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Abstract

Let w = f(z) be a univalent harmonic mapping of the annulus
{p < |z| < 1} onto the annulus {o < |w| < 1}. It is shown that

o < 1/(1+ (p?/2)(log p)2).

1 Introduction

Let D be a domain in the complex plane C. By a univalent harmonic mapping
f of D we shall mean that f(z) = u(z)+iv(z) where u and v are real harmonic
in D, and f is injective and sense preserving.

We shall consider the case where D is the annulus A, = {z: p < |z| < 1}
and the univalent harmonic mapping w = f(z) maps A, onto A, = {w: 0 <
lw| < 1}.

In [N], Nitsche considered possible values for o = o(p) for a fixed p.
He showed by means of examples that the values [0,2p/(1 + p?)] were all
attainable for o. He also showed that there exists oy = op(p) such that for
any such univalent f mapping A, onto A,, then

(1.1) o < oo(p),

and he raised the question as to whether or not oo(p) = 2p/(1 + p?) was the
sharp bound for (1.1).

Though Nitsche’s problem has been mentioned in surveys [BH], [D], [S],
it is only recently [L]| that a quantitative bound has been given.



In [L] Lyzzaik proved that if B(s) is the Grotzsch domain conformally
equivalent to A,, then

(1.2) o <s.

This will be discussed further in §3. In [L], it is conjectured that (1.2) is
sharp. In this paper we shall prove an estimate which shows that (1.2) is not
sharp.

Theorem 1.1 Let f be a univalent harmonic mapping of A, onto A,. Then

1
1+ (p?/2)(log p)*

o=o0(p) <

We may assume throughout that f € C*(A,). In fact we may take a
proper subannulus A of A, close to A, itself, and ¢ a conformal mapping
of f71(A) onto an annulus A, = {z: p' < |z| < 1} with p' > p arbitrarily
close to p. Further f(¢~1(2)) € C}(A,) since df 1(A) consists of C* curves.
Then cf(¢*(2)) for a constant ¢ maps onto A, = {w: ¢’ < |w| < 1} with
o' > o arbitrarily close to o.

2 Proof of Theorem 1

Let w = f(z) be a univalent harmonic mapping of the annulus A, onto A,.
We may assume that |z| = 1 and |w| = 1 correspond under f.

We shall write f(z) = R(2)e™¥®). Then, a straightforward computation
shows that

(2.1) AR = R|Vy|*.

Let G(z, () be the Green’s function for A, with pole at ¢, and using (2.1)
we write the subharmonic function R(z) as

R() = 5 [ / G (2, O)R(C)|VY(C) PAA(C)

(2.2) + H(z),



where H is the harmonic function having boundary values R(z) on each
boundary component. Specifically,
-0 H

(2.3) H(z) =0+ Tog(1/7) log s

2w

Let m(r) = / R(re®)dd. Then, with the assumption that the inner

0
boundaries correspond, the univalence of f requires that

(2.4) m'(p) = 0.

Computing m/(p) by (2.2) and (2.3) we have

m(p) = —oL / // G(re" ) R(Q)|VH(OPAA) b,

27(1 — o)

(2.5) e 1y

The term involving G(re®, ¢) in (2.5) can be evaluated in a standard way.
Briefly, if F' is continuous on A, and u(z) is defined by

1
- / (2, O)F(Q)AA(C)  z€ A,
Ap

let
1
26 o) =5 [[VOEOFOIQ  ze A
Ap
where V, is the gradient in the z variable. Since
1
1
G(z,¢) = B¢ " h(z,¢)

with h(z, () harmonic in each variable separately, we see that the integral in
(2.6) exists. Let n(r) be a differentiable function of 7 (0 < r < 00) such that
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n(r)=0for 0 <r <1, n(r)=1forr>2 and n'(r) < 2. If for small € > 0

and fixed z € A,
_ 1 |z =<
~ 5 [[ 9 or@n(E=)aao),
4,
then

[v(z) — Vu,| < // ( +M1+ 2(1og ’ZfldjLMg))MgdA(g),

\z ¢|<2e

where M; = max |V, h|, My = max |h(z,()|,and M3 = max F((). Let-

|[z—(¢|<2e |z—¢|<2e |[z—(|<2e
ting € — 0 we then have

We shall apply this with F({) = R(¢)|V%|? and with our assumption
that f € Cl(.A ) we may apply it up to and including the boundary. Thus,
the d/dr in (2.5) can be moved under the integral signs.

Now, for each ¢ € A,, if we set

2
1 0 ,
(2.7 U©) = 5= [ Seloe, )b

0
then U(() is the harmonic function in A, with boundary values 1/pon |(| = p
and 0 on |¢| = 1. This is simply

(2.8) U(¢) =

Using (2.7) and (2.8) in (2.5) we obtain

2 10%’(‘
// QIVe ) plog(l/p) 44()
27?(1 —0)
plogl/p’



which with (2.4) gives

// OIVY(O)[*log mdA( ) < 2m(1 —o).
Integration by parts yields

2r 1 r
(2.9) / / / R(tew)wwem?tdt%w <2r(1— o).
0 p p

Now,

2
[ VGV tte?)edb > 2mp/,
0
so by the Cauchy-Schwarz inequality,
2 7
/ / R(te®)| Vi (te)|2tdtdd > (SIS
0 p
= 27Tp2010g£.
p
Using this in (2.9) we have
1
J/log(r/p)% <1l-o.
p
Thus,

2o
7(101%",0) <l-o

or

= (/) logp + 1



3 Comparisons of estimates

Let p(s) denote the module of the Grotzsch domain B(s) which is the unit
disk with the segment 0 < x < s of the real axis removed. If s is chosen
so that B(s) is conformally equivalent to A,, then Lyzzaik [L| proved that
o < s. Expanding u(s) [LV, pp. 60,61] near 1 we have

7T2

S 4log (4/@ - 5(s)>

where §(s) ~v1—s?2ass—1".
Using the definition of B(s) we then have
2

| 1 s
og — r~
0" 2log(16/(1 — =)

or

—7T2
3.1 ~4[1—16 — —~ 1
(31) ’ \/ o (210g 1/0) wr

Thus, for p near 1, Lyzzaik’s estimate is ¢ < s where s satisfies (3.1).

The estimate in Theorem 1.1 is of no value when p is small. However,
for p close to 1 it is easy to see that it is substantially smaller than that
given by (3.1). On the other hand, if we let 7(p) = 2p/(1 + p?), which is
the inner radius for the examples of Nitsche, and o(p) as in Theorem 1, then

(1=7(p)/(1—0(p)) > Lasp—1".
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