Univalent Harmonic Mappings of Annuli and a Conjecture of J.C.C. Nitsche

Allen Weitsman

Abstract

Let w = f(z) be a univalent harmonic mapping of the annulus $\{\rho \leq |z| \leq 1\}$ onto the annulus $\{\sigma \leq |w| \leq 1\}$. It is shown that $\sigma \leq 1/(1 + (\rho^2/2)(\log \rho)^2)$.

1 Introduction

Let D be a domain in the complex plane \mathbb{C} . By a univalent harmonic mapping f of D we shall mean that f(z) = u(z) + iv(z) where u and v are real harmonic in D, and f is injective and sense preserving.

We shall consider the case where D is the annulus $\mathcal{A}_{\rho} = \{z : \rho < |z| < 1\}$ and the univalent harmonic mapping w = f(z) maps \mathcal{A}_{ρ} onto $\mathcal{A}_{\sigma} = \{w : \sigma < |w| < 1\}.$

In [N], Nitsche considered possible values for $\sigma = \sigma(\rho)$ for a fixed ρ . He showed by means of examples that the values $[0, 2\rho/(1 + \rho^2)]$ were all attainable for σ . He also showed that there exists $\sigma_0 = \sigma_0(\rho)$ such that for any such univalent f mapping \mathcal{A}_{ρ} onto \mathcal{A}_{σ} , then

(1.1)
$$\sigma \le \sigma_0(\rho),$$

and he raised the question as to whether or not $\sigma_0(\rho) = 2\rho/(1+\rho^2)$ was the sharp bound for (1.1).

Though Nitsche's problem has been mentioned in surveys [BH], [D], [S], it is only recently [L] that a quantitative bound has been given.

In [L] Lyzzaik proved that if B(s) is the Grötzsch domain conformally equivalent to \mathcal{A}_{ρ} , then

(1.2)
$$\sigma \leq s$$

This will be discussed further in §3. In [L], it is conjectured that (1.2) is sharp. In this paper we shall prove an estimate which shows that (1.2) is not sharp.

Theorem 1.1 Let f be a univalent harmonic mapping of \mathcal{A}_{ρ} onto \mathcal{A}_{σ} . Then

$$\sigma = \sigma(\rho) \le \frac{1}{1 + (\rho^2/2)(\log \rho)^2}.$$

We may assume throughout that $f \in \mathcal{C}^1(\overline{\mathcal{A}_{\rho}})$. In fact we may take a proper subannulus \mathcal{A} of \mathcal{A}_{σ} close to \mathcal{A}_{σ} itself, and φ a conformal mapping of $f^{-1}(\mathcal{A})$ onto an annulus $\mathcal{A}_{\rho'} = \{z : \rho' < |z| < 1\}$ with $\rho' > \rho$ arbitrarily close to ρ . Further $f(\varphi^{-1}(z)) \in \mathcal{C}^1(\overline{\mathcal{A}_{\rho'}})$ since $\partial f^{-1}(\mathcal{A})$ consists of \mathcal{C}^{∞} curves. Then $cf(\varphi^{-1}(z))$ for a constant c maps onto $\mathcal{A}_{\sigma'} = \{w : \sigma' < |w| < 1\}$ with $\sigma' > \sigma$ arbitrarily close to σ .

2 Proof of Theorem 1

Let w = f(z) be a univalent harmonic mapping of the annulus \mathcal{A}_{ρ} onto \mathcal{A}_{σ} . We may assume that |z| = 1 and |w| = 1 correspond under f.

We shall write $f(z) = R(z)e^{i\psi(z)}$. Then, a straightforward computation shows that

(2.1)
$$\Delta R = R |\nabla \psi|^2.$$

Let $\mathcal{G}(z,\zeta)$ be the Green's function for \mathcal{A}_{ρ} with pole at ζ , and using (2.1) we write the subharmonic function R(z) as

(2.2)
$$R(z) = -\frac{1}{2\pi} \iint_{\mathcal{A}_{\rho}} \mathcal{G}(z,\zeta) R(\zeta) |\nabla \psi(\zeta)|^2 dA(\zeta) + H(z),$$

where H is the harmonic function having boundary values R(z) on each boundary component. Specifically,

(2.3)
$$H(z) = \sigma + \frac{1-\sigma}{\log(1/\rho)} \log \frac{|z|}{\rho}.$$

Let $m(r) = \int_{0}^{2\pi} R(re^{i\theta})d\theta$. Then, with the assumption that the inner boundaries correspond, the univalence of f requires that

 $(2.4) \qquad \qquad m'(a) > 0$

$$(2.4) mtextbf{m}'(\rho) \ge 0.$$

Computing $m'(\rho)$ by (2.2) and (2.3) we have

$$m'(\rho) = -\frac{d}{dr} \frac{1}{2\pi} \int_{0}^{2\pi} \iint_{\mathcal{A}_{\rho}} \mathcal{G}(re^{i\theta}, \zeta) R(\zeta) |\nabla \psi(\zeta)|^{2} dA(\zeta) d\theta|_{r=\rho}$$

$$(2.5) + \frac{2\pi(1-\sigma)}{\rho \log 1/\rho}.$$

The term involving $\mathcal{G}(re^{i\theta}, \zeta)$ in (2.5) can be evaluated in a standard way. Briefly, if F is continuous on $\overline{\mathcal{A}}_{\rho}$ and u(z) is defined by

$$u(z) = rac{1}{2\pi} \iint\limits_{\mathcal{A}_{
ho}} \mathcal{G}(z,\zeta) F(\zeta) dA(\zeta) \qquad z \in \mathcal{A}_{
ho},$$

 let

(2.6)
$$v(z) = \frac{1}{2\pi} \iint_{\mathcal{A}_{\rho}} \nabla_{z} \mathcal{G}(z,\zeta) F(\zeta) dA(\zeta) \qquad z \in \mathcal{A}(\rho)$$

where ∇_z is the gradient in the z variable. Since

$$\mathcal{G}(z,\zeta) = \log \frac{1}{|z-\zeta|} + h(z,\zeta)$$

with $h(z,\zeta)$ harmonic in each variable separately, we see that the integral in (2.6) exists. Let $\eta(r)$ be a differentiable function of $r (0 \le r < \infty)$ such that

 $\eta(r) = 0$ for $0 \le r \le 1$, $\eta(r) = 1$ for $r \ge 2$, and $\eta'(r) \le 2$. If for small $\varepsilon > 0$ and fixed $z \in \mathcal{A}_{\rho}$

$$u_{\varepsilon}(z) = \frac{1}{2\pi} \iint_{\mathcal{A}_{\rho}} \mathcal{G}(z,\zeta) F(\zeta) \eta\left(\frac{|z-\zeta|}{\varepsilon}\right) dA(\zeta),$$

then

$$|v(z) - \nabla u_{\varepsilon}| \leq \frac{1}{\pi} \iint_{|z-\zeta| \leq 2\varepsilon} \left(\frac{1}{|z-\zeta|} + M_1 + \frac{2}{\varepsilon} \left(\log \frac{1}{|z-\zeta|} + M_2 \right) \right) M_3 dA(\zeta),$$

where $M_1 = \max_{|z-\zeta| \le 2\varepsilon} |\nabla_z h|$, $M_2 = \max_{|z-\zeta| \le 2\varepsilon} |h(z,\zeta)|$, and $M_3 = \max_{|z-\zeta| \le 2\varepsilon} F(\zeta)$. Letting $\varepsilon \to 0$ we then have

$$\nabla u(z) = v(z).$$

We shall apply this with $F(\zeta) = R(\zeta) |\nabla \psi|^2$, and with our assumption that $f \in \mathcal{C}^1(\overline{\mathcal{A}}_{\rho})$ we may apply it up to and including the boundary. Thus, the d/dr in (2.5) can be moved under the integral signs.

Now, for each $\zeta \in \mathcal{A}_{\rho}$, if we set

(2.7)
$$U(\zeta) = \frac{1}{2\pi} \int_{0}^{2\pi} \frac{\partial \mathcal{G}}{\partial r} (\rho e^{i\theta}, \zeta) d\theta,$$

then $U(\zeta)$ is the harmonic function in \mathcal{A}_{ρ} with boundary values $1/\rho$ on $|\zeta| = \rho$ and 0 on $|\zeta| = 1$. This is simply

(2.8)
$$U(\zeta) = \frac{\log |\zeta|}{\rho \log \rho}.$$

Using (2.7) and (2.8) in (2.5) we obtain

$$m'(\rho) = \iint_{\mathcal{A}_{\rho}} R(\zeta) |\nabla \psi(\zeta)|^2 \frac{\log |\zeta|}{\rho \log(1/\rho)} \, dA(\zeta) + \frac{2\pi (1-\sigma)}{\rho \log 1/\rho},$$

which with (2.4) gives

$$\iint_{\mathcal{A}_{\rho}} R(\zeta) |\nabla \psi(\zeta)|^2 \log \frac{1}{|\zeta|} dA(\zeta) \le 2\pi (1-\sigma).$$

Integration by parts yields

(2.9)
$$\int_{0}^{2\pi} \int_{\rho}^{1} \int_{\rho}^{r} R(te^{i\theta}) |\nabla \psi(te^{i\theta})|^2 t dt \frac{dr}{r} d\theta \leq 2\pi (1-\sigma).$$

Now,

$$\int_{0}^{2\pi} \sqrt{R(te^{i\theta})} |\nabla \psi(te^{i\theta})| td\theta \ge 2\pi\rho\sqrt{\sigma},$$

so by the Cauchy-Schwarz inequality,

$$\int_{0}^{2\pi} \int_{\rho}^{r} R(te^{i\theta}) |\nabla \psi(te^{i\theta})|^2 t dt d\theta \geq \frac{(2\pi\rho\sqrt{\sigma})^2}{2\pi} \log \frac{r}{\rho} = 2\pi\rho^2 \sigma \log \frac{r}{\rho}.$$

Using this in (2.9) we have

$$\rho^2 \sigma \int_{\rho}^{1} \log(r/\rho) \frac{dr}{r} \le 1 - \sigma.$$

Thus,

$$\frac{\rho^2 \sigma}{2} (\log \rho)^2 \le 1 - \sigma$$

or

$$\sigma \leq \frac{1}{(\rho^2/2)(\log \rho)^2 + 1}.$$

3 Comparisons of estimates

Let $\mu(s)$ denote the module of the Grötzsch domain B(s) which is the unit disk with the segment $0 \le x \le s$ of the real axis removed. If s is chosen so that B(s) is conformally equivalent to \mathcal{A}_{ρ} , then Lyzzaik [L] proved that $\sigma \le s$. Expanding $\mu(s)$ [LV, pp. 60,61] near 1 we have

$$\mu(s) = \frac{\pi^2}{4 \log \left(\frac{4}{\sqrt{1 - s^2} - \delta(s)} \right)}$$

where $\delta(s) \sim \sqrt{1-s^2}$ as $s \to 1^-$.

Using the definition of B(s) we then have

$$\log \frac{1}{\rho} \sim \frac{\pi^2}{2\log(16/(1-s^2))}$$

or

(3.1)
$$s \sim \sqrt{1 - 16 \exp\left(\frac{-\pi^2}{2\log 1/\rho}\right)}$$
 as $\rho \to 1^-$.

Thus, for ρ near 1, Lyzzaik's estimate is $\sigma \leq s$ where s satisfies (3.1).

The estimate in Theorem 1.1 is of no value when ρ is small. However, for ρ close to 1 it is easy to see that it is substantially smaller than that given by (3.1). On the other hand, if we let $\tau(\rho) = 2\rho/(1+\rho^2)$, which is the inner radius for the examples of Nitsche, and $\sigma(\rho)$ as in Theorem 1, then $(1 - \tau(\rho))/(1 - \sigma(\rho)) \to 1$ as $\rho \to 1^-$.

References

- [BH] D. Bshouty and W. Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Marie Curie–Sklodowska, Sec. A, XLVIII 3 (1994) 12–42.
- [D] P. Duren, A survey of harmonic mappings in the plane, Texas Tech Univ. Math. Series 18 (1992), 411–415.

- [L] A. Lyzzaik, The module of the image annuli under univalent harmonic mappings and a conjecture of J.C.C.Nitsche, preprint.
- [LV] O. Lehto and K.I. Virtanen, *Quasiconformal mappings in the plane*, 2nd ed., Springer–Verlag, (1973).
- [N] J.C.C. Nitsche, On the modulus of doubly-connected regions under harmonic mappings, Amer. Math. Monthly, 69 (1962), 781–782.
- [S] G. Schober, *Planar harmonic mappings*, Computational methods and function theory proceedings, Valparaiso 1989, Lectures Notes in Mathematics No. 1435, Springer–Verlag, (1990), 171–176.