
SPIRALING MINIMAL GRAPHS

Allen Weitsman

Abstract. We consider minimal graphs u = u(x, y) > 0 over unbounded spiraling domains
D with u = 0 on ∂D. We show that such surfaces do exist, but only if the rate of spiraling is

restricted. Restrictions are obtained through the method of extremal length of path families,

and constructions are achieved by means of quasiconformal mappings.

1. Introduction. Let D be an unbounded domain and u(x, y) a positive solution to the
minimal surface equation with vanishing boundary values

(1.1)
div

∇u√
1 + |∇u|2

= 0, u > 0 in D,

u = 0 on ∂D.

It follows from the maximum principle that D must be unbounded, but even here there
are further obstructions. In fact, as observed by Nitsche [N; p.256], if D is contained in a
sector of opening less than π, then (1.1) has no solution.

In this paper we shall examine the obstructions due to spiraling of D. To be precise, we
consider D unbounded and simply connected with ∂D a piecewise differentiable Jordan
arc. Then D will be a spiraling domain and its graph F given by (1.1) a spiraling minimal
graph, if ∂D contains a subarc β tending to ∞ on which, for a branch of arg z on β, we
have

(1.2) arg
z∈β

z → +∞ as z →∞.

Here we are using complex notation z = x + iy for points in D and β for convenience. If
z(t) −∞ < t <∞ is a parametrization of ∂D, then there exists a branch of arg z(t) which
is unbounded in at least one direction, that is, as t→ −∞ or t→∞. Of course +∞ could
be replaced in (1.2) by −∞.

Spiraling minimal graphs will be constructed in §4. However, an interesting question is
whether there are obstructions due to the rate of spiraling of D. In order to quantify this
we shall define the order of a spiral β satisfying (1.2) by

(1.3) σ(β) = lim
z→∞ z∈β

arg z

log |z|
.

We shall prove
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Theorem 1. There exists a universal constant σ0 such that if D is a spiraling domain
with β as in (1.2) and u satisfying (1.1), then σ(β) ≤ σ0

It would be interesting to know the best possible constant σ0 and in particular if σ(β)
in (1.3) can be positive.
2. Modulus of a path family. Let D be a simply connected unbounded domain in
R2. Let F denote the surface given by u(z), z = x1 + ix2 ∈ D with

ds2
F = (1 + u2

x1
)dx2

1 + 2ux1
ux2

dx1dx2 + (1 + u2
x2

)dx2
2

and
dSF =

√
1 + |∇u|2 dx1dx2

the respective length and area elements for F .
For a family Γ of curves in D we define the modulus of Γ in the metric of F by

modFΓ = inf

∫∫
D

ρ2(z)dSF ,

the inf being taken over all nonnegative measurable functions ρ on D satisfying

inf
γ∈Γ

∫
γ

ρ(z)dsF ≥ 1.

The utility of the modulus comes from the elementary observation that it is a conformal
invariant (cf. [M2; p.65]).

We shall use estimates on the modulus for path families of curves on a surface F given
by solutions u(z) to the minimal surface equation over domains D as in (1.1).

With D as in Theorem 1, we introduce a complex isothermal coordinate ζ for the surface
F given by u over D so that the map ζ → (x1(ζ), x2(ζ), u(x1(ζ), x2(ζ))) is a conformal
mapping onto F . We take the parameter space as the upper half plane H = {ζ : =mζ > 0}
with specified positively oriented points a, b ∈ ∂D corresponding by (x1(ζ), x2(ζ)) to
(0, 0), (0, 1) respectively, and ∞ → ∞. The mapping f(ζ) = x1(ζ) + ix2(ζ) is then a
univalent harmonic mapping of H onto D.

Path families Γ in H correspond to path families on F which project to path families
f(Γ) in D. By conformal invariance, the modulus may be computed either in H with the
plane metric, or with the surface metric in D.

When expressed in the coordinates of H, then u = u(ζ) is harmonic. With the special
conditions here that u = 0 on ∂H, u reflects to a harmonic function in the entire plane;
since u > 0 in H, it must be that u is of the form c=mζ for some real constant c > 0.

In §3 we shall use an ingenious method developed by V. Mikljukov in [M1] and [M2].
(See also [M3; Chapter 9]).
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3. Proof of Theorem 1. We first need the following elementary lemma.

Lemma 1. Suppose that u and D are as in Theorem 1 and σ(β) ≥ 1. Then there exists
an absolute constant A such that

(3.1) lim sup
z→∞ z∈D

u(z)/|z| ≤ A

Proof. Let τ = e4π. By [JS; Theorem 4 ] there exists a function V0(z) which has
the value V0(z) = 0 for z = τeiθ (0 < θ < 2π), the value +∞ on the portion I = (1, τ)
of the real axis, and satisfies the minimal surface equation in ∆ = {|z| < τ}\I. The
function Vn(z) = τnV0(τ−nz) satisfies the minimal surface equation in the scaled domains
∆n = τn∆. Then Vn also has the corresponding boundary values, and

(3.2) Vn(z) ≤ Cτn |z| ≤ τn−1,

where C is a constant independent of n.
From the hypotheses, the variation of arg z on the chosen arc satisfies arg z w 4πnσ(β)

where the arc intersects |z| = τn, and arg z w 4π(n + 1)σ(β) where |z| = τn+1. Thus, by
the maximum principle (cf. [JS; p. 325]), for n large, u(z) < Vn(z) in the portion of D
inside |z| ≤ τn, and by (3.2) we then have

(3.3) u(z) < Cτn z ∈ D, |z| = τn−1, n ≥ N.

This proves (3.1). �

Returning to the proof of Theorem 1, we may assume again that σ(β) ≥ 1. Fix a and b
as in §2 and for sufficiently large t > 0 let S(t) be the component of D ∩ {z : |z| = t}
separating a from ∞ in D. Choosing r large enough so S(r) separates b from ∞ in D,
and R > r, let T be the subdomain of D between S(r) and S(R) . Let Γ = Γ(r,R) be
the family of curves in T that join S(r) and S(R).

Following [M2], we define a density function

ρ(z) = (|z|2 + u2(z))−1/2,

for z ∈ B = T ∩ {r ≤ |z| ≤ R)} and ρ(z) = 0 for all the remaining values z ∈ D. Hence

(3.4) modFΓ ≤

∫∫
B

(|z|2 + u2(z))−1dSF(
inf
γ∈Γ

∫
γ
(|z|2 + u2(z))−1/2dsF

)2 .

A general bound for the numerator in (3.4) has been given in [M2] (see also [W; pp.
622-623]) ∫∫

B

dSF
|z|2 + u2(z)

≤ π

2

∫∫
B

(1 + o(1))
dx1dx2

|z|2
+O(1) (R→∞),
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from which we obtain

(3.5)

∫∫
B

dSF
|z|2 + u2(z)

≤ π2(1 + o(1)) logR (R→∞).

Let τ = e4π as in the proof of Lemma 1. For the denominator in (3.4), let γ be a curve in
Γ and γn be the portion of γ whose initial point is the last point at which |z| = τn and
terminal point is the first point at which |z| = τn+1. Now, as in Lemma 1, the variation
of arg z on γn is (asymptotically) at least 4πσ(β).

Thus, for sufficiently large n, γn encircles the origin at least [σ] times, where [σ] ≥ 1 is
the greatest integer in σ(β). Therefore, if ln is the (Euclidean) length of γn, we have

(3.6) ln ≥ 2π[σ]τn (n ≥ N).

Let γn project up to γ̃n in F . Then, it follows from Lemma 1 and (3.6) that∫
γn

ρ dsF =

∫
γ̃n

|dx|√
x2

1 + x2
2 + x2

3

≥
∫
γ̃n

|dx|√
τ2n+2 +A2τ2n+2

≥
∫
γn

|dz|√
1 +A2τn+1

≥ 2π[σ]τn√
1 +A2τn+1

= K[σ] (n ≥ N)

where K is an absolute constant.
Thus, with R = τn+1, we obtain∫

γ

ρ dsF ≥ nK[σ](1 + o(1)) = (1 + o(1))
K[σ]

4π
logR (R→∞).

Using this with (3.5) in (3.4) we obtain

(3.7) modFΓ ≤ (1 + o(1))
16π4

K2[σ]2 logR
.

We now use the conformal invariance of the mapping H → F as described in §2 together
with (3.7). With a, b, f(ζ) as in §2, continuing with [M2; p.67] we take r > 0 so that

S(r) separates b and∞ in D. For t ≥ r, let S∗(t) = f−1(S(t)) so that S∗(t) has endpoints

on ∂H in the ζ plane. Let l(t) denote the Jordan curve formed by S∗(t) along with its

reflection across ∂H and G the annular domain between l(r) and l(R). Let Γ̃(r,R) be
the family of curves separating l(r) and l(R) in G. Then since l(r) and l(R) separate 0
(= f−1(a)) and 1 (= f−1(b)) from∞, the modulus (in the Euclidean metric) satisfies [LV;
pp.32, 56 and 61 (2.10)]

(3.8) mod Γ̃(r,R) ≤ 1

2π
log(16(P + 1)),
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where

P = min
ζ∈l(R)

|ζ|.

Now let Γ∗(r,R) be the curves joining l(r) and l(R) inG. Then mod Γ∗(r,R) = 1/mod Γ̃(r,R).
This follows from conformal invariance and the fact that this is the case for a true annulus
[A; pp. 12,13]. Therefore,

(3.9) mod Γ∗(r,R) ≥ 2π

log(16(m(R) + 1))
.

Let

m(t) = min
|z|=t
z∈D

|ζ(z)|.

Then by (3.9), the symmetry principle [A; p.16], and conformal invariance,

(3.10) modFΓ(r,R) ≥ π

log(16(m(R) + 1))
.

Thus, (3.10) taken together with (3.7) yields

((3.11)) logm(R) ≥ (1 + o(1))C[σ]2 logR (R→∞),

where C is an absolute constant.

Let s = m(R). Then (3.11) gives

(3.12) R ≤ s(1+o(1))/C[σ]2 (R→∞).

By the maximum principle and Lemma 1 we have

max
|ζ|=s

u(f(ζ)) ≤ max
|z|=R z∈D

u(z) ≤ AR,

which when combined with (3.12) gives

max
|ζ|=s

u(f(ζ)) ≤ As(1+o(1))/C[σ]2 (s→∞).

Since u(f(ζ)) = c=mζ it must be that C[σ]2 ≤ 1 which completes the proof. �
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4. Example of spiraling minimal graph. The goal of this section is to prove the
following

Theorem 2. There exist spiraling domains D with corresponding solutions satisfying (1.1)
over D.

In order to construct the spiraling minimal graph, we shall construct a univalent har-
monic function F (ζ) defined in the upper half plane H, and mapping onto a spiraling

domain. The function F can be written in the form H(ζ) + G(ζ) where H and G
are analytic in H, and then a minimal graph can be represented in parametric form
(<eF (ζ),=mF (ζ), 2=m

∫ √
H ′(ζ)G′(ζ)dζ), (see [Du; pp. 177-178]) as long as the

√
is

well defined. In the construction which follows, that will be the case.
We first construct a 1-1 conformal mapping h(z) of the upper half plane H using an

approximating quasiconformal mapping. To achieve this we use the following (cf. [D;
Lemma 5.8])

Lemma A. Let ϕ be quasiconformal in the plane such that ϕ(0) = 0, ϕ(1) = 1, ϕ(∞) =
∞, and the dilatation

µ(z) = ϕz(z)/ϕz(z)

satisfies ∫ 2π

0

|µ(reiθ)| dθ → 0 r →∞.

Then, in any fixed annulus AR = {R−1 ≤ |z| ≤ R} (R > 1),

ϕ(tz)

ϕ(t)
→ z

uniformly in A(R) as 0 < t→∞.

Using Lemma A and Lemma 1 we shall prove

Lemma 1. There exist one to one conformal mappings h(ζ) mapping the upper half plane
H onto spiraling domains D such that for 0 ≤ θ ≤ π,

(4.1) h(teiθ) = t3/2+o(1)ei((3/2)θ+τ(t))(1 + o(1)) (τ(t)→∞ as t→∞)

and

(4.2) h′(teiθ) = (3/2)t1/2+o(1)ei((1/2)θ+τ(t))(1 + o(1)) (τ(t)→∞ as t→∞).

Proof. Let

(4.3) α(z) =

∫ |z|
0

δ(s)/(s+ c)ds
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where δ(s) > 0 is a continuous function which tends to 0 subject only to the condition
that α(z) → ∞ as z → ∞, and c is a positive constant to be determined later. Then for
fixed k > 1,

α(kt)− α(t) = δ(t̃)

∫ kt

t

1/(s+ c) ds (t ≤ t̃ ≤ kt),

so that

(α(kt)− α(t))/α(t) =
δ(t̃)

α(t)
log

kt+ c

t+ c
,

In particular

(4.4) α(kt)/α(t)→ 1 as t→∞.

Let ϕ(z) be defined in H by

(4.5) ϕ(z) = z3/2eiα(z) z ∈ H, 0 < arg z3/2 < 3π/2,

and Do = ϕ(H). Then Do is a spiraling domain. Now let ψ(w) be the 1-1 conformal
mapping of H onto Do so that ψ(0) = 0, ψ(1) = ϕ(1), and ψ(∞) =∞.

Define Q : H → H by

(4.6) Q(z) = ψ−1 ◦ ϕ(z).

Then Q(z) is quasiconformal in H. In fact,

Qz(z) = ψ−1
w (ϕ(z))eiα(z) · z3/2αz(z)i,

(4.7)

Qz(z) = ψ−1
w (ϕ(z))eiα(z) · z1/2(zαz(z)i+ 3/2) 0 < arg z1/2 < π/2.

Now, from (4.3),

(4.8) αz(z) = kz, αz(z) = kz, k =
δ(|z|)

2|z|(|z|+ c)
.

By (4.7) and (4.8) it follows that the dilatation µ(z) of Q satisfies

µ(z) =
Qz(z)

Qz(z
=

zαzi

zαzi+ 3/2
=

z2ki

|z|2ki+ 3/2
.

Thus, from (4.8) it follows that |µ(z)| < 1 for sufficiently large c which we so fix,, and
thus Q is quasiconformal in H

Now, by reflection (cf. [LV;p.47]) Q can be extended as a quasiconformal mapping
C→ C which we continue to denote by Q. Furthermore, µ(z)→ 0 as z →∞.
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From Lemma A, we see that

(4.9) |z|1−o(1) < |Q(z)| < |z|1+o(1) (|z| → ∞),

and Lemma A applies to the inverse Q−1 as well. Applying Lemma A to Q−1 we get for
any fixed R > 1 and 0 < t <∞,

ϕ−1 ◦ ψ(tz)) = ct(z + εt(z)) (ct = ϕ−1(ψ(t)) > 0),

or

ψ(tz) = ϕ(ct(z + εt(z))) = (ct(z + εt(z)))
3/2eiα(ct(z+εt(z)))

for z in H∩{ 0 ≤ arg z+εt(z) ≤ π}∩A(R). Here and in the continuation, εt(z) will denote
quantities having the property that εt(z)→ 0 uniformly for 1/R ≤ |z| ≤ R as t→∞.

As in (4.9), it follows from Lemma A that

(4.10) ct = t1+o(1) (t→∞).

With the previous choice of
√

, we define h(z) by

h(z) = e−3iπ/4ψ(eiπ/4
√
z)2

so that for z ∈ H ∩A(R) (t > to),

h(tz) = (c√t(
√
z + ε√t(

√
z))3e2iα(c√t(e

iπ/4√z+ε√t(e
iπ/4√z))),

which with (4.4) simplifies to

(4.11) h(tz) = (c√t
√
z)3e2iα(c√t))(1 + o(1)) (t→∞, z ∈ H ∩A(R)).

Notice that (4.11) can be extended to a larger region {−π/2 + ε < arg z < 3π/2− ε} ∩
A(2R) for small ε > 0 and t > to since h is defined in this extended region. Thus, for
t > to, we may compute dh(tz)/dz for points |z| ≥ 1 in H ∩A(R) by Cauchy’s formula

(4.12)
d

dz
h(tz) =

1

2πi

∫
C

h(tw)

(z − w)2
dw,

where C is the circle |w − z| = 1/2.
Inserting (4.11) into (4.12) we obtain

(4.13)
d

dz
h(tz) = (3/2)c3√

t
z1/2e2iα(c√t)(1 + o(1)) (t→∞, z ∈ H ∩A(R)).
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Let ζ = teiθ with 0 ≤ θ ≤ π. The function h(ζ) has most of the properties of the desired
conformal mapping. Specifically, since dh(ζ)/dζ = (1/t)dh(tz)/dz, it follows from (4.10),
(4.11) and (4.13) that for ζ ∈ H ,

(4.14) h(ζ) =
c3√

t

t3/2
ζ3/2e2iα(c√t)(1 + o(1)), (t→∞),

(4.15) h′(ζ) = (3/2)
c3√

t

t3/2
ζ1/2e2iα(c√t)(1 + o(1)), (t→∞),

and

(4.16) c√t = t1/2+o(1) (t→∞).

Then (4.1) and (4.2) follow from (4.14), (4.15), and (4.16). �

Proof of Theorem 2. If we now Let h be as in Lemma 1 and define

(4.17) f(ζ) = h(ζ) + g(ζ) where g(ζ) =

∫ ζ

1

1/h′(w) dw,

then, from (4.2) it follows that

(4.18)

∣∣∣∣∣
∫ ζ

1

1/h′(w) dw

∣∣∣∣∣ = o(|ζ|1/2+ε), (ε > 0, |ζ| → ∞).

so that from (4.1) and (4.18) we have

(4.19) f(teiθ) = t3/2+o(1)ei((3/2)θ+τ(t))(1 + o(1)), (t→∞).

We now show that f is univalent for |ζ| sufficiently large in H. To see this, consider first
points x > R on the positive real axis for R sufficiently large. Then, from (4.2), (4.17),
and (4.19) we have

<ef ′(x)/f(x) =
3

2x(1+o(1))
> 0 (x→∞)

so that for large x, d/dx log |f(x)| > 0. A similar result holds for x < 0. Thus f is 1-1 on
∂H ∩{|x| > R} for sufficiently large R. Also, it is clear from (4.19) that the two boundary
spirals Γ1 and Γ2 in f(∂H ∩ {|x| > R}) are disjoint for R sufficiently large.

Since |f(x)| is increasing on {|x| > R} for large R, we may take a circular arc Γρ in
f(H) connecting a point z1 = ρeiθ1 on Γ1 and z2 = ρiθ2 on Γ2. Without loss of generality,
we assume that θ1 < θ2 ≤ θ1 + 2π and may take a (unique) continuation of f−1 from z1

to z2 on Γρ for sufficiently large ρ. Let γρ denote the resulting curve.
Now from (4.17)-(4.19) we have that on γρ
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∂

∂θ
arg f(teiθ) =

∂

∂θ
=m log f(teiθ) = =m∂f/∂θ

f
= <e (teiθh′(teiθ)− te−iθ/h′(teiθ)

f

= <e (3/2)t3/2+o(1)ei(3θ/2+τ(t))(1 + o(1))− (2/3)t1/2+o(1)ei(−θ/2+τ(t))(1 + o(1))

t3/2+o(1)ei(3θ/2+τ(t))(1 + o(1))

= (3/2)to(1)(1 + o(1)) (t→∞).

Thus, arg f is increasing on γρ for large ρ. Since, by (4.19), the variation of the argument
of f on γρ will be at most (3π/2)(1 + o(1)) it follows that f is 1-1 on γρ.

Let HR = H ∩ {|ζ| > R}. Then for large R, f is 1-1 on ∂HR, f(∞) = ∞, and
the Jacobian of f does not vanish in HR. Thus, f is 1-1 on HR. If we replace f(ζ) by

F (ζ) = H(ζ) + G(ζ), where H(ζ) = h(ζ + iR) and G(ζ) = g(ζ + iR), then F maps H
univalently onto a spiraling domain, and by means of F we can give a parametrization
X : H → S in conformal coordinates by (<eF (ζ),=mF (ζ), 2=m

∫ √
H ′(ζ)G′(ζ)dζ), which

from (4.16) we may write
X(ζ) = (F (ζ),=m2ζ)

as desired. �

5. Concluding Remarks. In addition to finding the best constant σ0 as mentioned in
§1, it would be interesting to see how to replace the lim in (1.3) by lim sup. Also, it can be
seen from the construction that the tangent plane to the surface tends to the horizontal
at infinity. It would be interesting to know if this is dictated by the spiraling.
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