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1. Introduction

Let D be an unbounded plane domain. In this paper we consider the boundary value
problem for the minimal surface equation

(1.1)

 div
∇u√

1 + |∇u|2
= 0 and u > 0 in D

u = 0 on ∂D

We shall study the constraints on growth of nontrivial solutions to (1.1) as determined
by the maximum

M(r) = max u(x, y),

where the max is taken over the values r =
√
x2 + y2 and (x, y) ∈ D.

Perhaps the first relevant theorem in this direction was proved by Nitsche [8, p. 256]
who observed that if D is contained in a sector of opening strictly less than π, then
u ≡ 0. For domains contained in a half plane, but not contained in any such sector,
there are a host of solutions to (1.1) which will be discussed later. However, in this
case, it has been shown [14] that if D is bounded by a Jordan arc,

Cr ≤M(r) ≤ eCr (r > r0)

for some positive constants C and r0.

If, on the other hand, the domain D contains a sector of opening α bigger than π, we
shall show that the growth of M(r) is at most linear (see Theorem 2.1 in Section 2).
Regarding the bound from below, with the order ρ of u defined by

ρ = lim
r→∞

sup
logM(r)

log r
,
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it follows by using the module estimates of Miklyukov [6] (see also chapter 9 in [7])
as in [13] that if D omits a sector of opening 2π − α, (π ≤ α ≤ 2π, the omitted set
in the case α = 2π being a line), then the order of any nontrivial solution to (1.1) is
at least π/α,

The paper concludes with a list of problems and conjectures.

2. Estimates on Growth

For later convenience we shall use complex notation z = x+ iy for points (x, y) when
describing solutions to the minimal surface equation. As such, we are given a minimal
graph with positive height function u(z) over a domain D as in (1.1).

Theorem 2.1. Let D be a simply connected domain whose boundary is a Jordan arc,
and D contains a sector Sλ := {z : | arg z| ≤ λ}, with λ > π/2. With M(r) defined
as above, if u satisfies (1.1) in D, then there exist positive constants K and R such
that

(2.1) M(r) ≤ Kr, |z| > R.

Throughout, we will make use of the parametrization in isothermal coordinates by
the Weierstrass functions (x(ζ), y(ζ), U(ζ)) with ζ in the right half plane H, U(ζ) =
u(x(ζ), y(ζ)) and (up to additive constants)

(2.2)



x(ζ) = <e 1

2

∫ ζ

ζ0

ω(ζ̄)(1−G2(ζ̄))dζ̄

y(ζ) = <e i
2

∫ ζ

ζ0

ω(ζ̄)(1 +G2(ζ̄))dζ̄

U(ζ) = <e
∫ ζ

ζ0

ω(ζ̄)G(ζ̄)dζ̄.

Here ω is analytic and G meromorphic in H, with ω nonvanishing except for a zero
of order 2n when G has a pole of order n.

With this parameterization, the height function U(ζ) pulled back to the halfplane H
becomes a positive harmonic function in H which is 0 on the imaginary axis, and thus
is simply U(ζ) = C<e{ζ} for a real positive constant C. We may assume without
loss of generality that C = 2.

Since f(ζ) := x(ζ) + iy(ζ) is harmonic in H, there exist analytic functions h(ζ) and
g(ζ) in H such that (see [1, p. 176])

f(ζ) = h(ζ) + g(ζ).
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With this formulation, the height function then satisfies

U(ζ) = 2<e i
∫ √

h′(ζ)g′(ζ) dζ,

and since U(ζ) = 2<e{ζ} in (2.2), it follows that

(2.3) g′(ζ) = − 1

h′(ζ)
.

2.1. Proof of Theorem 2.1. First we establish the bound (2.1) inside a sector.

Lemma 2.2. Let Sα := {z : | arg z| ≤ α < π/2} be a sector contained in H ⊂ D.
Then for some K > 0 the upper bound (2.1) holds in Sα for all r sufficiently large:

max
|z|=r,z∈Sα

u(z) ≤ Kr.

Proof of Lemma. Let f(ζ), U(ζ) be as above. So, u(f(ζ)) = U(ζ) = 2<e ζ.

Let P := {ζ : <e f(ζ) > 0} be the preimage of the right halfplane, and introduce a

new variable ζ̃ and let ψ(ζ̃) be a conformal map from the right half ζ̃-plane H := {ζ̃ :

<e (ζ̃) > 0} onto P .

Define 
f̃(ζ̃) := f(ψ(ζ̃))

g̃(ζ̃) := g(ψ(ζ̃))

h̃(ζ̃) := h(ψ(ζ̃))

Then f̃ is a harmonic map, and

f̃(ζ̃) = h̃(ζ̃) + g̃(ζ̃).

We wish to show that for all |z| > R in Sα,

u(z)

|z|
=

U(ζ)

|f(ζ)|
=

2<e ζ
|f(ζ)|

=
2<e ψ(ζ̃)

|f̃(ζ̃)|
< K.

Let F̃ (ζ̃) = h̃(ζ̃) + g̃(ζ̃) be the analytic function with the same real part as f̃ . Then
<e F̃ is positive in H and vanishes on ∂H, and therefore, without loss of generality
we may write (see [12, p. 151])

(2.4) F̃ (ζ̃) = ζ̃ =⇒ F̃ ′(ζ̃) = 1.

The proof hinges on (2.4) along with the chain rule combined with (2.3). Now,

h̃′(ζ̃) = h′(ψ(ζ̃)) · ψ′(ζ̃),

and

(2.5) g̃′(ζ̃) = − ψ′(ζ̃)

h′(ψ(ζ̃))
= −ψ

′(ζ̃)2

h̃′(ζ̃)
.
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Combining this with (2.4) we have

1 = F̃ ′(ζ̃) = h̃′(ζ̃)− ψ′(ζ̃)2

h̃′(ζ̃)

which implies
h̃′(ζ̃)2 − h̃′(ζ̃)− ψ′(ζ̃)2 = 0.

Thus,

(2.6) h̃′(ζ̃) =
1 +

√
1 + 4ψ′(ζ̃)2

2
.

Since ψ(ζ̃) is a conformal map with <e ψ(ζ̃) > 0 in H, we can apply the following
result restated from [12, Thm. IV.19]:

Theorem A. Let f(z) = u+ iv be analytic in x > 0 where u > 0. Then

lim
z→∞

f(z)

z
= c, lim

z→∞
f ′(z) = c, 0 ≤ c <∞,

uniformly as z →∞ from the inside of any fixed angular domain | arg(z)| ≤ φ0 < π/2.

Applying Theorem A directly to ψ, we conclude that there exists a real constant
0 ≤ c <∞ such that in any sector Sβ := {ζ̃ : | arg ζ̃| ≤ β < π/2} the limit ψ′(ζ̃)→ c

exists as ζ̃ →∞ in Sβ.

Case 1: ψ′(ζ̃)→ c = 0 as ζ̃ →∞ (with ζ̃ in Sβ).

From (2.6) we have h̃′(ζ̃) → 1 as ζ̃ → ∞, and using (2.5) we have g̃′(ζ̃) → 0. Thus,

h̃(ζ̃) ≈ ζ̃ and g̃(ζ̃) = o(1), which implies that f̃(ζ̃) = h̃(ζ̃) + g̃(ζ̃) ≈ ζ̃.

Since f̃ : H → H is asymptotic to the identity map, given α, we may choose β < π/2
so that Sα ∩ {|z| > R} is contained in the image of the sector Sβ for R large enough.

Thus, the estimate ψ′(ζ̃)→ 0 applies in the region Sα, and we have

u(z)

|z|
=
<e ψ(ζ̃)

|f̃(ζ̃)|
≤ |ψ(ζ̃)|
|f̃(ζ̃)|

= o(1), for z ∈ Sα ∩ {|z| > R},

since f̃(ζ̃) ≈ ζ̃, and ψ′(ζ̃) = o(1).

Case 2: ψ′(ζ̃)→ c > 0 as ζ̃ →∞.

From (2.4) we have <e {h̃(ζ̃) + g̃(ζ̃)} = <e ζ̃. Let us also estimate =m f̃(ζ̃) =

=mh̃(ζ̃)−=m g̃(ζ̃). We use (2.6) and (2.5):

h̃′(ζ̃)→ 1 +
√

1 + 4c2

2
,

g̃′(ζ̃)→ −2c2

1 +
√

1 + 4c2
,



MINIMAL GRAPHS 5

which imply

h̃′(ζ̃)− g̃′(ζ̃)→ (1 +
√

1 + 4c2)2 + 4c2

2(1 +
√

1 + 4c2)
= 1 +

4c2

1 +
√

1 + 4c2
.

Putting this together, we have

h̃(ζ̃) + g̃(ζ̃) = <e ζ̃ + i

(
1 +

4c2

1 +
√

1 + 4c2
+ o(1)

)
=m ζ̃.

As in the first case, given α, we may thus choose β < π/2 and R > 0 so that

Sα ∩ {|z| > R} is contained in the image f̃(Sβ) of the sector Sβ. Then we have

u(z)

|z|
=

2<e ψ(ζ̃)

|f̃(ζ̃)|
≤ |2ψ(ζ̃)|
|f̃(ζ̃)|

= O(1), for z ∈ Sα ∩ {|z| > R}.

Indeed, |f̃(ζ̃)| =

∣∣∣∣<e ζ̃ + i

(
1 +

4c2

1 +
√

1 + 4c2
+ o(1)

)
=m ζ̃

∣∣∣∣, and ψ′(ζ̃) = O(1) =⇒

ψ(ζ̃) = O(|ζ̃|).
�

Applying Lemma 2.2 to two sectors, one rotated clockwise and the other counter-
clockwise, in order that their union covers Sλ, the upper bound (2.1) is established
in Sλ. It remains to prove the estimate in the rest of D.

Let π/2 < α < λ. We will show that the upper bound (2.1) holds in D \ Sα.

In order to prove this, we will apply the following result from [2, Main Theorem]:

Theorem B. Let Ω ⊂ Ω1 = {(x, y) : x > 0,−f(x) < y < f(x)}, where f, g ∈
C[0,∞), f, g ≥ 0, g(0) = 0, f(t), g(t)/t increase as t increases, and let u ∈ C(Ω) ∩
C2(Ω). Suppose that

i) div
∇u√

1 + |∇u|2
≥ 0 in Ω,

ii) u|∂Ω∩({x}×[−f(x),f(x)]) ≤ g(x) for x ∈ [0,∞),

iii) 0 < κ(x) := f(x)/(2g(x)) < 1 for all x larger than some x1 > 0,

iv) κ(x) is decreasing on [x1,∞).

Then u(x, y) ≤ g(x/(1− κ(x))) for every (x, y) ∈ Ω with x > x1.

We apply this to Ω = D\Sα, while taking Ω1 = C\Sα. In order to relate to the setup in
the theorem, reflect these domains about the y-axis, so that Ω and Ω1 are in the right
halfplane. Then Ω1 = {(x, y) : x > 0,−f(x) < y < f(x)}, where f(x) = tan(π−α)x.
If C > 0 is sufficiently large, then g(x) = Cx(1− exp(−x)/2) satisfies both (iii) and
(iv). We check that for C large enough, (ii) is also satisfied. Note that ∂Ω contains
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points on ∂D and points on ∂Sα. For points on ∂D, u = 0, and for points on ∂Sα,
u has at most linear growth by Lemma 2.2. Thus, in both cases (ii) is satisfied, and
Theorem B may be applied. The result is that u(x, y) ≤ g(x/(1− κ(x))) for all large
enough x ∈ Ω. Since

x

1− κ(x)
=

x

1− tan(π − α)/C
(1 + o(1)),

and tan(π − α)/C is a small constant provided C is large, we have

u(x, y) < Cx,

for all large enough x ∈ Ω. This completes the proof of (2.1).

2.2. A lower bound.

Proposition 2.3. Suppose D is a domain with ∂D 6= ∅, and u(z) > 0 satisfies (1.1)
with u(z) = 0 on ∂D. Then u(z) has at least logarithmic growth.

Proof. Without loss of generality assume that 0 ∈ ∂D, and consider the top half of
the vertical catenoid centered at z = 0 as a “barrier” (cf. [9, p. 92]). Explicitly, let
cosh−1 denote the positive branch of the inverse of cosh : R→ R, and define

G(z; r1) := r1 cosh−1

(
|z|
r1

)
, |z| ≥ r1.

For each r1, G(z; r1) satisfies (1.1).

Let ε > 0 and choose a δ-neighborhood B(δ, 0) of z = 0 small enough that u(z) < ε
throughout B(δ, 0) ∩D.

Define uε(z) = u(z)− ε. For r1 > 0 small enough, G(|z|; r1) > uε(z) on ∂B(δ, 0)∩D.
For R > 0, let

KR := D ∩B(R, 0) \B(δ, 0).

Fix R = R0. Suppose max|z|=R |u(z)| grows slower than logarithmically, so it grows
slower than G(|z|, r1). Then for R > R0 sufficiently large, G(|z|; r1) > uε(z) on
∂KR. This implies the same inequality throughout KR0 ⊂ KR. In particular, uε(z) <

r1 cosh−1
(
R0

r1

)
in KR0 . But r1 > 0 is arbitrary, and r1 cosh−1

(
R0

r1

)
→ 0 as r1 → 0.

Thus, uε(z) ≤ 0 in KR0 which implies that u(z) ≤ 0 since ε was arbitrary. This
contradicts that u(z) > 0 in D. �
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3. Examples

In this Section, we provide examples that together with the above (and previously
known) results give a broad picture of the possible growth rates of minimal graphs.
One notices three “regimes” illustrated in Fig. 1. WhenD contains a halfplane we find
nontrivial examples, but their growth rates appear to be determined by the asymptotic
angle π < β < 2π. This is reminiscent of the behavior of positive harmonic functions,
hence we deem this the “Phragmén-Lindelöf regime”. However, the geometry of
D plays a subtle role, since if D is a true sector of opening β, even in the range
π < β < 2π, then (1.1) has only the trivial solution u ≡ 0 [5, p.993].

When D is contained in a sector β < π, we have a “completely rigid regime”, due
to Nitsche’s theorem. At the critical angle β = π, an interesting phase transition
occurs; there are examples with D contained in a halfplane with β = π exhibiting
a full spectrum of possible growth rates anywhere from linear to exponential thus
interpolating the known upper and lower bounds. It is of interest to note further that
the domains D for these examples are contained within powerlaw growth. That is,
D ⊂ {(x, y) : |y| ≤ |x|ρ}. This answers in the affirmative a question attributed to
Michael Beeson in [10, Example 1.8] that asked about the existence of such examples.

We note also that it follows from Theorem B that these examples exhibit the max-
imum possible growth rate for their respective boundary curves (see also Problem 7
of Section 4).

3.1. Examples in the “Phragmén-Lindelöf” regime π < β < 2π: In [14], there
appears an example of a minimal graph with height function (pulled back to ζ-plane)
U(ζ) = 2<e ζ, and harmonic map from the half plane H := {z = x+ iy : x > 0}

z(ζ) =
(ζ + 1)2

2
− log(ζ̄ + 1).

This example has asymptotic angle 2π and growth of order 1/2. (See §4 for the
definition of asymptotic angle.)

Let us demonstrate a whole one-parameter family of examples with asymptotic angles
π < β < 2π having growth of orders π/β. Let γ = β/π (so 1 < γ < 2). Then such a
minimal surface is given by the harmonic map from the half plane H to a region D

z(ζ) = (ζ + 1)γ − 1

γ(2− γ)
(ζ̄ + 1)2−γ

together with the height function U(ζ) = 2<e ζ.

Assuming z(ζ) is univalent, then we have growth of order 1/γ = π/β as desired, since

u(z)

|z|1/γ
=

U(ζ)

|z(ζ)|1/γ
=

2<e ζ
|(ζ + 1)γ − 1

γ(2−γ)
(ζ̄ + 1)2−γ|1/γ

.
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Figure 1. A plot of the boundary of D labeled with order ρ.
Phragmén-Lindelöf regime: π < β < 2π, Critical regime: β = π,
and Rigid regime: β < π. For the curves, from left to right the angles
are β = 2π, 7π/4, and 3π/2.

Thus, the only thing to check is that z(ζ) is univalent in H. Its Jacobian is

γ2|ζ + 1|2(γ−1) − 1

γ2|ζ + 1|2(γ−1)
> 0

since

γ2|ζ + 1|2(γ−1) > 1.

Thus, global univalence can be ensured by checking the boundary behavior. We
will show that the imaginary part of z(ζ) is increasing on the boundary ζ = it,
−∞ < t <∞. The imaginary part of z(it) is

=m {z(it)} = (1 + t2)γ/2 sin(γ tan−1 t) +
1

γ(2− γ)
(1 + t2)(2−γ)/2 sin((2− γ) tan−1 t).

This is an odd function, so we just consider the interval 0 < t <∞. The second term
is increasing, since it is a product of increasing functions. Indeed, 0 < 2 − γ < 1
so that 0 < (2 − γ) tan−1 t < π/2 for 0 < t < ∞ so that sin((2 − γ) tan−1 t) is
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increasing. In order to show that (1 + t2)γ/2 sin(γ tan−1 t) is increasing, we check that
the derivative

γ(1 + t2)γ/2−1t sin(γ tan−1 t) + γ(1 + t2)γ/2−1 cos(γ tan−1 t)

is positive, or equivalently that

t sin(γ tan−1 t) + cos(γ tan−1 t) > 0.

For this let 0 < θ < π/2 and take t = tan θ. Then we see that

tan θ sin(γθ) + cos(γθ) =
cos(γ − 1)θ

cos θ
,

which is positive since 0 < θ < π/2 and 1 < γ < 2.

3.2. The critical angle β = π: Examples from linear growth to exponential.
A plane and a horizontal catenoid sliced by a plane parallel to its axis provide two
examples of minimal graphs over a domain contained in a half plane. These examples
have linear and exponential growth respectively.

For each given ρ > 1, we provide an example contained in a halfplane (each having
asymptotic angle β = π) with order of growth ρ. Let b = 1/ρ. Then, once again, z(ζ)
has the form

z(ζ) = h(ζ)−
∫

1

h′(ζ)
dζ,

so that U(ζ) = 2<e ζ.

Taking h(ζ) = ζ + 1
b
ζb,

z(ζ) = ζ +
1

b
ζb − ζ̄ +

∫
1

1 + ζ1−bdζ,

Assuming z(ζ) is univalent, u(z) has order ρ, since

u(z)

|z|ρ
=

U(ζ)

|z(ζ)|ρ
=

2<e ζ
|z(ζ)|ρ

,

which tends to a constant on the real axis.

It remains to check that z(ζ) is univalent in H. Its Jacobian is

|1 + ζb−1|2 − 1

|1 + ζb−1|2
> 0

since

|1 + ζb−1|2 > 1, for ζ ∈ H.
Thus, global univalence can be ensured by checking the boundary behavior. As in
the previous examples we show that =m {z(ζ)} is increasing on the boundary ζ = it,
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−∞ < t < ∞. This is an odd function, so we just consider the interval 0 < t < ∞.
It suffices to show that the derivative

d

dt
=m {z(it)}

is positive. We use the identity

d

dt
=m {z(it)} =

d

dt
=m {h(it)} − d

dt
=m {g(it)} = <e {h′(it)} − <e {g′(it)},

to compute
d

dt
=m {z(it)} = 1 + <e 1

(it)1−b + 1−<e 1

1 + (it)1−b

> 2− 1

1 + <e {(it)1−b}
> 1.

We note that the domain D for this example has a corner at the point z(0). This can
be removed by shifting the minimal graph (x, y, u(x, y)) in the negative u-direction.

4. Problems and conjectures

I. When dealing with a nonlinear equation, issues of existence and uniqueness are
often complex. A survey of uniqueness results can be found in [4]. A natural question
to ask here is

Problem 1. Is it possible for (1.1) to have more than one nontrivial (nonplanar)
solution?

II. As discussed in the introduction, for domains D contained in the half plane,
at least when bounded by a Jordan arc, the growth of solutions to (1.1) is at most
exponential. However, it seems likely that this is true in general.

Problem 2. If u is a solution to (1.1), then does its maximum M(r) satisfy

M(r) ≤ eCr (r > r0),

for some positive constants C and r0

III. As noted above, the maximum growth rate for solutions to (1.1) in a halfplane
is exponential, and this is achieved by horizontal catenoids over domains contained
in the set {(x, y) : −CeCx < y < CeCx}.
Problem 3. If D contains a set {(x, y) : x > 0,−f(x) < y < f(x)} where f(x)→∞
faster than any exponential function eCx, can (1.1) have a nontrivial solution, and if
so, must any such solution have linear growth?
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IV. Theorem 2.1 requires that D contain a sector of opening bigger than π.

Problem 4. Does the conclusion of Theorem 2.1 still hold under the assumption
that D contains a halfplane?

V. In this paper we have shown that if D contains a sector of opening α > π, then
any nontrivial solution has order at most 1. However, it seems likely that this might
be be improved.

Problem 5. If D contains a sector of opening α > π, then is it true that the order
of any nontrivial solution to (1.1) is bounded above by π/α? The interpretation as
with the minimum bound discussed in §1 has the case α = 2π taken to mean that
the omitted set is a line.

VI. The results in [14] are phrased in terms of the asymptotic angle β defined as
follows. Let Θ(r) be the angular measure of the set D ∩ {|z| = r}, and Θ∗(r) = Θ(r)
if D does not contain the circle |z| = r, and +∞ otherwise. Then

β = lim sup
r→∞

Θ∗(r).

Consideration of the case β = 2π raises the following question

Problem 6. If D is an unbounded simply connected region bounded by a Jordan
arc (taken to mean a proper curve which does not self intersect or close), then is it
true that the maximum of a nontrivial solution satisfies

M(r) ≥ C
√
r (r > r0)

for some positive constants C and r0?

VII. Returning to Nitsche’s theorem as mentioned in §1, in terms of the asymptotic
angle β it seems likely that a corresponding result should hold.

Problem 7. If D has asymptotic angle β < π, and u is a solution to (1.1), then must
it be that u ≡ 0?

VIII. As noted, the examples of Section 3 in the critical regime have maximal
growth for their respective boundaries.

Problem 8. Suppose that D is contained in {(x, y) : x > 0, −CeCx < y < CeCx}
and also that D contains a set {(x, y) : x > x0 > 0,−xn < y < xn}. Is it possible for
a solution u to (1.1) over D to have growth smaller than xk with k < n? In particular,
can u have linear growth?
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