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Abstract

We give two harmonic mappings of the open unit disc onto bounded
convex domains that extend continuously to the unit circle as 2-valent
local homeomorphisms onto the boundary of the image domains such that
the valency of one mapping is 6 and of the other is 8. The paper concludes
with the following conjecture: For every positive integer N there exists a
harmonic mapping that satisfies the above boundary properties and whose
valency is at least N .

1. Introduction A harmonic map in a region D is a function of the form

f = g + h (1)

where g and h are analytic functions in D that are single-valued if D is simply-
connected and multiple-valued which can be determined up to additive constants
otherwise. The Jacobian of f is

Jf = |h′|2 − |g′|2 = |h′|2(1− |a|2)

where a = g′/h′ is the second dilatation function of f . It is known that f is
locally one-to-one in D if and only if Jf is nonzero there.

Let D be the unit disc {z : |z| < 1} and let K be a bounded convex domain.
In 1926, T. Radó [10] asked whether the harmonic extension to D of a sense-
preserving homeomorphism of ∂D to ∂K is itself a homeomorphism. Shortly
afterwards, H. Kneser [4] gave a geometric proof for a positive answer and
observed that the proof also holds if the convexity of K is exchanged for the
set-inclusion f(D) ⊂K. G. Choquet [2], apparently unaware of Kneser’s work,
also gave yet another but analytic proof. Recently, the theorem of Radó-Kneser-
Choquet was extended to multiply connected domains by P. Duren and W.
Hengartner and, independently by A. Lyzzaik; see [3] and [6]. We say that a
complex-valued function f of D is p−valent, or has valency p, if it admits each
value at most p times and some value exactly p times. In 1985, T. Sheil-Small
[11] considered harmonic mappings of D to K that extend continuously to n-
valent sense-preserving local homeomorphisms between ∂D and ∂K and asked
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whether these functions are (3n− 2)−valent in D. A negative answer was given
for all n = 3, 6, 9, · · · by A. Lyzzaik [5]. Subsequently, in a slightly different
direction, Sheil-Small [12] conjectured that a harmonic polynomial of degree n
is at most n2−valent in the complex plane, C| ; a harmonic polynomial of degree
n is of the form p + q where p and q are analytic polynomials with degrees n
and m, m < n, respectively. R. Peretz and J. Schmidt [9] supplied the answer.
Further, A. Wilmshurst [13] and, independently, D. Bshouty, W. Hengartner and
T. Suez [1] showed that n2 is indeed the best possible bound by constructing
harmonic polynomials of degree n and valency n2. These results disprove once
again Sheil-Small’s former question, this time however for all values n. This
led T. Sheil-Small (personal communication) about a decade ago to make the
following conjecture.

Sheil-Small’s Conjecture. If f is a harmonic mapping of D onto a convex
Jordan domain K that extends continuously to an n-valent sense-preserving
local homeomorphism between ∂D and ∂K and assumes every point in ∂K
exactly n times, then the valency of f is at most n2.

If the convexity of K replaces the set-inclusion f(D) ⊂ K, then the conjec-
ture is false as was recently shown by A. Lyzzaik [7].

The aim of this paper is to show that the latter Sheil-Small’s conjecture is
false. We do this by constructing two harmonic mappings of D onto convex
Jordan domains K that extend continuously to 2-valent sense-preserving local
homeomorphisms between ∂D and ∂K such that the valency of one mapping is
6 and of the other is 8. These mappings, though shall be studied independently,
are related in the sense that each could be obtained from the previous one by a
specific variation. We state the result of this paper as follows.

Theorem There exist 6− and 8−valent harmonic mappings f of the unit disc D
onto a convex domain K that extend continuously to 2-valent sense-preserving
homeomorphisms between ∂D and ∂K.

The paper is based on the following three harmonic mappings.

f1(z) = z + z2/2; (2)

f2(z) = z − 2.5/(z − 3)2 (3)

+z2/2− 5/(z − 3)− 7.5/(z − 3)2;

f3(z) = z − 2.5/(z − 3)2 + 0.0015/(z − 1.4)2 (4)

+z2/2− 5/(z − 3)− 7.5/(z − 3)2

+0.003/(z − 1.4) + 0.0021/(z − 1.4)2.

A requisite for the study of the geometry of these maps is the following
notation. Let f be a complex-valued function of a Jordan domain G of the
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sphere, and let z0 ∈ G. We write

fz0 ∼ zr(G) (r = 1, 2, · · ·)

if there exist open neighborhoods U and V of z0 and f(z0), respectively, and
sense-preserving homeomorphisms h1 and h2 that map U and V to (i) the discs
|ζ| < 1 and |η| < 1 if z0 ∈ G, and to (ii) the half-closed semi-discs |ζ| < 1,
=ζ ≥ 0 and |η| < 1, =η ≥ 0 otherwise, respectively, such that

η = h2 ◦ f ◦ h−1
1 (ζ) = ζr (ζ ∈ h1(U ∩G)).

Similarly, we write
fz0 ∼ zr(G) (r = 1, 2, · · ·),

if
η = h2 ◦ f ◦ h−1

1 (ζ) = ζ
r

(ζ ∈ h1(U ∩G)).

Note that if z0 ∈ ∂G, then r is odd if and only if f|∂G is locally one-to-one at
z0, and r = 1 if and only if f|G is locally one-to-one at z0. Also, we write

fz0 ∼ zr, zs(G) (r, s = 1, 2, · · ·)

if z0 ∈ G and there exists a cross-cut of G through z0 that divides G into two
Jordan domains G1 and G2 such that fz0 ∼ zr(G1) and fz0 ∼ zs(G2).

Now note that the dilatation of each fj is a(z) = 1/z and the Jacobian is
J(fj) = (|z|2−1)|g′j |2. Thus each fj is locally one-to-one everywhere in C| except
on ∂D and at the points where g′j either vanishes or is infinite (in case of f2 and

f3), and is sense-reversing in D and sense-preserving in C| \D; further, each fj
admits ∞ as a critical point of order 1 [8]. To study the behavior of each fj on
∂D, we write

fj(e
it = gj(e

it) + hj(e
it)

where gj and hj are given by (2), (3) and (4). Then

d

dt
fj(e

it) = −ie−itg′j(eit) + ieith′j(e
it) (5)

= −ie−itgj′(eit) + ie2itg′j(e
it)

= −2eit/2=[e3it/2g′j(e
it)].

Observe that arg dfj(e
it)/dt makes a jump of size an odd multiple of π at each

value t where =[e3it/2g′j(e
it)] changes sign and is otherwise continuously increas-

ing by π. Thus fj(∂D) is everywhere locally convex except for a cusp of angle
size zero associated with each of the jumps. We shall see that each h′j (and g′j)
are never zero on ∂D. This implies that for any z0 ∈ ∂D, fz0 ∼ z, z (D) unless
z0 is a point where a jump of arg dfj(e

it)/dt occurs in which case fz0 ∼ z3, z
or fz0 ∼ z3, z (D) and the size of the associated jump is −π or π respectively
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[8]. If the number of jumps is κ, then the total variation of arg dfj(e
it)/dt is

(κ + 1)π. Further, since fj is locally one-to-one and sense-reversing in D, the
net variation of arg dfj(e

it)/dt is exactly −2π which yields κ odd.
The paper is organized as follows. In Section 2, we study the geometry of f1

in order to establish a 4−valent harmonic mapping F1 of the unit disc D onto
a convex domain K that extends continuously to 2−valent sense-preserving
homeomorphisms between ∂D and ∂K. The same exercise is carried out in
Sections 3 and 4 with f2 and f3 in order to establish 6− and 8−valent harmonic
mappings F2 and F3, respectively, which otherwise satisfy the same properties
of F1. This disproves Sheil-Small’s conjecture for n = 2.

2. The Geometry of f1 and the Construction of F1

In this section, we construct a 4-valent harmonic mapping F1 of D onto a convex
Jordan domain K that extends continuously to a 2-valent sense-preserving local
homeomorphism between ∂D and ∂K.

Using (2) and (5), we have

d

dt
f1(eit) = −eit/2 sin(3t/2). (6)

Then there exist branches of arg df1(eit)/dt that increase steadily and contin-
uously by π on [0, 2π] without account of a jump of size an odd multiple of π
at each tk = 2(k − 1)π/3, k = 1, 2, 3. It follows that f1 maps ∂D homeomor-
phically to a deltoid whose three cusps have vertices at the points f(eitk); a
deltoid is a triangle with concave sides and angles of size zero; see Figure 1(a).
Let ∆ be the Jordan domain determined by the deltoid. Since Jf1(z) = |z|2− 1
vanishes if and only if z ∈ ∂D, f1 is locally one-to-one in C| \ ∂D. Also, since
Jf1 is positive in C| \D and negative in D, it is sense-preserving in the former
region and reversing in the latter. It follows at once that f1 is a sense-reversing
homeomorphism from D to ∆. Further, in view of the fact that the analytic
and co-analytic parts of f1 are non-vanishing on ∂D [8], fz0 = z, z (D) for every
z0 ∈ ∂D and z0 6∈ eitk , and fz0 = z3, z (D) for every z0 = eitk .

Let γk be the positively-directed subarc of ∂D starting and ending at eitk and
eitk+1 respectively, with eit4 = eit1 , Ak = f1(eitk) and Γk = f1(γk). Evidently,
each Γk is a directed arc starting and ending at Ak and Ak+1 respectively, with
A4 = A1, and the points Ak and the arcs Γk are the vertices and sides of the
deltoid respectively. Let Lk be the ray from Ak in the direction opposite to
the tangent vector to Γk at Ak. Because of the local behavior of f1 on ∂D, in
particular at the points eitk [8], there exists an unbounded Jordan arc `k from
eitk that lies otherwise in C| \D and maps under f1 homeomorphically to Lk.
Obviously, the arcs `k are mutually disjoint and together with ∂D divide C| into
D and three Jordan domains Dk, k = 1, 2, 3, where Dk is bounded by `k, γk
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and `k+1, with `4 = `1. Let ∆k be the Jordan domain bounded by  Lk, Γk and
 Lk+1 and lying on the right-hand side of Γk. Observe that f1 (i) as restricted to
each Dk is a locally one-to-one map, (ii) maps each ∂Dk homeomorphically to
∂∆k, and (iii) is an open sense-preserving map in Dk. Then, by the Monodromy
theorem, we conclude that f1 maps Dk homeomorphically to ∆k.

View ∆ and each ∆k as a bordered covering surface of C| with the identity
as the projection map; see Figure 1(b). Adjoin these surfaces by identifying
crosswise any two boundary arcs with the same projection. This yields the
folded image surface of f1 [8]. It is immediate that this surface covers every
point of ∆, ∂∆, and C| \D exactly 4, 3, and 2 times respectively, and that it
spreads over C| \∆ as a 2-sheeted smooth covering. Let K be a convex Jordan
domain containing ∂∆, and let D = f−1(K). It follows at once that D is a
Jordan domain containing D, f is a 4-valent function from D onto K, and
f extends continuously to a 2-valent local homeomorphism from ∂D onto K.
Precomposing f1 with a univalent function from the D onto D yields the desired
harmonic mapping F1 from D onto K.

3. The Construction of F2

Here we construct a 6-valent harmonic mapping F2 of D onto a convex Jor-
dan domain K that extends continuously to a 2-valent sense-preserving local
homeomorphism between ∂D and ∂K.

Using (3) and (5), we obtain

d

dt
f2(eit) = −ϕ2(t)eit/2,

where

ϕ2(t) = =[ei3t/2(1 +
5

(eit − 3)3
)].

We can write

ϕ2(t) = −16
sin(t/2)

|eit − 3|6ψ2(u),

where u = sin2 t/2 and

ψ2(u) = 3− 127u− 180u2 + 108u3 + 432u4.

Clearly, ψ2(0) is nonzero and ϕ2 changes sign at t1 = 0. Also, ϕ2 changes sign at
t ∈ (0, 2π) if and only if ψ2 changes sign at u ∈ (0, 1). The number of the latter
values is found by adhering to the variations of ψ2

′ and ψ2
′′ which imply that ψ2

decreases from ψ2(0) = 3 to ψ2(1/2) = −65 and then increases to ψ2(1) = 236.
Thus ψ2 changes sign exactly twice in (0, 1), namely at the approximate values
0.02289 and 0.77059 (these values and others appearing henceforth are found by
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the software Mathematica). Solving sin2 t/2 ≈ 0.02289 and sin2 t/2 ≈ 0.77059
yield the values t2 ≈ 0.30375, t3 ≈ 2.14264, t4 ≈ 2π − 2.14264 ≈ 4.13954 and
t5 ≈ 2π − 0.303754 ≈ 5.97843 at which ϕ2 changes sign in (0, 2π). Hence, ϕ2

changes sign exactly five times in an interval (−ε, 2π) for a sufficiently small
positive ε, namely at the values tk, 1 ≤ k ≤ 5.

We conclude that there exist branches of argdf2(eit)/dt that increase steadily
and continuously by π on [0, 2π] without account of a jump of size an odd mul-
tiple of π at each value tk. Note that

Jf2(z) = (|z|2 − 1)|g′2|2 = (|z|2 − 1)|1 +
5

(z − 3)3
|2

which vanishes on ∂D and at the zeros of g′2 which are 3 + 3
√
−5, or z1 ≈

3.85499 + 1.48088i, z2 = z1 and z3 ≈ 1.29002. Then f2 is locally one-to-one in
C| \ ∂D except at 3 where g2 is infinite, or at the points zk. Since each |zk| > 1,
(f2)ξ ∼ z3, z (D) or (f2)ξ ∼ z3, z (D) for any ξ = eitk and the size of each jump
of arg df2(eit)/dt is −π or π respectively. Further, f2 is locally one-to-one in D
and consequently the net variation of arg df2(eit)/dt on [0, 2π] is −2π. It follows
that if m is the number of the values tk at which arg df2(eit)/dt makes a jump
of size −π, then −2π = π −mπ + (5 −m)π and m = 4; that is, arg df2(eit)/dt
makes a jump of size π at only one tk and size −π at each of the others.

Now we describe f2(∂D). Let Ak = f(eitk), 1 ≤ k ≤ 5. Then A1 = 1.5,
A2 ≈ 1.51622 + 0.00129i, A3 ≈ −0.08600− 1.14829i, and, since f2(z) = f2(z),
A4 = A3 and A5 = A1. Let γk, 1 ≤ k ≤ 5, be the subarc of ∂D determined by
z(t) = eit, tk ≤ tk+1, with t6 = t1, and let Γk = f2(γk); see Figure 2(a). We
conclude the following:

(i) Each Γk is a locally convex Jordan arc;

(ii) Any two arcs Γk and Γk+1, with Γ6 ≡ Γ1, form a cusp whose vertex is
Ak+1, with A6 ≡ A1;

(iii) Γ1\{A1} and Γ5\{A1} lie in the upper and lower half-planes, respectively;

(iv) Γk and Γk+3, k = 1, 2, cross at exactly one point;

(v) Γk and Γ6−k, k = 1, 2, are symmetric to each other about the real axis,
and Γ3 is also symmetric about the real axis;

(vi) The arc-products Γk+2Γk+1Γk, k = 1, 3, are Jordan arcs;

(vii) Except for endpoints, Γ3 does not meet any other Γk;

(viii) Γ1, Γ2, Γ4 and Γ5 bound a Jordan region, R, which lies on the right-hand
side of every Γk;

(ix) The restriction of f2 to D assumes each value in R exactly twice and
elsewhere at most once;
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(x) f2(D) lies in the convex-hull of the points Ak, 1 ≤ k ≤ 4.

In view of (x), arg df2(eit)/dt makes a jump of size −π at each tk, 2 ≤ k ≤ 5,
and of size π at t1.

We describe now the image surface Ω of f2 in D; see Figure 2(b). Recall
that f2 is locally on-to-one in D (zk 6∈ D, 0 ≤ k ≤ 3.) Let ω be the point of
intersection of Γ3 with the real axis, and let Γ31 and Γ32 be the subarcs of Γ3

from A3 to ω and from ω to A4, respectively. Also, let ωA1 be the straight-line
segment from A1 to ω. Denote by Ω1 the closure of the Jordan domain bounded
by Γ1, Γ2, Γ31 and ωA1, and by Ω2 the closure of the Jordan region bounded by
Γ5, Γ4, Γ32 and ωA1. Observe that Ω1 is symmetric to Ω2 with respect to the
real axis. View Ω1 and Ω2 along with the identity maps as bordered covering
surfaces of the complex plane, then identify these surfaces crosswise along the
boundary arcs associated with ωA1. This yields the bordered image surface Ω
of f2 in D whose interior Ω is the image surface of f2 in D.

As for f2 in the complementary set of D, it is locally one-to-one there except
at each zk, 3 and ∞. Since each zk is a zero of h′ and g′ of order 1 and f2 is
sense-preserving in some deleted neighborhood of zk, zk is a critical point of
order 1 of f2 [8]. Similar considerations also yield 3 and ∞ critical points of
f2 of order 1. If wk = f2(zk), then w1 ≈ 10.43690 + 8.24106i, w2 = w1 by
symmetry, and w3 ≈ 1.62617; further, f(3) = f(∞) = ∞. Hence, there exists
an open neighborhood of every w 6= wk,∞ in which every continuous branch of
the inverse function of f2 is one-to-one.

Let Lk, 2 ≤ k ≤ 5, be the ray whose initial point is Ak and direction is
opposite to the tangent vector to Γk at Ak; see Figure 2(a). Let ∆1 be the
Jordan domain bounded by L2, Γ1, Γ5 and L5, and let ∆k, 2 ≤ k ≤ 4, be the
Jordan domain bounded by Lk, Γk and Lk+1, and lying on the right-hand side
of Γk. In view of the local behavior of f2 at each eitk , 2 ≤ k ≤ 5, there exists
a Jordan arc `k from eitk to infinity that maps under f2 homeomorphically to
Lk. Now let D1 be the Jordan domain bounded by `2, γ1, γ5 and `5, and let
Dk, 2 ≤ k ≤ 4, be the Jordan domain bounded by `k, γk and `k+1 and lying
on the right-hand side of γk. Since f2 is sense-preserving and open in C| \D,
∆k ⊂ f2(Dk) for each k.

It is immediate that there exists a Jordan convex domain K that contains
f2(D) and avoids the points wk 1 ≤ k ≤ 3; in fact, K can be an open disk; see
Figure 2(a). Let Bk be the point of intersection of Lk with ∂K. Considering the
argument of the tangent vector to each Γk at Ak, 2 ≤ k ≤ 5, and the locations
of the points Ak, we conclude that the points Bk appear on the positively-
directed ∂K in the order B2, B4, B3, B5. Let ∆′k = K ∩ ∆k, 1 ≤ k ≤ 4.
Also, let βk be the common boundary arc of ∆′k and K starting from Bk and
ending at Bk+1 if 2 ≤ k ≤ 4, and the common boundary arc of ∆′1 and K
starting from B5 and ending at B2 otherwise. Evidently, each ∆′k is a Jordan

domain that contains none of the points wk and satisfies ∆′k ⊂ f2(Dk); see
Figure 2(c). Hence, by the Monodromy theorem, there exists a Jordan domain
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D′k in Dk that maps under f2 homeomorphically to ∆′k. Observe that each D′k
can be chosen so that its boundary contains eitk . A homotopy argument then
implies that D′k, 2 ≤ k ≤ 4, is a Jordan domain bounded by `k, γk, `k+1 and a
Jordan arc αk starting from an interior point bk of `k and ending in an interior
point bk+1 of `k+1 and lying otherwise in Dk, and D′1 by `2, γ1, γ5, `5 and
a Jordan arc α1 starting from b5 and ending at b2 and lying otherwise in D1.
It is immediate that each f2 : D′k → ∆′k is a homeomorphism that maps αk
to βk in a sense-preserving manner, and that D = D

⋃
(∪4
k=1D

′
k) is a Jordan

domain bounded by α = α1α2α3α4. Let β = β1β2β3β4, and observe that β is a
2−fold 1−dimensional covering of ∂K with the identity as the projection map.
It follows that as z traverses α positively once starting from b1, f2(z) traverses
∂K positively twice starting from B1. Hence f2 is a 2−valent sense-preserving
local homeomorphism from ∂D to ∂K. Since each ∆′k contains the region R,
f2 of D \D assumes each value in R exactly 4 times, a conclusion that could
also be obtained by the Argument principle. Recall that f2 of D assumes each
value in R twice. Hence, f2 of D assumes each value in R exactly 6 times.
Precomposing f2 with a conformal map from the open unit disc to D yields
at once the desired function F2. The image surface of F2 can be obtained by
considering the bordered surface Ω along with the closed Jordan domains ∆′k,
1 ≤ k ≤ 4, with the identity map viewed also as bordered covering surfaces of
C| , then identifying these surfaces crosswise along the boundary arcs with the
same projection; see Figure 2(c).

Remark 1. We show here that a local surgery on the image surface of F1 yields
essentially the image surface of F2. We start off with the former image surface
and its associated notation. Let B be a closed disc in the interior of K centered
at A1 and not meeting Γ2. see Figure 3(a). Let c1 = Γ1 ∩ B, c2 = Ω ∩ ∂B
and c3 = Γ2 ∩ B. With A1 < B ∈ ∂B, let c4 and c5 be the major subarcs of
∂B starting from B and ending in c3 and c1 respectively. Consider the Jordan
domains: W1 bounded by the line segment [A1, B], c4 and c3, W2 bounded
by [A1, B], c1 and c5, and W3 bounded by c1, c2 and c3; see Figure 3(b). By
viewing each of these domains as a covering surface of C| with the identity as
the projection map, the image surface of F1 over the interior of B is obtained
by identifying these surfaces crosswise along the boundary arcs with the same
projection. Denote this surface by W .

Let e = [A1, v] be a real line segment starting from A1 and lying otherwise in
W3. Cut W3 along e, and denote by e1 and e2 the lower and upper edges of the
cut respectively. With fixed c2 and v, bend e1 and e2 slightly into convex arcs
tangent to the real axis at the common endpoint v and lie otherwise in the upper
and lower half-planes in the manner depicted in Figure 3(c); denote the other
endpoints of the new e1 and e2 by A11 and A12 respectively. This converts c1
and c3 to non-adjacent convex arcs ending in A12 and A11, respectively, instead
of A1, W1 to a Jordan domain bounded by the line segment [A11, B], c4 and c3,
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W2 to a Jordan domain bounded by [A12, B], c1 and c5, and W3 to a covering
surface with the same covering properties of the image surface of f2 in D. Let
W4 be the Jordan domain bounded by the segments [A11, B], [A12, B], e1 and
e2; see Figure 3(d). Now view each of the new domains Wk, 1 ≤ k ≤ 4, as a
covering surface of C| with the identity as the projection map, and identify these
surfaces crosswise along the boundary arcs with the same projection. Denote
the resulting surface by W ′.

Note that the borders of the image surfacesW andW ′ are “identical” when
viewed as 1−dimensional coverings of ∂B. ThusW can replaceW ′ in the image
surface of F1 in the appropriate manner which results in a covering surface of
C| that has the same covering properties of the image surface of F2 in D.

We conclude that the image surfaces of F1 and F2 in D differ only in a local
neighborhood in which a cusp in the former surface splits into three cusps in
the latter in a manner that contributes to a higher valency by 2 for F2.

4. The Construction of F3

In this section, we construct an 8-valent harmonic mapping F3 of D onto
a convex Jordan domain K that extends continuously to a 2-valent sense-
preserving local homeomorphism between ∂D and ∂K.

Using (3) and (5), we obtain

d

dt
f3(eit) = −ϕ3(t)eit/2,

where

ϕ3(t) = =[ei3t/2(1 +
5

(eit − 3)3
− 0.003

(eit − 1.4)3)
)].

We can write

ϕ3(t) = − 2× 0.46 sin(t/2)

|eit − 3|6|eit − 1.4|6ψ3(u),

where u = sin2(t/2) and

ψ3(u) = 8(1 + 35u)3ψ2(u) + 27(13u− 1)(1 + 3u)3.

Note that ψ3(0) = −3 6= 0; so ϕ3 changes sign at t1 = 0. Also, note that ϕ3

changes sign at t ∈ (0, 2π) if and only if ψ3 changes sign at u ∈ (0, 1). To
find the number of the latter values, observe that for each of the derivatives

ψ
(n)
3 , 2 ≤ n ≤ 5, there exists a value 0 ≤ u ≤ 1 such that the derivative

is negative in [0, u) and positive in (u, 1], and that ψ′3(0.5) < 0 < ψ′3(0) and
ψ′3(1) > 0. Thus there exist two values 0 < u1 < u2 < 1 such that ψ′3 is
positive in the intervals [0, u1) and (u2, 1] and negative in the interval (u1, u2).
Further, Since ψ3(0) < 0, ψ3(0.01) = 8.03135 > 0, ψ3(0.02) = −8.50987 < 0
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and ψ3(0.8) = 3.60846× 106 > 0, ψ3 changes sign exactly three times in (0, 1),
namely at the approximate values 0.00191, 0.01747 and 0.77051. The equations
sin2 t/2 ≈ 0.00191, sin2 t/2 ≈ 0.01747 and sin2 t/2 ≈ 0.77051 yield the values
t2 ≈ 0.08751, t3 ≈ 0.26516, t4 ≈ 2.14244, t5 ≈ 2π − 2.14244 ≈ 4.14074, t6 ≈
2π− 0.26516 ≈ 6.01802 and t7 ≈ 2π− 0.08751 ≈ 6.19567 in (0, 2π) at which ϕ3

changes sign. Hence, ϕ3 changes sign exactly seven times in an interval (−ε, π)
for a sufficiently small positive ε, namely at the values tk, 1 ≤ k ≤ 7.

We conclude that there exist branches of argdf3(eit)/dt that increase steadily
and continuously by π on [0, 2π] without account of a jump of size an odd mul-
tiple of π at each value tk. The Jacobian of f3 is given by

Jf3 = (|z|2 − 1)|g′3(z)|2 = (|z|2 − 1)||1 +
5

(z − 3)3
− 0.003

z − 1.4

3

|2.

Clearly, Jf3 < 0 in D and Jf3 > 0 in C| \D. Hence f3 is sense-reversing in D,
sense-preserving in C| \D, and locally one-to-one in C| \ ∂D except at 3, 1.4 and
the zeros of

1 +
5

(z − 3)3
− 0.003

(z − 1.4)3

which are: z1 ≈ 3.85505 + 1.48084i, z2 = z3, z3 ≈ 1.51652 + 0.124996i, z4 = z5,
z5 ≈ 1.22843+0.147502i and z6 = z7. Since 3, 1.4 and |zk| are larger than 1, the
following hold: (a) (f3)ξ ∼ z3, z (D) or (f3)ξ ∼ z3, z (D) for any ξ = eitk , (b)
the size of each jump of arg df3(eit)/dt is −π or π respectively, and (c) the net
variation of arg df3(eit)/dt on [0, 2π], with account of the jumps at the values
tk, is −2π; see [8]. It follows that if m is the number of the values tk at which
arg df3(eit)/dt makes a jump of size −π, then −2π = π −mπ + (7 −m)π and
m = 5; that is, arg df3(eit)/dt makes a jump of size −π at 5 values tk and of
size π at two.

Now we describe f3(∂D). Let Ak = f(eitk), 1 ≤ k ≤ 7. Then A1 = 1.515,
A2 ≈ 1.51483 − 3.77285 × 10−6i, A3 ≈ 1.51686 + 0.00018i, A4 ≈ −0.08675 −
1.14875i, and, since f3(z) = f3(z), A5 = A4, A6 = A3 and A7 = A2 . For
1 ≤ k ≤ 7, let γk be the subarc of ∂D determined by z = eit, tk ≤ t ≤ tk+1,
with t8 = t1, and let Γk = f3(γk); see Figure 4(a). We conclude the following:

(i) Each Γk is a locally convex Jordan arc;

(ii) Any two arcs Γk and Γk+1, with Γ8 ≡ Γ1, form a cusp whose vertex is
Ak+1, with A8 ≡ A1;

(iii) Γ1\{A1} and Γ7\{A1} lie in the lower and upper half-planes, respectively;

(iv) Γk, k = 2, 3, crosses each of arc Γ8−k and Γ9−k at exactly one point; also,
Γk, k = 5, 6, crosses each arc Γ7−k and Γ8−k at exactly one point.

(v) Γk and Γ8−k, 1 ≤ k ≤ 3, are symmetric about the real axis, and Γ4 is also
symmetric about the real axis;
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(vi) Γ3 does not intersect Γ1 and Γ7, and it meets the real axis at exactly one
point in (A1,∞). To see this, observe that, by (5), the tangent line to Γ3

through A3 is given by A3 + teit3/2, t ∈ (∞,∞), and it meets the real axis
at ≈ 1.51599 > A1 and separates Γ3 from the arcs Γ1, Γ2 \ {A3} and Γ7.
Likewise, because of symmetry, Γ5 does not intersect Γ1 and Γ7;

(vii) Γ4 lies in the left half-plane bounded by the vertical line passing through
A2 and A7. To see this, observe that, by (5), the tangent line to Γ4

through A4 is given by A4 + teit4/2, t ∈ (∞,∞), and it meets the real axis
at ≈ 0.71368 < <A1;

(viii) The arc-products Γ4Γ3Γ2Γ1 and Γ7Γ6Γ5Γ4 are Jordan arcs symmetric to
each other about the real axis.

(ix) Γ1, Γ2, Γ6 and Γ7 bound a Jordan domain, Q, which lies on the right-hand
side of every Γk;

(x) The restriction of f3 to D assumes each value in Q exactly three times
and elsewhere at most twice;

(xi) f3(D) lies in the convex-hull of the points Ak, 3 ≤ k ≤ 6.

Because of (xi) and symmetry, we conclude that arg df3(eit)/dt makes a jump
of size π at t2 and t7 and of size −π at the remaining values tk.

We describe now the image surface Ω of f3 in D; see Figure 4(b). Recall that
f3 is locally one-to-one in D. Let ω be the point of intersection of Γ4 with the
real axis, and let Γ41 and Γ42 be the subarcs of Γ4 from A4 to ω and from ω to
A5 respectively. Also, let ωA2 and ωA7 be the straight-line segments from ω to
A2 and to A7 respectively. Denote by Ω1 the closed Jordan domain bounded by
Γ2, Γ3, Γ41 and ωA2, by Ω2 the closed Jordan domain bounded by ωA7, Γ42, Γ5

and Γ6, and by Ω3 the closed Jordan domain bounded by Γ1, ωA2, ωA7 and Γ7.
Observe that Ω1 is symmetric to Ω2 about the real axis, and Ω1 is symmetric
about the real axis. View each Ωj with the identity map as a bordered covering
surface of the complex plane, then identify the surface Ω3 with the surfaces
Ω1 and Ω2 crosswise along the boundary arcs associated with ωA2 and ωA7,
respectively. This yields the bordered image surface Ω of f3 in D whose interior
Ω is the image surface of f3 in D.

As for f3 in the complementary set of D, it is locally one-to-one there except
at the points zk, 1 ≤ k ≤ 6, 1.4, 3 and∞. Since each zk is a zero of h′ and g′ of
order 1 and f3 is sense-preserving in some deleted neighborhood of zk, zk is a
critical point of order 1 of f3 [8]. Similar considerations also yield 1.4, 3 and ∞
as critical points of f2 of order 1. If wk = f3(zk), then w1 ≈ 10.438 + 8.24045i,
w2 = w1, and w3 ≈ 1.56031 − 0.06427i; also, because of symmetry, w4 = w3,
w5 ≈ 1.65472 + 0.00835i, and , w6 = w5. Further, f3(1.4) = f3(1.3) = f3(∞)
= ∞. Hence, there exists an open neighborhood of every w 6= wk,∞ in which
every continuous branch of the inverse function of f3 is one-to-one.
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Let Lk, k = 1, 3, 4, 5, 6, be the ray whose initial point is Ak and whose
direction is opposite to the tangent vector to Γk at Ak; see Figure 4(a). Let ∆2

be the Jordan domain bounded by L1, Γ1, Γ2 and L3 and lying on the right-
hand side of Γ1 and Γ2, ∆k, 3 ≤ k ≤ 5, be the Jordan domain bounded by
Lk, Γk and Lk+1 and lying on the right-hand side of Γk, and ∆6 be the Jordan
domain bounded by L6, Γ6, Γ7 and L1 and lying on the right-hand side Γ6 and
Γ7. In view of the local behavior of f3 at each eitk , k = 1, 3, 4, 5, 6, there exists a
Jordan arc `k from eitk to infinity that maps under f3 homeomorphically to Lk.
Now let D2 be the Jordan domain bounded by `1, γ1, γ2 and `3 and lying on
the right-hand side of γ1 and γ2, Dk, 3 ≤ k ≤ 5, be the Jordan domain bounded
by `k, γk and `k+1 and lying on the right-hand side of γk, and let D6 be the
Jordan domain bounded by `6, γ6, γ7 and `1 and lying on the right-hand side
of γ6 and γ7. Since f3 is sense-preserving in C| \D, ∆k ⊂ f3(Dk) for each k.

It is immediate that there exists a Jordan convex domain K that contains
f3(D) and avoids the points wk 1 ≤ k ≤ 6; in fact, K can be an open disk. Let
Bk be the point of intersection of Lk with ∂K. Considering the argument of the
tangent vector to each Γk at Ak, k = 1, 3, 4, 5, 6, and the locations of the points
Ak, we conclude that the points Bk appear on the positively-directed ∂K in the
order B1, B3, B5, B4, B6. Let ∆′k = K ∩ ∆k, 2 ≤ k ≤ 6. Also, let βk be the
common boundary arc of ∆′k and K; βk has endpoints B1 and B3 if k = 2, Bk
and Bk+1 if k = 3, 4, 5, and B6 and B1 if k = 6. Evidently, each ∆′k is a Jordan
domain that contains none of the points wk, and satisfies ∆k ⊂ f3(Dk). Hence,
by the Monodromy theorem, there exists a Jordan domain D′k in Dk that maps
under f3 homeomorphically to ∆′k. Observe that each D′k can be chosen so that
its boundary contains eitk . A homotopy argument then implies that D′k is a
Jordan domain bounded in case k = 2 by `1, γ1, γ2, `3 and a Jordan arc α2

starting from an interior point b1 of `1 and ending in an interior point b3 of `3
and lying otherwise in D2, in case k = 3, 4, 5, by `k, γk, `k+1 and a Jordan arc
αk starting from an interior point bk of `k and ending in an interior point bk+1

of `k+1 and lying otherwise in Dk, and in case k = 6 by `6, γ6, γ7, `1, and a
Jordan arc α6 starting from an interior point b6 of `6 and ending at b1 and lying
otherwise in D6. It is immediate that each f3 : D′k → ∆′k is a homeomorphism

that maps αk to βk in a sense-preserving manner, and that D = D
⋃

(∪6
k=2D

′
k)

is the Jordan domain bounded by the Jordan arc-product α = α2α3α4α5α6. Let
β = β2β3β4β5β6, and observe that β is a 2−fold 1−dimensional covering of ∂K
with the identity as the projection map. It follows that as z traverses α positively
once starting from b1, f3(z) traverses ∂K positively twice starting from B1. It
follows that f3 is a 2−valent sense-preserving local homeomorphism from ∂D
to ∂K. Since each ∆′k, 2 ≤ k ≤ 6, contains the domain Q, f3 of D \D assumes
each value in Q exactly 5 times, a conclusion that could also be drawn by the
Argument principle. Recall that f3 of D assumes each value in Q three times.
Hence, f3 of D assumes each value in Q exactly 8 times. Precomposing f3 with a
conformal map from the open unit disc to D yields at once the desired function
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F3. The image surface of F3 can be obtained by considering the bordered surface
Ω along with the closed Jordan domains ∆′k, 2 ≤ k ≤ 6, with the identity map
viewed also as bordered covering surfaces of C| , then identifying these surfaces
crosswise along the boundary arcs with the same projection; see Figure 4(c).

Remark 2. A surgery as in Remark 1 on the image surface of F2 over a local
neighborhood of the vertex A1 (associated with F2) of the cusp yields essentially
the image surface of F3.

The geometric procedure described in Remarks 1 and 2 can be carried out
indefinitely, however f2 and f3 pose some analytical concern in view of their
poles and branch points. despite of this, it is believed that these points can
always be dealt with suitably.

We conclude the paper with the following conjecture.

Conjecture. For every positive integer N there exists a p−valent, p ≥ N ,
harmonic map f of the unit disc D onto a bounded convex domain K that
extends to the unit circle as a 2−valent local homeomorphism onto ∂K.

The authors would like to thank Miss Layal Lyzzaik for producing the illus-
trations of the paper.
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