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ABSTRACT. We consider minimal graphs u = u(z,y) > 0 over unbounded domains
D with u = 0 on dD. Assuming D contains a sector properly containing a halfplane,
we obtain estimates on growth and provide examples illustrating a range of growth.
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1. INTRODUCTION

Let D be an unbounded plane domain. In this paper we consider the boundary value
problem for the minimal surface equation

Vu
div———=0 andu>0 inD
(1.1) V1+ |Vul?
u=0 on oD

We shall study the constraints on growth of nontrivial solutions to (1.1) as determined
by the maximum

M(r) = max u(zx,y),
where the max is taken over the values r = /22 + y? and (z,y) € D.

Perhaps the first relevant theorem in this direction was proved by Nitsche [8, p. 256]
who observed that if D is contained in a sector of opening strictly less than 7, then
u = 0. For domains contained in a half plane, but not contained in any such sector,
there are a host of solutions to (1.1) which will be discussed later. However, in this
case, it has been shown [14] that if D is bounded by a Jordan arc,

Cr < M(r)< e’ (r>r)
for some positive constants C' and 7.

If, on the other hand, the domain D contains a sector of opening « bigger than 7, we
shall show that the growth of M (r) is at most linear (see Theorem 2.1 in Section 2).
Regarding the bound from below, with the order p of u defined by

log M
p = lim supog—m

r—00 log r
1

Y
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it follows by using the module estimates of Miklyukov [6] (see also chapter 9 in [7])
as in [13] that if D omits a sector of opening 27 — «a, (7 < o < 27, the omitted set
in the case a = 27 being a line), then the order of any nontrivial solution to (1.1) is
at least 7/a,

The paper concludes with a list of problems and conjectures.

2. ESTIMATES ON GROWTH

For later convenience we shall use complex notation z = x + iy for points (z,y) when
describing solutions to the minimal surface equation. As such, we are given a minimal
graph with positive height function u(z) over a domain D as in (1.1).

Theorem 2.1. Let D be a simply connected domain whose boundary is a Jordan arc,
and D contains a sector Sy = {z : |arg z| < A}, with A\ > w/2. With M(r) defined
as above, if u satisfies (1.1) in D, then there exist positive constants K and R such
that

(2.1) M(r) < Kr, |z| > R.
Throughout, we will make use of the parametrization in isothermal coordinates by

the Weierstrass functions (z(¢),y(¢), U(¢)) with ¢ in the right half plane H, U(¢) =
u(z(¢),y(¢)) and (up to additive constants)

¢ ¢
10 = ey [ w0 - 6* Ot
i (¢
(2.2 Q) =Re g [ @1+ @)
CO _ o
U0 =R [ L(@OCOK

Here w is analytic and G' meromorphic in H, with w nonvanishing except for a zero
of order 2n when G has a pole of order n.

With this parameterization, the height function U(() pulled back to the halfplane H
becomes a positive harmonic function in H which is 0 on the imaginary axis, and thus
is simply U(() = CRe{(} for a real positive constant C. We may assume without
loss of generality that C' = 2.

Since f((¢) := x(¢) + iy(¢) is harmonic in H, there exist analytic functions h({) and
g(¢) in H such that (see [1, p. 176])

f(€) = h(C) +9(¢).
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With this formulation, the height function then satisfies
Uc) = 2ei [ VOGO

and since U(¢) = 2Re{(} in (2.2), it follows that

(2.3 /0=~

2.1. Proof of Theorem 2.1. First we establish the bound (2.1) inside a sector.

Lemma 2.2. Let S, := {z : |argz| < o < 7/2} be a sector contained in H C D.
Then for some K > 0 the upper bound (2.1) holds in S, for all r sufficiently large:

max  u(z) < Kr.
|z|=r,2ESa

Proof of Lemma. Let f((), U(C) be as above. So, u(f(¢)) = U(¢) = 2Re(.

Let P := {C: Re f(¢) > 0} be the preimage of the right halfplane, and introduce a
new variable ¢ and let ¢/(¢) be a conformal map from the right half (-plane H := {(:
Re (¢) > 0} onto P.

Define o ~
f(Q) = f((Q)
3(0) = g(¥(O))
h(¢) := h(¥(¢))

Then f is a harmonic map, and

F(C) = h(C) +5(0)-
We wish to show that for all |z| > R in S,
u(z) _ UQ) _ 2ReC _ 2Mey(Q) _

= 1A O F Q)

Let f’(é) = h(¢) + §(C) be the analytic function with the same real part as f. Then
Re F is positive in H and vanishes on 0H, and therefore, without loss of generality
we may write (see [12, p. 151])

(2.4) F(()=( = F()=1.
The proof hinges on (2.4) along with the chain rule combined with (2.3). Now,
W(Q) = KW (Q) (),

and

(2.5) 7)) =—
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Combining this with (2.4) we have

which implies

(02 - H(Q) - (02 =o.
Thus,

- 1+4/14+497(C)?
(26) #(0) = i

Since 1(¢) is a conformal map with e ({) > 0 in H, we can apply the following
result restated from [12, Thm. IV.19]:

Theorem A. Let f(z) = u+ iv be analytic in x > 0 where u > 0. Then

limM:c, lim f'(z) =¢, 0<c¢< oo,

z—00 2 2Z—00

uniformly as z — oo from the inside of any fixed angular domain | arg(z)| < ¢o < 7/2.

Applying Theorem A directly to 1, we conclude that there exists a real constant
0 < ¢ < oo such that in any sector Sg := {( : |arg(| < 8 < 7/2} the limit ¢'(¢) — ¢
exists as ( — oo in Sg.

Case 1: ¢/(¢) = ¢=0as ( — oo (with C in S).

From (2.6) we have h/({) — 1 as ( — oo, and using (2.5) we have §'(¢) — 0. Thus,
h(¢) ~ ¢ and §(¢) = o(1), which implies that f(¢) = h({) + §(¢) =~ C.

Since f : H — H is asymptotic to the identity map, given «, we may choose § < 7/2
so that S, N {|z| > R} is contained in the image of the sector Ss for R large enough.

Thus, the estimate 1/'({) — 0 applies in the region S,, and we have
u(z) _ Rev@) _ [0
2] IO [F(Q)

since f(¢) ~ ¢, and ¢/(¢) = o(1).

Case 2: ¢/({) = ¢ > 0as { — oo.

=o(1), forzeS,Nn{|z| > R},

From (2.4) we have Re {h({) + §({)} = Rel. Let us also estimate Im f({) =
Smh(¢) — Sm §(¢). We use (2.6) and (2.5):

V(&) — 1+ \/; —|—4027
~ _ 9.2
7O = e

1+ V1442
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which imply

U (1+V1+4e2)>+ 4 4c?
W) —g(¢) — e _1+—1+m.

Putting this together, we have

TN~ F T 4¢c? o~ %
h(C)+g(C)=§ReC+z(HWJFO(U) Sm (.

As in the first case, given «, we may thus choose § < m/2 and R > 0 so that
Sa N{]z| > R} is contained in the image f(Sz) of the sector Ss. Then we have
u(z) _ 2Ren() _ [260)

> = 0(1), f Sa N R}.
QL S o W ereeseniE > A
R ~+'<1+ | (1))“ g
cr\MiaTe )

Indeed, |f({)| = ,and 9'(¢) = O(1) =

v (C) = O(I¢))-

O

Applying Lemma 2.2 to two sectors, one rotated clockwise and the other counter-
clockwise, in order that their union covers Sy, the upper bound (2.1) is established
in 5. It remains to prove the estimate in the rest of D.

Let 7/2 < a < A\. We will show that the upper bound (2.1) holds in D \ S,.
In order to prove this, we will apply the following result from [2, Main Theorem]:

Theorem B. Let Q@ C Q; = {(z,y) : * > 0,—f(z) < y < f(x)}, where f,g €
C[0,00), f,g >0, g(0) =0, f(t),g(t)/t increase as t increases, and let u € C(Q) N
C?*(Q2). Suppose that

) div—— >0 inQ,

V1+[Vul?

it) uloan(feyx [ (). f@)) < 9(x) for z €10, 00),

iii) 0 < k(x) :== f(x)/(29(z)) < 1 for all x larger than some xy > 0,
i) k(z) is decreasing on [xq,00).

Then u(x,y) < g(x/(1 — k(x))) for every (x,y) € Q with x > z.

We apply this to Q = D\ S, while taking Q; = C\S,. In order to relate to the setup in
the theorem, reflect these domains about the y-axis, so that €2 and €2; are in the right
halfplane. Then Q; = {(z,y) : @ > 0,—f(x) <y < f(x)}, where f(x) = tan(m — a)z.
If C' > 0 is sufficiently large, then g(x) = Cz(1 — exp(—x)/2) satisfies both (iii) and
(iv). We check that for C' large enough, (ii) is also satisfied. Note that 02 contains
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points on 0D and points on 9S,. For points on 0D, u = 0, and for points on 05,,
u has at most linear growth by Lemma 2.2. Thus, in both cases (ii) is satisfied, and
Theorem B may be applied. The result is that u(x,y) < g(z/(1 — k(x))) for all large
enough x € Q2. Since

1 — k(z) T 1- tan(m — a)/C

(1+0(1)),

and tan(m — «)/C' is a small constant provided C' is large, we have
u(z,y) < Cu,

for all large enough = € Q. This completes the proof of (2.1).

2.2. A lower bound.

Proposition 2.3. Suppose D is a domain with 0D # 0, and u(z) > 0 satisfies (1.1)
with u(z) =0 on D. Then u(z) has at least logarithmic growth.

Proof. Without loss of generality assume that 0 € 9D, and consider the top half of
the vertical catenoid centered at z = 0 as a “barrier” (cf. [9, p. 92]). Explicitly, let
cosh™! denote the positive branch of the inverse of cosh : R — R, and define

G(z;71) :=r cosh™! (M) .z >
(&

For each ri, G(z;ry) satisfies (1.1).

Let € > 0 and choose a d-neighborhood B(4,0) of z = 0 small enough that u(z) < ¢
throughout B(4,0) N D.

Define u.(z) = u(z) —e. For r; > 0 small enough, G(|z|;71) > u.(z) on 0B(4,0) N D.
For R > 0, let

Kr:= DN B(R,0)\ B(5,0).

Fix R = Ry. Suppose max|.—r |u(2)| grows slower than logarithmically, so it grows
slower than G(|z|,7). Then for R > Ry sufficiently large, G(|z|;r1) > u.(2) on
OKpg. This implies the same inequality throughout Kg, C Kg. In particular, u.(z) <
r1 cosh™! <f—1°> in Kg,. But r; > 0 is arbitrary, and r cosh™ (f—f) — 0asr;, — 0.

Thus, u.(z) < 0 in Kpg, which implies that u(z) < 0 since € was arbitrary. This
contradicts that u(z) > 0 in D. O
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3. EXAMPLES

In this Section, we provide examples that together with the above (and previously
known) results give a broad picture of the possible growth rates of minimal graphs.
One notices three “regimes” illustrated in Fig. 1. When D contains a halfplane we find
nontrivial examples, but their growth rates appear to be determined by the asymptotic
angle m < 8 < 2m. This is reminiscent of the behavior of positive harmonic functions,
hence we deem this the “Phragmén-Lindelof regime”. However, the geometry of
D plays a subtle role, since if D is a true sector of opening [, even in the range
m < 8 < 2w, then (1.1) has only the trivial solution u = 0 [5, p.993].

When D is contained in a sector § < m, we have a “completely rigid regime”, due
to Nitsche’s theorem. At the critical angle § = 7, an interesting phase transition
occurs; there are examples with D contained in a halfplane with f = 7 exhibiting
a full spectrum of possible growth rates anywhere from linear to exponential thus
interpolating the known upper and lower bounds. It is of interest to note further that
the domains D for these examples are contained within powerlaw growth. That is,
D C {(z,y) : |y| < |=|°}. This answers in the affirmative a question attributed to
Michael Beeson in [10, Example 1.8] that asked about the existence of such examples.

We note also that it follows from Theorem B that these examples exhibit the max-
imum possible growth rate for their respective boundary curves (see also Problem 7
of Section 4).

3.1. Examples in the “Phragmén-Lindel6f” regime 7 < 5 < 2m: In [14], there
appears an example of a minimal graph with height function (pulled back to (-plane)
U(¢) = 2Re (, and harmonic map from the half plane H := {z = x + iy : © > 0}

)= S g4y

This example has asymptotic angle 27 and growth of order 1/2. (See §4 for the
definition of asymptotic angle.)

Let us demonstrate a whole one-parameter family of examples with asymptotic angles
m < f < 27 having growth of orders 7/5. Let v = /7 (so 1 < < 2). Then such a
minimal surface is given by the harmonic map from the half plane H to a region D

2(¢) = (C+1)7—m

together with the height function U({) = 2Re C.

Assuming z(() is univalent, then we have growth of order 1/y = /3 as desired, since
W) U Me ¢
27 QP (1) = s (C+ 12U

(C+1)*
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) p=2/3
=4/7

p=1/2

(T<p<2m)

(B=TC)

Ficure 1. A plot of the boundary of D labeled with order p.
Phragmén-Lindelof regime: 7 < [ < 27, Critical regime: [ = T,
and Rigid regime: 8 < m. For the curves, from left to right the angles
are § = 2w, Tr/4, and 37/2.

Thus, the only thing to check is that z(¢) is univalent in H. Its Jacobian is

1
2 2-1) _ =
v¢ + 1] P T >0
since
PVICHIPOTY > 1

Thus, global univalence can be ensured by checking the boundary behavior. We
will show that the imaginary part of z({) is increasing on the boundary ¢ = it,
—00 < t < 00. The imaginary part of z(it) is

Sm {z(it)} = (1 +t*)"?sin(ytan~' t) + (1+ ) 26in((2 — ~) tan' t).

7(2—=7)
This is an odd function, so we just consider the interval 0 < ¢ < co. The second term
is increasing, since it is a product of increasing functions. Indeed, 0 < 2 — v < 1
so that 0 < (2 —v)tan™'t < 7/2 for 0 < t < oo so that sin((2 — ) tan"'¢) is
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increasing. In order to show that (1+t2)7/2sin(ytan~!t) is increasing, we check that
the derivative

(1 + 122 Ysin(ytan~t t) + y(1 + t2)7/2 L cos(y tan 1 t)
is positive, or equivalently that
tsin(ytan~'t) + cos(ytan"'t) > 0.
For this let 0 < # < 7/2 and take ¢t = tan . Then we see that

cos(y — 1)6

tan @ sin(y60) + cos(v6) = p—

Y

which is positive since 0 < § < 7/2 and 1 <y < 2.

3.2. The critical angle § = m: Examples from linear growth to exponential.
A plane and a horizontal catenoid sliced by a plane parallel to its axis provide two
examples of minimal graphs over a domain contained in a half plane. These examples
have linear and exponential growth respectively.

For each given p > 1, we provide an example contained in a halfplane (each having
asymptotic angle 5 = 7) with order of growth p. Let b = 1/p. Then, once again, z(()
has the form

0 = Q) = [ e

so that U(¢) = 2Re .
Taking h(¢) = ¢ + %Cb,
1

1+§PM@

1 _
AQ = ¢+ 3¢ =+ [

Assuming z(¢) is univalent, u(z) has order p, since
u(z)  U()  2Re(
217 12Ol [

which tends to a constant on the real axis.

It remains to check that z(¢) is univalent in H. Its Jacobian is

1

— >0
T+ ¢P

1+ -
since
1+ > 1, for e H.

Thus, global univalence can be ensured by checking the boundary behavior. As in
the previous examples we show that Sm {z({)} is increasing on the boundary ¢ = it,
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—00 < t < oo. This is an odd function, so we just consider the interval 0 < ¢t < oo.
It suffices to show that the derivative

d . ,
7 5m {z(it)}

is positive. We use the identity

Cm {=(it)} = S Sm {h(i1)} — 5 Sm {g(it)} = Re {A'(it)} — Re {g'(i1)},

to compute

d o 1 1
Sm {z(it)} =1+ Re (i) +1—-Re T iy
1
7T T R D)
> 1.

We note that the domain D for this example has a corner at the point z(0). This can
be removed by shifting the minimal graph (z,y, u(x,y)) in the negative u-direction.

4. PROBLEMS AND CONJECTURES

[. When dealing with a nonlinear equation, issues of existence and uniqueness are
often complex. A survey of uniqueness results can be found in [4]. A natural question
to ask here is

Problem 1. Is it possible for (1.1) to have more than one nontrivial (nonplanar)
solution?

IT. As discussed in the introduction, for domains D contained in the half plane,
at least when bounded by a Jordan arc, the growth of solutions to (1.1) is at most
exponential. However, it seems likely that this is true in general.

Problem 2. If u is a solution to (1.1), then does its maximum M (r) satisfy
M(r) < e (r>r),
for some positive constants C' and ry

ITI. As noted above, the maximum growth rate for solutions to (1.1) in a halfplane
is exponential, and this is achieved by horizontal catenoids over domains contained
in the set {(z,y) : —Ce%® < y < Ce"}.

Problem 3. If D contains a set {(x,y) : © > 0, —f(z) <y < f(x)} where f(z) — o0
faster than any exponential function e“*, can (1.1) have a nontrivial solution, and if
so, must any such solution have linear growth?
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IV. Theorem 2.1 requires that D contain a sector of opening bigger than 7.

Problem 4. Does the conclusion of Theorem 2.1 still hold under the assumption
that D contains a halfplane?

V. In this paper we have shown that if D contains a sector of opening o > 7, then
any nontrivial solution has order at most 1. However, it seems likely that this might
be be improved.

Problem 5. If D contains a sector of opening a > 7, then is it true that the order
of any nontrivial solution to (1.1) is bounded above by m/a? The interpretation as
with the minimum bound discussed in §1 has the case a = 27 taken to mean that
the omitted set is a line.

VI. The results in [14] are phrased in terms of the asymptotic angle § defined as
follows. Let ©(r) be the angular measure of the set DN {|z| = r}, and ©*(r) = O(r)
if D does not contain the circle |z| = r, and +oo otherwise. Then

£ =lim sup ©*(r).
r—r00
Consideration of the case 8 = 27 raises the following question
Problem 6. If D is an unbounded simply connected region bounded by a Jordan

arc (taken to mean a proper curve which does not self intersect or close), then is it
true that the maximum of a nontrivial solution satisfies

M(r) > CvVr (r>rg)

for some positive constants C' and ry?

VII. Returning to Nitsche’s theorem as mentioned in §1, in terms of the asymptotic
angle [ it seems likely that a corresponding result should hold.

Problem 7. If D has asymptotic angle § < 7, and w is a solution to (1.1), then must
it be that u = 07

VIII. As noted, the examples of Section 3 in the critical regime have maximal
growth for their respective boundaries.

Problem 8. Suppose that D is contained in {(z,y) : * > 0, —Ce®® < y < Ce“"}
and also that D contains a set {(z,y) : ¢ >z > 0, —2™ < y < 2™}. Is it possible for
a solution u to (1.1) over D to have growth smaller than #* with k < n? In particular,
can u have linear growth?
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