ON THE GROWTH OF SOLUTIONS TO THE MINIMAL SURFACE EQUATION OVER DOMAINS CONTAINING A HALFPLANE

ERIK LUNDBERG AND ALLEN WEITSMAN

Abstract

We consider minimal graphs $u=u(x, y)>0$ over unbounded domains D with $u=0$ on ∂D. Assuming D contains a sector properly containing a halfplane, we obtain estimates on growth and provide examples illustrating a range of growth.

Keywords: minimal surface, harmonic mapping, asymptotics MSC: 49Q05

1. Introduction

Let D be an unbounded plane domain. In this paper we consider the boundary value problem for the minimal surface equation

$$
\left\{\begin{array}{l}
\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}}=0 \quad \text { and } u>0 \quad \text { in } D \tag{1.1}\\
u=0 \quad \text { on } \partial D
\end{array}\right.
$$

We shall study the constraints on growth of nontrivial solutions to (1.1) as determined by the maximum

$$
M(r)=\max u(x, y)
$$

where the max is taken over the values $r=\sqrt{x^{2}+y^{2}}$ and $(x, y) \in D$.
Perhaps the first relevant theorem in this direction was proved by Nitsche [8, p. 256] who observed that if D is contained in a sector of opening strictly less than π, then $u \equiv 0$. For domains contained in a half plane, but not contained in any such sector, there are a host of solutions to (1.1) which will be discussed later. However, in this case, it has been shown [14] that if D is bounded by a Jordan arc,

$$
C r \leq M(r) \leq e^{C r} \quad\left(r>r_{0}\right)
$$

for some positive constants C and r_{0}.
If, on the other hand, the domain D contains a sector of opening α bigger than π, we shall show that the growth of $M(r)$ is at most linear (see Theorem 2.1 in Section 2). Regarding the bound from below, with the order ρ of u defined by

$$
\rho=\lim _{r \rightarrow \infty} \sup _{1} \frac{\log M(r)}{\log r},
$$

it follows by using the module estimates of Miklyukov [6] (see also chapter 9 in [7]) as in [13] that if D omits a sector of opening $2 \pi-\alpha$, ($\pi \leq \alpha \leq 2 \pi$, the omitted set in the case $\alpha=2 \pi$ being a line), then the order of any nontrivial solution to (1.1) is at least π / α,
The paper concludes with a list of problems and conjectures.

2. Estimates on Growth

For later convenience we shall use complex notation $z=x+i y$ for points (x, y) when describing solutions to the minimal surface equation. As such, we are given a minimal graph with positive height function $u(z)$ over a domain D as in (1.1).

Theorem 2.1. Let D be a simply connected domain whose boundary is a Jordan arc, and D contains a sector $S_{\lambda}:=\{z:|\arg z| \leq \lambda\}$, with $\lambda>\pi / 2$. With $M(r)$ defined as above, if u satisfies (1.1) in D, then there exist positive constants K and R such that

$$
\begin{equation*}
M(r) \leq K r, \quad|z|>R \tag{2.1}
\end{equation*}
$$

Throughout, we will make use of the parametrization in isothermal coordinates by the Weierstrass functions $(x(\zeta), y(\zeta), U(\zeta))$ with ζ in the right half plane $H, U(\zeta)=$ $u(x(\zeta), y(\zeta))$ and (up to additive constants)

$$
\left\{\begin{array}{l}
x(\zeta)=\Re e \frac{1}{2} \int_{\zeta_{0}}^{\zeta} \omega(\bar{\zeta})\left(1-G^{2}(\bar{\zeta})\right) d \bar{\zeta} \tag{2.2}\\
y(\zeta)=\Re e \frac{i}{2} \int_{\zeta_{0}}^{\zeta} \omega(\bar{\zeta})\left(1+G^{2}(\bar{\zeta})\right) d \bar{\zeta} \\
U(\zeta)=\Re e \int_{\zeta_{0}}^{\zeta} \omega(\bar{\zeta}) G(\bar{\zeta}) d \bar{\zeta}
\end{array}\right.
$$

Here ω is analytic and G meromorphic in H, with ω nonvanishing except for a zero of order $2 n$ when G has a pole of order n.
With this parameterization, the height function $U(\zeta)$ pulled back to the halfplane H becomes a positive harmonic function in H which is 0 on the imaginary axis, and thus is simply $U(\zeta)=C \Re e\{\zeta\}$ for a real positive constant C. We may assume without loss of generality that $C=2$.
Since $f(\zeta):=x(\zeta)+i y(\zeta)$ is harmonic in H, there exist analytic functions $h(\zeta)$ and $g(\zeta)$ in H such that (see [1, p. 176])

$$
f(\zeta)=h(\zeta)+\overline{g(\zeta)}
$$

With this formulation, the height function then satisfies

$$
U(\zeta)=2 \Re e i \int \sqrt{h^{\prime}(\zeta) g^{\prime}(\zeta)} d \zeta
$$

and since $U(\zeta)=2 \Re e\{\zeta\}$ in (2.2), it follows that

$$
\begin{equation*}
g^{\prime}(\zeta)=-\frac{1}{h^{\prime}(\zeta)} \tag{2.3}
\end{equation*}
$$

2.1. Proof of Theorem 2.1. First we establish the bound (2.1) inside a sector.

Lemma 2.2. Let $S_{\alpha}:=\{z:|\arg z| \leq \alpha<\pi / 2\}$ be a sector contained in $H \subset D$. Then for some $K>0$ the upper bound (2.1) holds in S_{α} for all r sufficiently large:

$$
\max _{|z|=r, z \in S_{\alpha}} u(z) \leq K r .
$$

Proof of Lemma. Let $f(\zeta), U(\zeta)$ be as above. So, $u(f(\zeta))=U(\zeta)=2 \Re e \zeta$.
Let $P:=\{\zeta: \Re e f(\zeta)>0\}$ be the preimage of the right halfplane, and introduce a new variable $\tilde{\zeta}$ and let $\psi(\tilde{\zeta})$ be a conformal map from the right half $\tilde{\zeta}$-plane $H:=\{\tilde{\zeta}$: $\Re e(\tilde{\zeta})>0\}$ onto P.
Define

$$
\left\{\begin{array}{l}
\tilde{f}(\tilde{\zeta}):=f(\psi(\tilde{\zeta})) \\
\tilde{g}(\tilde{\zeta}):=g(\psi(\tilde{\zeta})) \\
\tilde{h}(\tilde{\zeta}):=h(\psi(\tilde{\zeta}))
\end{array}\right.
$$

Then \tilde{f} is a harmonic map, and

$$
\tilde{f}(\tilde{\zeta})=\tilde{h}(\tilde{\zeta})+\overline{\tilde{g}(\tilde{\zeta})}
$$

We wish to show that for all $|z|>R$ in S_{α},

$$
\frac{u(z)}{|z|}=\frac{U(\zeta)}{|f(\zeta)|}=\frac{2 \Re e \zeta}{|f(\zeta)|}=\frac{2 \Re e \psi(\tilde{\zeta})}{|\tilde{f}(\tilde{\zeta})|}<K
$$

Let $\tilde{F}(\tilde{\zeta})=\tilde{h}(\tilde{\zeta})+\tilde{g}(\tilde{\zeta})$ be the analytic function with the same real part as \tilde{f}. Then $\Re e \tilde{F}$ is positive in H and vanishes on ∂H, and therefore, without loss of generality we may write (see [12, p. 151])

$$
\begin{equation*}
\tilde{F}(\tilde{\zeta})=\tilde{\zeta} \Longrightarrow \tilde{F}^{\prime}(\tilde{\zeta})=1 \tag{2.4}
\end{equation*}
$$

The proof hinges on (2.4) along with the chain rule combined with (2.3). Now,

$$
\tilde{h}^{\prime}(\tilde{\zeta})=h^{\prime}(\psi(\tilde{\zeta})) \cdot \psi^{\prime}(\tilde{\zeta})
$$

and

$$
\begin{equation*}
\tilde{g}^{\prime}(\tilde{\zeta})=-\frac{\psi^{\prime}(\tilde{\zeta})}{h^{\prime}(\psi(\tilde{\zeta}))}=-\frac{\psi^{\prime}(\tilde{\zeta})^{2}}{\tilde{h}^{\prime}(\tilde{\zeta})} \tag{2.5}
\end{equation*}
$$

Combining this with (2.4) we have

$$
1=\tilde{F}^{\prime}(\tilde{\zeta})=\tilde{h}^{\prime}(\tilde{\zeta})-\frac{\psi^{\prime}(\tilde{\zeta})^{2}}{\tilde{h}^{\prime}(\tilde{\zeta})}
$$

which implies

$$
\tilde{h}^{\prime}(\tilde{\zeta})^{2}-\tilde{h}^{\prime}(\tilde{\zeta})-\psi^{\prime}(\tilde{\zeta})^{2}=0
$$

Thus,

$$
\begin{equation*}
\tilde{h}^{\prime}(\tilde{\zeta})=\frac{1+\sqrt{1+4 \psi^{\prime}(\tilde{\zeta})^{2}}}{2} \tag{2.6}
\end{equation*}
$$

Since $\psi(\tilde{\zeta})$ is a conformal map with $\Re e \psi(\tilde{\zeta})>0$ in H, we can apply the following result restated from [12, Thm. IV.19]:
Theorem A. Let $f(z)=u+i v$ be analytic in $x>0$ where $u>0$. Then

$$
\lim _{z \rightarrow \infty} \frac{f(z)}{z}=c, \quad \lim _{z \rightarrow \infty} f^{\prime}(z)=c, \quad 0 \leq c<\infty
$$

uniformly as $z \rightarrow \infty$ from the inside of any fixed angular domain $|\arg (z)| \leq \phi_{0}<\pi / 2$.
Applying Theorem A directly to ψ, we conclude that there exists a real constant $0 \leq c<\infty$ such that in any sector $S_{\beta}:=\{\tilde{\zeta}:|\arg \tilde{\zeta}| \leq \beta<\pi / 2\}$ the limit $\psi^{\prime}(\tilde{\zeta}) \rightarrow c$ exists as $\tilde{\zeta} \rightarrow \infty$ in S_{β}.
Case 1: $\psi^{\prime}(\tilde{\zeta}) \rightarrow c=0$ as $\tilde{\zeta} \rightarrow \infty$ (with $\tilde{\zeta}$ in S_{β}).
From (2.6) we have $\tilde{h}^{\prime}(\tilde{\zeta}) \rightarrow 1$ as $\tilde{\zeta} \rightarrow \infty$, and using (2.5) we have $\tilde{g}^{\prime}(\tilde{\zeta}) \rightarrow 0$. Thus, $\tilde{h}(\tilde{\zeta}) \approx \tilde{\zeta}$ and $\tilde{g}(\tilde{\zeta})=o(1)$, which implies that $\tilde{f}(\tilde{\zeta})=\tilde{h}(\tilde{\zeta})+\overline{\tilde{g}}(\tilde{\zeta}) \approx \tilde{\zeta}$.
Since $\tilde{f}: H \rightarrow H$ is asymptotic to the identity map, given α, we may choose $\beta<\pi / 2$ so that $S_{\alpha} \cap\{|z|>R\}$ is contained in the image of the sector S_{β} for R large enough. Thus, the estimate $\psi^{\prime}(\tilde{\zeta}) \rightarrow 0$ applies in the region S_{α}, and we have

$$
\frac{u(z)}{|z|}=\frac{\Re e \psi(\tilde{\zeta})}{|\tilde{f}(\tilde{\zeta})|} \leq \frac{|\psi(\tilde{\zeta})|}{|\tilde{f}(\tilde{\zeta})|}=o(1), \quad \text { for } z \in S_{\alpha} \cap\{|z|>R\}
$$

since $\tilde{f}(\tilde{\zeta}) \approx \tilde{\zeta}$, and $\psi^{\prime}(\tilde{\zeta})=o(1)$.
Case 2: $\psi^{\prime}(\tilde{\zeta}) \rightarrow c>0$ as $\tilde{\zeta} \rightarrow \infty$.
From (2.4) we have $\Re e\{\tilde{h}(\tilde{\zeta})+\overline{\tilde{g}(\tilde{\zeta})}\}=\Re e \tilde{\zeta}$. Let us also estimate $\Im m \tilde{f}(\tilde{\zeta})=$ $\Im m \tilde{h}(\tilde{\zeta})-\Im m \tilde{g}(\tilde{\zeta})$. We use (2.6) and (2.5):

$$
\begin{aligned}
& \tilde{h}^{\prime}(\tilde{\zeta}) \rightarrow \frac{1+\sqrt{1+4 c^{2}}}{2}, \\
& \tilde{g}^{\prime}(\tilde{\zeta}) \rightarrow \frac{-2 c^{2}}{1+\sqrt{1+4 c^{2}}},
\end{aligned}
$$

which imply

$$
\tilde{h}^{\prime}(\tilde{\zeta})-\tilde{g}^{\prime}(\tilde{\zeta}) \rightarrow \frac{\left(1+\sqrt{1+4 c^{2}}\right)^{2}+4 c^{2}}{2\left(1+\sqrt{1+4 c^{2}}\right)}=1+\frac{4 c^{2}}{1+\sqrt{1+4 c^{2}}}
$$

Putting this together, we have

$$
\tilde{h}(\tilde{\zeta})+\overline{\tilde{g}(\tilde{\zeta})}=\Re e \tilde{\zeta}+i\left(1+\frac{4 c^{2}}{1+\sqrt{1+4 c^{2}}}+o(1)\right) \Im m \tilde{\zeta}
$$

As in the first case, given α, we may thus choose $\beta<\pi / 2$ and $R>0$ so that $S_{\alpha} \cap\{|z|>R\}$ is contained in the image $\tilde{f}\left(S_{\beta}\right)$ of the sector S_{β}. Then we have

$$
\frac{u(z)}{|z|}=\frac{2 \Re e \psi(\tilde{\zeta})}{|\tilde{f}(\tilde{\zeta})|} \leq \frac{|2 \psi(\tilde{\zeta})|}{|\tilde{f}(\tilde{\zeta})|}=O(1), \quad \text { for } z \in S_{\alpha} \cap\{|z|>R\}
$$

Indeed, $|\tilde{f}(\tilde{\zeta})|=\left|\Re e \tilde{\zeta}+i\left(1+\frac{4 c^{2}}{1+\sqrt{1+4 c^{2}}}+o(1)\right) \Im m \tilde{\zeta}\right|$, and $\psi^{\prime}(\tilde{\zeta})=O(1) \Longrightarrow$ $\psi(\tilde{\zeta})=O(|\tilde{\zeta}|)$.

Applying Lemma 2.2 to two sectors, one rotated clockwise and the other counterclockwise, in order that their union covers S_{λ}, the upper bound (2.1) is established in S_{λ}. It remains to prove the estimate in the rest of D.
Let $\pi / 2<\alpha<\lambda$. We will show that the upper bound (2.1) holds in $D \backslash \overline{S_{\alpha}}$.
In order to prove this, we will apply the following result from [2, Main Theorem]:
Theorem B. Let $\Omega \subset \Omega_{1}=\{(x, y): x>0,-f(x)<y<f(x)\}$, where $f, g \in$ $C[0, \infty), f, g \geq 0, g(0)=0, f(t), g(t) / t$ increase as t increases, and let $u \in C(\bar{\Omega}) \cap$ $C^{2}(\Omega)$. Suppose that
i) $\operatorname{div} \frac{\nabla u}{\sqrt{1+|\nabla u|^{2}}} \geq 0$ in Ω,
ii) $\left.u\right|_{\partial \Omega \cap(\{x\} \times[-f(x), f(x)])} \leq g(x)$ for $x \in[0, \infty)$,
iii) $0<\kappa(x):=f(x) /(2 g(x))<1$ for all x larger than some $x_{1}>0$,
iv) $\kappa(x)$ is decreasing on $\left[x_{1}, \infty\right)$.

Then $u(x, y) \leq g(x /(1-\kappa(x)))$ for every $(x, y) \in \Omega$ with $x>x_{1}$.

We apply this to $\Omega=D \backslash \overline{S_{\alpha}}$, while taking $\Omega_{1}=\mathbb{C} \backslash \overline{S_{\alpha}}$. In order to relate to the setup in the theorem, reflect these domains about the y-axis, so that Ω and Ω_{1} are in the right halfplane. Then $\Omega_{1}=\{(x, y): x>0,-f(x)<y<f(x)\}$, where $f(x)=\tan (\pi-\alpha) x$. If $C>0$ is sufficiently large, then $g(x)=C x(1-\exp (-x) / 2)$ satisfies both (iii) and (iv). We check that for C large enough, (ii) is also satisfied. Note that $\partial \Omega$ contains
points on ∂D and points on ∂S_{α}. For points on $\partial D, u=0$, and for points on ∂S_{α}, u has at most linear growth by Lemma 2.2. Thus, in both cases (ii) is satisfied, and Theorem B may be applied. The result is that $u(x, y) \leq g(x /(1-\kappa(x)))$ for all large enough $x \in \Omega$. Since

$$
\frac{x}{1-\kappa(x)}=\frac{x}{1-\tan (\pi-\alpha) / C}(1+o(1)),
$$

and $\tan (\pi-\alpha) / C$ is a small constant provided C is large, we have

$$
u(x, y)<C x
$$

for all large enough $x \in \Omega$. This completes the proof of (2.1).

2.2. A lower bound.

Proposition 2.3. Suppose D is a domain with $\partial D \neq \emptyset$, and $u(z)>0$ satisfies (1.1) with $u(z)=0$ on ∂D. Then $u(z)$ has at least logarithmic growth.

Proof. Without loss of generality assume that $0 \in \partial D$, and consider the top half of the vertical catenoid centered at $z=0$ as a "barrier" (cf. [9, p. 92]). Explicitly, let $\cosh ^{-1}$ denote the positive branch of the inverse of $\cosh : \mathbb{R} \rightarrow \mathbb{R}$, and define

$$
G\left(z ; r_{1}\right):=r_{1} \cosh ^{-1}\left(\frac{|z|}{r_{1}}\right), \quad|z| \geq r_{1} .
$$

For each $r_{1}, G\left(z ; r_{1}\right)$ satisfies (1.1).
Let $\varepsilon>0$ and choose a δ-neighborhood $B(\delta, 0)$ of $z=0$ small enough that $u(z)<\varepsilon$ throughout $B(\delta, 0) \cap D$.

Define $u_{\varepsilon}(z)=u(z)-\varepsilon$. For $r_{1}>0$ small enough, $G\left(|z| ; r_{1}\right)>u_{\varepsilon}(z)$ on $\partial B(\delta, 0) \cap D$. For $R>0$, let

$$
K_{R}:=D \cap B(R, 0) \backslash B(\delta, 0) .
$$

Fix $R=R_{0}$. Suppose $\max _{|z|=R}|u(z)|$ grows slower than logarithmically, so it grows slower than $G\left(|z|, r_{1}\right)$. Then for $R>R_{0}$ sufficiently large, $G\left(|z| ; r_{1}\right)>u_{\varepsilon}(z)$ on ∂K_{R}. This implies the same inequality throughout $K_{R_{0}} \subset K_{R}$. In particular, $u_{\varepsilon}(z)<$ $r_{1} \cosh ^{-1}\left(\frac{R_{0}}{r_{1}}\right)$ in $K_{R_{0}}$. But $r_{1}>0$ is arbitrary, and $r_{1} \cosh ^{-1}\left(\frac{R_{0}}{r_{1}}\right) \rightarrow 0$ as $r_{1} \rightarrow 0$. Thus, $u_{\varepsilon}(z) \leq 0$ in $K_{R_{0}}$ which implies that $u(z) \leq 0$ since ε was arbitrary. This contradicts that $u(z)>0$ in D.

3. Examples

In this Section, we provide examples that together with the above (and previously known) results give a broad picture of the possible growth rates of minimal graphs. One notices three "regimes" illustrated in Fig. 1. When D contains a halfplane we find nontrivial examples, but their growth rates appear to be determined by the asymptotic angle $\pi<\beta<2 \pi$. This is reminiscent of the behavior of positive harmonic functions, hence we deem this the "Phragmén-Lindelöf regime". However, the geometry of D plays a subtle role, since if D is a true sector of opening β, even in the range $\pi<\beta<2 \pi$, then (1.1) has only the trivial solution $u \equiv 0$ [5, p.993].
When D is contained in a sector $\beta<\pi$, we have a "completely rigid regime", due to Nitsche's theorem. At the critical angle $\beta=\pi$, an interesting phase transition occurs; there are examples with D contained in a halfplane with $\beta=\pi$ exhibiting a full spectrum of possible growth rates anywhere from linear to exponential thus interpolating the known upper and lower bounds. It is of interest to note further that the domains D for these examples are contained within powerlaw growth. That is, $D \subset\left\{(x, y):|y| \leq|x|^{\rho}\right\}$. This answers in the affirmative a question attributed to Michael Beeson in [10, Example 1.8] that asked about the existence of such examples.

We note also that it follows from Theorem B that these examples exhibit the maximum possible growth rate for their respective boundary curves (see also Problem 7 of Section 4).
3.1. Examples in the "Phragmén-Lindelöf" regime $\pi<\beta<2 \pi$: In [14], there appears an example of a minimal graph with height function (pulled back to ζ-plane) $U(\zeta)=2 \Re e \zeta$, and harmonic map from the half plane $H:=\{z=x+i y: x>0\}$

$$
z(\zeta)=\frac{(\zeta+1)^{2}}{2}-\log (\bar{\zeta}+1)
$$

This example has asymptotic angle 2π and growth of order $1 / 2$. (See $\S 4$ for the definition of asymptotic angle.)
Let us demonstrate a whole one-parameter family of examples with asymptotic angles $\pi<\beta<2 \pi$ having growth of orders π / β. Let $\gamma=\beta / \pi$ (so $1<\gamma<2$). Then such a minimal surface is given by the harmonic map from the half plane H to a region D

$$
z(\zeta)=(\zeta+1)^{\gamma}-\frac{1}{\gamma(2-\gamma)}(\bar{\zeta}+1)^{2-\gamma}
$$

together with the height function $U(\zeta)=2 \Re e \zeta$.
Assuming $z(\zeta)$ is univalent, then we have growth of order $1 / \gamma=\pi / \beta$ as desired, since

$$
\frac{u(z)}{|z|^{1 / \gamma}}=\frac{U(\zeta)}{|z(\zeta)|^{1 / \gamma}}=\frac{2 \Re e \zeta}{\left|(\zeta+1)^{\gamma}-\frac{1}{\gamma(2-\gamma)}(\bar{\zeta}+1)^{2-\gamma}\right|^{1 / \gamma}}
$$

Figure 1. A plot of the boundary of D labeled with order ρ. Phragmén-Lindelöf regime: $\pi<\beta<2 \pi$, Critical regime: $\beta=\pi$, and Rigid regime: $\beta<\pi$. For the curves, from left to right the angles are $\beta=2 \pi, 7 \pi / 4$, and $3 \pi / 2$.

Thus, the only thing to check is that $z(\zeta)$ is univalent in H. Its Jacobian is

$$
\gamma^{2}|\zeta+1|^{2(\gamma-1)}-\frac{1}{\gamma^{2}|\zeta+1|^{2(\gamma-1)}}>0
$$

since

$$
\gamma^{2}|\zeta+1|^{2(\gamma-1)}>1
$$

Thus, global univalence can be ensured by checking the boundary behavior. We will show that the imaginary part of $z(\zeta)$ is increasing on the boundary $\zeta=i t$, $-\infty<t<\infty$. The imaginary part of $z(i t)$ is

$$
\Im m\{z(i t)\}=\left(1+t^{2}\right)^{\gamma / 2} \sin \left(\gamma \tan ^{-1} t\right)+\frac{1}{\gamma(2-\gamma)}\left(1+t^{2}\right)^{(2-\gamma) / 2} \sin \left((2-\gamma) \tan ^{-1} t\right)
$$

This is an odd function, so we just consider the interval $0<t<\infty$. The second term is increasing, since it is a product of increasing functions. Indeed, $0<2-\gamma<1$ so that $0<(2-\gamma) \tan ^{-1} t<\pi / 2$ for $0<t<\infty$ so that $\sin \left((2-\gamma) \tan ^{-1} t\right)$ is
increasing. In order to show that $\left(1+t^{2}\right)^{\gamma / 2} \sin \left(\gamma \tan ^{-1} t\right)$ is increasing, we check that the derivative

$$
\gamma\left(1+t^{2}\right)^{\gamma / 2-1} t \sin \left(\gamma \tan ^{-1} t\right)+\gamma\left(1+t^{2}\right)^{\gamma / 2-1} \cos \left(\gamma \tan ^{-1} t\right)
$$

is positive, or equivalently that

$$
t \sin \left(\gamma \tan ^{-1} t\right)+\cos \left(\gamma \tan ^{-1} t\right)>0
$$

For this let $0<\theta<\pi / 2$ and take $t=\tan \theta$. Then we see that

$$
\tan \theta \sin (\gamma \theta)+\cos (\gamma \theta)=\frac{\cos (\gamma-1) \theta}{\cos \theta}
$$

which is positive since $0<\theta<\pi / 2$ and $1<\gamma<2$.
3.2. The critical angle $\beta=\pi$: Examples from linear growth to exponential. A plane and a horizontal catenoid sliced by a plane parallel to its axis provide two examples of minimal graphs over a domain contained in a half plane. These examples have linear and exponential growth respectively.
For each given $\rho>1$, we provide an example contained in a halfplane (each having asymptotic angle $\beta=\pi$) with order of growth ρ. Let $b=1 / \rho$. Then, once again, $z(\zeta)$ has the form

$$
z(\zeta)=h(\zeta)-\overline{\int \frac{1}{h^{\prime}(\zeta)} d \zeta}
$$

so that $U(\zeta)=2 \Re e \zeta$.
Taking $h(\zeta)=\zeta+\frac{1}{b} \zeta^{b}$,

$$
z(\zeta)=\zeta+\frac{1}{b} \zeta^{b}-\bar{\zeta}+\overline{\int \frac{1}{1+\zeta^{1-b}} d \zeta}
$$

Assuming $z(\zeta)$ is univalent, $u(z)$ has order ρ, since

$$
\frac{u(z)}{|z|^{\rho}}=\frac{U(\zeta)}{|z(\zeta)|^{\rho}}=\frac{2 \Re e \zeta}{|z(\zeta)|^{\rho}}
$$

which tends to a constant on the real axis.
It remains to check that $z(\zeta)$ is univalent in H. Its Jacobian is

$$
\left|1+\zeta^{b-1}\right|^{2}-\frac{1}{\left|1+\zeta^{b-1}\right|^{2}}>0
$$

since

$$
\left|1+\zeta^{b-1}\right|^{2}>1, \quad \text { for } \zeta \in H
$$

Thus, global univalence can be ensured by checking the boundary behavior. As in the previous examples we show that $\Im m\{z(\zeta)\}$ is increasing on the boundary $\zeta=i t$,
$-\infty<t<\infty$. This is an odd function, so we just consider the interval $0<t<\infty$. It suffices to show that the derivative

$$
\frac{d}{d t} \Im m\{z(i t)\}
$$

is positive. We use the identity

$$
\frac{d}{d t} \Im m\{z(i t)\}=\frac{d}{d t} \Im m\{h(i t)\}-\frac{d}{d t} \Im m\{g(i t)\}=\Re e\left\{h^{\prime}(i t)\right\}-\Re e\left\{g^{\prime}(i t)\right\},
$$

to compute

$$
\begin{aligned}
\frac{d}{d t} \Im m\{z(i t)\} & =1+\Re e \frac{1}{(i t)^{1-b}}+1-\Re e \frac{1}{1+(i t)^{1-b}} \\
& >2-\frac{1}{1+\Re e\left\{(i t)^{1-b}\right\}} \\
& >1 .
\end{aligned}
$$

We note that the domain D for this example has a corner at the point $z(0)$. This can be removed by shifting the minimal graph $(x, y, u(x, y))$ in the negative u-direction.

4. Problems and conjectures

I. When dealing with a nonlinear equation, issues of existence and uniqueness are often complex. A survey of uniqueness results can be found in [4]. A natural question to ask here is
Problem 1. Is it possible for (1.1) to have more than one nontrivial (nonplanar) solution?
II. As discussed in the introduction, for domains D contained in the half plane, at least when bounded by a Jordan arc, the growth of solutions to (1.1) is at most exponential. However, it seems likely that this is true in general.
Problem 2. If u is a solution to (1.1), then does its maximum $M(r)$ satisfy

$$
M(r) \leq e^{C r} \quad\left(r>r_{0}\right)
$$

for some positive constants C and r_{0}
III. As noted above, the maximum growth rate for solutions to (1.1) in a halfplane is exponential, and this is achieved by horizontal catenoids over domains contained in the set $\left\{(x, y):-C e^{C x}<y<C e^{C x}\right\}$.
Problem 3. If D contains a set $\{(x, y): x>0,-f(x)<y<f(x)\}$ where $f(x) \rightarrow \infty$ faster than any exponential function $e^{C x}$, can (1.1) have a nontrivial solution, and if so, must any such solution have linear growth?
IV. Theorem 2.1 requires that D contain a sector of opening bigger than π.

Problem 4. Does the conclusion of Theorem 2.1 still hold under the assumption that D contains a halfplane?
V. In this paper we have shown that if D contains a sector of opening $\alpha>\pi$, then any nontrivial solution has order at most 1 . However, it seems likely that this might be be improved.
Problem 5. If D contains a sector of opening $\alpha>\pi$, then is it true that the order of any nontrivial solution to (1.1) is bounded above by π / α ? The interpretation as with the minimum bound discussed in $\S 1$ has the case $\alpha=2 \pi$ taken to mean that the omitted set is a line.
VI. The results in [14] are phrased in terms of the asymptotic angle β defined as follows. Let $\Theta(r)$ be the angular measure of the set $D \cap\{|z|=r\}$, and $\Theta^{*}(r)=\Theta(r)$ if D does not contain the circle $|z|=r$, and $+\infty$ otherwise. Then

$$
\beta=\lim _{r \rightarrow \infty} \sup ^{*} \Theta^{*}(r) .
$$

Consideration of the case $\beta=2 \pi$ raises the following question
Problem 6. If D is an unbounded simply connected region bounded by a Jordan arc (taken to mean a proper curve which does not self intersect or close), then is it true that the maximum of a nontrivial solution satisfies

$$
M(r) \geq C \sqrt{r} \quad\left(r>r_{0}\right)
$$

for some positive constants C and r_{0} ?
VII. Returning to Nitsche's theorem as mentioned in $\S 1$, in terms of the asymptotic angle β it seems likely that a corresponding result should hold.
Problem 7. If D has asymptotic angle $\beta<\pi$, and u is a solution to (1.1), then must it be that $u \equiv 0$?
VIII. As noted, the examples of Section 3 in the critical regime have maximal growth for their respective boundaries.
Problem 8. Suppose that D is contained in $\left\{(x, y): x>0,-C e^{C x}<y<C e^{C x}\right\}$ and also that D contains a set $\left\{(x, y): x>x_{0}>0,-x^{n}<y<x^{n}\right\}$. Is it possible for a solution u to (1.1) over D to have growth smaller than x^{k} with $k<n$? In particular, can u have linear growth?

References

1. P. Duren, Harmonic mappings in the plane, Cambridge Tracts in Mathematics, 2004.
2. J-F Hwang, Phragmén Lindelöf theorem for the minimal surface equation, Proc. Amer. Math. Soc. 104 (1988), 825-828.
3. J-F Hwang, Catenoid-like solutions for the minimal surface equation, Pacific Jour. Math. 183 (1998), 91-102.
4. J-F Hwang, How many theorems can be derived from a vector function - on uniqueness theorems for the minimal surface equation, Taiwanese Jour. Math. 7 (2003), 513-539.
5. R. Langevin, G. Levitt, H. Rosenberg, Complete minimal surfaces with long line boundaries, Duke Math. Jour. 55 (1987), 985-995.
6. V. Miklyukov, Some singularities in the behavior of solutions of equations of minimal surface type in unbounded domains, Math. USSR Sbornik 44 (1983), 61-73.
7. V. Miklyukov, Conformal maps of nonsmooth surfaces and their applications, Exlibris Corp. (2008).
8. J.C.C. Nitsche, On new results in the theory of minimal surfaces, Bull. Amer. Mat. Soc. 71 (1965), 195-270.
9. R. Osserman, A survey of minimal surfaces. Dover Publications Inc. (1986).
10. J. Spruck, Two-dimensional minimal graphs over unbounded domains, J. Inst. Math. Jussieu 1 (2002), 631-640.
11. M. Traizet, Classification of the Solutions to an Overdetermined Elliptic Problem in the Plane, GAFA, 24 (2014), 690-720.
12. M. Tsuji, Potential Theory in Modern Function Theory, Maruzen Co., Ltd., Tokyo (1959).
13. A. Weitsman, On the growth of minimal graphs, Indiana Univ. Math. J. 54 (2005), 617-625.
14. A. Weitsman, Growth of solutions to the minimal surface equation over domains in a half plane, Communications in Analysis and Geometry 13 (2005), 1077-1087.

Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431

Email: ELundber@fau.EDU

Department of Mathematics, Purdue University, West Lafayette, IN 47907

Email: Weitsman@purdue.Edu

