Univalent Harmonic Mappings of Annuli and a Conjecture of J.C.C. Nitsche

Allen Weitsman

Abstract

Let $w=f(z)$ be a univalent harmonic mapping of the annulus $\{\rho \leq|z| \leq 1\}$ onto the annulus $\{\sigma \leq|w| \leq 1\}$. It is shown that $\sigma \leq 1 /\left(1+\left(\rho^{2} / 2\right)(\log \rho)^{2}\right)$.

1 Introduction

Let D be a domain in the complex plane \mathbb{C}. By a univalent harmonic mapping f of D we shall mean that $f(z)=u(z)+i v(z)$ where u and v are real harmonic in D, and f is injective and sense preserving.

We shall consider the case where D is the annulus $\mathcal{A}_{\rho}=\{z: \rho<|z|<1\}$ and the univalent harmonic mapping $w=f(z)$ maps \mathcal{A}_{ρ} onto $\mathcal{A}_{\sigma}=\{w: \sigma<$ $|w|<1\}$.

In [N], Nitsche considered possible values for $\sigma=\sigma(\rho)$ for a fixed ρ. He showed by means of examples that the values $\left[0,2 \rho /\left(1+\rho^{2}\right)\right]$ were all attainable for σ. He also showed that there exists $\sigma_{0}=\sigma_{0}(\rho)$ such that for any such univalent f mapping \mathcal{A}_{ρ} onto \mathcal{A}_{σ}, then

$$
\begin{equation*}
\sigma \leq \sigma_{0}(\rho) \tag{1.1}
\end{equation*}
$$

and he raised the question as to whether or not $\sigma_{0}(\rho)=2 \rho /\left(1+\rho^{2}\right)$ was the sharp bound for (1.1).

Though Nitsche's problem has been mentioned in surveys $[\mathrm{BH}],[\mathrm{D}],[\mathrm{S}]$, it is only recently [L] that a quantitative bound has been given.

In [L] Lyzzaik proved that if $B(s)$ is the Grötzsch domain conformally equivalent to \mathcal{A}_{ρ}, then

$$
\begin{equation*}
\sigma \leq s \tag{1.2}
\end{equation*}
$$

This will be discussed further in $\S 3$. In [L], it is conjectured that (1.2) is sharp. In this paper we shall prove an estimate which shows that (1.2) is not sharp.

Theorem 1.1 Let f be a univalent harmonic mapping of \mathcal{A}_{ρ} onto \mathcal{A}_{σ}. Then

$$
\sigma=\sigma(\rho) \leq \frac{1}{1+\left(\rho^{2} / 2\right)(\log \rho)^{2}}
$$

We may assume throughout that $f \in \mathcal{C}^{1}\left(\overline{\mathcal{A}_{\rho}}\right)$. In fact we may take a proper subannulus \mathcal{A} of \mathcal{A}_{σ} close to \mathcal{A}_{σ} itself, and φ a conformal mapping of $f^{-1}(\mathcal{A})$ onto an annulus $\mathcal{A}_{\rho^{\prime}}=\left\{z: \rho^{\prime}<|z|<1\right\}$ with $\rho^{\prime}>\rho$ arbitrarily close to ρ. Further $f\left(\varphi^{-1}(z)\right) \in \mathcal{C}^{1}\left(\overline{\mathcal{A}_{\rho^{\prime}}}\right)$ since $\partial f^{-1}(\mathcal{A})$ consists of \mathcal{C}^{∞} curves. Then $c f\left(\varphi^{-1}(z)\right)$ for a constant c maps onto $\mathcal{A}_{\sigma^{\prime}}=\left\{w: \sigma^{\prime}<|w|<1\right\}$ with $\sigma^{\prime}>\sigma$ arbitrarily close to σ.

2 Proof of Theorem 1

Let $w=f(z)$ be a univalent harmonic mapping of the annulus \mathcal{A}_{ρ} onto \mathcal{A}_{σ}. We may assume that $|z|=1$ and $|w|=1$ correspond under f.

We shall write $f(z)=R(z) e^{i \psi(z)}$. Then, a straightforward computation shows that

$$
\begin{equation*}
\Delta R=R|\nabla \psi|^{2} \tag{2.1}
\end{equation*}
$$

Let $\mathcal{G}(z, \zeta)$ be the Green's function for \mathcal{A}_{ρ} with pole at ζ, and using (2.1) we write the subharmonic function $R(z)$ as

$$
\begin{align*}
R(z) & =-\frac{1}{2 \pi} \iint_{\mathcal{A}_{\rho}} \mathcal{G}(z, \zeta) R(\zeta)|\nabla \psi(\zeta)|^{2} d A(\zeta) \\
& +H(z) \tag{2.2}
\end{align*}
$$

where H is the harmonic function having boundary values $R(z)$ on each boundary component. Specifically,

$$
\begin{equation*}
H(z)=\sigma+\frac{1-\sigma}{\log (1 / \rho)} \log \frac{|z|}{\rho} \tag{2.3}
\end{equation*}
$$

Let $m(r)=\int_{0}^{2 \pi} R\left(r e^{i \theta}\right) d \theta$. Then, with the assumption that the inner boundaries correspond, the univalence of f requires that

$$
\begin{equation*}
m^{\prime}(\rho) \geq 0 \tag{2.4}
\end{equation*}
$$

Computing $m^{\prime}(\rho)$ by (2.2) and (2.3) we have

$$
\begin{align*}
m^{\prime}(\rho) & =-\left.\frac{d}{d r} \frac{1}{2 \pi} \int_{0}^{2 \pi} \iint_{\mathcal{A}_{\rho}} \mathcal{G}\left(r e^{i \theta}, \zeta\right) R(\zeta)|\nabla \psi(\zeta)|^{2} d A(\zeta) d \theta\right|_{r=\rho} \\
& +\frac{2 \pi(1-\sigma)}{\rho \log 1 / \rho} \tag{2.5}
\end{align*}
$$

The term involving $\mathcal{G}\left(r e^{i \theta}, \zeta\right)$ in (2.5) can be evaluated in a standard way. Briefly, if F is continuous on $\overline{\mathcal{A}_{\rho}}$ and $u(z)$ is defined by

$$
u(z)=\frac{1}{2 \pi} \iint_{\mathcal{A}_{\rho}} \mathcal{G}(z, \zeta) F(\zeta) d A(\zeta) \quad z \in \mathcal{A}_{\rho}
$$

let

$$
\begin{equation*}
v(z)=\frac{1}{2 \pi} \iint_{\mathcal{A}_{\rho}} \nabla_{z} \mathcal{G}(z, \zeta) F(\zeta) d A(\zeta) \quad z \in \mathcal{A}(\rho) \tag{2.6}
\end{equation*}
$$

where ∇_{z} is the gradient in the z variable. Since

$$
\mathcal{G}(z, \zeta)=\log \frac{1}{|z-\zeta|}+h(z, \zeta)
$$

with $h(z, \zeta)$ harmonic in each variable separately, we see that the integral in (2.6) exists. Let $\eta(r)$ be a differentiable function of $r(0 \leq r<\infty)$ such that
$\eta(r)=0$ for $0 \leq r \leq 1, \eta(r)=1$ for $r \geq 2$, and $\eta^{\prime}(r) \leq 2$. If for small $\varepsilon>0$ and fixed $z \in \mathcal{A}_{\rho}$

$$
u_{\varepsilon}(z)=\frac{1}{2 \pi} \iint_{\mathcal{A}_{\rho}} \mathcal{G}(z, \zeta) F(\zeta) \eta\left(\frac{|z-\zeta|}{\varepsilon}\right) d A(\zeta)
$$

then

$$
\left|v(z)-\nabla u_{\varepsilon}\right| \leq \frac{1}{\pi} \iint_{|z-\zeta| \leq 2 \varepsilon}\left(\frac{1}{|z-\zeta|}+M_{1}+\frac{2}{\varepsilon}\left(\log \frac{1}{|z-\zeta|}+M_{2}\right)\right) M_{3} d A(\zeta)
$$

where $M_{1}=\max _{|z-\zeta| \leq 2 \varepsilon}\left|\nabla_{z} h\right|, M_{2}=\max _{|z-\zeta| \leq 2 \varepsilon}|h(z, \zeta)|$, and $M_{3}=\max _{|z-\zeta| \leq 2 \varepsilon} F(\zeta)$. Letting $\varepsilon \rightarrow 0$ we then have

$$
\nabla u(z)=v(z)
$$

We shall apply this with $F(\zeta)=R(\zeta)|\nabla \psi|^{2}$, and with our assumption that $f \in \mathcal{C}^{1}\left(\overline{\mathcal{A}_{\rho}}\right)$ we may apply it up to and including the boundary. Thus, the $d / d r$ in (2.5) can be moved under the integral signs.

Now, for each $\zeta \in \mathcal{A}_{\rho}$, if we set

$$
\begin{equation*}
U(\zeta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{\partial \mathcal{G}}{\partial r}\left(\rho e^{i \theta}, \zeta\right) d \theta \tag{2.7}
\end{equation*}
$$

then $U(\zeta)$ is the harmonic function in \mathcal{A}_{ρ} with boundary values $1 / \rho$ on $|\zeta|=\rho$ and 0 on $|\zeta|=1$. This is simply

$$
\begin{equation*}
U(\zeta)=\frac{\log |\zeta|}{\rho \log \rho} . \tag{2.8}
\end{equation*}
$$

Using (2.7) and (2.8) in (2.5) we obtain

$$
\begin{aligned}
m^{\prime}(\rho) & =\iint_{\mathcal{A}_{\rho}} R(\zeta)|\nabla \psi(\zeta)|^{2} \frac{\log |\zeta|}{\rho \log (1 / \rho)} d A(\zeta) \\
& +\frac{2 \pi(1-\sigma)}{\rho \log 1 / \rho}
\end{aligned}
$$

which with (2.4) gives

$$
\iint_{\mathcal{A}_{\rho}} R(\zeta)|\nabla \psi(\zeta)|^{2} \log \frac{1}{|\zeta|} d A(\zeta) \leq 2 \pi(1-\sigma)
$$

Integration by parts yields

$$
\begin{equation*}
\int_{0}^{2 \pi} \int_{\rho}^{1} \int_{\rho}^{r} R\left(t e^{i \theta}\right)\left|\nabla \psi\left(t e^{i \theta}\right)\right|^{2} t d t \frac{d r}{r} d \theta \leq 2 \pi(1-\sigma) \tag{2.9}
\end{equation*}
$$

Now,

$$
\int_{0}^{2 \pi} \sqrt{R\left(t e^{i \theta}\right)}\left|\nabla \psi\left(t e^{i \theta}\right)\right| t d \theta \geq 2 \pi \rho \sqrt{\sigma}
$$

so by the Cauchy-Schwarz inequality,

$$
\begin{aligned}
\int_{0}^{2 \pi} \int_{\rho}^{r} R\left(t e^{i \theta}\right)\left|\nabla \psi\left(t e^{i \theta}\right)\right|^{2} t d t d \theta & \geq \frac{(2 \pi \rho \sqrt{\sigma})^{2}}{2 \pi} \log \frac{r}{\rho} \\
& =2 \pi \rho^{2} \sigma \log \frac{r}{\rho}
\end{aligned}
$$

Using this in (2.9) we have

$$
\rho^{2} \sigma \int_{\rho}^{1} \log (r / \rho) \frac{d r}{r} \leq 1-\sigma
$$

Thus,

$$
\frac{\rho^{2} \sigma}{2}(\log \rho)^{2} \leq 1-\sigma
$$

or

$$
\sigma \leq \frac{1}{\left(\rho^{2} / 2\right)(\log \rho)^{2}+1}
$$

3 Comparisons of estimates

Let $\mu(s)$ denote the module of the Grötzsch domain $B(s)$ which is the unit disk with the segment $0 \leq x \leq s$ of the real axis removed. If s is chosen so that $B(s)$ is conformally equivalent to \mathcal{A}_{ρ}, then Lyzzaik [L] proved that $\sigma \leq s$. Expanding $\mu(s)$ [LV, pp. 60,61] near 1 we have

$$
\mu(s)=\frac{\pi^{2}}{4 \log \left(4 / \sqrt{1-s^{2}}-\delta(s)\right)}
$$

where $\delta(s) \sim \sqrt{1-s^{2}}$ as $s \rightarrow 1^{-}$.
Using the definition of $B(s)$ we then have

$$
\log \frac{1}{\rho} \sim \frac{\pi^{2}}{2 \log \left(16 /\left(1-s^{2}\right)\right)}
$$

or

$$
\begin{equation*}
s \sim \sqrt{1-16 \exp \left(\frac{-\pi^{2}}{2 \log 1 / \rho}\right)} \quad \text { as } \quad \rho \rightarrow 1^{-} . \tag{3.1}
\end{equation*}
$$

Thus, for ρ near 1, Lyzzaik's estimate is $\sigma \leq s$ where s satisfies (3.1).
The estimate in Theorem 1.1 is of no value when ρ is small. However, for ρ close to 1 it is easy to see that it is substantially smaller than that given by (3.1). On the other hand, if we let $\tau(\rho)=2 \rho /\left(1+\rho^{2}\right)$, which is the inner radius for the examples of Nitsche, and $\sigma(\rho)$ as in Theorem 1, then $(1-\tau(\rho)) /(1-\sigma(\rho)) \rightarrow 1$ as $\rho \rightarrow 1^{-}$.

References

[BH] D. Bshouty and W. Hengartner, Univalent harmonic mappings in the plane, Ann. Univ. Marie Curie-Sklodowska, Sec. A, XLVIII 3 (1994) 12-42.
[D] P. Duren, A survey of harmonic mappings in the plane, Texas Tech Univ. Math. Series 18 (1992), 411-415.
[L] A. Lyzzaik, The module of the image annuli under univalent harmonic mappings and a conjecture of J.C.C.Nitsche, preprint.
[LV] O. Lehto and K.I. Virtanen, Quasiconformal mappings in the plane, 2nd ed., Springer-Verlag, (1973).
[N] J.C.C. Nitsche, On the modulus of doubly-connected regions under harmonic mappings, Amer. Math. Monthly, 69 (1962), 781-782.
[S] G. Schober, Planar harmonic mappings, Computational methods and function theory proceedings, Valparaiso 1989, Lectures Notes in Mathematics No. 1435, Springer-Verlag, (1990), 171-176.

