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Abstract. The problem of mapping the interior of a Jordan polygon univalently
by the Poisson integral of a step function was posed by T. Sheil-Small (1989). We
describe a simple solution using “ear clipping” from computational geometry.

1. Introduction

In the subject of planar harmonic mappings, the mappings which arise as Poisson
integrals of step functions, especially those which are univalent (one-to-one), play a
prominent role (cf. [4, pp. 59-75]). When the mapping is univalent, the image is a
domain bounded by a Jordan polygon with its vertices at the steps of the boundary
function.

Mappings of this type also appear when conformally parametrizing minimal graphs
known as Jenkins-Serrin surfaces [7]. These are minimal graphs which take values
±∞ over the sides of a domain bounded by a Jordan polygon, and if the parameter
space is taken to be the unit disk U , then the first two coordinate functions of the
parametrization give a univalent harmonic mapping which is given by the Poisson
integral of a step function [2].

In 1989, T. Sheil-Small [12] made a study of the mapping properties of Poisson inte-
grals of step functions and posed the following problem.

The mapping problem. Given a domain D bounded by a Jordan polygon, does
there exist a univalent harmonic mapping f , which is the Poisson integral of a step
function, such that f(U) = D?

There is a classical univalence criterion for harmonic mappings of U onto a convex
domain. The problem stated by T. Radó in 1926 [11] and solved by H. Kneser
[8] the same year, shows that for any homeomorphism of the unit circle ∂U onto the
boundary ∂D of a convex domain D, the harmonic extension maps U univalently onto
D. Later G. Choquet [3] gave another proof which allowed the boundary function
to be constant on arcs, and even to have jump discontinuities. Thus, by Choquet’s
theorem, the mapping problem has a positive solution when the polygon is convex.

This mapping problem has also been repeated in the book [13, p. 402] and more
recently in the book [1, p. 314] (and certain cases were discussed in [5, 9]). Also
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it was conjectured in [12] that there would be polygons for which there is no such
mapping.

In this paper we shall describe an algorithm which leads to a positive solution to the
mapping problem. A precise statement of the problem and solution is as follows.

Theorem 1.1. Given any polygon Π = [c1, c2, .., cn, c1] as a positively oriented Jordan
curve bounding a domain D, there exists a sequence of points

0 = t0 < t1 < .. < tn = t0 + 2π,

such that the Poisson integral f(z) of the (complex) step function (also denoted by f)

(1.1) f(eit) = ck (tk−1 < t < tk).

is a univalent harmonic mapping of the unit disk U onto D.

Continuing to follow the notation in [12], we can represent f(z) = h(z) + g(z) by
analytic functions h and g, and the derivative of h can be expressed as [12, Eq. (1.2)]:

h′(z) =
n∑
k=1

αk
z − ζk

,

where αk = 1
2πi

(ck−ck+1) for k < n, and αn = 1
2πi

(cn−c1) and ζk = eitk , for k = 1, .., n.
Our proof of Theorem 1.1 uses the following result from [12, Theorem 5].

Theorem 1.2 (Sheil-Small). Let Π and D be as above. Given a sequence of points

0 = t0 < t1 < .. < tn = t0 + 2π, the Poisson integral f(z) = h(z) + g(z) of the
corresponding step function is a homeomorphism of U onto D if and only if the zeros
of h′(z) are outside the unit disk U .

We prove Theorem 1.1 in Section 2. In Section 3, we describe an estimate for harmonic
measure in a half-plane which can be useful in determining the univalence across the
sides of a polygon as it arises as the image of the Poisson integral of a step function.

2. A solution to the mapping problem (proof of Theorem 1.1)

We give a proof by induction on the number of vertices. By Theorem 1.2, it is
sufficient to establish the following.

Induction Statement: Given any Jordan n-gon, there exists a sequence of points
0 = t0 < t1 < .. < tn = t0 + 2π, such that the zeros of h′(z) are in C \ U .

The “base case” n = 3 is a triangle and the statement follows from [12, Theorem 8].

Inductive step: Suppose the Induction Statement is true up to some n. Consider a
Jordan n+1-gon, Π = [c1, c2, .., cn+1, c1]. We follow the triangulation algorithm known
as “ear clipping”. Namely, find a vertex of Π, without loss of generality assume the
vertex is cn+1, such that the interior of the triangle [cn, cn+1, c1, cn] lies in the interior
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of Π. Such a vertex is called an “ear” in computational geometry, and it is well-known
that every Jordan polygon has at least two ears [10].

Lemma 2.1 (Meisters’ Two Ears Theorem). Any Jordan polygon has at least two
ears.

Since cn+1 is an ear, the n-gon Π′ = [c1, c2, .., cn, c1] (the result of “ear clipping”) is a
Jordan polygon. By the induction statement, there is a choice of intervals

0 = t0 < t1 < .. < tn = t0 + 2π,

so that the Poisson integral of the corresponding step function f(z) is univalent, and
the zeros of h′(z) are outside the closed unit disk U .

For ε > 0 small, we construct a map fε(z) to Π by making a new choice of intervals

0 = τ0 < τ1 < .. < τn < τn+1 = τ0 + 2π.

Namely, we take τk = tk for k = 0, 1, .., n− 1 and τn = 2π− ε. Then fε(z) is taken to
be the Poisson integral of the step function

fε(e
it) = ck (τk−1 < t < τk).

In comparison with the choice of intervals used for the map f(z), this slightly alters
the interval corresponding to cn and introduces a new interval (τn, τn+1) of size ε
corresponding to the ear cn+1 (see Figure 1).

Figure 1. Illustration of the map fε in the vicinity of the ear cn+1.
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With these choices and using the notation βk =
1

2πi
(ck − ck+1) for k = 1, .., n,

βn+1 =
1

2πi
(cn+1 − c1), and ξk = eiτk for k = 1, .., n+ 1, we have

(2.1) h′ε(z) =
n+1∑
k=1

βk
z − ξk

,

where hε(z) is the analytic part of fε(z).

Claim 1: As ε → 0, h′ε approximates h′ uniformly outside any neighborhood of the
point ξn+1 = 1.

To verify Claim 1, we note that the first n − 1 terms in the sum (2.1) are the same
as the first n− 1 terms in

h′(z) =
n∑
k=1

αk
z − ζk

.

Thus, in order to prove Claim 1 we only need to check that as ε → 0 the last two
terms in h′ε

βn
z − ξn

+
βn+1

z − ξn+1

converge uniformly to the last term in h′

αn
z − ζn

=
cn − c1
z − 1

,

which follows from an outside corner

βn
z − ξn

+
βn+1

z − ξn+1

=
cn − cn+1

z − e−iε
+
cn+1 − c1
z − 1

.

By Claim 1 and Hurwitz’s theorem [6, Ch. VIII, Sec. 3], h′ε has a zero near each
of the zeros of h′. For ε > 0 sufficiently small, this places at least n − 2 (counting
multiplicities) of the n− 1 zeros of h′ε outside U (not counting ∞ which is a zero of
multiplicity two).

It remains to show that the final zero of h′ε is also outside U . Estimating the location
of this zero is slightly complicated by the fact that it converges to ξn+1 = 1, the point
where two poles are merging as ε→ 0. Thus, we use a renormalization.

Let us write z = εw + ξn+1 = εw + 1, and

Hε(w) := h′ε(εw + 1).

By the above, Hε(w) has n − 2 zeros (counting multiplicities) converging to ∞ as
ε→ 0. The remaining zero converges to a finite point w = w0 in the right half-plane
as follows from the next claim.
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Claim 2: Hε(w) has a zero at w = wε such that

wε → w0 := −cn+1 − c1
cn − c1

i, as ε→ 0.

Before proving Claim 2 let us see how it establishes the result. Since Π is positively
oriented, the triangle [cn, cn+1, c1, cn] is positively oriented. Thus, the argument of
cn+1 − c1
cn − c1

is strictly between zero and π. Thus, −cn+1 − c1
cn − c1

i is in the right half-plane,

and, for ε sufficiently small, wε is also in the right half-plane. This places εwε + 1
(the remaining zero of h′ε) outside of U , and this completes the inductive step.

It remains to prove Claim 2.

Proof of Claim 2. We have

(2.2) εHε(w) =
n+1∑
k=1

βk
w + (ξn+1 − ξk)/ε

.

Choose a disk V centered at the point

w0 := −cn+1 − c1
cn − c1

i

such that V omits each of the points w = 0 and w = −i. As ε → 0, the first n − 1
terms in (2.2) converge uniformly to zero in V while the final terms

βn
w + (ξn+1 − ξn)/ε

+
βn+1

w

converge uniformly to

(2.3)
βn
w + i

+
βn+1

w
,

where we have used

ξn+1 − ξn
ε

=
1− e−iε

ε
=

1− (1− iε+O(ε2))

ε
= i+O(ε).

This last expression (2.3) has a single zero in V , namely at

w0 = − βn+1

βn + βn+1

i = −cn+1 − c1
cn − c1

i.

By Hurwitz’s Theorem [6, Ch. VIII, Sec. 3] we have that (2.2) has exactly one zero
in V , and this zero converges to w0.

�
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3. The law of sines lemma

In this section, we replace the unit disk with the upper half-plane H, and consider the
harmonic measure ωI in H of an interval I on the real axis. The asymptotic behavior
of ωI(z) as z ∈ H approaches a point on the real axis can be used to detect possible
folding near an edge of the image polygon Π. Lemma 3.1 below was an initial guide
for Theorem 1.1, although in the end we did not need it. However, it seems that it
may be of independent interest.

Recall that for z ∈ H, the harmonic measure ωI(z) of an interval I ⊂ R equals, apart
from a factor of 1/π, the angle between the two segments joining z to each of the
endpoints of I.

Lemma 3.1 (Law of sines lemma). Suppose x0 < x1 < x2 are points on the real
axis and the intervals [x0, x1] and [x1, x2] have length A and B respectively. Suppose
z ∈ H approaches x0 along a segment. Let y be the imaginary part of z, and let ω(z)
denote the harmonic measure of [x1, x2]. Then,

ω(z)

y
→ B

π(A2 + AB)
(as z → x0).

In particular, this limit is independent of the angle of approach of z → x0.

Proof of Lemma. Let x be the real part of z and let A′ = x1 − x.

By the law of sines,

sin θ

B
=

sinψ

C
=
y/

√
y2 + (A′ +B)2√
y2 + A′2

,

where ψ is the angle of the corner [x0, x2, z], and C is the length of the segment [x1, z].

Rearranging,
sin θ

y
=

B√
y2 + (A′ +B)2

√
y2 + A′2

.

Letting z → x0, we have A′ → A, and y → 0. Thus,

sin θ

y
→ B

(A+B)A
.

Since

sin θ = θ +O(θ3),

we have
ω(z)

y
→ B

π(A2 + AB)
,

as z → x0. �
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Figure 2. z approaches x0 along a fixed angle.

In order to see how this can be useful, suppose that Π = [c1, c2, ....., cn, c1] is a Jor-
dan polygon and f is the harmonic extension of the corresponding step function as
before, but now composed with a Möbius transformation so it is defined in H. Then,
corresponding to (1.1) we have points

ζ1 < ζ2 < .. < ζn

on the real axis,

f(x) = ck (ζk < x < ζk+1),

for k = 1, ...., n − 1, and f(x) = cn for the interval {x < ζ1} ∪ {x > ζn} containing
infinity.

Let ωk(z) be the harmonic measure of the interval [ζk, ζk+1] with respect to z. The
map f can be expressed simply as a linear combination of the vertices ck weighted by
the harmonic measure ωk(z) of the interval that is mapped to ck:

(3.1) f(z) = c1ω1(z) + c2ω2(z) + ..+ cnωn(z).

As noted in the introduction, if the map f fails to be univalent, then there must be
folding over the boundary, so it is natural to consider the local behavior of f near an
edge. Fix m and let z → ζm. Then f(z) approaches a value on the edge [cm−1, cm].
Applying the lemma, we obtain an approximation for ωk(z) in terms of the lengths
`j of the intervals [ζj, ζj+1]. Namely, when m < k < n,

ωk(z)/y ≈ `k
π((`m + `m+1 + ..+ `k−1)2 + (`m + `m+1 + ..+ `k−1)`k)

.

We obtain a similar expression for ωk(z) when k < m, and when k = n (corresponding
to the infinite interval) we have

ωn(z)/y ≈ 1

π(`m + `m+1 + ..+ `n−1)
.
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Guided by these approximations, one may quantify in terms of the relative lengths
of the intervals, the contributions of the individual terms in (3.1). For the mapping
problem of the current paper, one may choose the lengths `k in order to prevent
folding near some edge [cm−1, cm], and in order to simultaneously prevent folding over
all edges, the lengths `k must satisfy a system of inequalities.
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