for NulA.

2© ColA: We need to find linearly independent columns of A. Based on the echelon of[
A 0

]
calculated above, we can get the echelon form of A directly

A =

[
1© 2 3
2 3© 4

]
∼
[

1© 0 −1
0 1© 2

]
.

The third column can be written as a linear combination of the first two columns, and
the first two columns are linear independent. So

ColA = Span
{[

1
2

]
,

[
2
3

]
,

[
3
4

]}
= Span

{[
1
2

]
,

[
2
3

]}
,

and the set
{[

1
2

]
,

[
2
3

]}
is a basis for ColA.

♣ Thm: The pivot columns of A form a basis for ColA.

14



2.9 Dimension and rank

• Def: coordinate vector

Ex: x =

[
5
6

]
= 5e1 + 6e2 where e1 =

[
1
0

]
and e2 =

[
0
1

]
form a basis for R2.

Hence,
[

5
6

]
is the coordinate vector of x relative to the standard basis {e1, e2}.

Ex: x =

[
5
6

]
, b1 =

[
1
2

]
, b2 =

[
3
4

]
.

1© {b1,b2} is also a basis for R2:
[
b1 b2

]
=

[
1 3
2 4

]
∼
[

1© 0
0 1©

]
2© Hence, we can find the coordinate vector of x relative to the new basis {b1,b2},

that is, find
[
c1

c2

]
such that x = c1b1 + c2b2:

[
b1 b2 x

]
=

[
1 3 5
2 4 6

]
∼
[

1 0 −1
0 1 2

]
, so

[
c1

c2

]
=

[
−1
2

]
.

• Def: dimension
Ex: Rn has the standard basis {e1, · · · , en}, so dim Rn = n.

Ex: Let A =

 1 2 3 4
0 0 1 2
0 0 0 1

.
1© ColA={the set generated by the pivot columns}=Span{a1, a3, a4}, so dim ColA=3
2© NulA={all the solutions of Ax = 0}:

[
A 0

]
=

 1 2 3 4 0
0 0 1 2 0
0 0 0 1 0

 ∼
 1© 2 0 0 0

0 0 1© 0 0
0 0 0 1© 0

 , so x =


−2x2

x2

0
0

 =


−2
1
0
0

x2

Hence, NulA = Span



−2
1
0
0


, and dim NulA=1

=⇒ dim ColAm×n(No. of basic variables)+dim NulAm×n(No. of free variables)= n(No.
of variables)

• Def: rankA=dim ColA

• Thm (The rank theorem): For Am×n, rankA+dim NulA = n

• Thm (The basis theorem): Let H be a p-dimensional subspace of Rn. Any linearly
independent set of exactly p vectors in H is a basis for H.

15



3 Chapter 3

3.1 Determinants of An×n

• Def: submatrix Aij

Ex: Consider the 2× 2 matrix A =

[
a11 a12

a21 a22

]
. A11 = [a22], A12 = [a21], A22 = [a11]

Ex: For A =

 1 2 3
2 3 4
3 4 5


3×3

, A11 =

[
2 4
3 5

]
2×2

, A12 =

[
3 4
4 5

]
2×2

• Def: determinant of A: detA = a11detA11 − a12detA12 + · · ·+ a1n(−1)1+ndetA1n

In particular, det[a11] = a11.

Ex: For A =

[
a11 a12

a21 a22

]
, detA = a11detA11 − a12detA12 = a11a22 − a12a21

• Thm: An×n is invertible ⇐⇒ detA 6= 0

• Def: the (i, j)-cofactor of A is denoted by Cij = (−1)i+jdetAij
=⇒ Then the definition of detA above can be rewritten as

detA = a11C11 + a12C12 + · · ·+ a1nC1n,

which is called the cofactor expansion across the first row.

• Thm: detA can be calculated by the cofactor expansion across any row of down any
column

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin

= a1jC1j + a2jC2j + · · ·+ anjCnj

Ex: Calculate the following determinant∣∣∣∣∣∣∣∣∣∣
1 0 2 3 1
2 0 1 2 3
0 0 3 0 0
1 2 2 3 4
0 0 1 2 0

∣∣∣∣∣∣∣∣∣∣
3rd row

====== 3(−1)3+3

∣∣∣∣∣∣∣∣
1 0 3 1
2 0 2 3
1 2 3 4
0 0 2 0

∣∣∣∣∣∣∣∣
4th row

====== 3 · 2(−1)4+3

∣∣∣∣∣∣
1 0 1
2 0 3
1 2 4

∣∣∣∣∣∣
2nd column

======== (−6)2(−1)3+2

∣∣∣∣ 1 1
2 3

∣∣∣∣ = 12

Ex:

∣∣∣∣∣∣
2 2 3
0 4 5
0 0 6

∣∣∣∣∣∣ 1st column
======== 2(−1)1+1

∣∣∣∣ 4 5
0 6

∣∣∣∣ = 2 · 4 · 6

16



• Thm: If An×n is a triangular matrix, then its determinant is the product of the main
diagonals, that is, detA = Πn

i=1aii.

• Thm (Row operations): Let A be a square matrix.

1© If a scalar multiple of one row of A is added to another row to produce B, then
detB =detA.

2© If two rows of A are interchanged to produce B, then detB = −detA.
3© If a scalar k is multiplied to one row of A to produce B, then detB = kdetA.

Ex: ∣∣∣∣∣∣
5 6 7
5 6 8
50 260 150

∣∣∣∣∣∣ use 3©
====== 10

∣∣∣∣∣∣
5 6 7
5 6 8
5 26 15

∣∣∣∣∣∣ use 1©
====== 10

∣∣∣∣∣∣
5 6 7
0 0 1
0 20 8

∣∣∣∣∣∣
use 2©

====== −10

∣∣∣∣∣∣
5 6 7
0 20 8
0 0 1

∣∣∣∣∣∣ = −1000

3.2 Properties of determinants

• Thm: Let A be a square matrix, then detA> = detA.

=⇒ detA> = cofactor expansion across the ith row of A>

= cofactor expansion down the ith column of A

= detA

• Thm (Multiplicative property): Let A and B be n × n square matrices. Then
det(AB) = detA·detB
=⇒ If A is invertible, then 1 = |I| = |AA−1| = |A||A−1|. Hence, |A−1| = 1

|A| .

=⇒ In general, det(A+B) 6= detA+detB

• Thm (Linearity property): Assume that the jth column of An×n is allowed to vary
A =

[
a1 · · · aj−1 x aj+1 · · · an

]
. Define the mapping T : Rn → R by T (x) =

detA. Then T is linear: T (cx) = cT (x) and T (x + y) = T (x) + T (y).

=⇒
∣∣∣∣ a11 cx1

a21 cx2

∣∣∣∣ = c

∣∣∣∣ a11 x1

a21 x2

∣∣∣∣ and ∣∣∣∣ a11 x1 + y1

a21 x2 + y2

∣∣∣∣ =

∣∣∣∣ a11 x1

a21 x2

∣∣∣∣+

∣∣∣∣ a11 y1

a21 y2

∣∣∣∣
Ex: ∣∣∣∣∣∣

17 17 17
25 26 25
55 88 56

∣∣∣∣∣∣ =

∣∣∣∣∣∣
17 17 + 0 17
25 25 + 1 25
55 55 + 33 56

∣∣∣∣∣∣ =

∣∣∣∣∣∣
17 17 17
25 25 25
55 55 56

∣∣∣∣∣∣+

∣∣∣∣∣∣
17 0 17
25 1 25
55 33 56

∣∣∣∣∣∣
17



=

∣∣∣∣∣∣
17 0 17 + 0
25 1 25 + 0
55 33 55 + 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
17 0 17
25 1 25
55 33 55

∣∣∣∣∣∣+

∣∣∣∣∣∣
17 0 0
25 1 0
55 33 1

∣∣∣∣∣∣ =

∣∣∣∣∣∣
17 0 0
25 1 0
55 33 1

∣∣∣∣∣∣ = 17.

• Def: Let A be an n× n matrix and b is vector in Rn. Denote

Ai(b) =
[
a1 · · · ai−1 b ai+1 · · · an

]
♣ Thm (Cramer’s rule): If An×n is invertible, then for each b in Rn, the system Ax = b

has a unique solution x with entries

xi =
detAi(b)

detA

Ex: Consider
[

1 1
2 4

] [
x1

x2

]
=

[
6
16

]
. We have got x1 = 4 and x = 2 in Chapter 1.

Next we use Cramer’s rule to check these results.

x1 =
detA1(b)

detA
=

∣∣∣∣ 6 1
16 4

∣∣∣∣∣∣∣∣ 1 1
2 4

∣∣∣∣ =
8

2
= 4

x2 =
detA2(b)

detA
=

∣∣∣∣ 1 6
2 16

∣∣∣∣∣∣∣∣ 1 1
2 4

∣∣∣∣ =
4

2
= 2

3.3 Volume and linear transformation

Recall: For A2×2 =

[
a b
c d

]
, if A is invertible, then A−1 = 1

detA

[
d −b
−c a

]
• Def: The adjugate (adjoint) of An×n is

adjA =


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
...

C1n C2n · · · Cnn

 ,
where Cij = (−1)i+jdetAij is the (i, j)-cofactor of A.

Ex: Given A =

[
a b
c d

]
, calculate adjA.
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Answer: C11 = (−1)1+1det[d] = d, C12 = (−1)1+2det[c] = −c
C21 = (−1)2+1det[b] = −b, C22 = (−1)2+2det[a] = a

Hence, adjA =

[
d −b
−c a

]
=⇒ (A2×2)−1 = 1

detAadjA

• Thm (An inverse formula): Let A be an n× n invertible matrix. Then

A−1 =
1

detA
adjA

=⇒ The (i, j) entry of A−1 is Cji
detA .

Ex: For A =

[
k 0
0 1

]
, the area determined by the columns

[
k
0

]
and

[
0
1

]
is |k|.

=⇒ Moreover, the parallelogram determined by two vectors
[
k
0

]
and

[
0
1

]
is the

same as the parallelogram determined by four points (0, 0), (k, 0), (0, 1) and (k, 1).

• Thm: For An×n, the volume determined by its columns is |detA|.

• Thm: Let T : Rn → Rn be a linear mapping with T (x) = Ax. Then for any region S
in Rn,

{The volume of T (S)} = |detA| · {The volume of S}.
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Review of Chapter 3

1. Determinant of An×n:

detA = ai1Ci1 + ai2Ci2 + · · ·+ ainCin (the cofactor expansion across the ith row)
= a1jC1j + a2jC2j + · · ·+ anjCnj (the cofactor expansion down the jth column)

2. Properties of determinants:

1© row operations: three kinds of elementary row operations

2© transpose: |A>| = |A|
3© multiplication: |AB| = |A| · |B|
4© linearity:

∣∣[ a1 x + y
]∣∣ =

∣∣[ a1 x
]∣∣+

∣∣[ a1 y
]∣∣

3. Solve Ax = b:

1©
[
A b

]
2© If A is invertible (detA 6= 0), then x = A−1b

3© If A is invertible (detA 6= 0), then the ith entry in x is xi = detAi(b)
detA

4. Calculate A−1:

1©
[
A I

]
∼
[
I A−1

]
2© A−1 = 1

detAadjA (this can be used to calculate the (i, j) entry of A−1)

5. Matlab code (for the ones who are interested):

Define a vector: >> b = [1; 2]

Define a matrix: >> A = [1, 2; 3, 4]

Determinant of A: >> det(A)

Inverse of A: >> inv(A)

Adjoint of A: >> adjoint(A)

Solution of Ax = b if: >> A\b

20



4 Chapter 4

4.1 Vector spaces and subspaces

• Def: vector spaces

Ex: Rn is a vector space with zero object

 0
...
0


n×1

Ex: The polynomial space Pn = {all polynomials of the form p(t) = a0+a1t+· · ·+antn}
is a vector space with zero object 0 (constant).

Ex: The matrix space Mm×n = { all m × n matrices A} is a vector space with zero

object

 0 · · · 0
... . . . ...
0 · · · 0


m×n

• Def: For general vector spaces V and W , a linear transformation T : V → W satisfies

(i) T (u + v) = T (u) + T (v) for u,v ∈ V ;

(ii) T (cu) = cT (u) for u ∈ V .

• Def: subspace H of general vector space V

Ex: {0} and V are subspaces of V

Ex: For v1,v2 ∈ V , the spanning set H = Span{v1,v2} is a subspace of V .

Ex: Determine if w =

 1
2
1

 is in the subspace spanned by v1 =

 1
2
3

 and v2 =

 2
3
4

.
⇐⇒ Determine if w ∈ Span{v1,v2}.

⇐⇒ Consider the augmented matrix
[
v1 v2 w

]
=

 1 2 1
2 3 2
3 4 1

 ∼
 1 2 1

0 1 0
0 0 2


The system above is not consistent, so w is not in the spanning set.

4.2 Column/Null spaces and linear transformation

• Def: ColAm×n = Span{a1, · · · , an}
= {b ∈ Rm : b = Ax for some x ∈ Rn}
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Ex: Given a set S =




2s+ 3t
r + s− 2t

4r + s
3r − s− t

 : r, s, t real

. Find A such that S = ColA.

Answer: Note that

S =




0
1
4
3

 r +


2
1
1
−1

 s+


3
−2
0
−1

 t : r, s, t real


= Span




0
1
4
3

 ,


2
1
1
−1

 ,


3
−2
0
−1




As a result, A =


0 2 3
1 1 −2
4 1 0
3 −1 −1


Ex: Given A =

 1 2
2 3
3 4

 and b =

 1
2
1

. Is b in ColA?

⇐⇒ Determine if b ∈ Span{a1, a2}

⇐⇒ Consider the augmented matrix
[
a1 a2 b

]
=

 1 2 1
2 3 2
3 4 1

 ∼
 1 2 1

0 1 0
0 0 2


The system is not consistent, so b is not in ColA.
Ex: Given A as above. Find k such that ColA is a subspace of Rk.
Answer: k = 3

• Def: NulAm×n = {x ∈ Rn : Ax = 0}

Ex: Given A =

[
1 2 3 4
2 3 4 5

]
. Find NulA.

Answer: Consider the augmented matrix of the homogeneous system[
1 2 3 4 0
2 3 4 5 0

]
∼
[

1 2 3 4 0
0 −1 −2 −3 0

]
∼
[

1 0 −1 −2 0
0 1 2 3 0

]

Its solutions are in the form


x1 = x3 + 2x4

x2 =− 2x3 − 3x4

x3 = x3 (free)
x4 = x4 (free)

⇐⇒ x =


1
−2
1
0

x3 +


2
−3
0
1

x4.
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Hence, NulA = Span




1
−2
1
0

 ,


2
−3
0
1


.

Ex: Given A as above and u =


1
−1
−1
1

. Is u in NulA?

Answer:
1© One way is to find NulA first, and then check if u is in the spanning set. It will
need a lot of calculations.

2© The simplest way is to check if Au = 0: Au =

[
1 2 3 4
2 3 4 5

]
1
−1
−1
1

 =

[
0
0

]
, so

u is in NulA.

4.3 Linearly independent sets and bases

• Def: The set of vectors {v1, · · · ,vp} in V is linearly independent if c1v1+· · ·+cpvp = 0
has only the trivial solution c1 = · · · = cp = 0.

Ex: Is the set


 1

2
3

 ,
 2

3
4

 in R3 linearly independent?

Answer: Consider the augmented matrix

 1 2 0
2 3 0
3 4 0

 ∼
 1 0 0

0 1 0
0 0 0

. There is only

the trivial solution, so the set above is a linearly independent set.

Ex: It the set {1, t, t2} in P2 linearly independent?

Answer: Consider the homogeneous equation c1 · 1 + c2t + c3t
2 = 0. It has only the

trivial solution c1 = c2 = c3 = 0. So the set is a linear independent set.

• Def: Let H be a subspace of V . Then the set B = {v1, · · · , vp} is a basis for H if
1© B is a linearly independent set,
2© H =Span{v1, · · · , vp}.
Ex: Rn =Span{e1, · · · , en}. The set {e1, · · · , en} is called the standard basis for Rn.

Ex: Pn = {c0 + c1t+ c2t
2 + · · ·+ cnt

n : c0, c1, · · · , cn real} =Span{1, t, t2, · · · , tn}.
The set {1, t, t2, · · · , tn} is called the standard basis for Pn.
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Ex (8 in the textbook): Given the set


 1
−4
3

 ,
 0

3
−1

 ,
 3
−5
4

 ,
 0

2
−2

 in R3.

(1) Is it a basis for R3?
No, because any basis for R3 should contain exactly 3 vectors.
(2) Find a basis for the set spanned by above vectors.
It suffices to find the linearly independent vectors in above set: 1 0 3 0
−4 3 −5 2
3 −1 4 −2

 ∼
 1 0 3 0

0 3 7 2
0 −1 −5 −2

 ∼
 1 0 3 0

0 1 5 2
0 3 7 2

 ∼
 1© 0 3 0

0 1© 5 2
0 0 -8© −4


So


 1
−4
3

 ,
 0

3
−1

 ,
 3
−5
4

 is a basis for Span


 1
−4
3

 ,
 0

3
−1

 ,
 3
−5
4

 ,
 0

2
−2

.

Since there is exactly three vectors in the set


 1
−4
3

 ,
 0

3
−1

 ,
 3
−5
4

, it is also

a basis for R3.

• Thm (The spanning set thm): For {v1, ·, vp} in V , if vk is a linear combination of the
other vectors, then

Span{v1, · · · , vp} = Span{v1, · · · , vk−1, vk+1, · · · , vp}.

Ex: According to theorem above, Span{u, 2u} = Span{u} = Span{2u}
Ex: ColA = Span{ all the columns } = Span{ pivot columns }
Ex: Find a basis for the set of vectors in the plane x+ 2y + z = 0.
Answer: Denote the set above by

S =


 x
y
z

 : x+ 2y + z = 0

 =


 x
y
z

 :
[

1 2 1
]  x

y
z

 = 0

 = Nul
[

1 2 1
]
.

We only need to find a basis for Nul
[

1 2 1
]
:

[
1© 2 1 0

]
=⇒


x =− 2y − z
y = y (free)
z = z (free)

=⇒

 x
y
z

 =

 −2
1
0

 y +

 −1
0
1

 z.
So


 −2

1
0

 ,
 −1

0
1

 is a basis for S.

24



4.5 Dimension of vector spaces

• Def: dimV = number of vectors in a basis

Ex: dimRn = n with a standard basis {e1, · · · , en}
Ex: dimPn = n+ 1 with a standard basis {1, t, · · · , tn}

• Thm: If V is a vector space with a basis B = {v1, · · · ,vp}, then
(1) any basis for V has exactly p vectors;

(2) any set of more than p vectors in V is linearly dependent.

Ex: R2 has a standard basis
{[

1
0

]
,

[
0
1

]}
.

Is
{[

1
2

]
,

[
2
3

]
,

[
3
4

]}
a linearly independent set? No

Is the set above a basis for R2? No

Ex: P1 has a standard basis {1, t}.
Are the following sets bases for P1?

{1, 1 + t} Yes

{2, t} Yes

{t, 2 + t} Yes

{t, 2t} No, cause one is a scalar multiple of the other one

{1, t, 1 + t} No, cause there is more than 2 vectors

Ex: Define a set S =


 a+ 2b

2a+ 4b
−a− 2b

 : a, b real

. What is dimS?

Answer: S =


 1

2
−1

 a+

 2
4
−2

 b : a, b real


= Span


 1

2
−1

 ,
 2

4
−2

 = Span


 1

2
−1


So dimS=1.

Ex: Define a set T =


 a
b
c

 : a+ b+ c = 0

. What is dimT?

Answer: T =


 a
b
c

 :
[

1 1 1
]  a

b
c

 = 0

 = Nul
[

1 1 1
]
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=


 −b− cb

c

 : b, c real

 =


 −1

1
0

 b+

 −1
0
1

 c : b, c real


= Span


 −1

1
0

 ,
 −1

0
1


So dimT=2.

Ex: A =


1 2 3 4 5
0 0 0 −2 6
0 0 0 0 0
0 0 0 0 0


4×5

. Then

dim ColA = 2, and ColA is a subspace of R4

dim NulA = 3, and NulA is a subspace of R5

• Thm: If H is a subspace of a finite-dimensional vector space V , then

(1) dimH ≤ dimV ;

(2) H is also a finite-dimensional vector space;

(3) any basis for H can be extended to a basis for V .

Ex: Given A as above. Then ColA is a subspace of R4. We now check the above three
results:

(1) dim ColA ≤ dimR4 holds;

(2) holds apparently;

(3) The pivot columns form a basis




1
0
0
0

 ,


4
−2
0
0


 for ColA.

Now we extend it to a basis for R4:




1
0
0
0

 ,


4
−2
0
0

 ,


0
0
1
0

 ,


0
0
0
1


.

4.6 Rank

For Am×n =
[
a1 · · · an

]
, ColA = Span{a1, · · · , an}.
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• Def: For Am×n =

 r1
...
rm

, the row space is RowA = Span{r1, · · · , rm}, which is a

subspace of Rn.
=⇒ RowA = ColA>

Ex: A =

[
r1

r2

]
, then RowA = Span{r1, r2}.

If we use the three kinds of elementary row operations:

A
row interchange∼ A1 =

[
r2

r1

]
, then RowA1 = Span{r2, r1};

A
scalar multiple∼ A2 =

[
cr1

r2

]
, then RowA2 = Span{cr1, r2};

A
row replacement∼ A3 =

[
r1

r2 + cr1

]
, then RowA3 = Span{r1, r2 + cr1}.

The above row spaces are the same: RowA = RowA1 = RowA2 = RowA3.
That is, elementary row operations won’t change the row space.

• Thm: If matrices A and B are row equivalent, then they have the same row space.
If B is in echelon form, then its non-zero rows form a basis for RowA = RowB.

Ex: Given A =


1 1 1 1 1
1 2 3 4 5
2 3 4 5 6
1 2 1 2 1

. Find bases for ColA, RowA and NulA.

1© echelon form:

A ∼


1 1 1 1 1
0 1 2 3 4
0 1 2 3 4
0 1 0 1 0

 ∼


1 1 1 1 1
0 1 2 3 4
0 0 0 0 0
0 0 −2 −2 −4

 ∼


1© 1 1 1 1
0 1© 2 3 4
0 0 1© 1 2
0 0 0 0 0



ColA = Span




1
1
2
1

 ,


1
2
3
2

 ,


1
3
4
1




RowA = Span{(1, 1, 1, 1, 1), (0, 1, 2, 3, 4), (0, 0, 1, 1, 2)}
2© reduced echelon form:

A ∼


1© 1 0 0 −1
0 1© 0 1 0
0 0 1© 1 2
0 0 0 0 0

 ∼


1© 0 0 −1 −1
0 1© 0 1 0
0 0 1© 1 2
0 0 0 0 0


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

x1 = x4 + x5

x2 =− x4

x3 =− x4 − 2x5

x4 = x4 (free)
x5 = x5 (free)

=⇒ x =


1
−1
−1
1
0

x4 +


1
0
−2
0
1

x5

NulA = Span




1
−1
−1
1
0

 ,


1
0
−2
0
1




• Def: rankA = dimColA

Ex: Given A as above. We have

dimColA = dimRowA = number of pivot positions = 3.

♣ Thm (The rank thm): For Am×n, it holds

dimColA = dimRowA = rankA and rankA+dimNulA = n.

=⇒ For (A>)n×m, rankA>+dimNulA> = m, where

rankA> = dimColA> = dimRowA = dimColA = rankA.

Ex: If the null space of a 7 × 6 matrix A is 5-dimensional, what are dimColA and
dimRowA?

Answer: dimColA = dimRowA = 6−dimNulA=1.

• Thm: Let A be an n× n matrix. Then

A is invertible ⇐⇒ det(A) 6= 0

⇐⇒ A ∼ In

⇐⇒ dimColA = dimRowA = rankA = n

⇐⇒ dimNulA = 0

⇐⇒ NulA = {0}
⇐⇒ ColA = Rn
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5 Chapter 5

5.1 Eigenvalues and eigenvectors

• Def: eigenvalues and eigenvectors

Ex: Is x =

 1
−2
1

 an eigenvector of A =

 3 6 7
3 3 7
5 6 5

?
Answer: Calculate Ax =

 −2
4
−2

 = −2x.

So x is an eigenvector of A corresponding to the eigenvalue −2.

Ex: Is λ = 2 is an eigenvalue of A =

[
3 2
3 8

]
?

Answer: If λ is an eigenvalue, then (A− λI)x = 0 has nontrivial solutions.

Consider the augmented matrix
[
A− λI 0

]
=

[
1 2 0
3 6 0

]
∼
[

1© 2 0
0 0 0

]
The system has a free variable, so has nontrivial solutions.

Hence, λ = 2 is an eigenvalue of A.

♣ Calculation:

1© Eigenvalues: |A− λI| = 0
(
(A− λI)x = 0 has nontrivial solutions

)
Ex: Given A =

[
3 2
3 8

]
. Consider |A− λI| =

∣∣∣∣ 3− λ 2
3 8− λ

∣∣∣∣ = (λ− 2)(λ− 9) = 0.

So its eigenvalues are λ1 = 2 and λ2 = 9.

2© Eigenvectors: nontrivial solutions of (A− λI)x = 0

=⇒ The eigenspace for λ is actually Nul(A− λI)\{0}

Ex: For λ1 = 2, consider
[
A− λ1I 0

]
=

[
1 2 0
3 6 0

]
∼
[

1© 2 0
0 0 0

]
.

All the nontrivial solutions are of the form x =

[
−2
1

]
x2 except 0.{

x =

[
−2
1

]
x2 : x 6= 0

}
is called the eigenspace corresponding to λ1 = 2.

For λ2 = 9, similarly,
[
A− λ2I 0

]
=

[
−6 2 0
3 −1 0

]
∼
[

1© −1
3

0
0 0 0

]
.

All the nontrivial solutions are of the form x =

[
1
3

1

]
x2 =

[
1
3

]
t except 0.

29



{
x =

[
1
3

]
t : x 6= 0

}
is called the eigenspace corresponding to λ2 = 9.

• Thm: The eigenvectors corresponding to distinct eigenvalues are linearly independent.

Ex: Given A =

 1 2 3
0 0 4
0 0 5

. Find its eigenvalues.

Answer: |A− λI| =

∣∣∣∣∣∣
1− λ 2 3

0 −λ 4
0 0 5− λ

∣∣∣∣∣∣ = (1− λ)(−λ)(5− λ) = 0.

Its eigenvalues are λ = 1, 0, 5.

• Thm: The eigenvalues of a triangular matrix are its diagonals.

• Thm: Let A be an n× n matrix. Then

A is invertible ⇐⇒ |A| 6= 0
(
i.e. |A− 0I| 6= 0

)
⇐⇒ 0 is not an eigenvalue of A

A is not invertible ⇐⇒ |A| = 0
(
i.e. |A− 0I| = 0

)
⇐⇒ 0 is an eigenvalue of A

Ex: Without calculation, we know that the matrix
[

1 2
1 2

]
has eigenvalue 0 cause it

is not invertible.

5.2 The characteristic equation

• Thm (Properties of determinants): Let A and B be n× n matrices. Then

1© A is invertible ⇐⇒ |A| 6= 0 ⇐⇒ 0 is not an eigenvalue of A

2© |AB| = |A| · |B|, |A>| = |A|, |A−1| = 1
|A|

3© If A is triangular, then |A| = a11a22 · · · ann (product of the diagonals)

4© A =

[
r1

r2

]
row replacement∼ B =

[
r1

r2 + cr1

]
, then |B| = |A|

A =

[
r1

r2

]
row interchange∼ B =

[
r2

r1

]
, then |B| = −|A|

A =

[
r1

r2

]
row scaling∼ B =

[
cr1

r2

]
, then |B| = c|A|

5© linearity property (see below)

Ex:
∣∣∣∣ 18 56

17 56

∣∣∣∣ =

∣∣∣∣ 17 + 1 56
17 + 0 56

∣∣∣∣ linearity=

∣∣∣∣ 17 56
17 56

∣∣∣∣+

∣∣∣∣ 1 56
0 56

∣∣∣∣ = 56

Ex: If A is of size n× n, then |cA| = cn|A|.
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• Def: |A− λI| = 0: Characteristic equation

|A− λI|: Characteristic polynomial (CP)

Ex: Let A =

 1 2 3
0 4 5
0 0 6

. Then its characteristic polynomial is

CP = |A− λI| =

∣∣∣∣∣∣
1− λ 2 3

0 4− λ 5
0 0 6− λ

∣∣∣∣∣∣ = (1− λ)(4− λ)(6− λ),

and its eigenvalues are λ = 1, 4, 6.

Ex: Let A =

 4 2 3
0 4 5
0 0 6

. Then its characteristic polynomial is

CP = |A− λI| =

∣∣∣∣∣∣
4− λ 2 3

0 4− λ 5
0 0 6− λ

∣∣∣∣∣∣ = (4− λ)2(6− λ),

and its eigenvalues are λ = 4, 4, 6.

• Def: The multiplicity of λ = 4 in the above example is 2.

Ex: For A4×4, it has eigenvalues 1,2,2,6. What’s its CP?

Answer: CP= (1− λ)(2− λ)2(6− λ)

Ex: Let A =


5 −2 6 −1
0 3 h 0
0 0 5 4
0 0 0 1

. Find h such that the eigenspace for λ = 5 is two.

Answer: The eigenspace for λ = 5 is Nul(A− 5I)\{0}. It suffices to consider the null
space Nul(A− 5I):

0 −2 6 −1 0
0 −2 h 0 0
0 0 0 4 0
0 0 0 −4 0

 ∼


0 −2 6 −1 0
0 0 h− 6 1 0
0 0 0 1 0
0 0 0 0 0


The eigenspace is of dimension two if there is two free variables, that is, h = 6.
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5.3 Diagonalization

• Def: similar (A = PBP−1)

• Thm: If A and B are similar, then they have the same characteristic polynomial and
hence the same eigenvalues.

Ex: If A = PBP−1 with P =

[
1 2
0 1

]
and B =

[
3 0
0 2

]
. Then P−1 =

[
1 −2
0 1

]
and

Ak = PBkP−1 =

[
1 2
0 1

] [
3k 0
0 2k

] [
1 −2
0 1

]
.

• Def: diagonalizable (A = PDP−1 with D a diagonal matrix)

♣ Thm (The diagonalization thm): An n × n matrix is diagonalizable ⇐⇒ A has n
linearly independent eigenvectors.

Reason: Let p1, · · · ,pn be the n linearly indepedent eigenvectors. Then there must be
corresponding eigenvalues λ1, · · · , λn such that
Ap1 = λ1p1

...
Apn = λ1pn

=⇒
[
Ap1 · · · Apn

]
=
[
λ1p1 · · · λnpn

]

=⇒ A
[
p1 · · · pn

]
=
[
p1 · · · pn

]  λ1 0 0

0
. . . 0

0 0 λn


=⇒ AP = PD

=⇒ A = PDP−1

with P =
[
p1 · · · pn

]
and D =

 λ1 0 0

0
. . . 0

0 0 λn

.
Ex: Is A =

[
1 2
0 3

]
diagonalizable?

Answer: Its eigenvalues are λ = 1, 3. Next we calculate the corresponding eigenvectors.

For λ1 = 1:
[

0 2 0
0 2 0

]
∼
[

0 1© 0
0 0 0

]
=⇒ x =

[
1
0

]
x1. We can choose p1 =

[
1
0

]
.

For λ1 = 3:
[

1© −1 0
0 0 0

]
=⇒ x =

[
1
1

]
x2. We can choose p2 =

[
1
1

]
.
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Now we get D =

[
1 0
0 3

]
and P =

[
p1 p2

]
=

[
1 1
0 1

]
such that A+ PDP−1.

So A is diagonalizable.

• Thm: An n× n matrix with n distinct eigenvalues is diagonalizable.

Ex: Is A =

 2 0 1
1 3 1
0 0 2

 diagonalizable?

Its CP=

∣∣∣∣∣∣
2− λ 0 1

1 3− λ 1
0 0 2− λ

∣∣∣∣∣∣ = (2− λ)2(3− λ). So it has eigenvalues λ = 2, 2, 3.

For λ = 2:

 0 0 1 0
1 1 1 0
0 0 0 0

 ∼
 1© 1 0 0

0 0 1© 0
0 0 0 0

 =⇒ x =

 −1
1
0

x2. We can choose

p1 =

 −1
1
0

.
For λ = 3:

 −1 0 1 0
1 0 1 0
0 0 −1 0

 ∼
 1© 0 0 0

0 0 1© 0
0 0 0 0

 =⇒ x =

 0
1
0

x2. We can choose

p2 =

 0
1
0

.
We can not find p3 to get an invertible matrix P . So A is NOT diagonalizable.

Ex: Is A =

 3 0 1
1 2 1
0 0 2

 diagonalizable?

Its CP=

∣∣∣∣∣∣
3− λ 0 1

1 2− λ 1
0 0 2− λ

∣∣∣∣∣∣ = (2− λ)2(3− λ). So it has eigenvalues λ = 2, 2, 3.

For λ = 2:

 1 0 1 0
1 0 1 0
0 0 0 0

 ∼
 1© 0 1 0

0 0 0 0
0 0 0 0

 =⇒ x =

 0
1
0

x2 +

 −1
0
1

x3. We

can choose p1 =

 0
1
0

 and p2 =

 −1
0
1

, which are linearly independent.

For λ = 3:

 0 0 1 0
1 −1 1 0
0 0 −1 0

 ∼
 1© −1 0 0

0 0 1© 0
0 0 0 0

 =⇒ x =

 1
1
0

x2. We can
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choose p3 =

 1
1
0

.
Now we get the invertible matrix P =

[
p1 p2 p3

]
and D =

 2 0 0
0 2 0
0 0 3

.
So A is diagonalizable.

• Thm: Let A be an n× n matrix with distinct eigenvalues λ1, · · · , λp (p ≤ n).
1© The dimension of the eigenspace for λk (1 ≤ k ≤ p) is less than or equal to the
multiplicity of λk.
2©: A is diagonalizable ⇐⇒ the dimension of the eigenspace for λk is equal to the
multiplicity of λk (i.e., the sum of the dimensions of the eigenspaces is n)

5.4 Eigenvectors and linear transformations

Recall that T : Rn → Rm is linear ⇐⇒ T (x) = Ax with A =
[
T (e1) · · · T (en)

]
m×n.

• Def: If V has a basis B = {b1, · · · ,bn} (that is, dimV = n), then any x ∈ V is
x = x1b1 + · · ·+ xnbn. Define the coordinate vector

[
x
]
B =

 x1
...
xn

 ∈ Rn.

Ex: Let V = P2 which has the standard basis B = {1, t, t2}. For the polynomial
p(t) = 3− t2, what is its coordinate vector

[
p(t)

]
B?

Answer:
[
p(t)

]
B =

 3
0
−1


• Def: Assume that V is a vector space with basis B = {b1, · · · ,bn} (i.e., dim V = n),

and W is a vector space with basis C = {c1, · · · , cm} (i.e., dim W = m). Then

T : x −→ T (x)

↓ ↓[
x
]
B

A−→
[
T (x)

]
C

with A =
[ [
T (b1)

]
C · · ·

[
T (bn)

]
C

]
the matrix for T relative to B and C.

In particular, if V = W and B = C, we denote the standard matrix A by
[
T
]
B.
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♣ Ex: Let T : P2 → P1 be a linear transformation defined by T (a0 + a1t + a2t
2) =

a0 +(a2−a1)t for any real numbers a0, a1 and a2. What is the standard matrix relative
to the standard bases for P2 and P1?

Answer:

1© Find B and C:
The standard basis for P2 is B = {1, t, t2} and the standard basis for P1 is C = {1, t}.
2© Find A =

[ [
T (b1)

]
C · · ·

[
T (bn)

]
C

]
:

Note that in this example b1 = 1, b2 = t and b3 = t2. According to the map T defined
above, we have

T (b1) = T (1) = 1 (in this case a0 = 1, a1 = a2 = 0),

T (b2) = T (t) = −t (in this case a1 = 1, a0 = a2 = 0),

T (b3) = T (t2) = t (in this case a2 = 1, a0 = a1 = 0),

and hence[
T (b1)

]
C =

[
1
]
{1,t} =

[
1
0

]
,

[
T (b2)

]
C =

[
− t
]
{1,t} =

[
0
−1

]
,

[
T (b2)

]
C =

[
t
]
{1,t} =

[
0
1

]
.

Finally, we get the standard matrix A =

[
1 0 0
0 −1 1

]
.

Ex: Let T : P2 → R3 be a linear transformation defined by T (p(t)) =

 p(−1)
p(0)
p(1)

.
What is the standard matrix relative to the standard bases for P2 and R3?

Answer:

1© Find B and C:
The standard basis for P2 is B = {1, t, t2} and the standard basis for R3 is C =
{e1, e2, e3}.
2© Find A =

[ [
T (b1)

]
C · · ·

[
T (bn)

]
C

]
:

T (b1) = T (1) =

 1
1
1

 =⇒
[
T (b1)

]
C =

 1
1
1


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T (b2) = T (t) =

 −1
0
1

 =⇒
[
T (b1)

]
C =

 −1
0
1


T (b3) = T (t2) =

 1
0
1

 =⇒
[
T (b1)

]
C =

 1
0
1



So A =

 1 −1 1
1 0 0
1 1 1

.
Ex: If An×n = PDP−1 is diagonalizable with an invertible matrix P =

[
p1 · · · pn

]
and a diagonal matrix D =

 λ1 0 0

0
. . . 0

0 0 λn

, it defines a linear transformation

T : Rn → Rn with T (x) = Ax.

Define a new basis B = {p1, · · · ,pn} for Rn. What is the standard matrix [T ]B?

Answer:

1©: Find B and C:
In this example, the domain and codomain are the same, so their bases are the same:
B = C = {p1, · · · ,pn} as is given above.

2© Find [T ]B =
[ [
T (p1)

]
B · · ·

[
T (pn)

]
B

]
:

T (p1) = Ap2 = λ1p1 =⇒
[
T (p1)

]
B =


λ1

0
...
0



T (p2) = Ap2 = λ2p2 =⇒
[
T (p1)

]
B =


0
λ2
...
0


...

T (p3) = Ap3 = λ3p3 =⇒
[
T (p1)

]
B =


0
...
0
λn


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So [T ]B =

 λ1 0 0

0
. . . 0

0 0 λn

 = D.

• Thm (Diagonal representation thm): Suppose A = PDP−1 with a diagonal matrix
D. If B is the basis for Rn formed from columns of P , then D is the B-matrix for the
mapping T : x 7→ Ax.

More generally, if A = PCP−1 where C may not be a diagonal matrix, and B is
the basis for Rn formed from columns of P , then C is the B-matrix for the mapping
T : x 7→ Ax.

=⇒ The standard matrix C can be calculated by C = P−1AP .

Ex: Let T : x 7→ Ax with A =

[
3 4
−1 −1

]
. Define a basis B = {p1,p2} with

p1 =

[
2
−1

]
and p2 =

[
1
2

]
. What is the standard matrix [T ]B?

Answer: According to the thm above, [T ]B = C = P−1AP with

P =

[
2 1
−1 2

]
and thus P−1 =

1

5

[
2 −1
1 2

]
.

So [T ]B = P−1AP = 1
5

[
2 −1
1 2

] [
3 4
−1 −1

] [
2 1
−1 2

]
=

[
1 5
0 1

]
.

Appendix B Complex numbers

Question: What is the eigenvalues of the matrix A =

[
0 −1
1 0

]
?

Consider the characteristic polynomial: |A− λI| =
∣∣∣∣ −λ −1

1 −λ

∣∣∣∣ = λ2 + 1.

What are the roots of λ2 + 1 = 0?

• Def: Denote by i the imaginary unit such that i2 = −1. A complex number is in the
form z = a + bi with a = Rez being the real part and b = Imz being the imaginary
part.

Ex: For the complex number z = 3 + 2i, its real part is Rez = 3, and its imaginary
part is Imz = 2.

• Properties:

1© z1 = z2 ⇐⇒ Rez1 = Rez2 and Imz1 = Imz2

2© summation: (a+ bi) + (c+ di) = (a+ c) + (b+ d)i

3© multiplication: (a+ bi) · (c+ di) = (ac− bd) + (bc+ ad)i
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4© the conjugate of z = a+ bi is z̄ = a− bi
5© the absolute value of z = a+ bi is |z| =

√
z · z̄ =

√
a2 + b2

6© the inverse of z = a+ bi is z−1 = 1
z

= z̄
z·z̄ = a

a2+b2
− b

a2+b2
i

Ex: For z = 3 + 4i, we have z̄ = 3− 4i, |z| = 5, z−1 = 3
25
− 4

25
i.

• Geometric discription:

Based on these figures, we get a = |z| cosϕ and b = |z| sinϕ.
Hence, there are two ways to determine a complex number:

(1) z = a+ bi

(2) z = |z| cosϕ+ (|z| sinϕ) i = |z|eiϕ

Ex: If z = |z|eϕ, then zk = |z|keikϕ = |z|k cos(kϕ) + |z|k sin(kϕ)i

Ex: Find all real and complex roots of the equation z8 = 28.

Answer: Assume that z = |z|eiϕ. It then suffices to determine |z| and ϕ.
Note that z8 = |z|8 cos(8ϕ) + |z|8 sin(8ϕ)i = 28. Their real (resp. imaginary) parts
should be the same, that is

Firstly, |z|8 sin(8ϕ) = 0 =⇒ 8ϕ = kπ for any integer k.

Secondly, |z|8 cos(8ϕ) = 28. If 8ϕ = kπ, cos(8ϕ) = ±1. However, cos(8ϕ) can not be
−1, otherwise we will get a contradiction −|z|8 = 28. So we finally get 8ϕ = 2kπ, that
is, ϕ = kπ

4
such that cos(8ϕ) = 1. Hence, |z| = 2.

So z = 2ei
kπ
4 , k can be any integer.

5.5 Complex eigenvalues

• Ex: Let A =

[
1 −2
1 3

]
. What are its eigenvalues and corresponding eigenvectors?

1© Find all the eigenvalues: |A−λI| =
∣∣∣∣ 1− λ −2

1 3− λ

∣∣∣∣ = λ2−4λ+5 = (λ−2)2 +1.

=⇒ A has eigenvalues λ = 2± i
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2© Find corresponding eigenvectors:

For λ1 = 2 + i,
[
A− λ1I 0

]
=

[
−1− i −2 0

1 1− i 0

]
∼
[

1 1− i 0
0 0 0

]
=⇒ Solutions x =

[
−1 + i

1

]
x2. Choose p1 =

[
−1 + i

1

]
=

[
−1
1

]
+

[
1
0

]
i.

For λ2 = 2− i,
[
A− λ2I 0

]
=

[
−1 + i −2 0

1 1 + i 0

]
∼
[

1 1 + i 0
0 0 0

]
=⇒ Solutions x =

[
−1− i

1

]
x2. Choose p1 =

[
−1− i

1

]
=

[
−1
1

]
+

[
−1
0

]
i.

=⇒ In this example, we have λ2 = λ1 and p2 = p1.
=⇒ If Ap = λp, then Ap = λp. (If λ is an eigenvalue of A, then λ is also an eigenvalue)

For a real matrix A, its complex eigenvalues occur in conjugate pairs.

• Ex: For A2×2 given above, consider one of the eigenvalues λ = 2 − i and its corre-

sponding eigenvector p =

[
−1
1

]
+

[
−1
0

]
i.

Denote P =
[
Rep Imp

]
=

[
−1 −1
1 0

]
. Is there a matrix C such that A = PCP−1?

Answer: C = P−1AP =

[
0 1
−1 −1

] [
1 −2
1 3

] [
−1 −1
1 0

]
=

[
2 −1
1 2

](
=

[
Reλ Imλ
−Imλ Reλ

])
• Thm: Let A be a real 2 × 2 matrix with a complex eigenvalue λ = a − bi (b 6= 0)

and an associated eigenvector p. Then A = PCP−1 with P =
[
Rep Imp

]
and

C =

[
a −b
b a

]
.

Ex: For C =

[
a −b
b a

]
with |C − λI| = (a− λ)2 + b2, its eigenvalues are λ = a± bi

with |λ| =
√
a2 + b2. Then

C = |λ|

[
a
|λ| −

b
|λ|

b
|λ|

a
|λ|

]
= |λ|

[
cos θ − sin θ
sin θ cos θ

]
,

which is a composition of a rotation through the angle θ and a scaling by |λ|.

Ex: Let C =

[ √
3 −1

1
√

3

]
. What are the rotation angle θ and the scaling constant

|λ|?

Answer: |λ| =
√

(
√

3)2 + 12 = 2.

The angle θ satisfies cos θ = a
|λ| =

√
3

2
and sin θ = 1

2
. Hence, θ = π

6
.
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5.7 Applications to differential equations

• For y′(t) = λy(t), t ≥ 0, all its solutions are in the form y(t) = ceλt with a free
parameter c. No matter what c is, y(t) above is a solution of the differential equation.

If, in addition, the initial value is given y(0) = y0, then the constant c is determined
and the solution is unique: y(t) = y0e

λt.

If λ < 0, the solution y(t) will go to 0 as t→ +∞.

If λ > 0, the solution y(t) will go to positive or negative infinity as t→ +∞.

• For a system of linear differential equations
y′1(t) = λ1y1(t)

y′2(t) = λ2y2(t)

...
y′n(t) = λnyn(t)

⇐⇒


y′1(t)
y′2(t)
...

y′n(t)

 =


λ1

λ2

. . .
λn



y1(t)
y2(t)
...

yn(t)

 ⇐⇒ Y ′(t) = DY (t),

it has solutions


y1(t) = c1e

λ1t

...
yn(t) = cne

λnt

• What are the solutions of X ′(t) = AX(t) if A is not a diagonal matrix as above?

If A = PDP−1, then X ′(t) = PDP−1X(t) ⇐⇒ [P−1X(t)]
′
= D [P−1X(t)].

Denote Y (t) = P−1X(t), we get Y ′(t) = DY (t). Solve this auxiliary equation to get
Y (t) and then get X(t) = PY (t).

♣ Ex: Solve X ′(t) = AX(t) with A =

[
1 −2
3 −4

]
and X(0) =

[
3
2

]
.

Answer:

1© Find D and P :

|A− λI| = (λ+ 1)(λ+ 2) =⇒ λ = −1,−2 =⇒ D =

[
−1 0
0 −2

]
.

For λ1 = −1,

[
2 −2 0
3 −3 0

]
∼
[

1 −1 0
0 0 0

]
=⇒ x =

[
1
1

]
x2 =⇒ p1 =

[
1
1

]
For λ1 = −2,

[
3 −2 0
3 −2 0

]
∼
[

1 −2
3

0
0 0 0

]
=⇒ x =

[
2
3

1

]
x2 =⇒ p2 =

[
2
3

]
So P =

[
1 2
1 3

]
.
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2© Solve Y ′(t) = DY (t) and get X(t) = PY (t):

Based on D,

{
y1(t) = c1e

−t

y2(t) = c2e
−2t =⇒ Y (t) =

[
c1

0

]
e−t +

[
0
c2

]
e−2t. Hence,

X(t) = PY (t) =

[
1 2
1 3

]([
c1

0

]
e−t +

[
0
c2

]
e−2t

)
= c1

[
1
1

]
e−t+ c2

[
2
3

]
e−2t

=⇒ X(t) = c1p1e
λ1t + c2p2e

λ2t

3© Use X(0) to determine c1 and c2:
Based on the formula above and the initial condition,

X(0) = c1

[
1
1

]
+ c2

[
2
3

]
=

[
3
2

]

Solve
[

1 2 3
1 3 2

]
∼
[

1 2 3
0 1 −1

]
∼
[

1 0 5
0 1 −1

]
, and get c1 = 5 and c2 = −1.

• Def: For X ′(t) = AX(t), denote by λ the eigenvalues of A.

1. If λ < 0, the origin is an attractor/sink.

The direction of greatest attraction is corresponding to the most negative eigenvalue.

2. If λ > 0, the origin is a repeller/source.

The direction of greatest repulsion is corresponding to the largest positive eigenvalue.

3. If λ has both positive and negative values, the origin is a saddle point.

• If A2×2 has a pair of complex eigenvalues λ and λ with p and p, then

X(t) = c1pe
λt + c2pe

λt are complex solutions!

Denote X1 = peλt and X2 = peλt. It holds X2 = X1.

=⇒


X1 +X2

2
= Re

[
peλt

]
X1 −X2

2i
= Im

[
peλt

]
=⇒ X(t) = c̃1Re

[
peλt

]
+ c̃2Im

[
peλt

]
are the real solutions!

Ex: Find all the real solutions of X ′(t) = AX(t) with A =

[
−3 2
−1 −1

]
.

1© Find all the eigenvalues: |A− λI| = (λ+ 2)2 + 1 =⇒ λ = −2± i

Since the eigenvalues are complex and form a conjugate pair, we only need to use
one of them.
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2© Choose λ and calculate p: Choose λ = −2 + i, and solve

[
A− λI 0

]
=

[
−1− i 2 0
−1 1− i 0

]
∼
[

1 −1 + i 0
0 0 0

]
=⇒ x =

[
1− i

1

]
x2

to get p =

[
1− i

1

]
=

[
1
1

]
+

[
−1
0

]
i.

3© Calculate Re
[
peλt

]
and Im

[
peλt

]
:

peλt =

([
1
1

]
+

[
−1
0

]
i

)
e−2t+it

= e−2t

([
1
1

]
+

[
−1
0

]
i

)
(cos t+ sin t i)

= e−2t

([
1
1

]
cos t−

[
−1
0

]
sin t

)
+ e−2t

([
1
1

]
sin t+

[
−1
0

]
cos t

)
i

=⇒ Re
[
peλt

]
= e−2t

([
1
1

]
cos t−

[
−1
0

]
sin t

)
Im
[
peλt

]
= e−2t

([
1
1

]
sin t+

[
−1
0

]
cos t

)
• In this case, the origin is a spiral point.{

the trajectories of the solution spiral inward if Reλ < 0

the trajectories of the solution spiral outward if Reλ > 0
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6 Chapter 6

6.1 Inner product, length, and orthogonality

• Def: For two vectors u =

 u1
...
un

 and v =

 v1
...
vn

 in Rn, their inner product is

u · v = u>v =
[
u1 · · · un

]  v1
...
vn

 = u1v1 + · · ·+ unvn

=⇒ Properties:

1© u · v = v · u, (u + v) ·w = u ·w + v ·w, (cu) · v = u · (cv) = cu · v
2© u · u ≥ 0 for any u in Rn; u · u = 0 ⇐⇒ u = 0

• Def: For u =

 u1
...
un

 in Rn, the length (norm) of u is

‖u‖ =
√
u · u =

√
u2

1 + · · ·+ u2
n

=⇒ Properties:

1© If ‖u‖ = 1, then u is called a unit vector.

2© If ‖u‖ 6= 1, then it can be normalized as û = 1
‖u‖u.

• Def: For u,v in Rn, the distance between u and v is

dist(u,v) = ‖u− v‖

Ex: Given u =

[
3
4

]
and v =

[
−1
1

]
. Calculate the following quantities.

u · v = 1, ‖u‖ =
√

32 + 42 = 5, dist(u,v) = ‖u− v‖ =

∥∥∥∥[ 4
3

]∥∥∥∥ = 5

• Def: For u,v in Rn, they are orthogonal if u · v = 0.

=⇒ Properties:

1© 0 is orthogonal to any vectors in Rn.

2© u and v are orthogonal ⇐⇒ ‖u + v‖2 = ‖u‖2 + ‖v‖2
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Ex: Given u =

 1
2
3

 and v =

 −2
1
0

. Then u · v = 0, and

‖u + v‖2 =

∥∥∥∥∥∥
 −1

3
3

∥∥∥∥∥∥
2

= 1 + 32 + 32 = 19,

‖u‖2 = 1 + 22 + 32 = 14, ‖v‖2 = (−2)2 + 12 + 02 = 5.

Hence, it holds ‖u + v‖2 = ‖u‖2 + ‖v‖2.

• Def: Let W be a subspace of Rn. A vector z in Rn is called orthogonal to W if z is
orthogonal to each vector in W . Denote the set

W⊥ = {z : z is orthogonal to W}

=⇒ Properties:

1© W⊥ is also a subspace of Rn, which is orthogonal to W .

2© (RowA)⊥ = NulA =
(
ColA>

)⊥

6.2 Orthogonal sets

• Def: A set of vectors {u1, · · · ,up} in Rn is an orthogonal set if any two vectors inside
are orthogonal.

• Thm: An orthogonal set of nonzero vectors is also a linearly independent set.

Ex: The set


 1

0
0

 ,
 0

2
0

 ,
 1

0
3

 is linearly independent, but is not orthogonal.

The set


 1

0
0

 ,
 0

2
0

 ,
 0

0
3

 is both linearly independent and orthogonal.

• Def: An orthogonal basis for a subspace W is a basis that is also an orthogonal set.

An orthonormal basis for W is a basis that is also an orthogonal set containing only
unit vectors.

Ex:


 1

0
0

 ,
 0

2
0

 ,
 1

0
3

 is a basis.
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
 1

0
0

 ,
 0

2
0

 ,
 0

0
3

 is an orthogonal basis.


 1

0
0

 ,
 0

1
0

 ,
 0

0
1

 is an orthonormal basis.

• Thm: Let {u1, · · · ,up} be an orthogonal basis for W . Then for each y in W ,

y = c1u1 + · · ·+ cpup with cj =
y · uj
uj · uj

, j = 1, 2, · · · , p.

• Def: Given two vectors y and u. Rewrite y = ŷ + z such that ŷ = cu is a scalar
multiple of u, and z is orthogonal to u.

Then ŷ = cu = y·u
u·uu is the orthogonal projection of y onto u.

The distance from y to the line through u is ‖z‖ = ‖y − ŷ‖.

Ex: Let y =

[
1
7

]
and u =

[
−4
2

]
. What is the orthogonal projection of y onto u?

Answer: The projection

ŷ =
y · u
u · u

u =
10

20

[
−4
2

]
=

[
−2
1

]
,

and

z = y − ŷ =

[
1
7

]
−
[
−2
1

]
=

[
3
6

]
such that y · z = 0. That is ŷ and z are orthogonal.

• Thm: The matrix U =
[
u1 · · · up

]
m×p has orthonormal columns ⇐⇒ U>U = I.

Reason:

U>U =

 u>1
...
u>p

 [ u1 · · · up
]

=


u>1 u1 u>1 u2 · · · u>1 up
u>1 u2 u>2 u2 · · · u>2 up

...
... . . . ...

u>p u1 u>p u2 · · · u>p up

 = I
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6.3 Orthogonal projections

• Thm (The orthogonal decomposition thm): Let W be a subspace of Rn. Then any
vector y = ŷ + z with ŷ ∈ W and z ∈ W⊥.

If W has an orthogonal basis {u1, · · · ,up}, then the orthogonal projection of y onto
W , which is also denoted by ŷ = projWy, is

ŷ = projWy =
y · u1

u1 · u1

u1 + · · ·+
y · up
up · up

up.

=⇒ Remark: If y is in W , then projWy = y and z = 0.

Ex: Given y =

 −1
4
3

, u1 =

 1
1
0

 and u2 =

 −1
1
0

. Find the orthogonal projec-

tion of y onto W =Span{u1,u2}.
Answer: Noting that u1 · u2 = 0, {u1,u2} is an orthogonal basis for W . Hence, the
orthogonal decomposition thm can be used directly:

ŷ =
y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 =
3

2

 1
1
0

+
5

2

 −1
1
0

 =

 −1
4
0

 .
• Thm (The best approximation thm): LetW be a subspace of Rn. Then the orthogonal

projection ŷ of y onto W is the closest point(best approximation) in W to y. That is,

‖y − ŷ‖ ≤ ‖y − v‖ for any v ∈ W.

=⇒ ‖z‖ = ‖y − ŷ‖ denotes the distance from y to W .

• Ex: Given y =

 5
−9
5

, u1 =

 −3
−5
1

 and u2 =

 −3
2
1

.
1© Is {u1,u2} an orthogonal basis? u1 · u2 = 0 Yes.

2© Find the orthogonal projection of y onto W =Span{u1,u2}:

ŷ =
y · u1

u1 · u1

u1 +
y · u2

u2 · u2

u2 =
35

35

 −3
−5
1

+
−28

14

 −3
2
1

 =

 3
−9
−1



3© Find the closest point to y in W =Span{u1,u2}: same as above

 3
−9
−1


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4© Find the best approximation of y in W =Span{u1,u2}: same as above

 3
−9
−1


5© What is the distance from y to W? ‖z‖ = ‖y − ŷ‖ =

∥∥∥∥∥∥
 2

0
6

∥∥∥∥∥∥ =
√

40

• Thm: If {u1, · · · ,up} is an orthonormal basis for a subspace W in Rn, then

ŷ = (y · u1)u1 + · · ·+ (y · up)up.

If U =
[
u1 · · · up

]
, then U>U = I.

6.4 The Gram–Schmidt process

• Ex: Let W = Span{x1,x2} with {x1,x2} being a basis. To obtain an orthogonal basis
for W , define

u1 = x1

u2 = x2 − proju1
x2 = x2 −

x2 · u1

u1 · u1

u1

Then {u1,u2} is an orthogonal basis for W .

For example, x1 =

 1
1
0

 and x2 =

 1
0
1

. Then

u1 = x1 =

 1
1
0


u2 = x2 −

x2 · u1

u1 · u1

u1 =

 1
0
1

− 1

2

 1
1
0

 =

 1
2

−1
2

1


and apparently u1 · u2 = 0.

♣ Thm (The Gram–Schmidt process): Given a basis {x1, · · · ,xp} for W . Then

u1 = x1

u2 = x2 −
x2 · u1

u1 · u1

u1

u3 = x3 −
x3 · u1

u1 · u1

u1 −
x3 · u2

u2 · u2

u2
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...

up = xp −
xp · u1

u1 · u1

u1 − · · · −
xp · up−1

up−1 · up−1

up−1

form an orthogonal basis for W . In addition,

Span{x1, · · · ,xk} = Span{u1, · · · ,uk} for any k = 1, 2, · · · , p.

• Ex: Given A =


5 9
1 7
−3 −5
1 5

. Then the column space ColA = Span{a1, a2} has a

basis {a1, a2} since the columns a1, a2 of A are linearly independent.

1© Find an orthogonal basis for ColA.

u1 = a1 =


5
1
−3
1



u2 = a2 −
a2 · u1

u1 · u1

u1 =


9
7
−5
5

− 72

36


5
1
−3
1

 =


−1
5
1
3


2© Find an orthonormal basis for ColA.

v1 =
1

‖u1‖
u1 =

1

6


5
1
−3
1

 =


5
6
1
6

−1
2

1
6



v2 =
1

‖u2‖
u2 =

1

6


−1
5
1
3

 =


−1

6
5
6
1
6
1
2


3© Denote a matrix Q =

[
v1 v2

]
, which satisfies Q>Q = I. If A = QR, then

R = Q>A =

[
5
6

1
6
−1

2
1
6

−1
6

5
6

1
6

1
2

]
5 9
1 7
−3 −5
1 5

 =

[
6 12
0 6

]
,

which is a triangular matrix with positive diagonals.
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• Thm (TheQR factorization): If Am×n has linearly independent columns, then A = QR
with columns of Qm×n forming an orthonormal basis for ColA and Rn×n being an upper
triangular matrix with positive diagonals.

=⇒ It implies that R is invertible.

6.5 Least-squares problems

If Ax = b has no solution but A has linearly independent columns, then A = QR and

Q>QRx = Q>b ⇐⇒ Rx = Q>b ⇐⇒ x = R−1Q>b

Apparently, x above can not be a solution of Ax = b. What is the meaning of x?

• Def: A least-squares solution of Ax = b is a vector x̂ ∈ Rn such that

‖b− Ax̂‖ ≤ ‖b− Ax‖ for any x ∈ Rn.

=⇒ For any x =

 x1
...
xn

 in Rn, Ax = a1x1 + · · ·+ anxn ∈ ColA. Then

Ax̂ = projColAb is the orthogonal projection of b onto ColA
b− Ax̂ is orthogonal to ColA

That is, b− Ax̂ is orthogonal to a1, · · · , an:

a1 · (b− Ax̂) = a>1 (b− Ax̂) = 0

...
an · (b− Ax̂) = a>n (b− Ax̂) = 0

 ⇐⇒ A>(b− Ax̂) = 0

⇐⇒ A>Ax̂ = A>b (normal equation)

• Thm: The least-squares solutions of Ax = b coincide with the solutions of the normal
equation A>Ax̂ = A>b.

Ex: Given A =

 1 2
1 2
1 2

 and b =

 1
2
3

.
1© Does Ax = b have solutions?

[
A b

]
=

 1 2 1
1 2 2
1 2 3

 ∼
 1 2 1

0 0 1
0 0 2

 No solution!

2© Find the least-squares solutions of Ax = b: Consider A>Ax̂ = A>b.
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A>A =

[
1 1 1
2 2 2

] 1 2
1 2
1 2

 =

[
3 6
6 12

]
, A>b =

[
1 1 1
2 2 2

] 1
2
3

 =

[
6
12

]

The augmented matrix is
[
A>A A>b

]
=

[
3 6 6
6 12 12

]
∼
[

1 2 2
0 0 0

]
, and the

solutions are in the form x̂ =

[
2− 2x2

x2

]
with x2 being a free parameter.

=⇒ There are infinitely many least-squares solutions since A>A is not invertible.

♣ Ex: Given A =

 −1 2
2 −3
−1 3

 and b =

 4
1
2

. Find the least-squares solution of

Ax = b.
Answer: Consider the normal equation A>Ax̂ = A>b.

A>A =

[
−1 2 −1
2 −3 3

] −1 2
2 −3
−1 3

 =

[
6 −11
−11 22

]

A>b =

[
−1 2 −1
2 −3 3

] 4
1
2

 =

[
−4
11

]

The augmented matrix is
[
A>A A>b

]
=

[
6 −11 −4
−11 22 11

]
∼
[

1 0 3
0 1 2

]
, and

hence x̂ =

[
3
2

]
.

=⇒ There is a unique least-squares solution of Ax = b since A>A is invertible.

• Thm: Ax = b has a unique least-squares solution
⇐⇒ A>A is invertible
⇐⇒ A has linearly independent columns
Remark: In this case, A has linearly independent columns, then A = QR and

A>A = (QR)>(QR) = R>Q>QR = R>R

is also invertible since R is invertible. Then the unique least-squares solution of Ax = b
is

x̂ = (A>A)−1A>b =
(
R>R

)−1
R>Q>b = R−1Q>b,

which answers the question proposed at the beginning of this lesson.
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6.7 Inner product spaces

• Def: An inner product on a general vector space V is a function 〈u, v〉 such that

1. 〈u,v〉 = 〈v,u〉, 〈u + v,w〉 = 〈u,w〉+ 〈v,w〉, 〈cu,v〉 = 〈u, cv〉 = c〈u,v〉
2. 〈u,u〉 ≥ 0 and 〈u,u〉 = 0 iff u = 0

A vector space equipped with an inner product is called an inner product space.

Ex: Rn with u · v = u>v

Ex: P2: Define an inner product by evaluation at −1, 0, 1

〈p(t), q(t)〉 = p(−1)q(−1) + p(0)q(0) + p(1)q(1)

For example, let x1(t) = 1 + t and x2(t) = 1− t. Then

〈x1(t), x2(t)〉 = x1(−1)x2(−1) + x1(0)x2(0) + x1(1)x2(1) = 1

〈x1(t), x1(t)〉 = 0 + 1 + 4 = 5

=⇒ norm(length): ‖x1(t)‖ =
√
〈x1(t), x1(t)〉 =

√
5

=⇒ distance between x1(t) and x2(t): ‖x1(t)− x2(t)‖ =
√
〈2t, 2t〉 =

√
4 + 0 + 4 =

√
8

• Gram–Schmidt process: basis {x1, · · · ,xp} −→ orthogonal basis {u1, · · · ,up}

x1 = u1

x2 = x2 −
〈x2,u1〉
〈u1,u1〉

u1

...

xp = xp −
〈xp,u1〉
〈u1,u1〉

u1 − · · · −
〈xp,up−1〉
〈up−1,up−1〉

up−1

Ex: As above, transform {x1(t), x2(t)} into an orthogonal basis {u1(t), u2(t)}.
Answer: u1(t) = x1(t) = 1 + t

u2(t) = x2(t)− 〈x2(t),u1(t)〉
〈u1(t),u1(t)〉u1(t) = (1− t)− 1

5
(1 + t) = 4

5
− 6

5
t

• Best approximation: W has an orthogonal basis {u1, · · · ,up}, then for any vector y,
y = ŷ + z with

ŷ =
〈y,u1〉
〈u1,u1〉

u1 + · · ·+ 〈y,up〉
〈up,up〉

up

Ex: As above, find the best approximation of y(t) = t2 in W = {x1(t), x2(t)}.
Answer: 1© Find an orthogonal basis: {x1(t), x2(t)} → {u1(t), u2(t)}
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2© Find the best approximation (orthogonal projection)

ŷ(t) =
〈y(t), u1(t)〉
〈u1(t), u1(t)〉

u1(t) +
〈y(t), u2(t)〉
〈u2(t), u2(t)〉

u2(t) =
2

5
(1 + t) +

8/5

24/5

(
4

5
− 6

5
t

)
=

2

3
.

• Thm (The Cauchy–Schwarz inequality): |〈u,v〉| ≤ ‖u‖‖v‖
Reason: |〈u,v〉| = |〈cv + z,v〉| = |c〈v,v〉| = ‖cv‖‖v‖ ≤ ‖u‖‖v‖

• Thm (The triangle inequality): ‖u + v‖ ≤ ‖u‖+ ‖v‖

♣ Ex: Let V = C[−1, 1] be the space of all continuous functions on [−1, 1]. Define an
inner product

〈p(t), q(t)〉 =

∫ 1

−1

p(t)q(t)dt.

Let x1(t) = 1 and x2(t) = 2t− 1. Then 〈x1(t), x2(t)〉 =
∫ 1

−1
(2t− 1)dt = −2 6= 0.

That is, {x1, x2} are linearly independent but not orthogonal.

Find an orthogonal basis for W = Span{x1, x2}:

p1(t) = x1(t) = 1

p2(t) = x2(t)− 〈x2(t), p1(t)〉
〈p1(t), p1(t)〉

p1(t) = (2t− 1)− −2

2
1 = 2t

Then {1, 2t} is an orthogonal basis for W .
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7 Chapter 7

7.1 Diagonalization of symmetric matrices

• Def: A symmetric matrix is a square matrix such that A> = A.

Ex: Are the following matrices symmetric?[
0 1
1 0

]
Yes

[
1 3
−3 1

]
No

 a b c
b d e
c e f

 Yes

• Def: P is an orthogonal matrix if P−1 = P>, that is, columns of P are orthonormal.

Ex: Are the following matrices orthogonal matrices?[
0 1
1 0

]
Yes

[
1 0
0 2

]
No P =

 0 0 1
1 0 0
0 1 0

 Yes =⇒ P−1 =

 0 1 0
0 0 1
1 0 0


• Def: A is called orthogonally diagonalizable if A = PDP> with an orthogonal matrix
P and a diagonal matrix D.

• Thm A is orthogonally diagonalizable ⇐⇒ A is symmetric (A> = A)

Ex: Let A =

 3 −2 4
−2 6 2
4 2 3

 with distinct eigenvalues −2, 7.

Decompose A such that A = PDP>:
1© Find linearly independent eigenvectors:

For λ1 = −2,
[
A− λ1I 0

]
=

 5 −2 4 0
−2 8 2 0
4 2 5 0

 ∼
 1© 0 1 0

0 1© 1
2

0
0 0 0 0


It has solutions x =

 −1
−1

2

1

x3. We can choose the first eigenvector v1 =

 −2
−1
2


For λ2 = 7,

[
A− λ2I 0

]
=

 −4 −2 4 0
−2 −1 2 0
4 2 −4 0

 ∼
 1© 1

2
−1 0

0 0 0 0
0 0 0 0


It has solutions x =

 −1
2

1
0

x2 +

 1
0
1

x3.

We can choose another two eigenvectors v2 =

 −1
2
0

 and v3 =

 1
0
1


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2© Find orthogonal eigenvectors:

Note that v1 · v2 = 0, v1 · v3 = 0 and v2 · v3 = −1. Based on the Gram–Schmidt
process:

u1 = v1 =

 −2
−1
2


u2 = v2 =

 −1
2
0


u3 = v3 −

v3 · u2

u2 · u2

u2 =

 1
0
1

− −1

5

 −1
2
0

 =

 4
5
2
5

1


3© Find orthonormal eigenvectors:

p1 =
1

‖u1‖
u1 =

1

3

 −2
−1
2

 =

 −2
3

−1
3

2
3


p2 =

1

‖u2‖
u2 =

1√
5

 −1
2
0

 =

 − 1√
5

2√
5

0


p3 =

1

‖u3‖
u3 =

5

3
√

5

 4
5
2
5

1

 =


4

3
√

5
2

3
√

5√
5

3



Then P =
[
p1 p2 p3

]
and D =

 −2 0 0
0 7 0
0 0 7

 such that A = PDP>.

• Spectral decomposition of A = PDP> with P =
[
p1 · · · pn

]
:

A =
[
p1 · · · pn

]  λ1 0 0

0
. . . 0

0 0 λn


 p>1

...
p>n

 = λ1p1p
>
1 + · · ·+ λnpnp

>
n

=⇒ Matrices pip>i above are called projection matrices:(
pip

>
i

)
x = pi

(
p>i x

)
= pi (pi · x) =

x · pi
pi · pi

pi
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