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Abstract. We investigate various boundary behavior properties
of harmonic mappings of the unit disk D with emphasis on univa-
lent harmonic mappings “onto” D in the sense of Hengartner and
Schober [9]. This study continues the earlier work of the authors
[3] on a problem that was raised by Laugesen [12].

1. Introduction

A harmonic mapping f of a complex region G is a complex-valued
function that satisfies Laplace’s equation

∆f ≡ fxx + fyy = 0.

This function can be written as

f(z) = u(x, y) + iv(x, y), z = x+ iy,

where u and v are real-valued harmonic functions, and

(1) f(z) = h(z) + g(z),

where h and g are analytic functions which are single-valued if G is
simply-connected and possibly multiple-valued if G is otherwise. In
the former case, the function h will be called the analytic factor, and
g the coanalytic factor of f , and the function a = g′/h′ the second
complex dilatation. Then |a| < 1 in G if and only if f is open and
sense-preserving, and |a| > 1 in G if and only if f is open and sense-
reversing.

Throughout this article, we denote by C, D, and T the complex plane,
the open unit disc, and the unit circle, respectively.

A way to construct harmonic mappings of D is as follows. Let f ∗(eiθ)
be a Lebesgue integrable function on T. Then

(2) f(z) = P [f ∗] =
1

2π

∫ 2π

0

P (r, ϕ− θ)f ∗(eiϕ) dϕ, z = reiθ ∈ D,
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where P (r, t) is the Poisson kernel of D, is a harmonic mapping of D
whose unrestricted limit at every continuity point eiθ0 of f ∗ is f ∗(eiθ0).
Set f ∗(eiθ) ≡ Φ(θ); these representations will be used interchangeably
wherever it is appropriate.

The Rado-Kneser-Choquet theorem [8, pp. 29-30] asserts that if
|f ∗| = 1 and arg f ∗(eiθ) is nondecreasing in θ ∈ [0, 2π) with ∆∂D arg f ∗(eiθ) ≤
2π on T, and f ∗ takes at least three distinct values on T, then f is a
univalent sense-preserving harmonic mapping of D onto a convex region
whose “vertices” lie on T.

Open sense-preserving harmonic mappings of D also arise as solutions
of linear elliptic partial differential equations of the form

(3) fz (z) = a(z)fz(z), z ∈ D,

where a is an analytic function from D into itself. Thus with the
representation (1),

(4) |g′| < |h′|, z ∈ D.

For the special case where |a| < k < 1 in D, it is classical that the
existence part of the Riemann Mapping Theorem (RMT) of equation
(3) holds; namely, for a given bounded simply connected domain Ω
and a fixed w0 ∈ Ω, there is a univalent solution f of (3) that satisfies
f(0) = w0 and fz(0) > 0 and maps D onto Ω. In addition, if Ω is a
Jordan domain, then f extends to a homeomorphism from D onto Ω.
However, in the case where ‖a(z)‖∞ = 1 the following theorem holds
[9, Theorem 4.2 and Theorem 4.3].

Theorem A. (Hengartner and Schober [9]) Let Ω be a bounded sim-
ply connected domain whose boundary ∂Ω is locally connected. Suppose
that a(D) ⊂ D and w0 is a fixed point of Ω. Then there exists a univa-
lent solution f of (3) having the following properties:

(a) f(0) = w0, fz(0) > 0, and f(U) ⊂ Ω.
(b) There is a countable set E ⊂ ∂U such that the unrestricted

limits f ∗(eit) = limz→eit f(z) exist on ∂U \ E and they are on
∂Ω.

(c) The functions

f ∗(eit−) = ess lim
s↑t

f ∗(eis) and f ∗(eit+) = ess lim
s↓t

f ∗(eis)

exist on ∂U, belong to ∂Ω and are equal on ∂U \ E.
(d) The cluster set of f at eit ∈ E is the straight line segment

joining f ∗(eit−) to f ∗(eit+).
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The mapping f is termed a Generalized Riemann Mapping (GRM)
from D onto Ω. It is immediate that the boundary function f ∗ is con-
tinuous at every point in ∂U \E and has a jump discontinuity at every
point in E. We will use the term jump to describe the behavior of f ∗ at
every point of E. Note that the cluster set of f on an arc J ⊂ ∂U in-
duces a boundary positively directed arc in ∂f(U); this arc is denoted,
with abuse of notation, by f ∗(J).

The uniqueness of GRMs has been established recently for strictly
starlike domains Ω with respect to some interior point [2]; that is, every
ray through the point meets ∂Ω in one point only. Obviously, every
convex domain is strictly starlike relative to any interior point.

2. Main results

The two approaches described above, the Poisson formula (2) on one
hand and Theorem A on the other, call for a study of the interplay
between the behavior of the boundary function f ∗ of a harmonic map-
ping f of form (1) on one hand and the dilatation function a(z) on the
other; globally, locally, and pointwise.

One immediately observes that for an arc J ∈ ∂Ω that is concave
with respect to the interior of Ω, for any admissible dilatation a(z), the
boundary function f ∗ is continuous if merely because a jump would
imply that the image domain of the corresponding GRM near J will
step outside Ω which is not possible. Hence a jump should be sought on
a convex part of the boundary, if any. On the other hand, in Laugesen’s
proof of Theorem 5 [12, p.47], if a jump occurs at a point eiθ0 ∈ T, then
it is noted that the angular limit of the dilatation a(z) at eiθ0 satisfies

(5) lim
z ∠ eiθ0

a(z) =
df ∗(eiθ0)

df ∗(eiθ0)
.

In particular this limit is of magnitude one. Analytic functions in the
unit disk, bounded by one and having radial limits of magnitude one
a.e. on T are inner functions. We focus attention primarily on inner
function dilatations. A basic global result is

Theorem B (Corollary 2, [12]) Let Φ(θ) be the boundary function of
a GRM that maps D onto a bounded convex set, and whose dilatation
is a(z). Then Φ′(θ) = 0 a.e. on ∂D if, and only if, a(z)is an inner
function.

In [3] it is observed that certain Möbius transformations on an inner
dilatation transform it into a Blaschke product, which results in another
GRM of D onto a convex domain Ω with a Blaschke dilatation.



4 D. BSHOUTY, A. LYZZAIK, AND A. WEITSMAN

We shall examine the effect of the local property Φ′(θ0) for some
θ0 ∈ ∂D on Blaschke dilatations. In Theorem 1 and Theorem 2 we
show that if |Φ′(θ0)| is small enough, then the number of zeros of the
complex dilatation a(z) in any Stolz angle at θ0 is finite. Corollary 3
gives the effect of the above property on the boundary behavior of the
analytic factor h′ of f .

As to the pointwise behavior of the dilatation, let B(z) be a (infinite)
Blaschke product of the form (8). In such a case B is uniquely deter-
mined by its zeros and a rotation. We shall examine the relationship
of the zeros of B and the jumps and continuity of f ∗.

The immediate question which arises is this: To what extent one can
force a jump of f ∗ at a specific interval or a specific point?

In the special case where B ≡ A is a finite Blaschke product, the
corresponding GRM maps the disk onto a polygon and f ∗ is a piecewise
constant function with n + 2 jumps. A mere rotation eiαA of A is
enough to change a jump to continuity at a boundary point. If it is at
all possible to specify the points on T where jumps occur in terms of A ,
this would be of interest. It turns out that a complete characterization
of jumps is related to the analytic or co-analytic factors of the harmonic
mapping f(z) (Theorem 3).

We then assume that B is an infinite Blaschke product. Given an
interval J ⊂ T, if the boundary function f ∗ of the GRM f associated
with B is constant on J, then for B1, a Blaschke product with only one
specific extra linear factor added to B, the boundary function f ∗1 of the
associated GRM, can be made to have a jump in J (Corollary 4 in [3]).

The pointwise behavior, however, is far more interesting. The answer
has to do with the Frostman sum in the left hand side of (9). If the
Frostman sum of B is finite, one can generate a subproduct B1 of B
such that the corresponding f ∗1 is continuous at eiθ0 and by a mere
rotation of B1, B2 = eiαB1, the corresponding boundary function f ∗2
of the GRM f2 associated with B2, admits a jump at eiθ0 (Theorem
5). However, if the Frostman sum of B at eiθ0 is infinite, it was shown
(Corollary 1 in [3]) that if the zeros of the Blaschke product are in
one side of the radius to eiθ then f ∗ is continuous at eiθ0 . This result
is extended to show that the same holds without restrictions on the
placement of the zeros of the Blaschke product (Theorem 6). Note that
this result refers to any GRM whose dilatation is a Blaschke product
or any of its rotations. Theorem 4 gives another result ensuring the
continuity of a GRM at a specific point.
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3. Differentiability at a boundary point

A requisite for our results in this section is the following result due
to Fatou [15, pp.132-135].

Theorem C (Fatou [15]) Let u∗ be an integrable real-valued function
of T and let u = P [u∗]. Then

(i) If (du∗/dθ)(eiθ0) exists and is finite, then the angular limit

lim
z∠eiθ0

∂u

∂θ
(z) =

du∗

dθ
(eiθ0)

is uniform in any Stolz angle with vertex at eiθ0 .
(ii) If (du∗/dθ)(eiθ0) = +∞, then

lim
r→1−

∂u

∂θ
(reiθ) = +∞.

If, in addition, u∗ is monotone increasing in a neighborhood of θ0, then
the angular limit

lim
z∠eiθ0

∂u

∂θ
(z) = +∞

is uniform in any Stolz angle with vertex at eiθ0 .
(iii) If (du∗/dθ)(eiθ0) is continuous on an interval [α, β] and α <

α1 < β1 < β, then ∂u/∂θ → du∗/dθ uniformly on [α1, β1] as z → eiθ

from D.
Evidently, in (ii) −∞ may replace +∞, and (i) and (iii) hold true

for integrable complex-valued functions f ∗ of T.
The first result in this section is the following.

Lemma 1. Let f ∗ be an integrable complex-valued function of T and
let f be the function defined by (2). Then f is a harmonic mapping of
D of the form f = h + g, where h and g are analytic functions of D,
whose dilatation is denoted by a. If (df ∗/dθ)(eiθ0) = 0 for some θ0 and
the cluster set of h′ at eiθ0 does not contain zero, then the angular limit
of |a| at eiθ0 is 1 and a can have only a finite number of zeros in any
Stolz angle with vertex eiθ0 .

Proof. Let f be as in (2) and have dilatation a(z). Then

(6)
∂f

∂θ
(z) = i

(
zh′(z)− zg′(z)

)
.
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By invoking Theorem C at θ0 provided that the cluster set of h′ at eiθ0

does not contain zero, we conclude that

0 = −i lim
z∠eiθ0

∂f

∂θ
(z)

= lim
z∠eiθ0

zh′(z)

(
1− zh′(z)

zh′(z)
a(z)

)

= lim
z∠eiθ0

(
1− zh′(z)

zh′(z)
a(z)

)
,

where the limits involved are angular limits. This implies at once that
the angular limit of |a| at eiθ0 is 1.

The assumption that the cluster set of h′ at eiθ0 does not contain
zero yields at once that h′ has only a finite number of zeros in any
Stolz angle Sθ0 at eiθ0 . Suppose that g′ has infinitely many zeros in Sθ0 .
Then infinitely many of these zeros are not zeros for h′; hence are zeros
of a which contradicts the conclusion of the previous paragraph. Thus
g′, like h′, has a finite number of zeros in Sθ0 . But every zero of a is a
zero of g′. Therefore a has only a finite number of zeros in Sθ0 and the
proof is complete. �

We shall combine Lemma 1 with an extension of a theorem of Heinz
[10] due to Kalaj [11, Theorem 2.5].

Theorem D. Let f be a univalent harmonic mapping of D onto a
bounded convex domain Ω containing the origin and let f(0) = 0. Then

|fz|2 + |fz|2 ≥
dist(0, ∂Ω)2

16
.

By combining Theorem D with Lemma 1 we obtain the following in-
teresting consequence.

Theorem 1. Let f be the GRM from the unit disc D onto a bounded
convex set with boundary function f ∗ and dilatation a. If (df ∗/dθ)(eiθ0) =
0 for some θ0 ∈ R, then the angular limit of |a| at eiθ0 is 1; in par-
ticular, a has at most a finite number of zeros in any Stolz angle with
vertex eiθ0 .

Proof. By Theorem D it follows that h′ is bounded away from 0, so by
Lemma 1 the result follows. �

As a special case of Theorem 1 we have
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Corollary 1. Let f of form (1) be the GRM from the unit disc D onto
a bounded convex set with boundary function f ∗ and dilatation a. If
(df ∗/dθ)(eiθ0) = 0 for some θ0 ∈ R and the angular limit limz∠eiθ0 arg a(z) =
α, then the angular limits

lim
z∠eiθ0

arg h′(z) = −θ0 −
1

2
α (mod π)

and

lim
z∠eiθ0

arg g′(z) = −θ0 +
1

2
α (mod π)

hold.

Proof. As in the proof of Lemma 1, the angular limit

lim
z∠eiθ0

(
1− zh′(z)

zh′(z)
a(z)

)
= 0

holds. Consequently, the angular limit

lim
z∠eiθ0

arg

{
zh′(z)

zh′(z)
a(z)

}
= 0

holds. This gives the desired limits. �

The next result reveals some properties in the case where (df ∗/dθ)(eiθ0)
is nonzero and finite.

Corollary 2. Let f ∗ be an integrable complex-valued function of T and
let f of form (1) be the harmonic mapping of D defined by (2) and have
dilatation a. Suppose that (df ∗/dθ)(eiθ0) = α 6= 0,∞ for some θ0 and
the angular limit limz∠eiθ0 h

′(z) = β exists. Then β 6= 0 and the angular
limit limz∠eiθ0 a(z) exists.

Proof. By Theorem C, the angular limit

lim
z∠eiθ0

∂f

∂θ
(z) =

df ∗

dθ
(eiθ0) = α.

But

(7) −i∂f
∂θ

(z) = zh′(z)− zg′(z) = zh′(z)q(z),

where

q(z) =

[
1− zh′(z)

zh′(z)
a(z)

]
.

Since q is bounded in D, by taking the angular limits of both sides of
(4) at eiθ0 we obtain β 6= 0. Moreover, we infer that the angular limit
of q at eiθ0 exists; and consequently that of a. �
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In the special case of GRM’s onto convex domains we have the fol-
lowing result:

Theorem 2. Let f be the GRM from the unit disc D onto a bounded
convex set with boundary function f ∗ and dilatation a. If (df ∗/dθ)(eiθ0) =
α 6= 0 for some θ0 ∈ R, and sufficiently small constant |α| , then the a
has at most a finite number of zeros in any Stolz angle with vertex eiθ0 .

Proof. From (7) and Theorem C we conclude that

lim
z∠eiθ0

|h′(z)− g′(z)| = |α|,

and in particular

limz∠eiθ0

(
|h′(z)| − |g′(z)|

)
| ≤ |α|,

so that

limz∠eiθ0 |g′(z)|| ≥ limz∠eiθ0 |h′(z)| − |α|.
As in the proof of Theorem 1, by Theorem D there exists a positive
constant c such that |h′(z)| ≥ c . Thus, for any α with |α| < c, we
must have limz∠eiθ0 |g′(z)| > 0 so that a has finitely many zeros in any
Stolz angle at eiθ0 . �

It would be interesting to know whether for other values of df ∗/dθ
the dilatation function has finitely many zeros in Stolz angles.

4. Continuity at a boundary point

We start with a characterization of the continuity and the jump of
a GRM at a boundary point. We have the following result:

Lemma 2. Let f ∗ be a complex-valued function of bounded variation
on T and let f of form (1) be the harmonic mapping of D defined by (2)
and have dilatation a. Then limr→1−(1 − r)h′(reiθ0) = c exists if and
only if limr→1−(1− r)g′(reiθ0) = d exists; in this case c and d are finite

and ceiθ0 = deiθ0. In particular, either limit is zero if and only if f ∗ is
continuous at eiθ0 .

Remark 1. Note that this result asserts the equivalence of the conti-
nuity of f ∗ and the radial growth of h′, or equivalently g′, and not the
dilatation a, at a boundary point. A jump of size b > 0 occurs at eiθ0 ,
if and only if

lim
r→1−

(1− r)|h′(reiθ0)| = lim
r→1−

(1− r)|g′(reiθ0)| = b.
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Proof. Differentiating (2) with respect to z and z and using integration
by parts we obtain

h′(z) =
1

2π

∫ 2π

0

df ∗

eiφ − z
and g′(z) =

1

2π

∫ 2π

0

df ∗

eiφ − z
.

Suppose that limr→1−(1− r)h′(reiθ0) = c exists, then, by the bounded
convergence theorem,

eiθ0c = eiθ0 lim
r→1−

(1− r)h′(reiθ0)

= lim
r→1−

1

2π

∫ 2π

0

1− r
ei(φ−θ0) − r

df ∗

= df ∗(eiθ0).

But f ∗ is a function of bounded variation over [0, 2π]; hence df ∗(eiθ0)
is finite; so likewise is c.

In view of this, and using essentially the same argument, we conclude
that

eiθ0d = eiθ0 lim
r→1−

(1− r)g′(reiθ0) = df ∗(eiθ0).

Suppose now that limr→1−(1 − r)g′(reiθ0) = d exists, then a similar
argument as above yields that limr→1−(1 − r)h′(reiθ0) = c exists and

that ceiθ0 = deiθ0 . This concludes the first claim of the theorem. The
second claim then follows at once and the proof is complete. �

An immediate consequence of this theorem is the following interest-
ing result:

Theorem 3. Let f of form (1) be a GRM from D onto a bounded
Jordan domain with a rectifiable boundary, and let a and f ∗ be the
dilatation and boundary function of f respectively. Then limr→1−(1 −
r)h′(reiθ0) = c and limr→1−(1 − r)g′(reiθ0) = d exist, are finite, and

satisfy ceiθ0 = deiθ0 ; moreover, either limit is zero if and only if f ∗ is
continuous at eiθ0 .

Proof. In the characterization of f ∗ given in Theorem A, the set E of
jumps must be empty and thus f ∗ is continuous on T. �

We conclude at once that a GRM f ∗ is continuous at eiθ0 if f satisfies
the additional condition that either one of the cluster sets of h′, or g′,
at eiθ0 is away from infinity. Another consequence of Lemma 2 is the
following result:

Corollary 3. Under the assumptions of Lemma 2, suppose that there
exists a sequence {zn} of complex numbers in D that satisfies the fol-
lowing properties:
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(a) limn→∞ zn = eiθ0 for some θ0 ∈ R;
(b) limn→∞ |zn − zn−1|/(1− |zn|) = 0;
(c) limn→∞ g

′(zn) = α exists and is finite.

Then f ∗ is continuous at eiθ0 .

Proof. Conditions (a) and (b) imply that limn→∞ ρ(zn, zn−1) = 0, where
ρ(zn, zn−1) denotes the hyperbolic distance between zn and zn−1. Now,
g′(z) is a normal function since

(1− |z|)|g′(z)| ≤ 1

2π

∫ 2π

0

1− |z|
|eiφ − z|

|df ∗(eiφ)|

≤ 1

2π

∫ 2π

0

|df ∗(eiφ)|

≤ L <∞.
where L is the length of ∂f(D). By a result of Bagemihl-Seidel [7],
limr→1− g

′(reiθ0) = α ; hence limr→1−(1− r)g′(reiθ0) = 0. Therefore, f ∗

is continuous at eiθ0 by Theorem 3 and the proof is complete. �

A special case of the above corollary is when the values zn are zeros
of g′ which are the same as the zeros of a.

Theorem 4. Let f of form (1) be a GRM from D onto a Jordan
domain having a rectifiable boundary, and let a and f ∗ are the dilatation
and boundary values of f respectively. If {zn} is a sequence satisfying
(a) and (b) of Corollary 3, and a(zn) = 0 n = 1, 2, 3, ......, then f ∗ is
continuous at eiθ0 .

In the next result, we illustrate the significance of Theorem 3 by
showing the surprising fact that the set of zeros of the dilatation of
the GRM f from D onto D need not determine the behavior of the
boundary function f ∗. We shall take B(z) to be a Blaschke product

(8) B(z) = eiαzm
∞∏

n=m+1

|ζn|
ζn

ζn − z
1− ζnz

,

where m is a nonnegative integer and {ζn} is an infinite sequence of
nonzero complex numbers satisfying

∑
(1− |ζn|) <∞.

Theorem 5. Suppose the following:

(a) The numbers ζn ∈ D, n = 1, 2, · · · are such that <(e−iθ0ζn) > 0
for some θ0 ∈ R, and

(9)
∞∑
n=1

1− |ζn|
|eiθ0 − ζn|

<∞.
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(b) The Blaschke subproducts BN
j (z) are defined by

BN
j (z) = eiαj

∞∏
n=N

|ζn|
ζn

ζn − z
1− ζnz

, j = 1, 2.

(c) The fj are GRMs from D onto D, with fj(0) = 0, and whose
dilatation is some BN

j for some chosen N.

Then for sufficiently large N, there exist values αj such that the bound-
ary function f ∗j of fj has a jump discontinuity at eiθ0 for some value of

αj and is continuous at eiθ0 for another.

The condition <(e−iθ0ζn) > 0 may be replaced by the condition

<(e−iθ0ζn) < 0; in this case the desired GRM has form f(z), where

f is the desired GRM whose Blaschke product is B(z), with zeros ζn
satisfying <(eiθ0ζn) > 0 and ζn → e−iθ0 . In view of this, either condi-
tion becomes unnecessary for the validity of Theorem 5 provided that
the Blaschke products BN

j are chosen as subproducts of B with a com-
mon set of zeros, say {ζnk}; namely a set that satisfies for all k either
<(e−iθ0ζnk) > 0 or <(e−iθ0ζnk) < 0.

We shall use the notation arg
√
a(z) and ∆J arg

√
a(z) to denote a

single-valued branch of arg
√
a and its net variation on a subarc J of

the unit circle.
The proof of Theorem 5 requires some known results.

Lemma 3. (Bshouty, Lyzzaik, Weitsman [3]) Let a(z) be a Blaschke
product whose zeros {ζn} accumulate at 1, and let J = {eit : −γ < t <
0}, where 0 < γ < π.

(a) If = ζn > 0 for all n, then

∆J arg
√
a(z) =

1

2

∞∑
n=1

∆J arg

{
z − ζn
1− ζnz

}
∼

∞∑
n=1

1− |ζn|
|1− ζn|

;

this means that the expressions on both of sides of ∼ converge or diverge
simultaneously.

(b) If infinitely many ζn satisfy = ζn ≤ 0, then ∆J arg
√
a(z) =∞.

Under the assumptions of Lemma 3 the Blaschke product a extends
analytically across ∂D \ {1}, with |a| = 1 there, but not across 1.

Lemma 4. Let f be a GRM from D onto a bounded convex domain Ω
whose dilatation a admits an analytic extension across an open interval
J = {eit : γ < t < δ}, γ < δ < γ + 2π, such that |a| ≡ 1 on J. Then
the following hold:

(a) f ∗ has a jump at eiθ ∈ J if and only if arg{
√
a(eiθ) df ∗(eiθ)} =

0 mod π.
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(b) ∆J arg
√
a(z) =∞ if and only if f ∗ has infinitely many jumps

in J.
(c) If f ∗ has no jumps in J, then f ∗ is identically constant on J.

Note that Lemma 4 (a) and (c) follow from Theorem 2.2 and Corol-
lary 2.8 respectively of [1], and Lemma 4 (b) is itself Corollary 2(i) of
[3].

Proof of Theorem 5. First, we assert that the theorem can be reduced
to the case where θ0 = 0 and each f ∗j (ei0+) = 1; note that |f ∗j (eiθ+)| =
|f ∗j (eiθ−)| = 1 for every θ ∈ R by Theorem 1. For if fj(z) is the GRM

from D onto D with fj(0) = 0, f ∗j (ei0+) = 1, and dilatation BN
j (e2iθ0z),

then it can be easily verified that every gj(z) = eiγfj(e
iθ0z) is the GRM

from D onto D with gj(0) = 0, g∗j (e
iθ0+) = eiγ, and dilatation BN

j (z).

Thus we assume henceforth that θ0 = 0 and each fj(e
i0+) = 1. Let

∂D− = ∂D ∩ {z : =z < 0}.
We divide the proof into two parts:

A. Here we find the value α1 such that for sufficiently large N the
boundary function f ∗1 of the GRM f1 has a jump at 1.

Since each =ζn > 0, Lemma 3(a) and (9) yield

∆∂D− arg
√
BN

1 (z) =
1

2

∞∑
n=N

∆∂D− arg

{
z − ζn
1− ζnz

}
∼

∞∑
n=N

1− |ζn|
|1− ζn|

<∞.

Hence, for a fixed sufficiently large N we have

∆∂D− arg
√
BN

1 (z) <
π

2
.

Now we drop reference to N and choose α1 so that 0 < arg
√
B1(z) <

π/2 for all z ∈ ∂D−. Define f1 as stated in the theorem. By virtue of
Lemma 3 (b) and Lemma 4 (b), we conclude that f ∗1 attains countably
many jumps at points eiθn , n = 1, 2, · · · , satisfying

(10) 2π > θ1 > · · · > θn > · · · and lim
n→∞

θn = 0.

It is immediate from Lemma 4 (c) that f ∗1 is identically a unimodular
constant ω for all eiθ, θ1 < θ < 2π.

To show that f ∗1 has a jump discontinuity at 1, it is enough to estab-
lish that ω 6= 1. Suppose to the contrary that ω = 1. Then π < θ1 < 2π
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since, by the mean-value property applied to <f1, we have

0 = 2πf1(0) = 2π<f1(0) =

∫ θ1

0

<f ∗1 (eiθ) dθ +

∫ 2π

θ1

<f ∗1 (eiθ) dθ

>

∫ θ1

0

−dθ +

∫ 2π

θ1

dθ = 2(π − θ1).

Thus arg
√
BN

1 (eiθ1) < π/2. Moreover, since the origin belongs to
f1(D), f ∗1 (eiθ1−) ∈ ∂D−; hence 0 < arg df ∗1 (eiθ1) < π/2. It follows that

0 < arg{
√
BN

1 (eiθ1)df ∗1 (eiθ1)} < π/2 + π/2 = π,

which, by Lemma 4 (a), contradicts the assumption that eiθ1 is a dis-
continuity point for f ∗1 . Therefore, ω 6= 1 and f ∗1 is discontinuous at 1
as desired.

B. Here we find the value α2 such that for sufficiently large N the
boundary function f ∗2 of the GRM f2 is continuous at 1.

Let BN
1 be as found in part A; so 0 < arg

√
BN

1 (z) < π/2 for all
z ∈ ∂D−. By invoking (9), we infer that BN∗

1 (1) = limr→1− B
N
1 (r)

exists and |BN∗(1)| = 1; see [3, Theorem D]. Let α2 = − argBN∗
1 (1)

and let BN
2 (z) = eiα2BN

1 (z); hence BN∗
2 (1) = 1 and

∆∂D− arg
√
BN

2 (z) < π/2.

Define f2 as stated in the theorem. Then we conclude, as above in part
A, that f ∗2 attains countably many jumps at points eiθn , n = 1, 2, · · · ,
satisfying (10) such that f ∗2 is identically a unimodular constant ω for
all eiθ, θ1 < θ < 2π.

To show that f ∗2 is continuous at 1, it is enough to establish that
ω = 1. Suppose that =ω > 0; then f ∗2 (ei0−) = ω. But f ∗2 (ei0+) = 1.
Hence, the directed straight line segment [ω, 1] is a boundary arc of
f(D) that has the origin on its right-hand side. But the origin lies
in f(D) and f2 is sense-preserving in D; hence the origin lies on the
left-hand side of [ω, 1] and we have a contradiction.

It follows that =ω ≤ 0. Suppose now that =ω < 0. Since f ∗2 (ei0−) =
ω 6= 1 = f ∗2 (ei0+), f ∗2 admits a jump at 1 with the cluster set of f2

at 1 is the straight line segment [ω, 1]. Thus, 0 < arg df ∗2 (1) < π/2.
Assuming that f ∗2 (eit), 0 ≤ t ≤ 2π, is right-continuous on [0, 2π] and
that f2 = h2 + g2, then, by [12, p. 47], we have

BN
2 (r) =

(1− r)g′2(r)

(1− r)h′2(r)
=

∫ π

−π

(1− r)df ∗2 (eit)

eit − r

/∫ π

−π

(1− r)df ∗2 (eit)

eit − r
.
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But
∫ π
−π |df

∗
2 (eit)| < 2π. Hence, by the Lebesgue dominated convergence

theorem,

1 = BN∗
2 (1) = lim

r→1
BN∗

2 (r) =
df ∗2 (1)

df ∗2 (1)
,

which yields arg df ∗2 (1) = 0 and we have a contradiction. Therefore,
f ∗2 (ei0−) = ω = 1 = f ∗2 (ei0+) and f ∗2 is continuous at 1. This completes
the proof of Theorem 5. �

Finally, we have the following theorem that completes our results
Theorem 1 (b) and Corollary 1 in [3].

Lemma 5. (Protas [14]) Let B be an infinite Blaschke product with
zeros {ζn} , and let ζ ∈ ∂D, γ ≥ 1, and m > 0. Then (9) holds if and
only if ∫

Γζ,γ,m

1− |B(z)|2

1− |z|2
|dz| <∞,

where Γζ,γ,m = Γ is the “curve” in D defined by Γ(θ) = (1−m|θ|γ)eiθ
for 0 < |θ| < min{π,m−1/γ}.

Theorem 6. Let f of form (1) be a GRM from D onto a bounded
convex domain Ω, whose dilatation is a Blaschke product a with zeros
ζn, n = 1, 2, · · · , and whose boundary function is f ∗. If

(11)
∞∑
n=1

1− |ζn|
|eiθ0 − ζn|

=∞,

then f ∗ is continuous at θ0.

Proof. Without loss of generality we shall assume that θ0 = 0. Let us
assume to the contrary that f admits a jump at 1. Then

(12) lim
z∠1

(1− |z|)|h′(z)| = lim
z∠1

(1− |z|)|g′(z)| = c1 > 0,

for some c1. By Lemma 5, (11) is equivalent to

(13) ∞ =

∫
Γm

1− |a(z)|2

1− |z|2
|dz|,

where Γm(θ) = (1−m|θ|)eiθ, 0 < |θ| ≤ min{π, 1/m}, for every m > 0.
Let

Γ+
m(θ) = (1−mθ)eiθ, 0 < θ ≤ min{π, 1/m}

and

Γ−m(θ) = (1 +mθ)eiθ, −min{π, 1/m} ≤ θ < 0.

We may observe the following properties of the “curves” Γm :
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(a) Each Γ+
m is a closed-open Jordan arc that starts from the origin

if m ≥ 1/π and from a point in (−1, 0) if 0 < m < 1/π,
terminates at 1, and lies otherwise in the upper-half unit disc.

(b) Γ+
m and Γ−m are symmetric about the real axis for every m.

(c) The arcs Γ+
m (Γ−m) are mutually disjoint except when m ≥ 1/π

in which case they share the origin as an initial point.
(d) If Rm is the Jordan region bounded by Γm, then Rm properly

contains Rm′ whenever m′ > m and
⋂
mRm is the open unit

interval.

In view of Theorem D, h′(z) is bounded away from zero in D. This
with (12), yields that |h′(z)|(1 − |z|) is bounded away from zero. For
the rest of the proof let m ≤ 1/2π and |θ| ≤ π. We have:

|dΓm(θ)| = |m+ i(1−m|θ|)|dθ ≤ (m+ 1)dθ < 2dθ, |θ| ≤ π.

Hence, by employing (13), we obtain:

∞ =

∫
Γm

(|h′(z)|2 − |g′(z)|2)(1− |z|)
|h′(z)|2(1− |z|)2(1 + |z|)

|dz|

≤ c2

∫
Γm

(|h′(z)|2 − |g′(z)|2)m|θ||dz|

< c2

∫ π

−π
(|h′(z)|2 − |g′(z)|2)|θ|dθ

for some real constant c2 > 0.
By virtue of the properties (a), · · · , (d) of Γm, we infer that the

mapping Γ(m, θ) : (m, θ) → (r, θ) defined by Γ(m, θ) = Γm(θ) for
0 < |θ| ≤ π is a diffeomorphism from the open rectangle R = (−π, π)×
(0, 1/2π) minus the line segment {(m, 0) : 0 < m < 1/2π} onto Q =
D \ R1/2π minus the open interval (−1,−1/2). But the Jacobian of
Γ(m, θ) is ∂(r, θ)/∂(m, θ) = |θ| and 1 − m|θ| > 1/2 in Q. Hence, the
area A of f(D) satisfies:

A =

∫∫
D
(|h′(z)|2 − |g′(z)|2) rdrdθ

>

∫∫
Q

(|h′(z)|2 − |g′(z)|2) rdrdθ

=

∫∫
R

(|h′(z)|2 − |g′(z)|2)(1−m|θ|) ∂(r, θ)

∂(m, θ)
dmdθ

>
1

2

∫ π

−π

∫ 1/2π

0

(|h′(z)|2 − |g′(z)|2)|θ|dθdm

= ∞.
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This yields a contradiction since A is finite because f(D) ⊂ Ω. This
completes the proof. �

Remark 2. Let φ = znB(z)s(z) be an inner function where B is a
Blaschke product and s is a singular inner function associated with the
measure σ. Using Theorem 2 of Protas [14] and the preceding proof one
can show the following:

Let φ be an inner function and let f be the GRM from D onto a
bounded convex domain associated with φ. If

∞∑
n=1

1− |ζn|
|eiθ0 − ζn|

+

∫ 2π

0

|1− ei(t−θ0)|dσ(t) =∞,

then the boundary function f ∗ is continuous at eiθ0 .
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