Computing Slowly Advancing Features in Fast-Slow Systems without Scale Separation - A Young Measure Approach

Edriss S. Titi

The Weizmann Institute of Science and
The University of California - Irvine

International Symposium on Trends in Applications of Mathematics to Mechanics
STAMM 2010
Akademie Berlin-Schmöckwitz, Germany
August 30–September 2, 2010
Overview

Background

- Classical Theory of Levinson–Tikhonov
- Motivating Example for Limit Cycle
Overview

1 Background

- Classical Theory of Levinson–Tikhonov
- Motivating Example for Limit Cycle

2 The use of Young measures

- Young measures and description of the limit of fast dynamics
- Fast-slow systems without separation of state variables
- Computing slow observables
We consider a classical singular perturbed system

\[
\frac{dx}{dt} = f(x, y) \\
\varepsilon \frac{dy}{dt} = g(x, y)
\]

with \(x \in \mathbb{R}^n \) and \(y \in \mathbb{R}^m \), and initial conditions

\[x(0) = x_0, \quad y(0) = y_0. \]
Computing the solutions of the above system is very costly, when ε is very small.
Computing the solutions of the above system is very costly, when ε is very small. This is because we need to use time step $\Delta t \approx \varepsilon$.
Computing the solutions of the above system is very costly, when ε is very small. This is because we need to use time step $\Delta t \approx \varepsilon$.

Our goal becomes:
Computing the solutions of the above system is very costly, when ε is very small. This is because we need to use time step $\Delta t \approx \varepsilon$.

Our goal becomes: Find the limit behavior of the solution $(x^\varepsilon, y^\varepsilon)$, as $\varepsilon \to 0$.
Computing the solutions of the above system is very costly, when ε is very small. This is because we need to use time step $\Delta t \approx \varepsilon$.

Our goal becomes: Find the limit behavior of the solution $(x^\varepsilon, y^\varepsilon)$, as $\varepsilon \to 0$.

Moreover, what is the equation of motion that governs this limit behavior?
Computing the solutions of the above system is very costly, when ε is very small. This is because we need to use time step $\Delta t \approx \varepsilon$.

Our goal becomes: Find the limit behavior of the solution $(x^\varepsilon, y^\varepsilon)$, as $\varepsilon \to 0$.

Moreover, what is the equation of motion that governs this limit behavior?

Can we develop an efficient numerical algorithm for computing the above limit behavior?
The classical theory of singularly perturbed systems employ the order reduction method;
The classical theory of singularly perturbed systems employ the order reduction method; namely, the limit behavior of solutions is captured by solutions of the coupled differential and algebraic equations obtained by setting $\varepsilon = 0$.
The classical theory of singularly perturbed systems employ the order reduction method; namely, the limit behavior of solutions is captured by solutions of the coupled differential and algebraic equations obtained by setting $\varepsilon = 0$.

\[
\frac{dx}{dt} = f(x, y) \\
0 = g(x, y).
\]
In particular, the classical Levinson–Tikhonov approach assumes the following condition.
In particular, the classical Levinson–Tikhonov approach assumes the following condition.

Assumption AFP. In the region where the analysis is carried out,
In particular, the classical Levinson–Tikhonov approach assumes the following condition.

Assumption AFP. In the region where the analysis is carried out, when x is held fixed
In particular, the classical Levinson–Tikhonov approach assumes the following condition.

Assumption AFP. In the region where the analysis is carried out, when x is held fixed the solutions of the fast equation,
In particular, the classical Levinson–Tikhonov approach assumes the following condition.

Assumption AFP. In the region where the analysis is carried out, when x is held fixed the solutions of the fast equation,

\[
\frac{dy}{ds} = g(x, y),
\]
In particular, the classical Levinson–Tikhonov approach assumes the following condition.

Assumption AFP. In the region where the analysis is carried out, when x is held fixed the solutions of the fast equation,

\[
\frac{dy}{ds} = g(x, y),
\]

converge to an asymptotically stable point $y(x)$.
In particular, the classical Levinson–Tikhonov approach assumes the following condition.

Assumption AFP. In the region where the analysis is carried out, when x is held fixed the solutions of the fast equation,

$$\frac{dy}{ds} = g(x, y),$$

converge to an asymptotically stable point $y(x)$ which is the solution of the algebraic equation $0 = g(x, y)$.

Edriss S. Titi Fast-Slow Multi-scale Systems
In particular, the classical Levinson–Tikhonov approach assumes the following condition.

Assumption AFP. In the region where the analysis is carried out, when x is held fixed the solutions of the fast equation,

$$\frac{dy}{ds} = g(x, y),$$

converge to an asymptotically stable point $y(x)$ which is the solution of the algebraic equation $0 = g(x, y)$.

Thus, AFP stands for Asymptotically stable Fixed Point.
Consider the four dimensional system with planar slow and fast equations given by

\[
\begin{align*}
\frac{d\xi_1}{dt} &= \xi_2 \\
\frac{d\xi_2}{dt} &= -2\xi_1 - \xi_2 - \eta_1 + F(\eta_2) \\
\varepsilon \frac{d\eta_1}{dt} &= \eta_2 \\
\varepsilon \frac{d\eta_2}{dt} &= -\xi_1 - \xi_2 - \eta_1 + F(\eta_2).
\end{align*}
\]
We compare now the behavior as $\varepsilon \to 0$ of solutions to the above system on a finite time interval, for two different potentials $F(\cdot)$:
We compare now the behavior as $\varepsilon \to 0$ of solutions to the above system on a finite time interval, for two different potentials $F(\cdot)$:

$$F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7$$

and

$$F_u(\eta) = \eta - \eta^3 + \eta^5 - \eta^7.$$
The four-dimensional system with the potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]
The four-dimensional system with the potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

conforms to the classical singular perturbation analysis;
The Stable Fixed Point Case

The four-dimensional system with the potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

conforms to the classical singular perturbation analysis; indeed, Assumption AFP holds then in the vicinity of the equilibria, and the classical Levinson-Tikhonov theory applies.
The four-dimensional system with the potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

conforms to the classical singular perturbation analysis; indeed, Assumption AFP holds then in the vicinity of the equilibria, and the classical Levinson-Tikhonov theory applies.

When the slow variable \(x = (\xi_1, \xi_2) \) is kept fixed, the fast solution \(y(t) = (\eta_1(t), \eta_2(t)) \) converges as \(t \to \infty \) to the solution of the corresponding algebraic equations, namely, to the point \((-\xi_1 - \xi_2, 0) \).
The Stable Fixed Point Case

The four-dimensional system with the potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

conforms to the classical singular perturbation analysis; indeed, Assumption AFP holds then in the vicinity of the equilibria, and the classical Levinson-Tikhonov theory applies.

When the slow variable \(x = (\xi_1, \xi_2) \) is kept fixed, the fast solution \(y(t) = (\eta_1(t), \eta_2(t)) \) converges as \(t \to \infty \) to the solution of the corresponding algebraic equations, namely, to the point \((-\xi_1 - \xi_2, 0)\). The latter point is indeed asymptotically stable with respect to the fast dynamics.
The Stable Fixed Point Case

The four-dimensional system with the potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

conforms to the classical singular perturbation analysis; indeed, Assumption AFP holds then in the vicinity of the equilibria, and the classical Levinson-Tikhonov theory applies.

When the slow variable \(x = (\xi_1, \xi_2) \) is kept fixed, the fast solution \(y(t) = (\eta_1(t), \eta_2(t)) \) converges as \(t \to \infty \) to the solution of the corresponding algebraic equations, namely, to the point \((-\xi_1 - \xi_2, 0) \). The latter point is indeed asymptotically stable with respect to the fast dynamics (hence the subscript \(s \), which stands for stability, of \(F \) is placed).
For the case of the stable potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]
Summary of Asymptotically Fixed Point Case

For the case of the stable potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

the solution to the full four-dimensional system of equations is "slaved" to the manifold in the four dimensional space, determined
For the case of the stable potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

the solution to the full four-dimensional system of equations is “slaved” to the manifold in the four dimensional space, determined

\[(\eta_1, \eta_2) = (-\xi_1 - \xi_2, 0). \]
For the case of the stable potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

the solution to the full four-dimensional system of equations is "slaved" to the manifold in the four dimensional space, determined

\[(\eta_1, \eta_2) = (-\xi_1 - \xi_2, 0). \]

Inserting these values to the slow equation

\[\frac{d\xi_1}{dt} = \xi_2 \]
\[\frac{d\xi_2}{dt} = -2\xi_1 - \xi_2 - \eta_1 + F(\eta_2), \]
For the case of the stable potential:

\[F_s(\eta) = -\eta - \eta^3 + \eta^5 - \eta^7 \]

the solution to the full four-dimensional system of equations is "slaved" to the manifold in the four dimensional space, determined

\[(\eta_1, \eta_2) = (-\xi_1 - \xi_2, 0).\]

Inserting these values to the slow equation

\[
\frac{d\xi_1}{dt} = \xi_2 \\
\frac{d\xi_2}{dt} = -2\xi_1 - \xi_2 - \eta_1 + F(\eta_2),
\]

determines the limit, as \(\varepsilon \to 0\), of the slow solutions.
Next we consider the four-dimensional system with the potential

\[F_u(\eta) = \eta - \eta^3 + \eta^5 - \eta^7. \]
Next we consider the four-dimensional system with the potential

\[F_u(\eta) = \eta - \eta^3 + \eta^5 - \eta^7. \]

Such a system is not completely academic, it arises in the analysis of a specific applications; e.g., Artstein-Slemrod, Dowell-Ilgamov, and Iwan-Belvins.
Next we consider the four-dimensional system with the potential

\[F_u(\eta) = \eta - \eta^3 + \eta^5 - \eta^7. \]

Such a system is not completely academic, it arises in the analysis of a specific applications; e.g., Artstein-Slemrod, Dowell-Ilgamov, and Iwan-Belvins.

In the case of the potential \(F_u(\eta) \) the Levinson–Tikhonov theory does not apply.
Next we consider the four-dimensional system with the potential

\[F_u(\eta) = \eta - \eta^3 + \eta^5 - \eta^7. \]

Such a system is not completely academic, it arises in the analysis of a specific applications; e.g., Artstein-Slemrod, Dowell-Ilgamov, and Iwan-Belvins.

In the case of the potential \(F_u(\eta) \) the Levinson–Tikhonov theory does not apply.

Indeed, when the slow variable \(x = (\xi_1, \xi_2) \) is kept fixed the fast equation is of the van der Pol type.
The Limit Cycle Case

Next we consider the four-dimensional system with the potential

\[F_u(\eta) = \eta - \eta^3 + \eta^5 - \eta^7. \]

Such a system is not completely academic, it arises in the analysis of a specific applications; e.g., Artstein-Slemrod, Dowell-Ilgamov, and Iwan-Belvins.

In the case of the potential \(F_u(\eta) \) the Levinson–Tikhonov theory does not apply.

Indeed, when the slow variable \(x = (\xi_1, \xi_2) \) is kept fixed the fast equation is of the van der Pol type.

The stationary point determined by the algebraic equation is unstable with respect to the fast dynamics (hence the subscript \(u \), standing for unstable, is placed); in particular, the solution to the full equation is not attracted to the mentioned manifold.
However, for a fixed \((\xi_1, \xi_2)\) and with initial condition \((\eta_1, \eta_2)\) different from the fixed point, the fast solution converges to a limit cycle, thus, in this case the following Assumption LC holds.

Assumption LC. In the region where the analysis is carried out, when \(x\) is held fixed the solutions of the fast equation, namely of \[
\frac{dy}{ds} = g(x, y),
\]
converge to a limit cycle which we denote by \(\Gamma(x)\). Thus, LC stands for Limit Cycle.
However, for a fixed \((\xi_1, \xi_2)\) and with initial condition \((\eta_1, \eta_2)\) different from the fixed point, the fast solution converges to a limit cycle, thus, in this case the following Assumption LC holds.

Assumption LC. In the region where the analysis is carried out, when \(x\) is held fixed the solutions of the fast equation, namely of \(\frac{dy}{ds} = g(x, y)\), converge to a limit cycle which we denote by \(\Gamma(x)\). Thus, LC stands for Limit Cycle.

This kind of work is in Bogoliubov-Mitropolsky and in Pontryagin-Rodygin.
Z. Artstein, J. Linshiz and E.S. Titi, *SIAM, Multiscale Modeling and Simulation, 6(4) (2007), 1085–1097.*

<table>
<thead>
<tr>
<th>(\epsilon)</th>
<th>(F) stable</th>
<th>(F) unstable</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.52 sec</td>
<td>3.9 sec</td>
</tr>
<tr>
<td>0.01</td>
<td>0.64 sec</td>
<td>43 sec</td>
</tr>
<tr>
<td>0.001</td>
<td>0.63 sec</td>
<td>433 sec</td>
</tr>
<tr>
<td>0.0001</td>
<td>0.65 sec</td>
<td>4339 sec</td>
</tr>
</tbody>
</table>
We work under Assumption LC. In particular, the analysis is done in a prescribed region in $\mathbb{R}^n \times \mathbb{R}^m$ and in that region for any fixed x and initial condition \hat{y} the solution to
We work under Assumption LC. In particular, the analysis is done in a prescribed region in $\mathbb{R}^n \times \mathbb{R}^m$ and in that region for any fixed x and initial condition \hat{y} the solution to

$$\frac{dy}{ds} = g(x, y), \quad y(s_0) = \hat{y},$$

(1)

converges, as $s \to \infty$, to the limit cycle $\Gamma(x)$.

One way in which the limit cycle can be represented is as a periodic function

$$\gamma_x(\cdot) : [0, T_x] \to \mathbb{R}^m$$

(2)

with a period T_x which depends on the fixed slow state x.
Another way to represent the limit cycle is to consider the closed curve determined by the limit cycle and the distribution, say μ_x, of the trajectory on the closed curve.
Another way to represent the limit cycle is to consider the closed curve determined by the limit cycle and the distribution, say μ_x, of the trajectory on the closed curve.

The distribution μ_x is a probability distribution on \mathbb{R}^m, supported on $\Gamma(x)$, which assigns to each measurable subset the proportional time the trajectory spends in the subset.
Another way to represent the limit cycle is to consider the closed curve determined by the limit cycle and the distribution, say μ_x, of the trajectory on the closed curve.

The distribution μ_x is a probability distribution on \mathbb{R}^m, supported on $\Gamma(x)$, which assigns to each measurable subset the proportional time the trajectory spends in the subset.

The measure μ_x is called in literature as Young Measure.
Young Measure

probability distribution
A connection between the measure μ_x on \mathbb{R}^m and the periodic solution $\gamma_x(\cdot)$ is
A connection between the measure μ_x on \mathbb{R}^m and the periodic solution $\gamma_x(\cdot)$ is

$$\mu_x(C) = \frac{1}{T_x} \lambda(\{s \in [0, T_x] : \gamma_x(s) \in C\})$$

for any measurable subset C of \mathbb{R}^m, and where λ is the Lebesgue measure on the real line.
A connection between the measure μ_x on \mathbb{R}^m and the periodic solution $\gamma_x(\cdot)$ is

$$
\mu_x(C) = \frac{1}{T_x} \lambda(\{s \in [0, T_x] : \gamma_x(s) \in C\})
$$

for any measurable subset C of \mathbb{R}^m, and where λ is the Lebesgue measure on the real line. Notice that the measure μ_x is an invariant measure of fast dynamics.
This approach was investigated by Artstein and Artstein-Vigodner.
This approach was investigated by Artstein and Artstein-Vigodner.

Denote by \((x_\varepsilon(t), y_\varepsilon(t))\) the solution to our system, under Assumption LC. The goal is to describe the structure of the limit of \((x_\varepsilon(\cdot), y_\varepsilon(\cdot))\), as \(\varepsilon \to 0\), on a fix time interval, say \([0, \tau_0]\).
This approach was investigated by Artstein and Artstein-Vigodner.

Denote by \((x_\varepsilon(t), y_\varepsilon(t))\) the solution to our system, under Assumption LC. The goal is to describe the structure of the limit of \((x_\varepsilon(\cdot), y_\varepsilon(\cdot))\), as \(\varepsilon \to 0\), on a fix time interval, say \([0, \tau_0]\).

When referring to the limit cycle given above we use either the periodic solution or the distribution measure.
This approach was investigated by Artstein and Artstein-Vigodner.

Denote by $(x_\varepsilon(t), y_\varepsilon(t))$ the solution to our system, under Assumption LC. The goal is to describe the structure of the limit of $(x_\varepsilon(\cdot), y_\varepsilon(\cdot))$, as $\varepsilon \to 0$, on a fix time interval, say $[0, \tau_0]$.

When referring to the limit cycle given above we use either the periodic solution or the distribution measure.

We also need a convergence notion for the probability measures μ_x. To this end we adopt the weak convergence of measures.
Theorem Under Assumption LC the slow parts $x_\varepsilon(\cdot)$ of the solutions converge as $\varepsilon \rightarrow 0$, uniformly on the time interval $[0, \tau_0]$, to a solution $x_0(\cdot)$ of
Theorem Under Assumption LC the slow parts $x_\varepsilon(\cdot)$ of the solutions converge as $\varepsilon \to 0$, uniformly on the time interval $[0, \tau_0]$, to a solution $x_0(\cdot)$ of

$$\frac{dx}{dt} = \frac{1}{T_x} \int_0^{T_x} f(x, \gamma_x(s))\, ds; \quad (3)$$
Theorem Under Assumption LC the slow parts $x_\varepsilon(\cdot)$ of the solutions converge as $\varepsilon \to 0$, uniformly on the time interval $[0, \tau_0]$, to a solution $x_0(\cdot)$ of

$$\frac{dx}{dt} = \frac{1}{T_x} \int_0^{T_x} f(x, \gamma_x(s)) ds; \quad (3)$$

the latter equation can be re-written in terms of the invariant measure μ_x, namely,

$$\frac{dx}{dt} = \int_{\mathbb{R}^m} f(x, y) \mu_x(dy). \quad (4)$$
Theorem Under Assumption LC the slow parts $x_\varepsilon(\cdot)$ of the solutions converge as $\varepsilon \to 0$, uniformly on the time interval $[0, \tau_0]$, to a solution $x_0(\cdot)$ of

$$\frac{dx}{dt} = \frac{1}{T_x} \int_0^{T_x} f(x, \gamma_x(s)) ds; \quad (3)$$

the latter equation can be re-written in terms of the invariant measure μ_x, namely,

$$\frac{dx}{dt} = \int_{\mathbb{R}^m} f(x, y) \mu_x(dy). \quad (4)$$

The present result follows from standard averaging techniques; e.g., Sanders and Verhulst.
What about the limit of the fast dynamics?

The limit structure of the fast part $y_\varepsilon(\cdot)$ is more delicate.
What about the limit of the fast dynamics?

The limit structure of the fast part $y_\varepsilon(\cdot)$ is more delicate.

In general, when $x_0(\cdot)$ is not a constant, the functions $y_\varepsilon(\cdot)$ do not converge point-wise as $\varepsilon \to 0$.
What about the limit of the fast dynamics?

The limit structure of the fast part $y_\varepsilon(\cdot)$ is more delicate.

In general, when $x_0(\cdot)$ is not a constant, the functions $y_\varepsilon(\cdot)$ do not converge point-wise as $\varepsilon \to 0$.

What one can hope for is to identify the limit topological location and distribution of the trajectories,
What about the limit of the fast dynamics?

The limit structure of the fast part $y_\varepsilon(\cdot)$ is more delicate.

In general, when $x_0(\cdot)$ is not a constant, the functions $y_\varepsilon(\cdot)$ do not converge point-wise as $\varepsilon \to 0$.

What one can hope for is to identify the limit topological location and distribution of the trajectories, and to describe the local, in the fast time scale, behavior of the solutions.
What about the limit of the fast dynamics?

The limit structure of the fast part $y_\varepsilon(\cdot)$ is more delicate.

In general, when $x_0(\cdot)$ is not a constant, the functions $y_\varepsilon(\cdot)$ do not converge point-wise as $\varepsilon \to 0$.

What one can hope for is to identify the limit topological location and distribution of the trajectories, and to describe the local, in the fast time scale, behavior of the solutions.

The topological limit is given as follows:
What about the limit of the fast dynamics?

The limit structure of the fast part $y_\varepsilon(\cdot)$ is more delicate.

In general, when $x_0(\cdot)$ is not a constant, the functions $y_\varepsilon(\cdot)$ do not converge point-wise as $\varepsilon \to 0$.

What one can hope for is to identify the limit topological location and distribution of the trajectories, and to describe the local, in the fast time scale, behavior of the solutions.

The topological limit is given as follows:

Proposition Under Assumption LC, the couple $(x_\varepsilon(t), y_\varepsilon(t))$ of slow and fast trajectories approaches, as $\varepsilon \to 0$, the tube located in $\mathbb{R}^n \times \mathbb{R}^m$, having a circular m-cross section, and given by

$$\{(x_0(t), \Gamma_{x_0(t)}): t \in [0, \tau_0]\}.$$

where $x_0(t)$ is the uniform limit of $x_\varepsilon(t)$ as $\varepsilon \to 0$.

{(5)}
A quantitative form of the convergence of the fast part can be formed when resorting to the distributions μ_x.
Quantitative description of the limit of the fast dynamics and Young measures

A quantitative form of the convergence of the fast part can be formed when resorting to the distributions μ_x.

Indeed, the family $\mu_{x_0}(t)$, parameterized by the time variable t over the interval of integration $[0, \tau_0]$, can be viewed as a probability measure-valued map $\mu_{x_0}(\cdot)$, called in the literature a Young measure.
A quantitative form of the convergence of the fast part can be formed when resorting to the distributions \(\mu_x \).

Indeed, the family \(\mu_{x_0}(t) \), parameterized by the time variable \(t \) over the interval of integration \([0, \tau_0]\), can be viewed as a probability measure-valued map \(\mu_{x_0}(\cdot) \), called in the literature a Young measure.

The mappings \(y_{\varepsilon}(\cdot) \) can also be viewed as (degenerate) Young measures, namely, with values being Dirac measures. It can be represented as a measure

\[
\delta_{y_{\varepsilon}(t)}(dy).
\]
The Limit of the Graphs of Fast Oscillating Functions

Edriss S. Titi

Fast-Slow Multi-scale Systems
A useful representation in our case is in terms of convergence of distributions, or probability measures. The intuitive flavor of the convergence is quite simple:
A useful representation in our case is in terms of convergence of distributions, or probability measures. The intuitive flavor of the convergence is quite simple:

Suppose that a small interval, say I, is given near, say, a point τ in the interval. Then for ε small enough the distribution of the fast dynamics $y_\varepsilon(\cdot)$ over the interval I is very similar to the distribution $\mu_{x_0}(\tau)$ on the corresponding limit cycle.
The following computations are reported in:

Z. Artstein, J. Linshiz and E.S. Titi, *SIAM, Multiscale Modeling and Simulation*, 6(4) (2007), 1085–1097.

System I

\[
\begin{align*}
\frac{d\xi_1}{dt} &= \xi_2 \\
\frac{d\xi_2}{dt} &= -2\xi_1 - \xi_2 - \eta_1 + \eta_2 - \eta_2^3 + \eta_2^5 - \eta_2^7 \\
\varepsilon\frac{d\eta_1}{dt} &= \eta_2 \\
\varepsilon\frac{d\eta_2}{dt} &= -\xi_1 - \xi_2 - \eta_1 + \eta_2 - \eta_2^3 + \eta_2^5 - \eta_2^7.
\end{align*}
\]
Figure 1

Transient to Limit Cycle

- transient trajectory
- limit cycle at $t=0$
- initial condition

Edriss S. Titi
Fast-Slow Multi-scale Systems
The drift of the slow dynamics

Figure 2
Limit Solution tube generated by the fast dynamics

Figure 3
The second example is given by the following set of equations.

\[
\begin{align*}
\frac{dx_1}{dt} &= x_2 - 1 \\
\frac{dx_2}{dt} &= 1 - \sqrt{y_1^2 + y_2^2} \\
\varepsilon \frac{dy_1}{dt} &= x_1 \frac{y_1}{\sqrt{y_1^2 + y_2^2}} - y_1 - y_2 x_2 \\
\varepsilon \frac{dy_2}{dt} &= x_1 \frac{y_2}{\sqrt{y_1^2 + y_2^2}} - y_2 + y_1 x_2.
\end{align*}
\]

This system also has a limit solution which can be computed analytically. This can be seen when the variables in the latter two equations are written in polar coordinates as follows.
In fact, it is easy to see that the fast dynamics converges toward a limit cycle parameterized by the slow dynamics, which, in turn, oscillates.
Again, the numerics of the explicit expression for the slow dynamics cannot be distinguished from the solution obtained by our algorithm.
the limit tube of the fast dynamics (here the lines depict the limit cycles while the dots reflect the approximation to the corresponding invariant measures).
General fast dynamics with compact attractor

\[
\begin{align*}
\frac{dx}{dt} &= f(x, y) \\
\varepsilon \frac{dy}{dt} &= g(x, y)
\end{align*}
\]

with \(x \in \mathbb{R}^n\) and \(y \in \mathbb{R}^m\), and initial conditions

\[
x(0) = x_0, \quad y(0) = y_0.
\]

Suppose the fast dynamics \(\frac{dy}{ds} = g(x, y)\) for each fixed \(x\) in the domain of interest has a compact attractor with unique invariant measure \(\mu_x\).
Theorem Under assumption that for each fixed x, in the relevant domain of interest, the fast dynamics, $\frac{dy}{ds} = g(x, y)$, has a compact attractor with unique invariant measure μ_x, then the slow parts $x_\varepsilon(\cdot)$ of the solutions converge as $\varepsilon \to 0$, uniformly on the time interval $[0, \tau_0]$, to a solution $x_0(\cdot)$ of
Theorem Under assumption that for each fixed \(x \), in the relevant domain of interest, the fast dynamics, \(\frac{dy}{ds} = g(x, y) \), has a compact attractor with unique invariant measure \(\mu_x \), then the slow parts \(x_\varepsilon(\cdot) \) of the solutions converge as \(\varepsilon \to 0 \), uniformly on the time interval \([0, \tau_0]\), to a solution \(x_0(\cdot) \) of

\[
\frac{dx}{dt} = \int_{\mathbb{R}^m} f(x, y) \mu_x(dy).
\]
Theorem Under assumption that for each fixed x, in the relevant domain of interest, the fast dynamics, $\frac{dy}{ds} = g(x,y)$, has a compact attractor with unique invariant measure μ_x, then the slow parts $x_\varepsilon(\cdot)$ of the solutions converge as $\varepsilon \to 0$, uniformly on the time interval $[0, \tau_0]$, to a solution $x_0(\cdot)$ of

$$\frac{dx}{dt} = \int_{\mathbb{R}^m} f(x, y) \mu_x(dy).$$

Moreover, the fast dynamics $y_\varepsilon(\cdot)$, viewed as a delta Dirac measure, converges to $\mu_{x_0}(\cdot)(dy)$ weakly in the sense of Young measures.
What if we do not have separation of scales in the state variables?

In many interesting applications one does not have separation of scales in the state variables?
What if we do not have separation of scales in the state variables?

In many interesting applications one does not have separation of scales in the state variables?

Therefore, one might have to identify slow functionals/observables of the state variables and find an efficient algorithm to compute them.
Consider a system of the form

\[\frac{dU}{d\tau} = \frac{1}{\epsilon} F(U) + G(U), \]
Consider a system of the form

\[\frac{dU}{d\tau} = \frac{1}{\varepsilon} F(U) + G(U), \]

Theorem [Artstein-Kevrekidids-Slemrod-T.] Let the initial condition \(U^0 \) for the above equation be given. Let \(T > 0 \) be given, and fixed. Denote by \(U_\varepsilon(\tau) \) the solution of the above system, for a given \(\varepsilon \), over the interval \([0, T]\). Then a subsequence \(\varepsilon_k \to 0 \) exists such that \(U_{\varepsilon_k}(\tau) \) converge as \(k \to \infty \), in the sense of Young measures on \([0, T]\), to a Young measure, say \(\mu_0(\tau) \), \(\tau \in [0, T] \). Moreover, for almost every \(\tau \in [0, T] \) the measure \(\mu_0(\tau) \) is an invariant measure of the fast equation \(\frac{dU}{ds} = F(U) \).
The constants of motion of the fast dynamics, \(\frac{dU}{ds} = F(U) \), to the above system are candidates for slow observables. And the idea is to find an equation of motion for the way they are drifted by the slow flow.
The constants of motion of the fast dynamics, \(\frac{dU}{ds} = F(U) \), to the above system are candidates for slow observables. And the idea is to find an equation of motion for they way they are drifted by the slow flow.

That is, we consider the functionals \(v(U) \), which for every solution \(U(s) \) for \(\frac{dU}{ds} = G(U) \) they satisfy

\[
\frac{dv(U(s))}{ds} = 0.
\]
The constants of motion of the fast dynamics, \(\frac{dU}{ds} = F(U) \), to the above system are candidates for slow observables. And the idea is to find an equation of motion for they way they are drifted by the slow flow.

That is, we consider the functionals \(v(U) \), which for every solution \(U(s) \) for \(\frac{dU}{ds} = G(U) \) they satisfy

\[
\frac{dv(U(s))}{ds} = 0.
\]

Observe that whenever \(\mu \) is an invariant measure for \(\frac{dU}{ds} = F(U) \), and \(v(U) \) is a constant of motion for it, then \(v(U) \) is constant on the support of \(\mu \). We denote this value by \(\hat{v}(\mu) \).
Theorem Let $U_{\varepsilon_k}(\tau)$ be as in the statement of last Theorem which converge, as $k \to \infty$, in the Young measures sense, to the Young measure $\mu_0(\tau)$, for $\tau \in [0, T]$. Let $v(U)$ be an integral/constant of motion for the fast dynamics. Denote $\hat{v}(\tau) = \hat{v}(\mu_0(\tau))$, namely, the measurement on the limit invariant measures. Then the function $\hat{v}_j(\mu_0(\tau))$ satisfies the differential equation

$$\frac{d\hat{v}}{d\tau}(\tau) = \int_{\mathbb{R}^N} (\nabla v)(U) \cdot G(U) \mu_0(\tau)(dU), \quad \hat{v}(0) = v(U(0)),$$

where $G(U) = G(U_1, \ldots, U_N)$, and the ∇ operator is with respect to the vector U. Furthermore, the sequence of measurements $v(U_{\varepsilon_k}(\tau))$ converge weakly to $\hat{v}(\mu_0(\tau))$, as $k \to \infty$.

Edriss S. Titi

Fast-Slow Multi-scale Systems
Application to discretized Burgers with small diffusion

\[
\frac{dU_k}{d\tau} + \frac{U_k(U_{k+1} - U_{k-1})}{2h\varepsilon} = \frac{U_{k+1} - 2U_k + U_{k-1}}{h^2}.
\]

Denote by \(U \) the vector \((U_1, \cdots, U_N)\); the above system can be rewritten as:

\[
\frac{dU}{d\tau} = \frac{1}{\varepsilon} F(U) + G(U),
\]

where

\[
F(U) = \frac{-1}{2h} \begin{pmatrix}
U_1(U_2 - U_N) \\
U_2(U_3 - U_1) \\
\vdots \\
U_N(U_1 - U_{N-1})
\end{pmatrix},
G(U) = \frac{1}{h^2} \begin{pmatrix}
U_2 - 2U_1 + U_N \\
U_3 - 2U_2 + U_1 \\
\vdots \\
U_1 - 2U_N + U_{N-1}
\end{pmatrix}.
\]
This system was investigated by Goodman and Lax on the whole line. Here we deal with the periodic case and find that the fast dynamics is integrable and has at least \(N/2 \) constants of motion.
This system was investigated by Goodman and Lax on the whole line. Here we deal with the periodic case and find that the fast dynamics is integrable and has at least $N/2$ constants of motion.

In joint work with Artstein, Gear, Kevrekidis, Slemrod and E.S.T. we investigate this computationally and find a great saving by using the Young measure approach.
Figure: Torus for the case $N = 6$ of the fast system. Initial values were $[1 \ 1 \ 1 \ 3 \ 2 \ 1]$.

Invariant Torus for the fast dynamics
Evidence of fast dynamics

Figure: $U_1(\sigma)$ for the case in the first figure.
Fast evolution of the integrand

Figure: Evolution of $\nabla v_3(U(\sigma)) \cdot G(U(\sigma))$ along the trajectory $U(\sigma)$ of the first figure.
Figure: Averaged $\nabla v_3(U(\sigma)) \cdot G(U(\sigma))$ along the trajectory $U(\sigma)$ of the first figure.
The motion of slow observables

Figure: Behavior of the slow observables v_2, v_3 and v_4 as they are drifted by the slow diffusion.
Figure: Evolution of Tori of system (22) for initial condition [1 1 1 1.4]