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Abstract

A general form of Carleman’s method is given for harmonic functions on sur-

faces. This is applied to the surfaces given by minimal graphs and growth estimates

for solutions to the minimal surface equation with vanishing boundary values are

obtained.

1 Introduction

Let D be an unbounded simply connected domain inR2 and f a solution of the minimal

surface equation

(1.1)

2
∑

i=1

∂

∂xi

(

∇f
√

1 + |∇f |2

)

= 0

in D with

(1.2) f = 0 on ∂D.

In this paper we shall prove some estimates (Theorems 1.1 and 1.3) for solutions to

(1.1) and (1.2) and give some consequences. Estimates of this type were derived earlier in

[6] and [7] for regions bounded by a single Jordan arc using the method of extremal length.

In the present work, Sections 2 to 4 are devoted to developing Carleman’s method [2] in

a general form, which can then be applied to the surface of the graph given by f(x). (See

also Section 8.) Because of its generality, this portion of the paper may be of independent

interest. Our application of Carleman’s method enables us to treat minimal graphs over

general simply connected domains. Corresponding estimates for general domains remain

open.
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Theorem 1.1 Let D be an unbounded simply connected domain in R2 and f a solution

of the minimal surface equation (1.1) in D with (1.2). If ∂D is C2 and

(1.3) lim inf
R→∞

R2 exp











−4(logR)2

/

∫

D∩{1<|x|<R}

dx1dx2
|x|2











= 0 ,

then f ≡ 0 in D.

If also, f(x)/|x| → 0 as |x| → ∞, and for some ǫ > 0

(1.4) lim inf
R→∞

R2+ǫ exp











−2π(logR)2

/

∫

D∩{1<|x|<R}

dx1dx2
|x|2











= 0 ,

then f ≡ 0 in D.

Regarding applications of Theorem 1.1, we consider first a conjecture of Meeks. In his talk

at the Clay Mathematics Institute’s Summer School on “The Global Theory of Minimal

Surfaces” at MSRI in the summer of 2001, Meeks conjectured that there can be at most

two such solutions over disjoint domains. In Section 6, we prove the following theorem.

Theorem 1.2 There can be at most three disjoint simply connected domains D in R2

with f satisfying (1.1) and (1.2) in each domain, unless f ≡ 0 in at least one domain.

In [9], Spruck proved the Meeks conjecture, but under stringent side conditions on the

behavior of f . Earlier, Li and Wang [5] proved, without restrictions, that there could be

at most 12 disjoint domains.

Note that Theorem 1.1 is purely geometrical, that is, it specifies conditions on domains

under which there can be nontrivial solutions to (1.1) with (1.2). However, the same proof

(see Section 7) gives information in terms of the growth as measured by

M(r, f) = max
|x|=r, x∈D

|f(x)|.

Theorem 1.3 Let D be an unbounded simply connected domain in R2 and f a solution

of the minimal surface equation (1.1) in D with (1.2). If ∂D is C2 and f satisfies

(1.5) lim inf
R→∞

M(2R, f)2 exp











−4(logR)2

/

∫

D∩{1<|x|<R}

dx1dx2
|x|2











= 0 ,

then f ≡ 0 in D.
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If also, f(x)/|x| → 0 as |x| → ∞, and for some ǫ > 0

(1.6) lim inf
R→∞

M(2R, f)2+ǫ exp











−2π(logR)2

/

∫

D∩{1<|x|<R}

dx1dx2
|x|2











= 0 ,

then f ≡ 0 in D.

A consequence of Theorem 1.3 pertains to the order of f given by

lim sup
|x|=r→∞, x∈D

logM(r, f)

log r
.

and the asymptotic angle α of D defined by

α = lim sup
r→∞

measθ(D ∩ {|x| = r})

where 0 < measθ ≤ 2π is the angular measure of the arc.

Theorem 1.4 If f 6≡ 0 satisfies (1.1) and (1.2) in a simply connected domain D which

has asymptotic angle α ≥ π, then the order of f in D must be at least π/α.

In particular, any nontrivial solution of (1.1) with (1.2) in a simply connected domain

must have order at least 1/2.

Theorem 1.4 was proved earlier [9], [10] under additional side conditions.

We wish to thank Professor J.-F. Hwang for his assistance.

2 Laplace-Beltrami equation

Let D ⊂ R2 be a domain. Let gij (i, j = 1, 2) be measurable functions such that for any

relatively compact set Q ⊂⊂ D there are some constants 0 < ν1(Q) ≤ ν2(Q) < ∞ such

that a.e. on Q, for every ξ ∈ R2 we have

(2.1) ν1(Q) |ξ|2 ≤
2
∑

i,j=1

gij(x)ξiξj ≤ ν2(Q) |ξ|2 .

Consider an abstract surface F = (D, ds2F ) with line element

(2.2) ds2F =

2
∑

i,j=1

gij(x) dxidxj gij = gji.
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We put

g = det (gij) = g11g22 − g212 .

Then, from (2.1), it follows that g > 0 a.e. in D. The area element of F has the form

dσF =
√
g dx1dx2 .

Next we set

(gij) = (gij)
−1.

Then, from (2.1), we have

(2.3) (1/ν2(Q)) |ξ|2 ≤
2
∑

i,j=1

gij(x)ξiξj ≤ (1/ν1(Q)) |ξ|2 .

The equation

(2.4) L[φ] =
1√
g

2
∑

i=1

∂

∂xi

(

√
g

2
∑

j=1

gij
∂φ

∂xj

)

= 0

describes the harmonic functions φ on F and is called the Laplace-Beltrami equation [8,

Chapter I, Section 1].

In addition to the usual scalar product 〈ξ, η〉 = ξ1η1 + ξ2η2 and norm |ξ| =
√

〈ξ, ξ〉,
we use the notation

(2.5) 〈ξ, η〉F =

2
∑

i,j=1

gijξi ηj

and

|ξ|2F =
2
∑

i,j=1

gijξi ξj .

We now define the generalized solutions of (2.4). Let BF be the set of all x ∈ D in

which the matrix (gij) is not defined or does not satisfy (2.1). By D = {D′} we denote

a set of the subdomains D′ ⊂⊂ D with rectifiable boundaries ∂D′ such that the linear

measure mes1(∂D
′ ∩ BF ) = 0.

Let ψ : D′ → R be a Lipschitz function for D ∈ D Then, it follows that ∇ψ =

(ψx1
, ψx2

) exists a.e. in D′ [3, Theorem 3.1.6].

Let x1 = x1(t), x2 = x2(t) (a ≤ t ≤ b) be a positively oriented parametrization of

∂D′. Let n be the outer normal vector, that is,

(2.6) 〈n, v〉 = 0 for v = (dx1/dt, dx2/dt),
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normalized in the metric of F , that is, |n|F = 1. Since ∂D′ is rectifiable, n exists a.e. on

∂D′. A locally Lipschitz function φ : D → R is called a generalized solution of (2.4) if for

every subdomain D′ of the class D and for every Lipschitz function ψ : D′ → R,

(2.7)

∫

D′

〈∇φ,∇ψ〉F dσF =

∫

∂D′

ψ〈∇φ, n〉FdsF .

3 Carleman type estimates

Let φ be a generalized solution of (2.4) in a simply connected domain D, with φ = 0 on

∂D. For our purposes, we may assume that the components of ∂D are C2 Jordan arcs

and that φ and the gij are all continuous in D. By standard elliptic theory [4, p. 179],

then φ satisfies a maximum principle so that D must be unbounded unless φ ≡ 0.

Also, in our applications we will have ν1(Q) ≥ 1 for all Q so that half of (2.1) and

(2.3) can be written

(3.1)

2
∑

i,j=1

gij(x)ξiξj ≥ |ξ|2,
2
∑

i,j=1

gij(x)ξiξj ≤ |ξ|2 .

Let B be a bounded domain in D and A an open subset of B such that the following

conditions are satisfied:

a) Every connected component of A is simply connected which is bounded by arcs of

∂D and C2 crosscut arcs in D,

b) B is bounded by arcs of ∂D, C2 closed curves disjoint from A, and C2 crosscut arcs

in D.

By crosscut arcs in D, we mean arcs αj for which αj\αj 6= ∅ with

(3.2) x ∈ αj\αj ⇒ φ(x) = 0.

Suppose that along with A and B as above, there is a continuous function h : D → R

such that:

(i) the function h satisfies

(3.3) h |A = 0, h
∣

∣

D\B = 1, 0 < h(x) < 1 for all x ∈ B \ A ,

(ii) h is C2 in B\A,

(iii) h satisfies a maximum principle in B\A. That is, if Q is a subdomain of B\A, then
maxx∈Q h(x) ≤ maxx∈∂Q h(x).
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We shall call a function satisfying (i) through (iii) an exhaustion function corresponding

to A and B, and our computations will be made with reference to such an h.

We put D0 = A, D1 = B,

Dτ = {x ∈ D; h(x) < τ}, τ ∈ (0, 1) ,

and define ∂Dτ ∩ D = Eτ . We assume throughout that Eτ 6= ∅. Then, there is a set

T ⊂ [0, 1] such that meas T = 1 and ∇h 6= 0 on Eτ for τ ∈ T , so that for each fixed

τ ∈ T ,

(3.4) inf
x∈Eτ

|∇h(x)| > 0.

In fact, since h : D → [0, 1] is C2, by Sard’s theorem, the set of levels t ∈ [0, 1] for which

there is a point in x ∈ D such that ∇h(x) = 0 and h(x) = t, has measure 0. Statement

(3.4) then follows by continuity.

Since h has a maximum principle, for a given τ ∈ T , the set Eτ consists of crosscuts

αj = αj(τ) as in (3.2) and C2 Jordan curves βk = βk(τ) which enclose simply connected

subdomains δk = δk(τ).
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δ

δ

α

α

β

β

1

1

1

2

2
2

h=0

h=1

h=1

h=1

.  .

.

B\A

−  −  −  −  

−  −  −  −                      −  −  −  −  −   −
−  −  −  −                   −  −  −  −  −  −  −  −  −

−  −  −  −                   −  −  −  −  −  −  −  −  −  −  −

−   −  −                   −  −  −  −  −  −  −  −  −  − −                                

−  −  −  −  −  −  −             −   −  −  −  −  −  −  − −                                     −  −  −  −  −  −  −

−  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −   −  −  −                             −  −  −  −  −  −  −  −  −  −  − −  −  −  −  −  −

                                                                     −  −  −    −  −  −  −  −  −  −

                                                                               −  −  −  −  −  −
                                                                                         −  −  −  −

−  −  −  −  −  −  −  −  −  −  −  −    −   −  −  −  −  −  −                                   −  −  −  −  −  −  −  −  −  −  −  −

A −  −  −

−  −  −

−  −  −

−  −  −

−  −   −  −
−  −   −  −

−   −  −                      −  −  −  −

−  −  −  −                  −  −  −   −  −  −  −  −  −  −  −  −  −

−  −  −                  −  −  −  −  −  −  −  −  −  − −  −

−  −  −  −  −                −  −  −  −  −  −  −  −    −  −                                  −  −  −  −

−  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −   −  −                        −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −  −

                −  −  −  −  −  −   −  −  −  −  −  −  −   −                    −  −  −  −  −  −  −  −  −  −  − −
                         −  −  −  −  −  −  −  −  −  −   −                 −  −  −  −  −  −  −  −  −  −  −

                                                                        −  −  −  −  −  −  −  −  −

Dτ

                                               −  −  −                −  −  −  −  −  −  −  −  −  −
                                        −  −  −  −                         −  −  −  −  −  −  −  −  −
                                  −  −  −  −  −  −  −  −                 −  −  −  −  −  −  −  −  −  −

        −  −  −  −  −  −  −  −  −  −  −  −  −   − −  −  −                     −  −  −  −  −   −   −  −  −  −  −  −  −  −

−  −  −  −  −  − −  −  −  −   −  −  −  −  −  −   −  −  −  −                                −  −  −  −   −  −  −  −  −  −  −  −  −  −  −  −
−  −  −  −  −  −  −  −  −  −  −  −  −  −   −  −  −   −  −                               −  −  −  −  −  −  −  −    −  −  −  −  −  −

−  −  −  −  −  −  −  −  −  −  −  −   −  −  −  −  −  −  −                                  −  −  −  −  −  −  −  −  −
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In the classical case where F is flat and (2.4) is the Laplacian, the standard exhaustion

function is

(3.5) h(x) = min

{

(

log
R2

R1

)−1

log+
|x|
R1
, 1

}

with A = D ∩ {x; |x| < R1} and B = D ∩ {x; |x| < R2} where 0 < R1 < R2; here log+ |a|
means max {log |a|, 0}. In this case, the arcs αj are simply arcs of circles and, since h in

(3.5) is harmonic, it has a minimum principle which precludes sets of the form δk.

We write

(3.6) I(Dτ , φ) =

∫

Dτ

|∇φ|2F dσF .

Theorem 3.1 Let φ be a generalized solution of (2.4) in a simply connected domain D

with φ = 0 on ∂D. Assume that the components of ∂D are C2 and that φ and the gij are

continuous in D. Then with (3.1) through (3.6) we have

(3.7) I(D0, φ) ≤ I(D1, φ) exp

{

−2π

/
∫

B\A

|∇h|2F dσF
}

.

The proof of Theorem 3.1 will be carried out through the rest of this section along with

Section 4.

Let D′
τ denote the union of those subdomains δk enclosed by βk and, on each βk, let

xk be a point where φ takes its minimum ck = φ(xk). Let

(3.8) Xτ =
⋃

k

{xk},

and

(3.9) ψ(x) =







φ(x) x ∈ Dτ\D′
τ

φ(x)− ck x ∈ δk ⊂ D′
τ ,

so that

(3.10) ψ(x) = 0 at a point on each component of ∂D′
τ .

Using this choice of ψ in (2.7), we have for τ ∈ T ,

I(Dτ , φ) =

∫

Eτ

ψ 〈∇φ, n〉F dsF ,

7



and by the Cauchy inequality,

(3.11) I(Dτ , φ) ≤
(
∫

Eτ

ψ2 |∇h|F dsF
)1/2(∫

Eτ

〈∇φ, n〉2F
dsF
|∇h|F

)1/2

.

Let m be a vector field on Eτ such that a.e. m is continuous and satisfies

(3.12) 〈n,m〉F = 0,

and

(3.13) |m|F = 1.

We will use the characteristic defined by

(3.14) λ(Eτ ) = inf
η

(
∫

Eτ

〈∇η,m〉2F
dsF
|∇h|F

)1/2

(
∫

Eτ

η2 |∇h|F dsF
)1/2

,

where the infimum in (3.14) is taken over all nontrivial Lipschitz functions η : Eτ → R

such that

(3.15) η = 0 on Xτ ∪ (Eτ \ Eτ ).

Then, from (3.2), (3.9), (3.10), (3.11), (3.14) and (3.15), we find that, for τ ∈ T ,

(3.16) λ(Eτ )I(Dτ , φ) ≤
(
∫

Eτ

〈∇φ,m〉2F
dsF
|∇h|F

)1/2(∫

Eτ

〈∇φ, n〉2F
dsF
|∇h|F

)1/2

.

However,

〈∇φ, n〉2F + 〈∇φ,m〉2F = |∇φ|2F ,
so we obtain

(
∫

Eτ

〈∇φ,m〉2F
dsF
|∇h|F

)1/2(∫

Eτ

〈∇φ, n〉2F
dsF
|∇h|F

)1/2

≤ 1

2

∫

Eτ

〈∇φ,m〉2F
dsF
|∇h|F

+
1

2

∫

Eτ

〈∇φ, n〉2F
dsF
|∇h|F

=
1

2

∫

Eτ

|∇φ|2F
dsF
|∇h|F

.

Thus from (3.16) it follows that, for τ ∈ T ,

(3.17) 2λ(Eτ )I(Dτ , φ) ≤
∫

Eτ

|∇φ|2F
dsF
|∇h|F

.
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Observe now that the coarea formula implies

(3.18) I(Dτ , φ)− I(D0, φ) =

∫

Dτ\A

|∇φ|2F dσF =

∫ τ

0

dt

∫

Et

|∇φ|2F
dsF
|∇h|F

.

To see this, let ψǫ be defined to be 0 when |∇h| < ǫ and 1 when |∇h| ≥ ǫ. Then by

the usual coarea formula, we have

(3.19)

∫

Dτ

ψǫ|∇φ|2F dσF =

∫

Dτ

ψǫ|∇φ|2F
√
g dx1dx2

=

∫ τ

0

dt

∫

Et

ψǫ|∇φ|2F
√
g
|dx|
|∇h| ,

where |dx| denotes the usual Euclidean length element (see [3, Theorem 3.2.12]). We let

ǫ→ 0 in (3.19). By property (ii) of h, the left hand side tends to

∫

Dτ\{∇h=0}

|∇φ|2F dσF =

∫

Dτ\A

|∇φ|2F dσF .

Now,

g11 =
g22
g
, g12 = −g12

g
, g22 =

g11
g
.

At each point x ∈ Et with t ∈ T , we have

|∇h|2F =
∑2

i,j=1 g
ijhxi

hxj
= |∇h|2∑2

i,j=1 g
ij hxi

|∇h|
hxj

|∇h|

= |∇h|2
(

g11
(

dx2
|dx|

)2

− 2g12
dx1
|dx|

dx2
|dx| + g22

(

dx1
|dx|

)2
)

=
|∇h|2
g

(

g22

(

dx2
|dx|

)2

+ 2g12
dx1
|dx|

dx2
|dx| + g11

(

dx1
|dx|

)2
)

=
|∇h|2
g |dx|2

2
∑

i,j=1

gij dxidxj =
|∇h|2
g |dx|2 ds

2
F .

Thus,

(3.20)
dsF
|∇h|F

=
√
g
|dx|
|∇h|

for t ∈ T . Since meas T = 1, we obtain (3.18).

9



It follows from (3.18) that

d

dτ
I(Dτ , φ) =

∫

Eτ

|∇φ|2F
dsF
|∇h|F

for a.e. τ ∈ [0, 1] ,

and (3.17) implies

(3.21) 2λ(Eτ )I(Dτ , φ) ≤
d

dτ
I(Dτ , φ) a.e. on [0, 1] .

By solving (3.21), we obtain an inequality of Carleman type [2]

(3.22) I(D0, φ) ≤ I(D1, φ) exp

{

−2

∫ 1

0

λ(Et) dt

}

.

4 Characteristic estimate

In the classical case mentioned in (3.5), the characteristic λ(Eτ ) (with the condition

Eτ 6= ∅), as it appears in [2, p. 966], is π/ℓ where ℓ is the angular measure of the longest

arc αj.

We now simplify (3.14). Suppose that τ ∈ T and Eτ =
⋃

i li, where li = li(τ) are

connected components of Eτ (i = 1, 2, . . .). We have

(4.1) λ(Eτ ) = inf
1≤i<∞

λ(li) .

For the proof, we observe that li ⊂ Eτ implies

(4.2) λ(Eτ ) ≤ λ(li) for every i = 1, 2, . . . .

Further from (4.2),

λ(Eτ ) ≤ λ0 = inf
i
λ(li) .

On the other hand, let η be an arbitrary Lipschitz function on Eτ satisfying (3.15).

Consider its nontrivial restrictions ηi = η |li (i = 1, 2, . . .). Each function ηi is admissible

in the variational problem (3.14) for the arc li. Therefore,

λ2(li)

∫

li

η2i |∇h|F dsF ≤
∫

li

|∇ηi|2F
dsF
|∇h|F

and

λ20
∑

i

∫

li

η2i |∇h|F dsF ≤
∑

i

∫

li

|∇ηi|2F
dsF
|∇h|F

.
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Thus,

λ20
∑

i

∫

Eτ

η2i |∇h|F dsF ≤
∫

Eτ

|∇ηi|2F
dsF
|∇h|F

,

that is,

λ0 ≤ λ(Eτ )

and (4.1) is proved.

For i = 1, 2, . . ., suppose that li is a rectifiable arc along which |∇h| satisfies (3.4). Let
a, b be endpoints of li and the arc li be given by

x = x(t) : [0, 1] → R2, x(0) = a, x(1) = b .

When li is a crosscut of D, then its endpoints are in Eτ\Eτ as in (3.2), and when li is

closed, its common endpoint is in Xτ as in (3.8).

Denote by li(t) the subarc of li lying between points x(0) and x(t). On li we introduce

a new parameter σ by setting

(4.3) σ = σ(t) =
1

σ0

∫

li(t)

|∇h|F dsF ,

where 0 ≤ t ≤ 1 and

σ0 =

∫

li

|∇h|F dsF .

We have 0 ≤ σ ≤ 1 and

dσ =
1

σ0
|∇h|F dsF .

Then, with η as in (3.15),

(4.4)

∫

li

η2 |∇h|F dsF = σ0

∫ 1

0

(η∗)2 dσ ,

where η∗(σ) = η[x(t(σ))].

Let x1 = x1(σ), x2 = x2(σ) be the parametrization of li with respect to the parameter

σ of (4.3). Then, from (2.6) and (3.12),

g11m1
dx2
dσ

− g12m1
dx1
dσ

+ g21m2
dx2
dσ

− g22m2
dx1
dσ

= 0,

or

(4.5)
dx1
dσ

(g22m2 + g12m1) =
dx2
dσ

(g11m1 + g21m2).
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Furthermore, from (3.13) we have

(4.6) g11m2
1 + 2g12m1m2 + g22m2

2 = 1.

Using (4.5) with ∇η = (η1, η2) we obtain

(4.7) 〈∇η,m〉F = g11m1η1 + g12m1η2 + g21m2η1 + g22m2η2

= η1(g
11m1 + g21m2) + η2(g

22m2 + g21m1)

=
η1(g

22m2 + g12m1) dx1/dσ

dx2/dσ
+ η2(g

22m2 + g12m1)

=

(

η1
dx1
dσ

+ η2
dx2
dσ

)(

g22m2 + g12m1

dx2/dσ

)

.

Similarly,

(4.8) 〈∇η,m〉F =

(

η1
dx1
dσ

+ η2
dx2
dσ

)(

g11m1 + g21m2

dx1/dσ

)

.

Multiplying (4.7) by m2 dx2/dσ and (4.8) by m1 dx1/dσ, and using (4.6) we have

〈∇η,m〉F (m1dx1/dσ +m2dx2/dσ) = η1dx1/dσ + η2dx2/dσ.

Thus,

〈∇η,m〉F =
dη∗/dσ

〈m, v〉 ,

where v = (dx1/dσ, dx2/dσ). Using this and (4.3) we obtain

(4.9)

∫

li

〈∇η,m〉2F
dsF
|∇h|F

=

∫

li

(dη∗/dσ)2

〈m, v〉2
dsF
|∇h|F

=

∫

li

(dη∗/dσ)2

〈m, v〉2
(dsF/dσ) dσ

|∇h|F
=

∫

li

(dη∗/dσ)2

〈m, v〉2dσ/dsF
dσ

|∇h|F

= σ0

∫

li

(dη∗/dσ)2

〈m, v〉2
dσ

|∇h|2F
=

1

σ0

∫

li

(dη∗/dσ)2

〈m, v〉2(dσ/dsF )2
dσ

=
1

σ0

∫

li

(dη∗/dσ)2 dσ

〈m, T 〉2
,

where T = (dx1/dsF , dx2/dsF ).

Now (3.1) implies that |T | ≤ 1 and |m| ≤ 1. Thus, 〈m, T 〉2 ≤ 1 which in (4.9) yields

(4.10)

∫

li

〈∇η,m〉2F
dsF
|∇h|F

≥ 1

σ0

∫ 1

0

(

dη∗

dσ

)2

dσ .
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By (3.15) we may use Wirtinger’s inequality (see, for example, [1, Chapter V, Theorem

7])
∫ 1

0

(

dη∗

dσ

)2

dσ ≥ π2

∫ 1

0

(η∗)2 dσ .

With (3.14), (4.4) and (4.10), we then obtain

λ(li) ≥
π

∫

li

|∇h|F dsF

and

(4.11) λ(Eτ ) ≥ π

[

sup
i

∫

li

|∇h|F dsF
]−1

.

It follows from (3.22) and (4.11) that

(4.12) I(D0, φ) ≤ I(D1, φ) exp















−2π

∫ 1

0

dt
∫

Et

|∇h|F dsF















.

Now we observe that

1 =

(
∫ 1

0

dt

)2

≤
∫ 1

0

∫

Et

|∇h|F dsFdt
∫ 1

0

dt
∫

Et

|∇h|F dsF

and we can rewrite (4.12) in the form

(4.13) I(D0, φ) ≤ I(D1, φ) exp

{

−2π

/
∫ 1

0

∫

Et

|∇h|F dt dsF
}

.

As in the derivation of (3.18), we may use the usual coarea formula to write

(4.14)

∫

B

ψǫ|∇h|2FdσF =

∫

B

ψǫ|∇h|2F
√
g dx1dx2 =

∫ 1

0

dt

∫

Et

ψǫ|∇h|2
√
g
|dx|
|∇h| .

where ψǫ is as in (3.19). The left hand side tends to
∫

B\A
|∇h|2F dσF as ǫ → 0. Using

(3.20) in (4.14), then from (4.13) we obtain

(4.15) I(D0, φ) ≤ I(D1, φ) exp

{

−2π

/
∫

B\A

|∇h|2F dσF
}

.
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5 Proof of Theorem 1.1

Let F ⊂ R3 be the graph of a nontrivial function f over an unbounded simply connected

domain D ⊂ R2 which satisfies (1.1) and (1.2). Here we have

(5.1) ds2F =

2
∑

i,j=1

(δij + fxi
fxj

) dxidxj ,

so

gij = δij + fxi
fxj
, gij = δij −

fxi
fxj

1 + |∇f |2 , g = 1 + |∇f |2 .

It is easy to see that f satisfies the Laplace-Beltrami equation (2.4) in the metric dsF .

By considering the sets where f > 0 and f < 0 separately, we may assume that

f > 0.

Since f is real analytic, it follows from the implicit function theorem that by choosing c

to avoid the isolated set of values for which ∇f = 0, and replacing f by f − c in the set

{x; f(x) > c}, we have that the boundary components of the set will be analytic arcs, and

the smoothness assumptions in Section 3 are satisfied. Furthermore, by the maximum

principle (minimum principle) the new set is still simply connected. We may also assume

that the point x = 0 belongs to D.

Let ρ(x) = (|x|2 + f(x)2)
1/2

. Again, ρ is real analytic and we may choose r and R

avoiding the set of critical points of ρ where ∇ρ = 0 so that 0 < r < R and

(5.2) f(x) < R if |x| < r.

Let B be the connected component of {x ∈ D : ρ(x) < R} containing the origin. For

0 < t < R, Ut will denote the subset {x ∈ D : ρ(x) < t} ∩ B. We take A = Ur, which for

r chosen sufficiently large, will be nonempty.

Then, for those r < t < R such that the level set ρ(x) = t avoids the critical points

of ρ, ∂Ut consists of components of ∂D, C2 crosscuts αj , and C2 Jordan curves βk as

described in §3.
The function

h(x) =















































0 for x ∈ A ,

log(ρ(x)/r)

log(R/r)
for x ∈ B\A ,

1 for x /∈ B.
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is then a legitimate exhaustion function corresponding to A and B.

In fact, (i) follows from the definitions of A, B, and h, and (ii) follows from the fact

that h is real analytic in B\A. Finally, (iii) follows from the fact that h is subharmonic

on F . To see this, recall that if the surface were parametrized by isothermal coordinates

(x1(ζ), x2(ζ), x3(ζ)) for ζ in some parameter set in the complex plane, then these coordi-

nate functions are harmonic in ζ . With these coordinates, ρ is (x1(ζ)
2+x2(ζ)

2+x3(ζ)
2)1/2,

which is subharmonic in ζ .

Finally, note that (5.2) and the maximum principle imply that connected components

of A are simply connected.

Observing that

|∇ρ|F ≤ 1

we find
∫

B\A

|∇h|2F
√
g dx1dx2 ≤

1

(logR/r)2

∫

B\A

√

1 + |∇f |2 dx1dx2
|x|2 + f 2(x)

.

Denoting as above for an arbitrary Q ⊂ D

I(Q, f) =

∫

Q

|∇f |2FdσF ,

from (3.7) we have

(5.3) I(Ur, f) ≤ I(UR, f) exp



























−
2π

(

log
R

r

)2

∫

UR\Ur

√

1 + |∇f |2 dx1dx2
|x|2 + f 2(x)



























.

We next estimate the right integral. Let

(5.4) r∗ = inf
x∈D\A

|x|

and

Dr∗,R = {x ∈ D; r∗ < |x| < R}.
Then r∗ ≤ ρ(x) for x ∈ D \A and x ∈ UR implies that |x| < R, so (UR \Ur) ⊂ Dr∗,R, and

hence
∫

UR\Ur

√

1 + |∇f |2 dx1dx2
|x|2 + f 2(x)

≤
∫

Dr∗,R

√

1 + |∇f |2 dx1dx2
|x|2 + f 2(x)

(5.5) =

∫

Dr∗,R

(

1 + |∇f |2
)−1/2 dx1dx2

|x|2 + f 2(x)
+

∫

Dr∗,R

|∇f |2
√

1 + |∇f |2
dx1dx2

|x|2 + f 2(x)
.
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Since f satisfies (1.1) in D with f = 0 on ∂D,

∫

∂Dr∗,R

1

|x|arctg
f

|x|
〈∇f, n〉

√

1 + |∇f |2
|dx|

=

∫

Dr∗,R

1

|x|arctg
f

|x|

2
∑

i=1

∂

∂xi

(

fxi
√

1 + |∇f |2

)

dx1dx2 −
∫

Dr∗,R

1

|x|2arctg
f

|x|
〈∇|x|,∇f〉
√

1 + |∇f |2
dx1dx2

−
∫

Dr∗,R

f

|x|(|x|2 + f 2)

〈∇|x|,∇f〉
√

1 + |∇f |2
dx1dx2 +

∫

Dr∗,R

1

|x|2 + f 2

|∇f |2
√

1 + |∇f |2
dx1dx2

= −
∫

Dr∗,R

arctg µ(x)
〈∇|x|,∇f〉
√

1 + |∇f |2
dx1dx2
|x|2 −

∫

Dr∗,R

µ(x)

1 + µ2(x)

〈∇|x|,∇f〉
√

1 + |∇f |2
dx1dx2
|x|2

+

∫

Dr∗,R

1

|x|2 + f 2(x)

|∇f |2
√

1 + |∇f |2
dx1dx2 ,

where

µ(x) =
f(x)

|x| .

Thus,

∫

Dr∗,R

1

|x|2 + f 2(x)

|∇f |2
√

1 + |∇f |2
dx1dx2 ≤

∫

∂Dr∗,R

1

|x|arctg
f

|x| |dx|

+

∫

Dr∗,R

arctg µ(x)
〈∇|x|,∇f〉
√

1 + |∇f |2
dx1dx2
|x|2

+

∫

Dr∗,R

µ(x)

1 + µ2(x)

〈∇|x|,∇f〉
√

1 + |∇f |2
dx1dx2
|x|2 .

Observing that
∫

∂Dr∗,R

1

|x|arctg
f

|x| |dx| ≤ 2π2 ,
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from (5.5), we obtain

∫

UR\Ur

√

1 + |∇f |2dx1dx2
|x|2 + f 2(x)

≤ 2π2 +

∫

Dr∗,R

(1 + |∇f |2)−1/2

1 + µ2(x)

dx1dx2
|x|2

+

∫

Dr∗,R

(

arctg µ(x) +
µ(x)

1 + µ2(x)

) |∇f |
√

1 + |∇f |2
dx1dx2
|x|2 .

However,

1
√

1 + |∇f |2
1

1 + µ2(x)
+

(

arctg µ(x) +
µ(x)

1 + µ2(x)

) |∇f |
√

1 + |∇f |2

(5.6) ≤
[

(

1

1 + µ2(x)

)2

+

(

arctg µ(x) +
µ(x)

1 + µ2(x)

)2
]1/2

≡ Λ(µ(x)) ,

and we arrive at the inequality

(5.7)

∫

UR\Ur

√

1 + |∇f |2 dx1dx2
|x|2 + f 2(x)

≤ 2π2 +

∫

Dr∗,R

Λ(µ(x))
dx1dx2
|x|2 .

We note that the function Λ(µ) is increasing and hence

(5.8) 1 = Λ(0) ≤ Λ(µ) < Λ(∞) =
π

2
,

and that µ tends to 0 if f has order less than 1.

The estimates (5.3) and (5.7) imply

(5.9) I(Ur, f) ≤ I(UR, f) exp

{

−2π

(

log
R

r

)2
/(

2π2 +

∫

Dr∗,R

Λ(µ(x))
dx1dx2
|x|2

) }

.

Now we need to estimate I(UR, f). In fact (cf. [5, Lemma 1]) we have

I(UR, f) =

∫

UR

|∇f |2
√

1 + |∇f |2
dx1dx2 =

∫

UR

|∇f |2 + 1− 1
√

1 + |∇f |2
dx1dx2

(5.10) =

∫

UR

√

1 + |∇f |2dx1dx2 −
∫

UR

dx1dx2
√

1 + |∇f |2

≤ 3πR2.
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Using (5.10) in (5.9) we have

(5.11) I(Ur, f) ≤ 3πR2 exp

{

−2π

(

log
R

r

)2
/(

2π2 +

∫

Dr∗,R

Λ(µ(x))
dx1dx2
|x|2

) }

.

From (5.8) we have Λ(µ(x)) < π/2. Thus, (5.11) becomes

(5.12) I(Ur, f) ≤ 3πR2 exp

{

−2π

(

log
R

r

)2
/(

2π2 +

∫

Dr∗,R

π

2

dx1dx2
|x|2

) }

,

from which (1.3) follows.

If f(x)/|x| → 0, then Λ(µ(x)) → 1 in (5.11) by (5.8). Thus, for any ǫ′ > 0, there

exists R0 > r∗ such that, for some C = C(ǫ′, R0),

I(Ur, f) ≤ 3πR2 exp

{

−2π

(

log
R

r

)2
/(

2π2 +

∫

Dr∗,R0

π

2

dx1dx2
|x|2 +

∫

DR0,R

(1 + ǫ′)
dx1dx2
|x|2

) }

(5.13) < CR2 exp

{

−2π

(

log
R

r

)2
/

∫

DR0,R

(1 + ǫ′)
dx1dx2
|x|2

}

= C

(

R2(1+ǫ′) exp

{

−2π

(

log
R

r

)2
/

∫

DR0,R

dx1dx2
|x|2

})1/(1+ǫ′)

.

With ǫ = ǫ′/2, then (1.4) follows.

6 Proof of Theorem 1.2

Suppose there were 4 domains D1, D2, D3, D4. Then for at least one j, we have

∫

Dj∩{1<|x|<R}

dx1dx2
|x|2 ≤ (π/2) logR

Then the quantity (1.3) corresponding to this Dj, satisfies

R2 exp

(−8

π
logR

)

→ 0,

which implies that the solution above this Dj vanishes.
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7 Proofs of Theorems 1.3 and 1.4

We begin by proving Theorem 1.3. To this end, we need only replace the estimate of

I(UR, f) in (5.9) by M(2R, f). Choose a Lipschitz function ψ : D → R with properties

0 ≤ ψ(x) ≤ 1 for all x ∈ D, ψ(x) = 1 for |x| ≤ R, ψ(x) = 0 for |x| ≥ 2R.

Again, by considering the sets where f > 0 and f < 0 separately, we may assume that

f > 0 in D. The function fψ2 has a compact support in D. By Green’s formula,

0 =

∫

∂D

fψ2 〈∇f, n〉
√

1 + |∇f |2
|dx| =

∫

D

ψ2 |∇f |2
√

1 + |∇f |2
dx1dx2 + 2

∫

D

fψ
〈∇f,∇ψ〉
√

1 + |∇f |2
dx1dx2.

Thus,
∫

D

ψ2 |∇f |2
√

1 + |∇f |2
dx1dx2 ≤ 2

∫

D

fψ
|∇f | |∇ψ|
√

1 + |∇f |2
dx1dx2

≤ 2M(2R, f)

(
∫

D

|∇ψ|2dx1dx2
)1/2(∫

D

ψ2 |∇f |2
1 + |∇f |2dx1dx2

)1/2

≤ 2M(2R, f)

(
∫

D

|∇ψ|2dx1dx2
)1/2

(

∫

D

ψ2 |∇f |2
√

1 + |∇f |2
dx1dx2

)1/2

,

so
∫

D

ψ2 |∇f |2
√

1 + |∇f |2
dx1dx2 ≤ 4M(2R, f)2

∫

D

|∇ψ|2dx1dx2.

Remembering that ψ ≡ 1 for |x| ≤ R and ψ ≡ 0 for |x| ≥ 2R, we obtain

I(UR, f) ≤
∫

D∩{|x|≤R}

|∇f |2
√

1 + |∇f |2
dx1dx2 ≤ 4M(2R, f)2

∫

D∩{r<|x|<R}

|∇ψ|2dx1dx2.

By taking ψ(x) = (log 2)−1 log(|x|/R) for R ≤ r ≤ 2R, we then get

(7.1) I(UR, f) ≤
8πM(2R, f)2

log 2
.

Using (7.1) in place of (5.10) in (5.11), and repeating (5.12) and (5.13) with this estimate,

we obtain the proof of Theorem 1.3.

Turning now to the proof of Theorem 1.4, we assume that, corresponding to an α ≥ π,

the order of f is greater than π/α. Then for some ǫ > 0, there exist R0 and C = C(R0, ǫ)

such that

(7.2) M(2R) < CR

2π

α(1 + ǫ) (R > R0),
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and

(7.3)

∫

D∩{R0<|x|<R}

dx1dx2
|x|2 < α(1 + ǫ/2) log

R

R0
(R > R0).

Using (7.2) and (7.3) in (1.6) we get f ≡ 0, and therefore it must be that the order of f

is at least π/α.

8 Concluding Remark.

In his paper [2], Carleman introduced a function m(r) =
∫ 2π

0
φ2(reiθ)dθ which was then

differentiated twice to give a differential inequality involving two derivatives. The first

differentiation (with respect to log r) gives the Dirichlet integral.

In the general setting, it is difficult to find a counterpart for the Carleman function

m(r). For this reason, it becomes more appropriate to begin with the general Dirichlet

integral (3.6) and use just one differentiation as was done in the current work.
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