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Abstract

Let w = f(z) be a univalent harmonic mapping of the annulus
{ρ ≤ |z| ≤ 1} onto the annulus {σ ≤ |w| ≤ 1}. It is shown that
σ ≤ 1/(1 + (ρ2/2)(log ρ)2).

1 Introduction

LetD be a domain in the complex plane C. By a univalent harmonic mapping
f of D we shall mean that f(z) = u(z)+iv(z) where u and v are real harmonic
in D, and f is injective and sense preserving.

We shall consider the case where D is the annulus Aρ = {z : ρ < |z| < 1}
and the univalent harmonic mapping w = f(z) maps Aρ onto Aσ = {w : σ <
|w| < 1}.

In [N], Nitsche considered possible values for σ = σ(ρ) for a fixed ρ.
He showed by means of examples that the values [0, 2ρ/(1 + ρ2)] were all
attainable for σ. He also showed that there exists σ0 = σ0(ρ) such that for
any such univalent f mapping Aρ onto Aσ, then

σ ≤ σ0(ρ),(1.1)

and he raised the question as to whether or not σ0(ρ) = 2ρ/(1 + ρ2) was the
sharp bound for (1.1).

Though Nitsche’s problem has been mentioned in surveys [BH], [D], [S],
it is only recently [L] that a quantitative bound has been given.
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In [L] Lyzzaik proved that if B(s) is the Grötzsch domain conformally
equivalent to Aρ, then

σ ≤ s.(1.2)

This will be discussed further in §3. In [L], it is conjectured that (1.2) is
sharp. In this paper we shall prove an estimate which shows that (1.2) is not
sharp.

Theorem 1.1 Let f be a univalent harmonic mapping of Aρ onto Aσ. Then

σ = σ(ρ) ≤ 1

1 + (ρ2/2)(log ρ)2
.

We may assume throughout that f ∈ C1(Aρ). In fact we may take a
proper subannulus A of Aσ close to Aσ itself, and ϕ a conformal mapping
of f−1(A) onto an annulus Aρ′ = {z : ρ′ < |z| < 1} with ρ′ > ρ arbitrarily
close to ρ. Further f(ϕ−1(z)) ∈ C1(Aρ′) since ∂f−1(A) consists of C∞ curves.
Then cf(ϕ−1(z)) for a constant c maps onto Aσ′ = {w : σ′ < |w| < 1} with
σ′ > σ arbitrarily close to σ.

2 Proof of Theorem 1

Let w = f(z) be a univalent harmonic mapping of the annulus Aρ onto Aσ.
We may assume that |z| = 1 and |w| = 1 correspond under f .

We shall write f(z) = R(z)eiψ(z). Then, a straightforward computation
shows that

∆R = R|∇ψ|2.(2.1)

Let G(z, ζ) be the Green’s function for Aρ with pole at ζ , and using (2.1)
we write the subharmonic function R(z) as

R(z) = − 1

2π

∫∫
Aρ

G(z, ζ)R(ζ)|∇ψ(ζ)|2dA(ζ)

+ H(z),(2.2)
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where H is the harmonic function having boundary values R(z) on each
boundary component. Specifically,

H(z) = σ +
1− σ

log(1/ρ)
log
|z|
ρ
.(2.3)

Let m(r) =

2π∫
0

R(reiθ)dθ. Then, with the assumption that the inner

boundaries correspond, the univalence of f requires that

m′(ρ) ≥ 0.(2.4)

Computing m′(ρ) by (2.2) and (2.3) we have

m′(ρ) = − d

dr

1

2π

2π∫
0

∫∫
Aρ

G(reiθ, ζ)R(ζ)|∇ψ(ζ)|2dA(ζ)dθ|r=ρ

+
2π(1− σ)

ρ log 1/ρ
.(2.5)

The term involving G(reiθ, ζ) in (2.5) can be evaluated in a standard way.
Briefly, if F is continuous on Aρ and u(z) is defined by

u(z) =
1

2π

∫∫
Aρ

G(z, ζ)F (ζ)dA(ζ) z ∈ Aρ,

let

v(z) =
1

2π

∫∫
Aρ

∇zG(z, ζ)F (ζ)dA(ζ) z ∈ A(ρ)(2.6)

where ∇z is the gradient in the z variable. Since

G(z, ζ) = log
1

|z − ζ | + h(z, ζ)

with h(z, ζ) harmonic in each variable separately, we see that the integral in
(2.6) exists. Let η(r) be a differentiable function of r (0 ≤ r <∞) such that
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η(r) = 0 for 0 ≤ r ≤ 1, η(r) = 1 for r ≥ 2, and η′(r) ≤ 2. If for small ε > 0
and fixed z ∈ Aρ

uε(z) =
1

2π

∫∫
Aρ

G(z, ζ)F (ζ)η

(
|z − ζ |
ε

)
dA(ζ),

then

|v(z)−∇uε| ≤
1

π

∫∫
|z−ζ|≤2ε

(
1

|z − ζ | +M1 +
2

ε

(
log

1

|z − ζ | +M2

))
M3dA(ζ),

where M1 = max
|z−ζ|≤2ε

|∇zh|, M2 = max
|z−ζ|≤2ε

|h(z, ζ)|, andM3 = max
|z−ζ|≤2ε

F (ζ). Let-

ting ε→ 0 we then have

∇u(z) = v(z).

We shall apply this with F (ζ) = R(ζ)|∇ψ|2, and with our assumption
that f ∈ C1(Aρ) we may apply it up to and including the boundary. Thus,
the d/dr in (2.5) can be moved under the integral signs.

Now, for each ζ ∈ Aρ, if we set

U(ζ) =
1

2π

2π∫
0

∂G
∂r

(ρeiθ, ζ)dθ,(2.7)

then U(ζ) is the harmonic function in Aρ with boundary values 1/ρ on |ζ | = ρ

and 0 on |ζ | = 1. This is simply

U(ζ) =
log |ζ |
ρ log ρ

.(2.8)

Using (2.7) and (2.8) in (2.5) we obtain

m′(ρ) =

∫∫
Aρ

R(ζ)|∇ψ(ζ)|2 log |ζ |
ρ log(1/ρ)

dA(ζ)

+
2π(1− σ)

ρ log 1/ρ
,

4



which with (2.4) gives∫∫
Aρ

R(ζ)|∇ψ(ζ)|2 log
1

|ζ |dA(ζ) ≤ 2π(1− σ).

Integration by parts yields

2π∫
0

1∫
ρ

r∫
ρ

R(teiθ)|∇ψ(teiθ)|2tdtdr
r
dθ ≤ 2π(1− σ).(2.9)

Now,

2π∫
0

√
R(teiθ)|∇ψ(teiθ)|tdθ ≥ 2πρ

√
σ,

so by the Cauchy-Schwarz inequality,

2π∫
0

r∫
ρ

R(teiθ)|∇ψ(teiθ)|2tdtdθ ≥ (2πρ
√
σ)2

2π
log

r

ρ

= 2πρ2σ log
r

ρ
.

Using this in (2.9) we have

ρ2σ

1∫
ρ

log(r/ρ)
dr

r
≤ 1− σ.

Thus,

ρ2σ

2
(log ρ)2 ≤ 1− σ

or

σ ≤ 1

(ρ2/2)(log ρ)2 + 1
.
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3 Comparisons of estimates

Let µ(s) denote the module of the Grötzsch domain B(s) which is the unit
disk with the segment 0 ≤ x ≤ s of the real axis removed. If s is chosen
so that B(s) is conformally equivalent to Aρ, then Lyzzaik [L] proved that
σ ≤ s. Expanding µ(s) [LV, pp. 60,61] near 1 we have

µ(s) =
π2

4 log

(
4/
√

1− s2 − δ(s)
)

where δ(s) ∼
√

1− s2 as s→ 1−.

Using the definition of B(s) we then have

log
1

ρ
∼ π2

2 log(16/(1− s2))

or

s ∼
√

1− 16 exp

(
−π2

2 log 1/ρ

)
as ρ→ 1−.(3.1)

Thus, for ρ near 1, Lyzzaik’s estimate is σ ≤ s where s satisfies (3.1).

The estimate in Theorem 1.1 is of no value when ρ is small. However,
for ρ close to 1 it is easy to see that it is substantially smaller than that
given by (3.1). On the other hand, if we let τ(ρ) = 2ρ/(1 + ρ2), which is
the inner radius for the examples of Nitsche, and σ(ρ) as in Theorem 1, then
(1− τ(ρ))/(1− σ(ρ))→ 1 as ρ→ 1−.
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