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Abstract. We consider minimal graphs u = u(x, y) > 0 over unbounded domains
D ⊂ R2 bounded by a Jordan arc γ on which u = 0. We prove a sort of reverse
Phragmén-Lindelöf theorem by showing that if D contains a sector

Sλ = {(r, θ) = {−λ/2 < θ < λ/2} (π < λ ≤ 2π),

then the rate of growth is at most rπ/λ.
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1. Introduction

Let D be an unbounded plane domain. In this paper we consider the boundary value
problem for the minimal surface equation

(1.1) div
∇u√

1 + |∇u|2
= 0

with

(1.2) u = 0 on ∂D and u > 0 in D.

We shall study the constraints on growth of nontrivial solutions to (1.1) and (1.2) as
determined by the maximum

M(r) = sup u(x, y),

where the sup is taken over the values r =
√
x2 + y2 and (x, y) ∈ D.

The methods of this paper extend the results of [6], where the following is proved.

Theorem A. Suppose D is a simply connected domain whose boundary is a Jordan
arc, and D contains a sector Sλ = {z : | arg z| < λ/2}, with π < λ ≤ 2π. With M(r)
defined as above, if u satisfies (1.1) and (1.2) in D, then there exist positive constants
K and R such that

(1.3) M(r) ≤ Kr, r > R.
1
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As in Theorem A above, throughout this paper we shall use complex notation for
convenience.

Results regarding upper and lower bounds for the growth of solutions to (1.1) and
(1.2) are rather scarce and fragmented. To begin with, the first relevant theorem
in this direction was proved by Nitsche [8, p. 256] who observed that there are no
solutions to (1.1) and (1.2) with D being contained in a sector of opening strictly less
than π. For domains contained in a half plane, but not contained in any such sector,
there are solutions to (1.1) and (1.2) with differing growth rates given in [6].

For angles λ ≥ π, in terms of the order ρ of u defined by

ρ = lim
r→∞

sup
logM(r)

log r
,

it follows by using the module estimates of Miklyukov [7] as in [11] that if D omits
a sector of opening 2π − α, (π ≤ α ≤ 2π), the omitted set in the case α = 2π being
a line, then the order ρ of any nontrivial solution to (1.1) and (1.2) is at least π/α,
More precisely, the results in [11] are phrased in terms of the asymptotic angle β
defined as follows.

Let Θ(r) be the angular measure of the set D ∩ {|z| = r} and

β = lim sup
r→∞

Θ(r).

With this definition, the lower bound is given by

Theorem B. Let D be an unbounded domain whose boundary ∂D is a piecewise
differentiable arc, and suppose that u satisfies (1.1) and (1.2). If β ≥ π, then ρ ≥ π/β.

Regarding upper bounds, it was conjectured [12] that solutions to (1.1) and (1.2)
in general have at most exponential growth, and this is achieved by the horizontal
catenoid. In [12] the following is proved.

Theorem C. If u satisfies (1.1) and (1.2) in a domain D contained in a half plane
and bounded by an unbounded Jordan arc, then

Cr ≤M(r) ≤ eCr (r > r0)

for some positive constants C and r0.

The main result of this paper is the following bound for the order ρ of solutions when
D contains a large sector.

Theorem 1.1. Let D be a simply connected domain whose boundary is a Jordan arc,
and D contains a sector Sλ = {z : | arg z| < λ/2}, with π < λ ≤ 2π. If u satisfies
(1.1) and (1.2) in D, then ρ ≤ π/λ.
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The examples given in [6] show that the theorem is sharp. Further details regarding
those prototypes can be found in [13].

Note that Theorem B and Theorem 1.1 taken together imply that if D is bounded
by a piecewise differentiable arc and is asymptotic to a sector Sλ with λ > π, then
the order of u will in fact be equal to π/λ.

2. PRELIMINARIES

Let u(z) be a solution to (1.1) and (1.2) over a simply connected domain D. We shall
make use of the parametrization of the surface given by u in isothermal coordinates
using Weierstrass functions (x(ζ), y(ζ), U(ζ)) with ζ in the right half plane H and
U(ζ) = u(f(ζ)), where

(2.1) z = f(ζ) = x(ζ) + iy(ζ), ζ ∈ H.

Then f(ζ) is univalent and harmonic, and since D is simply connected it can be
written in the form

(2.2) f(ζ) = h(ζ) + g(ζ)

where h(ζ) and g(ζ) are analytic in H,

|h′(ζ)| > |g′(ζ)|,

and

(2.3) U(ζ) = 2<e i
∫ √

h′(ζ)g′(ζ) dζ.

(cf. [3]).

Now, U(ζ) is harmonic and in (2.3) can be taken as positive in H and vanishing on
∂H. Thus (cf. [10, p. 151]),

U(ζ) = C <e ζ,
where C is a positive constant. This with (2.3) gives

h′(ζ)g′(ζ) = −C2/4.

We may reparametrize for convenience, replacing f(ζ) and U(ζ) by f(2ζ/C) and
U(2ζ/C). Continuing to use ζ as the preferred variable, this means we may assume
that

(2.4) h′(ζ)g′(ζ) = −1 and U(ζ) = 2<e ζ.

In order to estimate the function f(ζ) in (2.2), we shall use the following lemma on
quasiconformal mappings from [2] (see [1, Lemma 5.8]).



4 ALLEN WEITSMAN

Lemma A. Suppose ϕ is quasiconformal in the plane such that ϕ(∞) =∞, and the
dilatation

µ(z) = ϕz(z)/ϕz(z)

satisfies

(2.5)

∫ 2π

0

|µ(reiθ)| dθ → 0 (r →∞).

Then, in any fixed annulus A(R) = {R−1 ≤ |z| ≤ R} (R > 1),

ϕ(tz)

ϕ(t)
→ z

uniformly in A(R) as 0 < t→∞. In particular,

|ϕ(z)| = |z|(1+o(1)) (z →∞).

Remark. For our later applications of Lemma A, note that if r > 0 and a and b are
in (0, 2π), then

ϕ(treia)

ϕ(treib)
=
ϕ(treia)

ϕ(t)

ϕ(t)

ϕ(treib)
→ reia

reib
= ei(a−b)

as t→∞, uniformly in A(R).

At the last stage we shall need a barrier argument based on the following [4, p.827].

Lemma B. Let u(z) be a solution to the minimal surface equation over a domain
Ω of the form Sλ\E (λ < π) with u(z) = 0 on ∂E and u(z) ≤ axm + b (0 < m <
1, a, b ≥ 0) for z = x+ iy ∈ ∂Sλ. Then u(z) ≤ axm + b in Ω.

Proof. Let T1 = Sλ ∩ {z : <e z < 1} and A > 0. Then, there exists [5, p.322] a
solution V1,A(z) to the minimal surface equation over T1 with values Ax on
∂Sλ ∩ {z : <e z < 1}, and V1,A(z)→ +∞ uniformly if <e z → 1 and | arg z| ≤ λ′/2 <
λ/2 in T1. The dilations VR,A(z) = RV1,A(z/R) have corresponding properties for
TR = Sλ ∩ {z : <e z < R}. Now, by the max/min principle [9, p.94], VR,A(z) > Ax
for z ∈ Sλ ∩ {z : <e z < R} and {VR,A} decreases with R on compact subsets of Sλ.
Thus, by the monotone convergence theorem [5, p.329], VR,A → VA on Sλ, where VA
is a solution to the minimal surface equation with boundary values Ax in a sector of
opening less than π. Therefore [8, p.256], VA(z) ≡ Ax for z = x+ iy ∈ Sλ.
Let u(z) be as in the statement of the lemma and take a fixed x0 > 0. Then, for
z ∈ ∂Sλ,
(2.6) u(z) ≤ a

(
xm0 +mxm−10 (x− x0)

)
+ b.

Since u(z) = 0 on ∂E, it follows that

(2.7) u(z) ≤ VR,A(z) +B z ∈ Ω ∩ {<e z < R},
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where A = amxm−10 , and B = axm0 (1 − m) + b. Letting R → ∞ in (2.7), it then
follows that (2.6) holds in Ω. Thus for any z = x0 + iy in Ω we have

u(x0 + iy) ≤ axm0 + b,

and since x0 was arbitrary, the lemma is proved. �

As a final preliminary lemma, we need the following qualitative growth estimate.

Lemma 2.1. Let u(z) be a solution to (1.1) and (1.2) over a domain D containing
a sector Sλ with λ > π, and f(ζ), h(ζ), g(ζ), and U(ζ) be as in (2.2) and (2.3)
corresponding to u(z). Then, for any proper subsector Sλ′ with π < λ′ < λ and
Dλ′ = f−1(Sλ′),

h′(ζ)→∞ as ζ →∞
uniformly for ζ ∈ Dλ′.

Proof. Let f(ζ), U(ζ) be as above. So, u(f(ζ)) = U(ζ) = 2<e ζ.

Let Pα = {ζ : <e eiαf(ζ) > 0} (|α| < λ/2 − π/2) and introduce a new variable ζ̃,

and let ζ = ψ0(ζ̃) be a conformal map from the right half plane H = {ζ̃ : <e ζ̃ > 0}
onto P0 with ψ0(∞) =∞.

Define 
f̃(ζ̃) = f(ψ0(ζ̃))

g̃(ζ̃) = g(ψ0(ζ̃))

h̃(ζ̃) = h(ψ0(ζ̃))

Then f̃ is a harmonic map

f̃(ζ̃) = h̃(ζ̃) + g̃(ζ̃), (ζ̃ ∈ H)

satisfying

(2.8) |h̃′(ζ̃)| > |g̃′(ζ̃)|, (ζ̃ ∈ H).

Note F̃ (ζ̃) = h̃(ζ̃) + g̃(ζ̃) is an analytic function with the same real part as f̃ . Then
<eF̃ is positive in H and vanishes on ∂H, and therefore (see [10, p. 151])

F̃ (ζ̃) = kζ̃ + ik0 =⇒ F̃ ′(ζ̃) = k, k > 0,

that is,

(2.9) h̃′(ζ̃) + g̃′(ζ̃) = k > 0.

Now,

(2.10) h̃′(ζ̃) = h′(ψ0(ζ̃)) · ψ′0(ζ̃),

and by (2.4),

(2.11) g̃′(ζ̃) = − ψ′0(ζ̃)

h′(ψ0(ζ̃))
= −ψ

′
0(ζ̃)2

h̃′(ζ̃)
.
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Combining this with (2.9)) we have

k = h̃′(ζ̃)− ψ′0(ζ̃)2

h̃′(ζ̃)

which implies

h̃′(ζ̃)2 − kh̃′(ζ̃)− ψ′0(ζ̃)2 = 0.

Thus,

(2.12) h̃′(ζ̃) =
k ±

√
k2 + 4ψ′0(ζ̃)2

2
, g̃′(ζ̃) =

−2ψ′0(ζ̃)2

k ±
√
k2 + 4ψ′0(ζ̃)2

.

Since ψ0(ζ̃) is a conformal map with <e ψ0(ζ̃) > 0 in H, there exists a real constant

0 ≤ c <∞ such that in any sector Sβ = {ζ̃ : | arg ζ̃| ≤ β < π/2}, ψ′0(ζ̃)→ c uniformly

as ζ̃ →∞ in Sβ (see [10, p. 152]). Thus,

(2.13) h̃′(ζ̃)→ k ±
√
k2 + 4c2

2
, g̃′(ζ̃)→ −2c2

k ±
√
k2 + 4c2

, ζ/ζ̃ → c.

If c > 0, a simple calculation with (2.13) shows that if the minus sign in (2.13) were
to hold, this would contradict (2.8). In case c = 0, with a minus sign in (2.13), this

would imply that h̃′(ζ̃)→ 0. However, (2.8) and (2.9) show that this is not possible.

Thus, (2.13) becomes

(2.14) h̃′(ζ̃)→ k +
√
k2 + 4c2

2
, g̃′(ζ̃)→ −2c2

k +
√
k2 + 4c2

, ζ/ζ̃ → c.

Case 1: ψ′0(ζ̃)→ c > 0 as ζ̃ →∞ in Sβ.

Using (2.14) we have

(2.15) h̃(ζ̃) + g̃(ζ̃) =
[
k<e ζ̃ + i

√
k2 + 4c2=m ζ̃

]
(1 + o(1))

as ζ̃ →∞ uniformly in Sβ. From this it follows that

(2.16) f(ζ) =
[
k<e ζ/c+ i

√
k2 + 4c2=mζ/c

]
(1 + o(1)))

uniformly as ζ → ∞ in proper subsectors of H. Therefore, P0 is asymptotically the
half plane H, in the sense that for any 0 < δ < π, we have P0 ⊃ Sδ ∩ {|ζ| > R} for
large R.

By (2.1) and (2.4), the graph of the minimal surface is given parametrically by
(<e f(ζ),=mf(ζ), 2<e ζ). Using (2.16) we then have that the surface is asymptotic
to a plane as ζ →∞ in proper subsectors of H.
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Consider now Pα as above with α 6= 0 and let ψα(ζ̃) be a conformal map from the

right half plane H = {ζ̃ : <e ζ̃ > 0} onto Pα with ψα(∞) =∞. In this case we define

(2.17)


f̃α(ζ̃) = eiαf(ψα(ζ̃))

g̃α(ζ̃) = e−iαg(ψα(ζ̃))

h̃α(ζ̃) = eiαh(ψα(ζ̃))

Proceding in analogy with (2.9)-(2.16), we have

(2.18) h̃′α(ζ̃)2 − kαh̃′α(ζ̃)− ψ′α(ζ̃)2 = 0

and with the principal branch of the square root,

(2.19) h̃′α(ζ̃) =
kα +

√
k2α + 4ψ′α(ζ̃)2

2
, g̃′α(ζ̃) =

−2ψ′α(ζ̃)2

kα +
√
k2α + 4ψ′α(ζ̃)2

in H, where the minus sign in the roots of (2.18) is eliminated as before.

With Sβ = {ζ̃ : | arg ζ̃| ≤ β < π/2}, again ψ′α(ζ̃)→ cα ≥ 0 as ζ̃ →∞ ∈ Sβ. We wish
to show that when c0 > 0 then cα > 0.

Suppose that cα = 0. We reflect f̃α to the left half ζ̃ plane and note that the β
corresponding to the sectors Sβ can approach π/2. It then follows from (2.19) that

Lemma A applies to f̃α(ζ̃). To apply Lemma A, we note that the dilatations in Sβ
tend to 0, and since f̃α is sense preserving, the dilatations are less than 1 outside. So
(2.5) applies.

Then for ε > 0 (see Remark following Lemma A), the image f̃(Sβ) covers Sπ−ε ∩ {z :
|z| > R} if β is sufficiently close to π/2 and R sufficiently large. From this and (2.15)

it follows that if Q = Qα,β = f̃(Sβ)∩ e−iαf̃α(Sβ), then for β close to π/2 and all large
R, the intersection Q ∩ {z : |z| = R} is nonempty.

From the original analysis of P0, we find that for points ζ ∈ f−1(Q), (2.10) and (2.14)
imply that h′(ζ) remains bounded.

On the other hand, from the analysis of Pα, it follows from (2.17) and (2.19) that
g′(ζ)/h′(ζ) → 0 as ζ → ∞ and ζ ∈ f−1(Q). This with (2.4) implies that h′(ζ) is
unbounded, a contradiction.

Therefore, it must be that cα > 0 also, and as in the case of P0 above, the graph above
f(Pα) must be asymptotically a plane. Since f(P0) and f(Pα) overlap, these graphs
must be asymptotically the same plane, and since f(P0) ∪ f(Pα) extends outside a
half plane with u(z) > 0, we obtain a contradiction. We conclude that Case 1 cannot
occur.
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Case 2: ψ′0(ζ̃)→ 0 as ζ̃ →∞ in Sβ.

As in Case 1 above, Lemma A can be used to show that for ε > 0, the image f̃(Sβ)
covers Sπ−ε ∩ {z : |z| > R} for large R if β is sufficiently close to π. Using an
argument similar to Case 1, we can then deduce that the cα corresponding to each
Pα (|α| < λ/2− π/2) must also be 0. Since Sλ′ , with π < λ′ < λ, can be covered by

the union of the f̃(Sβ) corresponding to P0, Pα, P−α for some 0 < α < λ/2 − π/2
and large R, it follows from (2.17), and (2.19) that g′(ζ)/h′(ζ)→ 0. This with (2.4)
implies that h′(ζ)→∞ uniformly as ζ →∞ with ζ ∈ f−1(Sλ′). �

3. Proof of Theorem 1.1

Proof. For fixed λ, let f1(ζ) denote the function in (2.1) corresponding to a solution
to (1.1) and (1.2) over a domain D containing Sλ. Then for λ′ such that π < λ′ < λ
we define f2(ζ) = ζλ

′/π + 1. Let S̃λ′ = f2(H) and H̃ = f−11 (S̃λ′). Then if ψ(ζ) is a
1 − 1 conformal mapping of H onto H̃ with ψ(∞) = ∞, it follows that f1(ψ(H)) =
f2(H) and there exists an orientation preserving homeomorphism ϕ : H → H with
ϕ(∞) =∞ such that

(3.1) f1(ψ(ζ)) = f2(ϕ(ζ)), ζ ∈ H.

Differentiating (3.1) with respect to ζ and ζ, and using the first equality in (2.4) we
obtain

(3.2) ψ′(ζ)h′1(ψ(ζ)) = ϕζ(ζ)f ′2(ϕ(ζ))

and

(3.3) − ψ′(ζ)

h′1(ψ(ζ))
= ϕζ(ζ)f ′2(ϕ(ζ)).

Dividing (3.3) by (3.2) we have

(3.4)
1

|h′1(ψ(ζ))|2
=

∣∣∣∣ϕζ(ζ)

ϕζ(ζ)

∣∣∣∣ .
Now, ψ(ζ) → ∞ as ζ → ∞ in H, so by Lemma 2.1 it follows that the left side of
(3.4) tends to 0.

It therefore follows from (3.4) and the fact that ϕ is a sense preserving differentiable
homeomorphism, that ϕ is quasiconformal in H and that the dilatation of ϕ satisfies

(3.5)

∣∣∣∣ϕζ(ζ)

ϕζ(ζ)

∣∣∣∣→ 0, (ζ →∞, ζ ∈ H).

The mapping ϕ can then be extended by reflection to a quasiconformal mapping of
the complex plane onto the complex plane with (3.5) still in force. As in the proof of
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Lemma 2.1, Lemma A is applicable to ϕ. Further, by the symmetry of the reflection,
the conclusion of Lemma A can be improved to

ϕ(reiθ) = r(1+o(1))ei(θ+o(1))

so that

f1(ψ(reiθ)) = f2(ϕ(reiθ)) = r(λ
′/π+o(1))ei(λ

′θ/π+o(1)), (ζ = reiθ →∞, ζ ∈ H).

From this we see that, given any λ′′ such that π < λ′′ < λ′, there is a proper sector
Σλ′′ in H such that f1(ψ(Σλ′′)) covers Sλ′′ ∩ {|z| > R} for large R. But ψ(ζ) is a
conformal mapping of H into H, so ψ′(ζ)→ k as ζ →∞ in Σλ′′ for some k ≥ 0 (cf.
[10, p. 151]). Combining this with (2.4) we conclude that for sufficiently large z,

(3.6) u(z) < |z|(π/λ′+o(1)), z ∈ Sλ′′ .
The boundary of the sector Sλ′′ on which (3.6) holds forms an angle in the left half
plane of opening less than π. On the boundary of D in the left half plane u(z) = 0.
Therefore, Lemma B applied to the sector of opening 2π−λ′′ centered on the negative
real axis, with E being the complement of D, tells us that (3.6) holds in D\Sλ′′ . Thus
we see that (3.6) holds on all of D. Since λ′ can be taken arbitrarily close to λ in
(3.6), the proof is complete. �
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