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1 Introduction

In [6], a study was initiated by R. Hall, W. Hayman, and A. Weitsman relating the
asymmetry of a set to various set parameters such as the diameter, isoperimetric con-
stant, and capacity. For a compact set Ω in IRn, let V (Ω) denote the volume of Ω, and
B(x, ρ) the ball of radius ρ centered at x and volume V (Ω). The asymmetry α = α(Ω)
is then defined by

α = inf
x

V (Ω\B(x, ρ))

V (Ω)
, ρ = n

√
V (Ω)/V (B(0, 1)).(1.1)

In IR2, we shall use A(Ω) to denote the area of Ω. It is clear that α = 0 when Ω is a
ball.

Let Cap(Ω) denote the logarithmic capacity of a set Ω in IR2. In [6] it was shown
that there exists an absolute constant K0 such that

Cap(Ω) ≥ (1 +K0 α(Ω)3)
√
A(Ω)/π.(1.2)

This was improved by W. Hansen and N. Nadirashvili in [7] where it was shown that
there exists an absolute constant K1 such that

Cap(Ω) ≥ (1 +K1α(Ω)2)
√
A(Ω)/π.(1.3)

The inequality (1.3) was conjectured by L. E. Fraenkel and, as noted in [6], the exponent
2 in (1.3) is sharp. The proof in [7] relies on an inequality between capacity and moment
of inertia which had been proved by Pólya and Szegö [10 ; p 126] for connected sets.
For general sets, this inequality had remained open until Hansen and Nadirashvili’s
ingenious proof in [7]. They also showed that, in (1.3), K1 ≥ 1/4. The proofs in [6]
are based on estimates for condensers.

In this work we shall prove an analogue of (1.3) for p-capacities of condensers in
the plane. The p-capacities have been studied extensively in recent years, especially in
connection with degenerate nonlinear elliptic partial differential equations [10]. Since
such capacities are very hard to compute exactly (cf. [10; p. 35]), we shall develop a
perturbative method to obtain approximations in terms of asymmetry.

A condenser Γ = Γ(Ω,Ω′) in IR2 consists of a compact set Ω and a disjoint closed
unbounded set Ω′. The p-capacity (1 < p <∞) of the condenser is then

Capp(Γ) = inf
∫ ∫

IR2
|Du|pdxdy,(1.4)
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the infimum being taken over all functions u absolutely continuous in IR2, with u = 0
on Ω and u = 1 on Ω′. When p = 2, the minimizer is the harmonic function in
IR2\(Ω∪Ω′) having the prescribed boundary values. For other values of p, the minimizer
satisfies the “p-Laplace equation”, namely, div(|Du|p−2Du) = 0. Although solutions
to this equation have only locally Hölder continuous first derivatives [12], they do
retain a maximum principle, and the critical values are discrete in IR2\(Ω ∪ Ω′) [13].
Furthermore, u is analytic near points where Du 6= 0 (cf. [11;p. 208]). We will consider
p-capacities of condensers Γ = Γ(Ω,Ω′) where A(Ω) = 1 and A(IR2\Ω′) = 4. The main
result of this work is

Theorem 1 : Let 1 < p < ∞. There exist constants Kp depending only on p, such
that

Capp(Γ) ≥ (1 +Kp α(Ω)2)Capp(Γ
∗),(1.5)

where Γ is as above, and Γ∗ = Γ (B(0, 1/
√
π), IR2\B(0, 2/

√
π)) .

The p-capacity of Γ∗ is given explicitly by

Capp(Γ
∗) =

 4∫
1

φ(t)dt

1−p

,(1.6)

where φ(t) = φp(t) = (4πt)p/2(1−p).

In §9 we show that the exponent 2 in (1.5) is sharp.

The methods of this paper can be extended to cover condensers whose inner and
outer boundaries exhibit asymmetries, but at a cost of much routine and tedious work.
Also, (1.5) in case p = 2 can be used to give (1.3). In §10 we outline this proof.
Although it is impossible, due to the intricacies of the proof, to give any meaningful
numerical bounds on the constants Kp in (1.5), with additional work one could allow
Ω and Ω′ to vary in size. The influence on the constants Kp will be discussed in §11.

In higher dimensions only partial results have been obtained relating capacities to
asymmetry. Under the assumption of convexity on Ω, if Cap(Ω) denotes the Newtonian
capacity of Ω, then in [6] the inequality corresponding to (1.3) with exponent n + 1
on α was obtained. This was improved by Hansen and Nadirashvili [7], [8], again for
convex sets, also replacing the asymmetry by the quantity

de(Ω) =
R0(Ω)

R(Ω)
− 1,

where R0 is the outradius of Ω and R(Ω) is the radius of the ball having volume V (Ω).
They proved that for small d = de(Ω),

Cap(Ω)

Cap(B(0, ρ))
≥
{

1 + A d3/(log 1/d) n = 3
1 + And

(n+3)/2 n ≥ 4,
(1.7)

where V (B(0, ρ)) = V (Ω).
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The main challenge which lies ahead is to determine the effect of asymmetry on
Newtonian capacity without the assumption of convexity. Although α < de, and (1.7)
is close to best possible for convex sets [8; p.8], the quantity de has no relevance in
the study of general Ω. This stems from the fact that line segments have capacity 0
in IRn for n ≥ 3, and so de can be depressed with negligible effect on the capacity. On
the other hand, the notion of asymmetry, which seems to have been introduced in this
context by Fraenkel, remains a natural measure of distortion. It seems reasonable to
us to conjecture that

Cap(Ω)

Cap(B(0, ρ))
≥ (1 +Dnα

2)(1.8)

for constants Dn where again V (B(0; ρ)) = V (Ω).

In an unpublished work, Fraenkel has verified (1.8) for starlike regions close to a
ball in IR3. However, contrary to the remark attributed to the second author in [9], no
general bounds on Newtonian capacity in terms of asymmetry appear to be known. It
would be interesting to obtain an inequality of the type (1.8) with some exponent on
α, but with no assumption of convexity on Ω.

There are two natural avenues of approach to this problem. The first would be to
prove an inequality for the moment of inertia I(Ω) of Ω about its centroid in terms
of Cap(Ω) as was done in IR2 by Hansen and Nadirashvili. If one could prove the
hypothetical inequality

Cap(Ω)n+2 ≥ (n+ 2)

σn
I(Ω),(1.9)

where σn is the n − 1 Hausdorff measure of the unit sphere, and where we have nor-
malized so that the capacity of a ball is its radius, then (1.8) would follow easily from

I(Ω) ≥ I(B)
[
1 +

n+ 2

n2
α2
]
,

where B is the ball of volume V (Ω). Inequality (1.9) is a natural analogue of the
inequality of Hansen and Nadirashvili in IRn.

Another possible approach is along the lines of the present paper, especially in view
of the recent results of Hall [5] which give the influence of the asymmetry on the usual
isoperimetric inequality. With this in mind, the results of this paper, in particular the
symmetrization method introduced in §3 can be adapted to IRn for n ≥ 3 as long as
p = 2. The difficulty arises in §6 where one needs to prove that if the asymmetry is
very small, most of Ω is a set whose boundary lies between two very close concentric
balls. The present argument relies on the Bonnesen type inequalities (2.2)–(2.4), and
it seems difficult to extend this type of argument to higher dimensions.

In the case of p-capacities of condensers in IRn, n > 2, nothing seems to be known
regarding an analogue of (1.5), even under the additional assumption of convexity.
The problem is more difficult especially because there are no known bounds on the
sets of critical points, and in particular whether or not such sets are of measure zero.
Nevertheless, it seems likely that (1.5) will continue to hold. More precisely, let Rn

be such that V (B(0, Rn)) = 1, Γ = Γ(Ω,Ω′) be a condenser with V (Ω) = 1, and
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V (IRn\Ω′) = 2n. Let Γ∗ denote the condenser Γ(B(0, Rn), IR
n\B(0, 2Rn)). Then we

conjecture that there is a Kp > 0, depending only on p, such that

Capp(Γ) ≥ (1 +Kpα
2)Capp(Γ

∗).(1.10)

We have divided our work as follows. In §2, we state and prove some preliminary
results required in the proof of Theorem 1. We also discuss our strategy for achieving
the proof of Theorem 1. In §3, we introduce a new symmetrization technique. Based
on this, we prove a perturbation lemma for 2-capacity in §4. The proof of Theorem 1
involves considering several independent cases and is spread over §5 − §8. In §9, we
present an example to prove the sharpness of the exponent 2 in (1.5); §10 contains
a proof of (1.3) based on the techniques developed in this paper. Finally, in §11, we
indicate how our result in (1.5) is modified when the ratio of the areas of the sets
involved is different from 4.

As in [6], our proofs will rely in part on connections with the isoperimetric inequal-
ity. These ideas have been useful in a number of studies ( cf. [3], [4], [14], [17]).

We wish to thank the referee for many helpful suggestions.

2 Preliminary results

We may assume that the sets we are working with are bounded by a finite number of
rectifiable curves. Let D be such a set and L(∂D) denote the length of its boundary.
Then it is proved in [6 : Lemma 2.1] that

L(∂D)2 ≥ 4π(1 + α(D)2/6)A(D).(2.1)

In proving (2.1), use was made of relations between the inradius Ri and outradius
Ro of D. Results of this type are collected in [15]. In this paper, we shall have occasion
to use the fact [15; pp 3-4] that if D is bounded by a rectifiable Jordan curve, then

L(∂D)2 − 4π A(D) ≥ π2(Ro −Ri)
2,(2.2)

Ro ≤
1

2π

(
L(∂D) +

√
L(∂D)2 − 4π A(D)

)
,(2.3)

and

Ri ≥
1

2π

(
L(∂D)−

√
L(∂D)2 − 4π A(D)

)
,(2.4)

Proposition 2.1 : Suppose that D is a bounded open set and D =
∞⋃
i=1

Di, where the

Di’s are pairwise disjoint components of D, labelled such that A(D1) ≥ A(D2) ≥ ... .
If 0 < δ < 1/4, and

A(D1) ≤ (1− δ)A(D),
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then
L(∂D)2 ≥ 4π(1 +

√
δ)A(D).

Proof : We assume that the perimeter of each Di is finite. Set xi = A(Di), i = 1, 2, ...,

so that
∞∑
i=1

xi = A(D), and x1 ≥ x2 ≥ x3 ≥ ... . Also

x1 ≤ (1− δ)A(D).(2.5)

We first consider the case when x1 ≥ δA(D). Employing the isoperimetric inequality,
we have

L(∂D)2 =

(
L(∂D1) +

∞∑
i=2

L(∂Di)

)2

≥ L(∂D1)
2 +

∞∑
i=2

L(∂Di)
2 + 2L(∂D1)

∞∑
i=2

L(∂Di)

≥ 4π

( ∞∑
i=1

xi + 2
√
x1

∞∑
i=2

√
xi

)

≥ 4π

A(D) + 2
√
x1

√√√√ ∞∑
i=2

xi


= 4π

(
A(D) + 2

√
x1(A(D)− x1)

)
.

Recalling that δA(D) ≤ x1 ≤ (1 − δ)A(D), and using the fact that x(1 − x) for
x ∈ [δ, 1− δ] has as its minimum δ(1− δ), we have

L(∂D)2 ≥ 4π(1 +
√
δ)A(D).

Thus the statement of the proposition holds in this case.

We now consider the case when x1 is small, i.e., x1 < δA(D). Then

δA(D) > x1 ≥ x2 ≥ x3...,

and ∑
i6=`
xi ≥ (1− δ)A(D), ∀ ` = 1, 2, ....(2.6)

Clearly,

L(∂D)2 =

{ ∞∑
i=1

L(∂Di)

}2

=


∞∑
i=1

L(∂Di)
2 +

∞∑
j=1

L(∂Dj)
∑
i6=j
L(∂Di)


≥ 4π

A(D) +
∞∑
j=1

√
xj
∑
i6=j

√
xi

 .(2.7)
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Setting εi = xi/x1 ≤ 1, and employing (2.6), we obtain

∞∑
j=1

√
xj
∑
i6=j

√
xi = x1


∞∑
j=1

√
εj
∑
i6=j

√
εi


≥ x1


∞∑
j=1

εj
∑
i6=j

εi


≥ (1− δ)A(D)2

x1
≥ (1− δ)

δ
A(D).(2.8)

The proposition now follows easily in this second case by combining (2.7) and (2.8).

By taking the contrapositive of Proposition 2.1, we have

Proposition 2.2 : Let D be a bounded open set such that, for some δ (0 < δ < 1/4),
L(∂D) satisfies

L(∂D)2 < 4π(1 +
√
δ)A(D).

If D1 is a component of D with the largest area, then

A(D1) > (1− δ)A(D).

Remark 2.1: The exponent 1/2 appearing on δ in the statement of Proposition 2.1 is
sharp. To see this take D = D1∪D2, where D1 and D2 are two disjoint discs of radius√

1− δ and
√
δ respectively. Take δ < 1/4. Then A(D) = π, and A(D1) = (1−δ)A(D).

Clearly, L(∂D)2 = 4π(1 +O(
√
δ))A(D), as δ → 0.

For a condenser Γ with inner set Ω and outer set IR2\B(x, 2/
√
π), if u is the extremal

extended to be zero on Ω, we write F (t) = {x : u(x) < t} and A(t) = A(F (t)) (0 <
t ≤ 1). We will often write α = α(Ω) for convenience.

Our proof of Theorem 1 will be broken down into two cases. In Case 1, the asym-
metry of Ω is propagated through a t interval for the sets F (t). Here the proof follows
the methods of [6]. It is easy to construct examples of sets Ω for which α(F (t)) is
dramatically less than α(Ω) for t arbitrarily close to zero. Case 2 is designed to cover
this possibility.

The plan in Case 2 is as follows. Since α(F (T )) is very small for some T close to
0, we first observe that this implies that most of F (T ) is a set, which we later call F1,
whose boundary is contained between very close concentric circles. This is the essence
of (6.18) below. By using the symmetrization of §3, we construct a new condenser
with comparable asymmetry and decreased p-capacity by suitably redistributing the
portion of F1 on each ray from the center x0 of the concentric circles. Using the new
configuration, we then obtain a lower bound on the capacities stated in Lemma 4.1.
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In what follows, κ and η will denote small positive constants which do not depend
on α, and which will be determined later. We assume

0 < κ < 0.0001, η ≤ 0.01, and κ < η2/10.(2.9)

Case 1 : For all t such that

(1 + η) ≤ A(t) ≤ (1 + 2η)(2.10)

we have
L(∂F (t))2 ≥ 4π(1 + κα2)A(t).(2.11)

Case 2 : There exists a value T such that

(1 + η) ≤ A(T ) ≤ (1 + 2η)(2.12)

and
L(∂F (T ))2 < 4π(1 + κα2)A(T ).(2.13)

By the result in [13], in Case 1, Du can vanish on at most a finite number of levels
u = t in the interval specified by (2.10). In Case 2, by making a slight adjustment, we
may choose T such that Du is nonvanishing on the boundary of F (T ). Thus we may
take ∂F (T ) to be analytic in the latter case.

3 A symmetrization technique.

We now present a new type of symmetrization which will be useful in relating p-capacity
to asymmetry. Let Ω1 and F1 be two bounded open subsets of IR2. We assume that
(i) Ω1 ⊂ F1, (ii) the origin 0 lies in Ω1, and (iii) ∂Ω1 and ∂F1 are the unions of finitely

many Lipschitz continuous curves. Let ρ =
√
A(Ω1)/π and R =

√
A(F1)/π.

For each θ ∈ (−π, π], let J(θ) = {reiθ : 0 ≤ r} be the ray from the origin making
an angle θ with the positive x-axis. For a given value of θ, let

J(θ) ∩ Ω1 = [r0, r1(θ))
⋃
j≥1

(r2j(θ), r2j+1(θ)) (r0 = 0),

the intervals being disjoint. We now introduce the parameters necessary to give a
redistribution of the area of Ω1 relative to B(0, ρ). Set

s(θ) = sup{r : reiθ ∈ J(θ) ∩ Ω1},
t(θ) = inf{r : reiθ ∈ J(θ) ∩ ∂F1} = sup{r : [0, r) ⊂ J(θ) ∩ F1},
ŝ(θ) = sup{r : reiθ ∈ J(θ) ∩ Ω1, r < t(θ)},(3.1)

t̂(θ) = inf{r : reiθ ∈ J(θ) ∩ ∂F1, r > s(θ)} = sup{r : [s(θ), r) ⊂ J(θ) ∩ F1},
N = {reiθ ∈ Ω1 : s(θ) > t(θ), r > ŝ(θ)},
E = {θ : J(θ) ∩N 6= ∅}.
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  0

Ω1

t(θ)

F1
∂F1

s(θ)

∂Ω1

r0 r2
J(θ)

r1 r3

Figure 1: ŝ(θ) = s(θ) < t(θ) = t̂(θ)

0
Ω1

Ω1

t(θ)

ŝ(θ)

∂Ω1

s(θ)

∂F1

t̂(θ)

∂Ω1

F1

J(θ)r5r4r3r2r0 r1

Figure 2: ŝ(θ) < t(θ) < s(θ) < t̂(θ) (Shaded Region in N)

Note that ŝ(θ) ≤ s(θ) and t̂(θ) ≥ t(θ) with equality if and only if s(θ) < t(θ).

We distinguish two possibilities in our redistribution of Ω1.

Case A : Suppose first that ŝ(θ) ≤ ρ. Then we define ξ(θ) > 0 by

ξ(θ)2 =
∑
j∈K

r2
2j+1 − r2

2j,(3.2)

where K = {j : r2j+1 ≤ ŝ(θ)}.

Case B : If ŝ(θ) > ρ we distinguish two subcases to define ξ(θ) > 0 and λ(θ) > 0.

(i) If ρ ∈ J(θ) ∩ Ω1, i.e., r2m < ρ < r2m+1 for some m, then

ξ(θ)2 = r2
2m+1 +

∑
j∈L

r2
2j+1 − r2

2j,(3.3)
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where L = {j : r2m+1 ≤ r2j < r2j+1 ≤ ŝ(θ)}; also let

λ(θ)2 = ρ2 − r2
2m +

∑
j∈M

r2
2j+1 − r2

2j ,(3.4)

where M = {j : r2j+1 ≤ r2m}.

(ii) If ρ 6∈ J(θ) ∩ Ω1, we set

ξ(θ)2 = ρ2 +
∑
j∈L′

r2
2j+1 − r2

2j,(3.5)

where L′ = {j : ρ ≤ r2j < r2j+1 ≤ ŝ(θ)}, and

λ(θ)2 =
∑
j∈M ′

r2
2j+1 − r2

2j ,(3.6)

where M ′ = {j : r2j+1 ≤ ρ}. It is useful to observe that ξ(θ) > ρ and λ(θ) ≤ ρ,
whenever ŝ(θ) > ρ.

For each θ ∈ (−π, π], let Ω∗1(θ) ⊂ J(θ) be defined by

Ω∗1(θ) =


[0, ξ(θ)], if ŝ(θ) ≤ ρ,

[0, λ(θ)] ∪ (ρ, ξ(θ)], if ŝ(θ) > ρ and λ(θ) < ρ,
[0, ξ(θ)], if ŝ(θ) > ρ and λ(θ) = ρ.

Define Ω∗1 = ∪θΩ∗1(θ); by the definitions in (3.1) - (3.6), it is clear that (i) A(Ω1) =
A(Ω∗1)+A(N) (see (3.10)), (ii) if B(0, r) ⊂ Ω1, then B(0, r) ⊂ Ω∗1, and (iii) Ω∗1∩B(0, ρ)
is starlike with respect to the origin 0.

Now suppose that 0 < R′i ≤ ρ and Ri ≤ Ro are such that B̄(0, R′i) ⊂ Ω1, and
B̄(0, Ri) ⊂ F1 ⊂ F̄1 ⊂ B(0, Ro). Then we conclude from (3.1) - (3.6) that

(i) R′i ≤ ξ(θ) ≤ ŝ(θ) ≤ s(θ) ≤ t̂(θ) ≤ Ro,

(ii) Ri ≤ t(θ) ≤ t̂(θ) ≤ Ro,

(iii) Ri ≤ t(θ) < s(θ) < t̂(θ) ≤ Ro, θ ∈ E,(3.7)

(iv) R′i ≤ ξ(θ) < t(θ) ≤ Ro,

(v) R′i ≤ min(ρ, Ri) ≤ max(ρ,Ri) ≤ R ≤ Ro,

(vi) If ŝ(θ) > ρ, then ξ(θ) > ρ, and λ(θ) ≤ ρ.

Based on (3.7) we now make some easy observations. These will be useful in §4 and
§8. Suppose that β = A(Ω1\B(0, ρ))/A(Ω1) > 0. By consideration of Ω1\B(0, ρ) we
have

0 < 2πρ2

(
β − A(N\B(0, ρ))

πρ2

)
=

∫
{ξ(θ)≥ρ}

ξ(θ)2 − ρ2dθ ≤ 2πρ2β.(3.8)
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By consideration of Ω1 ∩B(0, ρ),

0 <
∫

{ξ(θ)≤ρ}

ρ2 − ξ(θ)2dθ +
∫

{ŝ(θ)>ρ}

ρ2 − λ(θ)2dθ

= 2πρ2

(
β +

A(N ∩B(0, ρ))

πρ2

)
.(3.9)

Subtracting (3.8) from (3.9), we then have

0 <

π∫
−π

ρ2 − ξ(θ)2dθ +
∫

{ŝ(θ)>ρ}

ρ2 − λ(θ)2dθ = 2A(N),(3.10)

and adding we obtain

π∫
−π

|ρ2 − ξ(θ)2|dθ =
∫

{ξ(θ)≥ρ}

ξ(θ)2 − ρ2dθ +
∫

{ξ(θ)≤ρ}

ρ2 − ξ(θ)2dθ

≤ 4πρ2

(
β +

A(N)

πρ2

)
.(3.11)

Also, let 
µ = (1/ρ2)

∫
{ŝ(θ)>ρ}

ρ2 − λ(θ)2dθ ≥ 0,

µ̄ = (1/R2)
π∫
−π
R2 − t(θ)2dθ ≥ 0.

(3.12)

In the next section we will use this symmetrization technique to deduce a pertur-
bation result for 2-capacity.

4 A perturbation lemma for 2-capacity.

We will now prove a perturbation lemma based on the symmetrization introduced in
§3. As before, Ω1 and F1, subsets of IR2, are bounded open sets such that (i) Ω1 ⊂ F1,
(ii) the origin 0 lies in Ω1, and (iii) ∂Ω1 and ∂F1 are the unions of finitely many

Lipschitz continuous curves. Set ρ =
√
A(Ω1)/π and R =

√
A(F1)/π. Let 0 < R′i ≤ ρ

and Ri ≤ Ro be such that B̄(0, R′i) ⊂ Ω1, B̄(0, Ri) ⊂ F1 ⊂ F̄1 ⊂ B(0, Ro). Suppose
furthermore that

(i) For a fixed ε, 0 < ε ≤ 1/2, Ro(1− ε) ≤ Ri ≤ R ≤ Ro,

(ii) 1/2 ≤ R′i/Ro ≤ Ri/Ro ≤ 1,(4.1)

(iii) For 0 < δ ≤ 1/2, 1/4 ≤ (ρ/R)2 ≤ 1/(1 + δ) < 1.

By the definition in (1.4), if Γ = Γ(Ω1, IR
2\F1), then

I = Cap2(Γ) = inf
w

∫
F1\Ω1

|Du|2dxdy,
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where, w is absolutely continuous and takes the value 1 on IR2\F1 and 0 on Ω1. Let
v denote the minimizer. Then it is harmonic in F1\Ω1 and assumes the appropriate
boundary values. Set β = A(Ω1\B(0, ρ))/A(Ω1) > 0. We prove

Lemma 4.1 : Let Ω1, F1, ρ, R,Ri, R
′
i, Ro, β, ε, δ, and v be as described above. Assume

that (4.1) holds. Then for all sufficiently small ε, we have

I =
∫

F1\Ω1

|Dv|2dxdy ≥ 2π

log R/ρ
+B0β

2 − B1ε
2 −B2εβ,

where B0, B1 and B2 are positive constants depending only on δ.

Proof: Throughout the proof we shall let C, with or without subscripts, denote positive
constants depending only on δ, and which need not be the same at each occurrence.
We employ the symmetrization introduced in §3, and use the same notations as in
(3.1) - (3.6). Then from (3.7) and (4.1), we may conclude that

(i) 0 < t̂(θ)− s(θ) ≤ εRo, θ ∈ E,
(ii) (1/e)2 < (1/2)2 ≤ min(ξ(θ)2/R2, ξ(θ)2/t(θ)2),(4.2)

(iii) |R2 − t(θ)2| ≤ 2εR2
o.

(iv) 1− ε ≤ t(θ)/Ro ≤ 1.

Now

I =
∫

F1\Ω1

(v2
r +

1

r2
v2
θ)rdr dθ

≥
∫

F1\Ω1

v2
r rdr dθ

≥
π∫
−π

inf
∫

J(θ)∩{F1\Ω1}

z2
r rdr

 dθ,(4.3)

where the infimum is taken over all z = z(r, θ) such that z = 1 on J(θ)∩∂F1 and z = 0
on J(θ) ∩ ∂Ω1. The minimizer z̄ satisfies the one variable Euler equation (rz̄′)′ = 0 in
J(θ) ∩ {F1\Ω̄1}. We will now estimate I by employing the symmetrization in §3 and
obtaining a lower bound for the inner integral on the right side of (4.3). We do this by
first solving for z̄ from the aforementioned o.d.e over the disjoint intervals (ŝ(θ), t(θ))
and (s(θ), t̂(θ)), the latter occurring whenever s(θ) > t(θ). Note that z̄ vanishes on the
left end points of these intervals and takes the value 1 on the right end points. Also
see (3.7). Thus a lower bound for I is obtained by calculating the inner integral for
this function z̄ over the above mentioned intervals. Recalling the definition of E from
(3.1), it follows from (4.3), (3.7) (i), and (3.1) that

I ≥
∫ π

−π

1

log(t(θ)/ŝ(θ))
dθ +

∫
E

1

log(t̂(θ)/s(θ))
dθ

≥
π∫
−π

1

log(t(θ)/ξ(θ))
dθ +

∫
E

1

log(t̂(θ)/s(θ))
dθ.(4.4)
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If the second integral, on the right hand side of (4.4), is larger than 4π/ log(R/ρ)
then Lemma 4.1 follows trivially from (4.1) (iii). Otherwise,∫

E

1

log(t̂(θ)/s(θ))
dθ ≤ 4π

log(R/ρ)
.

But, log(t̂(θ)/s(θ)) ≤ (t̂(θ)/s(θ) − 1), so it then follows from (4.2) (i), (4.1) (ii), (iii)
and (3.7) (iii) that

measθ E ≤ C1 ε.

Note that C1 depends only on δ. Since N = {reiθ ∈ Ω1 : s(θ) > t(θ), r > ŝ(θ)}, (4.1)
(i) then yields

A(N) ≤ C2ε
2R2

o.(4.5)

Now, from (4.4),

I ≥
π∫
−π

1

log(t(θ)/ξ(θ))
dθ

= 2

π∫
−π

−1

log(ξ(θ)2/t(θ)2)
dθ.(4.6)

To estimate (4.6) we observe that the function f(x) = −1/ log x satisfies
(i) f(x) > 0 (0 < x < 1),
(ii) f ′(x) > 0 (0 < x < 1).
(iii) f ′′(x) > 0 (1/e2 < x < 1).

(4.7)

We shall use (4.7) in the form

f(x)− f(x̄) = f(x̄)(x− x̄) +
f ′′(ζ)

2
(x− x̄)2(4.8)

for some ζ ∈ (x, x̄) or (x̄, x). Then with x̄ = ρ2/R2, it follows from (4.1), (4.2), (4.6),
(4.7) and (4.8) that

I − 2π

log(R/ρ)
≥ 2

π∫
−π

−1

log(ξ(θ)2/t(θ)2)
+

1

log(ρ2/R2)
dθ

≥ 2f ′(ρ2/R2)

π∫
−π

ξ(θ)2

t(θ)2
− ρ2

R2
dθ(4.9)

+C3

π∫
−π

(
ξ(θ)2

t(θ)2
− ρ2

R2

)2

dθ.

The positive absolute constant C3 in (4.9) results from the fact that (4.2) (ii) implies
that ξ(θ)2/t(θ)2 > 1/e2.
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Next we estimate the quantities

S =

π∫
−π

ξ(θ)2

t(θ)2
− ρ2

R2
dθ, S̄ =

π∫
−π

(
ξ(θ)2

t(θ)2
− ρ2

R2

)2

dθ.

We may rewrite S as

S =

π∫
−π

(ξ(θ)2 − ρ2)

(
1

t(θ)2
− 1

R2

)
+ ρ2

(
1

t(θ)2
− 1

R2

)
+
ξ(θ)2 − ρ2

R2
dθ.

By (3.10) and (3.12)

π∫
−π

ξ(θ)2 − ρ2

R2
dθ =

µρ2

R2
− 2A(N)

R2
≥ −2A(N)

R2
.(4.10)

Also, by (3.11), (4.1) (ii), (iii), (4.2) (iii) and (iv),∣∣∣∣∣∣
π∫
−π

(ξ(θ)2 − ρ2)

(
1

t(θ)2
− 1

R2

)
dθ

∣∣∣∣∣∣ ≤
π∫
−π

|ξ(θ)2 − ρ2|
∣∣∣∣∣ 1

t(θ)2
− 1

R2

∣∣∣∣∣ dθ
≤ C4ε

R2

π∫
−π

|ξ(θ)2 − ρ2|dθ(4.11)

≤ C5ε

(
β +

A(N)

πρ2

)
.

By (3.12)

π∫
−π

1

t(θ)2
− 1

R2
dθ =

π∫
−π

R2 − t(θ)2

R2t(θ)2
− R2 − t(θ)2

R4
+

µ̄

2πR2
dθ

=

π∫
−π

(R2 − t(θ)2)2

R4t(θ)2
+

µ̄

2πR2
dθ(4.12)

≥ 0.

Putting together (4.10), (4.11), and (4.12) we have

S =

π∫
−π

ξ(θ)2

t(θ)2
− ρ2

R2
dθ ≥ −2A(N)

R2
− C5ε

(
β +

A(N)

πρ2

)
.(4.13)

We now estimate S̄. Observe that

1

2

(
ξ(θ)2

R2
− ρ2

R2

)2

≤
(
ξ(θ)2

R2
− ξ(θ)2

t(θ)2

)2

+

(
ξ(θ)2

t(θ)2
− ρ2

R2

)2

.
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Integrating with respect to θ and recalling (3.7) (i), (4.1) (i), (ii) and (4.2) (ii), we have

π∫
−π

(
ξ(θ)2

R2
− ξ(θ)2

t(θ)2

)2

dθ ≤ C6 ε
2.(4.14)

Using Hölder’s inequality, ∫
ξ(θ)≥ρ

ξ(θ)2 − ρ2dθ


2

≤
 π∫
−π

|ξ(θ)2 − ρ2|dθ
2

≤ 2π

π∫
−π

(ξ(θ)2 − ρ2)2dθ,

so by (3.8) and (4.1) (iii),

1

2

π∫
−π

(
ξ(θ)2

R2
− ρ2

R2

)2

dθ ≥ C7

(
β − A(N)

πρ2

)2

.(4.15)

Putting together (4.14) and (4.15) we obtain

S̄ =

π∫
−π

(
ξ(θ)2

t(θ)2
− ρ2

R2

)2

dθ ≥ C8β
2 − C9ε

2 − C10
A(N)

πρ2
.(4.16)

By virtue of (4.1) and (4.2), the positive constants C1 − C10 depend only on δ. The
estimates in (4.13), (4.16) and (4.5) in (4.9) then give

I ≥ 2π

log(R/ρ)
+B0β

2 −B1ε
2 − B2εβ.

where B0, B1, and B2 are positive constants depending only on δ. This concludes the
proof of Lemma 4.1.

A p - analogue of Lemma 4.1 appears in §8.

Remark 4.1 : The constants B0, B1 and B2 appearing in the statement of the Lemma
4.1, become absolute once a numerical value for δ is chosen. In our application of
Lemma 4.1, a positive value for δ will be fixed once a positive value for η, appearing
in (2.9) - (2.13), is chosen. In particular, we may take δ = 0.9η. See (6.29) (x).

In the next four sections, we will present the proof of Theorem 1, based on the
strategy outlined in §2. The proof in Case 1 appears in §5, while the proof in Case 2
will be presented in §6, 7 and 8.

5 Proof of (1.5) in Case 1

We will first prove Theorem 1 in the situation when asymmetry propagates, that is,
when (2.10) implies (2.11). It is easy to see that A(t) is continuous and increasing. If
we set

s0 = inf{t ∈ [0, 1] : A(t) ≥ 1 + η}(5.1)
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and
T0 = sup{t ∈ [0, 1] : A(t) ≤ 1 + 2η},(5.2)

then
A(s0) ≤ A(t) ≤ A(T0) t ∈ [s0, T0].(5.3)

Recall from §1 that u is locally C1,γ. Hence an application of the coarea formula [2;
p.248] yields, for a.e. t,

A′(t) =
∫

∂F (t)

1

|Du|dσ.(5.4)

The formula in (5.4) holds except for possibly a discrete set of t’s since the set of
critical points of u is discrete. We now prove

Lemma 5.1 : Let 1 < p <∞. If u is the extremal for the condenser with inner set Ω
and outer set IR2\B(x, 2/

√
π) and T0 is as in (5.2), then

T0 ≤

 ∫
F (T0)

|Du|pdxdy


1/p 1

1 + Cα2

1+2η∫
1

φ(t)dt

(p−1)/p

,(5.5)

where φ(t) = φp(t) = (4πt)p/2(1−p), α = α(Ω), and C is a constant which depends only
on κ, η and p.

Proof : By the coarea formula and (5.4) we have outside a discrete set of t’s,

∫
∂F (t)

1 dσ ≤

 ∫
∂F (t)

|Du|p−1dσ


1/p ∫

∂F (t)

1

|Du|dσ


(p−1)/p

=

 ∫
∂F (t)

|Du|p−1dσ


1/p

(A′(t))(p−1)/p.

Using (2.10) and (2.11) it follows, for a.e. t with s0 < t ≤ T0 (see (5.1) – (5.3)),

1 ≤

 ∫
∂F (t)

|Du|p−1dσ


1/p (A′(t))(p−1)/p√

4π(1 + κα2)A(t)

 .(5.6)

We now integrate (5.6) from s0 to T0. An application of Hölder’s inequality then yields

T0 − s0 ≤
T0∫
s0

 ∫
∂F (t)

|Du|p−1dσ


1/p (A′(t))(p−1)/p√

4π(1 + κα2)A(t)

 dt

≤

 T0∫
s0

(
∫

∂F (t)

|Du|p−1dσ)dt


1/p T0∫

s0

A′(t)

(4π(1 + κα2)A(t))p/2(p−1)
dt

(p−1)/p

.(5.7)
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Thus, by the coarea formula and the formula for φ as described in (1.6), we have

T0 − s0 ≤

 ∫
F (T0)\F (s0)

|Du|pdxdy


1/p
 1√

1 + κα2

 1+2η∫
1+η

φ(t)dt


(p−1)/p

 .(5.8)

Using the same procedure on (0, s0) and the usual isoperimetric inequality in place of
(2.11), we see that

s0 ≤

 ∫
F (s0)

|Du|pdxdy


1/p 1+η∫

1

φ(t)dt

(p−1)/p

.(5.9)

Adding (5.8) and (5.9) and applying the Hölder inequality, we may show that

T0 ≤

 ∫
F (T0)

|Du|pdxdy


1/p 1+η∫

1

φ(t)dt+
(

1

1 + κα2

)p/2(p−1)
1+2η∫
1+η

φ(t)dt


(p−1)/p

=

 ∫
F (T0)

|Du|pdxdy


1/p

1−
[
1−

(
1

1 + κα2

)p/2(p−1)
] 1+2η∫

1+η
φ(t)dt

1+2η∫
1
φ(t)dt


(p−1)/p 1+2η∫

1

φ(t)dt

(p−1)/p

.

The inequality in the lemma now follows with an appropriate constant C = C(κ, η, p).

Proof (1.5) in Case 1 : Using the usual isoperimetric inequality and the above
procedure, we may show that

1− T0 ≤

 ∫
F (1)\F (T0)

|Du|pdxdy


1/p 4∫

1+2η

φ(t)dt


(p−1)/p

.(5.10)

We now add (5.5) and (5.10), and then use the Hölder inequality to deduce that

1 ≤

 ∫
F (1)

|Du|pdxdy


1/p 1

1 + Cα2

1+2η∫
1

φ(t)dt+

4∫
1+2η

φ(t)dt


(p−1)/p

=

 ∫
F (1)

|Du|pdxdy


1/p
1− Cα2

1 + Cα2

1+2η∫
1
φ(t)dt

4∫
1
φ(t)dt


(p−1)/p 4∫

1

φ(t)dt

(p−1)/p

.

Noting (1.6) we easily obtain the statement of Theorem 1.
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6 Geometry of the Sets in Case 2

Assume Case 2 holds. In this section we shall use (2.12) and (2.13) to construct a
subcondenser whose inner set is close to a disc. Lemma 4.1 will then provide the
necessary estimates for obtaining the 2-capacity of the original condenser.

By the maximum principle, the components of the set F (t) for each t in (0, 1], are
simply connected. Let F1(t) be one having largest area, and F2(t) = F (t)\F1(t). We
first show that it suffices to assume that for some t such that

A(t) < 1 + κα2,(6.1)

we have
A(F1(t)) > (1− η/10) A(t)(6.2)

and
L(∂F1(t))

2 < 4π(1 + η)A(F1(t)).(6.3)

Let τ = sup {t : A(t) < 1 + kα2}. Suppose that (6.2) were false for all t such that
0 < t ≤ τ . It follows from Proposition 2.1 and (2.9) that

L(∂F (t))2 ≥ 4π(1 +
√
η/10)A(t) (0 < t ≤ τ).(6.4)

If, on the other hand, (6.2) holds but (6.3) does not, then instead of (6.4) we get

L(∂F (t))2 ≥ L(∂F1(t))
2 ≥ 4π(1 + η)A(F1(t))

≥ 4π(1 + η)(1− η/10)A(t)

≥ 4π(1 + 4η/5)A(t).(6.5)

Since the right hand side of (6.4) is greater than that of (6.5) for η < 0.01, we find
that if (6.2) or (6.3) were to fail, then at least (6.5) would hold.

If we were to repeat the steps in Lemma 5.1 leading to (5.8) we would get

τ ≤

 ∫
F (τ)

|Du|pdxdy


1/p
 1√

1 + 4η/5

 1+κα2∫
1

φ(t)dt


(p−1)/p

 .(6.6)

Also, corresponding to (5.10) we would have

1− τ ≤

 ∫
F (1)\F (τ)

|Du|pdxdy


1/p 4∫

1+κα2

φ(t)dt


(p−1)/p

.(6.7)

Adding (6.6) and (6.7) we would obtain

1 ≤

 ∫
F (1)

|Du|pdxdy


1/p

1−
1− ( 1

1 + 4η/5

)p/2(p−1)


1+κα2∫
1

φ(t)dt

4∫
1
φ(t)dt


(p−1)/p 4∫

1

φ(t)dt

(p−1)/p

.
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It is easy to see that (1.5) follows for an appropriate constant K = K(κ, η, p).

Thus we may assume the existence of t = t0 such that (6.1) - (6.3) hold. Then
F (t0) has a simply connected component F1(t0) such that (6.1) - (6.3) become

1 < A(t0) < 1 + κα2,(6.8)

A(F1(t0)) > (1− η/10) A(t0),(6.9)

and
L(∂F1(t0))

2 < 4π(1 + η)A(F1(t0)).(6.10)

Now, with T as in (2.12) and (2.13), F1(T ) is a component of F (T ) having largest
area and F2(T ) = F (T )\F1(T ). From (2.9) and (6.8), T > t0 and F (T ) contains F (t0).
From (2.13) and Proposition 2.2, it follows easily that

A(F1(T )) ≥ (1− κ2α4)A(T ).(6.11)

It is clear from (6.11) that A(F2(T )) ≤ κ2α4A(T ). From (6.8) (6.9), (2.9) and (2.12)
it follows that F1(t0) cannot be completely contained in F2(T ). Now, since F1(t0) and
F1(T ) are both connected and F1(t0) ⊆ F (T ), it follows that

F1(t0) ⊆ F1(T ), and A(F2(T )) < κ2α4A(T ).(6.12)

Let Ω1 = F1(T ) ∩ F (t0). Then the set F (t0)\Ω1 is contained in F2(T ). From (2.12)
and (6.12) we have

A(F (t0)\Ω1) ≤ A(F2(T )) ≤ κ2α4A(T )

≤ 4 κ2α4

≤ κα2.

Hence,

A(Ω1) ≥ A(t0)− κα2

≥ 1− κα2.(6.13)

Based on (6.8) - (6.11) we now form an auxiliary condenser with some observations on
the geometry of the sets.

Now, by (2.2), ∂F1(T ) lies between two circles Co = {x : |x − xo| = Ro} and
Ci = {x : |x− xi| = Ri}, Ro > Ri, where by (2.12), (2.13) and (6.11),

Ro − Ri ≤
1

π

√
L(∂F1(T ))2 − 4πA(F1(T ))

≤ 1

π

√
L(∂F (T ))2 − 4π(1− κ2α4)A(T )

≤ 1

π

√
4π[(1 + κα2)− (1− κ2α4)]A(T )

≤ 2
√
κα.(6.14)
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In particular, the centers of Co and Ci satisfy

|xo − xi| ≤ 2
√
κ α.(6.15)

Also, by (2.3), (2.9), (2.12), (2.13) and (6.11),

Ro ≤
1

2π
(L(∂F1(T )) +

√
L(∂F1(T ))2 − 4πA(F1(T )) )

≤ 1

2π
(L(∂F (T )) +

√
L(∂F (T ))2 − 4π(1− κ2α4)A(T ) )

≤
√
A(T )

π
(
√

1 + κα2 +
√
κα2 + κ2α4)

≤
√

1 + 2η

π
(1 + 3

√
κα)(6.16)

Regarding the position of F1(t0) in F1(T ), we note that (6.8), (6.9), (6.10) and (2.4)
imply that F1(t0) contains a disc B(x̄, R̄i) where

R̄i ≥ (1−√η)
√

1− η/10

√
A(t0)

π

≥ (1− 1.1
√
η)

√
A(t0)

π

≥ 1− 1.1
√
η√

π
.(6.17)

Recalling that Ω1 = F1(T ) ∩ F (t0) and comparing (6.12) - (6.17) we conclude that
(i) B(xo, Ro) ⊇ F1(T ),
(ii) B(xo, Ro(1− ε)) ⊆ F1(T ), ε = 7.5

√
κα,

(iii) B(xo, R
′
i) ⊆ Ω1,

(6.18)

where √
A(F1(T ))

π
− 2
√
κα ≤ Ri ≤ Ro ≤

√
1 + 2η(1 + 3

√
κα)/

√
π,(6.19)

and

R′i = 2R̄i − Ro ≥ (1− 0.2η − 3(1 + 2η)
√
κα)/

√
π.(6.20)

By (6.8), (6.11), (6.13), and (2.12)
(i) 1− κα2 ≤ A(Ω1) ≤ 1 + κα2,
(ii) (1− κ2α4)A(T ) ≤ A(F1(T )) ≤ A(T ),
(iii) 1 + η ≤ A(T ) ≤ 1 + 2η

(6.21)

It follows from (2.9) and (6.21) that

1 + 0.9 η ≤ A(F1(T ))/A(Ω1) ≤ 1 + 2.1 η.(6.22)
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If B(xo, ρ) has the same area as Ω1 and B(x̃,
√

1/π) is such that α = A(Ω\B(x̃,
√

1/π)),

then by (1.1), (6.18) and (6.21)

A(Ω1\B(xo, ρ)) ≥ A(Ω\B(xo, ρ))− A(Ω\Ω1)

≥ A(Ω\B(xo, r))−A(B(xo, ρ)\B(xo, r))− A(Ω\Ω1)

≥ A(Ω\B(x̃, r))− A(B(xo, ρ)\B(xo, r))−A(Ω\Ω1)

≥ α− κα2 − κα2

>
α

2
,(6.23)

where r =
√

1/π. The third inequality follows from the definition of α(Ω). Thus, if

β = A(Ω1\B(xo, ρ))/A(Ω1), ρ =
√
A(Ω1)/π,(6.24)

we have, from (2.9), (6.23) and (6.21) (i) that

β >
α

2(1 + κα2)
>
α

3
.(6.25)

We set F1 = F1(T ) for convenience, and let u = up be the minimizer for (1.4). Clearly,∫
F (T )
|Du|pdxdy ≥

∫
F1\Ω1

|Du|pdxdy.(6.26)

Also, since ∂F1 and ∂Ω1 are level sets for u, we may use u, renormalized, as the
extremal for the condenser having inner set Ω̄1 (closure of Ω ) and outer set IR2\F1,
and in this way estimate the right hand side of (6.26). For p = 2, this will be done by
using Lemma 4.1, while for p 6= 2, the p-analogue (see §8) will be used.

In fact, with u = t0 on ∂Ω1 and u = T on ∂F1, then

v = (u− t0)/(T − t0)(6.27)

is the minimizer for∫
F1\Ω1

|Dw|pdxdy, w = 1 on ∂F1 and w = 0 on ∂Ω1.

Thus,

inf
w

∫
F1\Ω1

|Dw|pdxdy =
∫
F1\Ω1

|Dv|pdxdy =
1

(T − t0)p
∫
F1\Ω1

|Du|pdxdy.(6.28)

Thus, with Γ = Γ(Ω1, IR
2\F1) as the subcondenser, the next step in the proof

of Theorem 1 is to obtain estimates for Capp(Γ). To this end, we first employ the

symmetrization introduced in §3. Setting ρ =
√
A(Ω1)/π and R =

√
A(F1)/π, and
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using the notations (3.1) - (3.6), we conclude from (3.7), (6.14), (6.16), (6.18) - (6.22)
that 

(i) If ŝ(θ) > ρ, then ξ(θ) > ρ and λ(θ) ≤ ρ,
(ii) R′i ≤ ξ(θ) ≤ Ro,
(iii) Ro(1− ε) ≤ Ri ≤ R ≤ Ro,
(iv) Ro(1− ε) ≤ t(θ) ≤ Ro,
(v) R′i ≤ ρ < R ≤ Ro,
(vi) |R2 − t(θ)2| ≤ 2εR2

o,
(vii) 0 < t̂(θ)− s(θ) ≤ εRo, θ ∈ E,
(viii) ξ(θ) ≤ s(θ) ≤ t̂(θ) ≤ Ro,
(ix) R′i ≤ ξ(θ) < t(θ) ≤ Ro,
(x)

√
1 + 0.9 η ≤ R/ρ ≤

√
1 + 2.1 η,

(xi) Ro(1− ε) ≤ t(θ) < s(θ) < t̂(θ) ≤ Ro, θ ∈ E.

(6.29)

In §7, we will prove Theorem 1 when p = 2. The details of the proof, when p 6= 2,
together with the p-analogue of Lemma 4.1 will be presented in §8.

7 Proof of (1.5) for p = 2 in Case 2

We now prove Theorem 1, in Case 2, when p = 2. We specify η = .01 when p = 2.

We now take (a) Ω1 = Ω1(t0), F1 = F1(T ), ρ =
√
A(Ω1)/π, and R =

√
A(F1)/π,

and (b) R′i, Ri, Ro, ε and v as in (6.20), (6.19), (6.16), (6.18) and (6.27), and (c) xo = 0
in (6.18). As in Remark 4.1, we take δ = 0.9η = 0.009 ( see (6.29) (x) ). These
observations together with (6.29) imply that the hypotheses of Lemma 4.1 are satisfied.
It is easily seen from (6.18) and (6.21) that

1

2
log

A(T )

1− κα2
≥ log

R

ρ
.(7.1)

We apply the conclusion of Lemma 4.1, together with (6.25) - (6.28), (7.1) and the
definition of ε in (6.18), to conclude that there are absolute constants C and κ1 such
that κ ≤ κ1,

∫
F (T )

|Du|2dxdy ≥
∫

F1\Ω1

|Du|2dxdy

≥ (T − t0)2

{
4π

log(A(T )/(1− κα2)
+B0β

2 − B1ε
2 −B2εβ

}

≥ (T − t0)2(1 + Cα2)
4π

logA(T )
.(7.2)

Henceforth, we take κ ≤ κ1.
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To estimate t0 in (7.2) we recall that u = t0 on ∂F (t0), with t0 as in (6.8) so that
(cf. [3;p. 3])

1

t20

∫
F (t0)

|Du|2dxdy ≥ 4π

log A(t0)
,

that is,

t20 ≤
1

4π
log(1 + κα2)

∫
F (t0)

|Du|2dxdy.(7.3)

By Green’s theorem and the fact that u is harmonic,∫
F (t0)

|Du|2dxdy = t0

∫
∂F (t0)

∂u

∂n
ds = t0

∫
∂F (1)

∂u

∂n
ds = t0 Cap2(Γ).(7.4)

Thus, from (7.3) and (7.4) we have,

t0 ≤
κα2

4π
Cap2(Γ) := M.(7.5)

We now have two cases to examine, namely, (i) T > M , and (ii) T ≤M .

First we work out case (i). From (7.2),∫
F (T )

|Du|2dxdy ≥ 4π(T −M)2

log A(T )
(1 + Cα2),(7.6)

We now use the usual isoperimetric inequality for T < t < 1 as was done in (5.10) to
obtain

1− T ≤

 ∫
F (1)\F (T )

|Du|2dxdy


1/2 (

1

4π
log

4

A(T )

)1/2

.

This together with (7.6) and Hölder’s inequality gives

4π(1−M)2 ≤

 ∫
F (1)

|Du|2dxdy

(log
4

A(T )
+

1

1 + Cα2
log A(T )

)

=

 ∫
F (1)

|Du|2dxdy

(log 4− Cα2

1 + Cα2
log A(T )

)

≤

 ∫
F (1)

|Du|2dxdy

(1− Cα2

1 + Cα2

log A(T )

log 4

)
log 4.(7.7)

Now set G = Cap2(Γ)/Cap2(Γ
∗). Then G ≥ 1. Recalling that Cap2(Γ

∗) = 4π/ log 4,
(7.7), (2.12), and η = 0.01 yield

(1−M)2 ≤ G

(
1− Cα2

2

log(1.01)

log 4

)
.
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This together with (7.5) gives

(1− κα2 G/ log 4) ≤
√
G(1− C1α2)

≤ G(1− C2α
2).

Thus,

G ≥ 1

1− C2α2 + κα2/ log 4
.

For sufficiently small κ we then have

Cap2(Γ) ≥ (1 + C3α
2)Cap2(Γ

∗).(7.8)

We now examine case (ii), i.e. T ≤M . Observe that∫
F (1)

|Du|2dxdy =
1

T

∫
F (T )

|Du|2dxdy.

Now, from (7.5) we deduce that

T ≤ κα2

4π

1

T

∫
F (T )

|Du|2dxdy,

which in turn implies,

T ≤ α

√
κ

4π

 ∫
F (T )

|Du|2dxdy


1/2

.(7.9)

By employing a procedure, similar to the one used in deriving (5.10), we again write

1− T ≤

 ∫
F (1)\F (T )

|Du|2dxdy


1/2 (

1

4π
log

(
4

A(T )

))1/2

.(7.10)

Adding (7.9) and (7.10), using (2.10) and η = 0.01, and applying Hölder’s inequality
we have

1 ≤

 ∫
F (1)

|Du|2dxdy


1/2 (

1

4π
log

(
4

A(T )

)
+
κα2

4π

)1/2

=

 ∫
F (1)

|Du|2dxdy


1/2 (

log 4

4π
+
κα2

4π
− log A(T )

4π

)1/2

≤

 ∫
F (1)

|Du|2dxdy


1/2 (

1 +
κα2

log 4
− log 1.01

log 4

)1/2 (
log 4

4π

)1/2

.(7.11)
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For sufficiently small κ, (7.11) then yields

4π

log 4
≤
(

1− log 1.01

2 log 4

) ∫
F (1)

|Du|2dxdy

 ,
which implies (1.5) trivially, that is, with no dependence on α. Thus we have shown
that (1.5) holds when T > M and T ≤M , so the proof of (1.5) is complete for p = 2.

8 Remarks on Case 2 for p 6= 2

The procedure for obtaining the analogue of Lemma 4.1 will now follow for general p,
with different constants, much as was done in §4. Inequality (4.3) becomes

I =
∫

F1\Ω1

(v2
r +

1

r2
v2
θ)
p/2rdr dθ

≥
π∫
−π

inf
∫

J(θ)∩{F1\Ω1}

|fr|prdr

 dθ,(8.1)

where f = f(r, θ) is absolutely continuous and f = 1 on J(θ) ∩ ∂F1 and f = 0 on
J(θ)∩∂Ω1 . We then use the solution to the one variable Euler equation (r|z′|p−2z′)′ = 0
and (4.4) becomes

I ≥ |d|p−1

 π∫
−π

dθ

|t(θ)d − ξ(θ)d|p−1
+
∫
E

dθ

|t̂(θ)d − s(θ)d|p−1

 ,(8.2)

where d = (p − 2)/(p − 1). This follows from the observation that for d 6= 0 and
ξ(θ) ≤ ŝ(θ) ≤ t(θ),

|t(θ)d − ξ(θ)d|p−1 ≥ |t(θ)d − ŝ(θ)d|p−1.

Our objective is to prove the analogue

I ≥ |d|p−1 2π

|Rd − ρd|p−1
(1 +K1β

2 −K2ε
2 −K3εβ)(8.3)

of Lemma 4.1, where the constants K1, K2, and K3 now depend only on p for small
ε. We first consider the case p > 2. We write(

1

td − ξd

)p−1

=

(
1

Rd − ρd

)p−1 (
1− (Rd − td)− (ρd − ξd)

(Rd − ρd)

)1−p

.(8.4)

Now the condition (2.9) and (6.29) already imply that t/R and ξ/ρ are close to 1;
certainly

1/2 < ξ/ρ, t/R < 2.(8.5)
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In addition, by (2.9), (6.19), (6.20), (6.29) (v), (ix) and (x), we also have

0 <
td − ξd
Rd − ρd ≤ σ(8.6)

for some constant σ = σp > 0, which depends only on p.

Let h(x) = (1 − x)1−p. Then, h(0) = 1, h′(x) = (p − 1)(1 − x)−p, and h′′(x) =
p(p− 1)(1− x)−p−1 which is positive and increasing for −∞ < x < 1. Using these on
the interval [1− σ, 1), we find that

h(x) ≥ 1 + (p− 1)x+ h′′(1− σ)
x2

2
, 1− σ ≤ x < 1.(8.7)

Combining (8.4), (8.6), and (8.7), we may then write(
1

td − ξd

)p−1

≥
(

1

Rd − ρd

)p−1 [
1 + (p− 1)

{(
Rd − td + ξd − ρd

Rd − ρd

)

+
p

2
σ−p−1

(
Rd − td + ξd − ρd

Rd − ρd

)2

 .(8.8)

In (8.8), we shall use the following four expansions with (8.5). First we have

π∫
−π

Rd − td
Rd − ρddθ =

Rd

Rd − ρd
π∫
−π

1− {( t
R

)2
}d/2 dθ

≥ d Rd

2(Rd − ρd)

π∫
−π

R2 − t2
R2

dθ ≥ 0.(8.9)

The fact that the right hand side is nonnegative follows from (3.12). Also,

π∫
−π

ξd − ρd
Rd − ρddθ =

ρd

Rd − ρd
π∫
−π



(
ξ

ρ

)2

d/2

− 1

 dθ
≥ dρd

2(Rd − ρd)

π∫
−π

ξ2 − ρ2

ρ2
dθ

− 22−dd(1− d/2)

(
ρd

Rd − ρd

) π∫
−π

(
ξ2 − ρ2

ρ2

)2

dθ,(8.10)

and

π∫
−π

(
ξd − ρd
Rd − ρd

)2

dθ =

(
ρd

Rd − ρd

)2 π∫
−π



(
ξ

ρ

)2

d/2

− 1


2

dθ

≥ d2 4(d−3)

(
ρd

Rd − ρd

)2 π∫
−π

(
ξ2 − ρ2

ρ2

)2

dθ.(8.11)
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Similarly,

π∫
−π

(
Rd − td
Rd − ρd

)2

dθ ≥ d2 4(d−3) ρdRd

(Rd − ρd)2

π∫
−π

(
R2 − t2
R2

)2

dθ.(8.12)

Using (8.8) in (8.2) we obtain

I ≥ dp−1

(Rd − ρd)p−1

2π + (p− 1)


π∫
−π

(
ξd − ρd
Rd − ρd +

Rd − td
Rd − ρd

)

+
p

2
σ−p−1

(
ξd − ρd
Rd − ρd +

Rd − td
Rd − ρd

)2

dθ




≥ dp−1

(Rd − ρd)p−1

2π + (p− 1)


π∫
−π

(
ξd − ρd
Rd − ρd +

Rd − td
Rd − ρd

)

+
p

2
σ−p−1

( ξd − ρd
Rd − ρd

)2

+

(
Rd − td
Rd − ρd

)2

− 2

∣∣∣∣∣ ξd − ρdRd − ρd

∣∣∣∣∣
∣∣∣∣∣Rd − td
Rd − ρd

∣∣∣∣∣
 dθ


 .

We now use the inequalities in (8.9) - (8.12) to estimate I. It follows that

I ≥ dp−1

(Rd − ρd)p−1
(2π + T1 + T2 + T3 + T4),(8.13)

where,

T1 =
(p− 1)d

2

(
ρd

Rd − ρd

) π∫
−π

R2 − t2
R2

+
ξ2 − ρ2

ρ2
dθ,

T2 = (p− 1)

{
p

2
σ−p−1d24d−3

(
ρd

Rd − ρd

)
− 22−dd(1− d/2)

}
(

ρd

Rd − ρd

) π∫
−π

(
ξ2 − ρ2

ρ2

)2

dθ,

T3 = (p− 1)
p

2
σ−p−1d24d−3 ρdRd

(Rd − ρd)2

π∫
−π

(
R2 − t2
R2

)2

dθ,

and

T4 = −p(p− 1)σ−p−1 ρdRd

(Rd − ρd)2

π∫
−π

∣∣∣∣∣∣∣

(
ξ

ρ

)2

d/2

− 1

∣∣∣∣∣∣∣
∣∣∣∣∣∣
{(

t

R

)2
}d/2

− 1

∣∣∣∣∣∣ dθ.
Now, for some C1 > 0, T1 ≥ −C1A(N)/ρ2 by (3.12) and (4.10), and T3 ≥ 0. We may
estimate T4 by using, (6.29) (vi), (3.11), and (8.5) to obtain

|T4| ≤ 200p(p− 1)σ−p−1(Rdρd/(Rd − ρd)2)ε

(
β +

A(N)

πρ2

)
.
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It is at this stage that we constrain our parameter η for each p 6= 2. We now assume
that η is sufficiently small so that

T2 ≥
p(p− 1)

4
d24d−3σ−p−1

(
ρd

Rd − ρd

)2 π∫
−π

(
ξ2 − ρ2

ρ2

)2

dθ.(8.14)

This is possible due to (6.29) (x). Using these estimates in (8.13) along with (4.15) we
then obtain

I ≥ dp−1

(Rd − ρd)p−1

2π + C3

(
β − A(N)

πρ2

)2

− C2βε− C1
A(N)

ρ2

 ,(8.15)

Finally, we need an estimate for A(N). We first make a preliminary estimate using
(8.4), (8.8), (8.9), and ignoring the second order term in (8.8). Observe that from
(8.5), |(ξ2 − ρ2)/ρ2| ≤ 4. Using this and (3.11) in (8.10), (8.8) yields

π∫
−π

dθ

|t(θ)d − ξ(θ)d|p−1
≥ 2π

(Rd − ρd)p−1
(1− C4β).(8.16)

If  π∫
−π

dθ

|t(θ)d − ξ(θ)d|p−1
+
∫
E

dθ

|t̂(θ)d − s(θ)d|p−1

 ≥ 2π

(Rd − ρd)p−1
(1 + C4β),

then (8.3) follows trivially. Otherwise, from (8.16) we have∫
E

dθ

|t̂(θ)d − s(θ)d|p−1
≤ 4π

(Rd − ρd)p−1
C4β.

Using (6.29) (vii) to estimate A(N) as in §4, we then obtain

A(N) ≤ C5ε
pβR2

o.(8.17)

Using (8.17) in (8.15) and fixing η so that (8.14) holds, we then obtain (8.3) with
constants depending only on p.

A similar analysis can be carried out for 1 < p < 2.

Finally, we give the analogue of §4 for p 6= 2. Now,

2π|d|p−1

|Rd − ρd|p−1
=

 A(F1)∫
A(Ω1)

φ(t)dt


1−p

≥

 A(T )∫
(1−κα2)

φ(t)dt


1−p

≥

 A(T )∫
1

φ(t)dt


1−p

(1− C6κα
2).(8.18)
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By (8.3) and (8.18), there exist constants C7 and κ1 such that for 0 < κ ≤ κ1, we have∫
F (T )

|Du|pdxdy ≥
∫

F1\Ω1

|Du|pdxdy

≥ 2π|d|p−1

|Rd − ρd|p−1
(T − t0)p(1 +K1β

2 −K2ε
2 −K3εβ)

≥ (T − t0)p (1 + C7α
2)

 A(T )∫
1

φ(t)dt


1−p

.(8.19)

To estimate t0 in (8.19), we recall that u = t0 on ∂F (t0) with t0 as in (6.8), so that

1

tp0

∫
F (t0)

|Du|pdxdy ≥

 A(t0)∫
1

φ(t)dt


1−p

.

Hence,

tp0 ≤

 ∫
F (t0)

|Du|pdxdy


 1+κα2∫

1

φ(t)dt


p−1

≤ C8(κα
2)p−1

∫
F (t0)

|Du|pdxdy.(8.20)

By Green’s theorem,∫
F (t0)

|Du|pdxdy = t0

∫
∂F (t0)

|Du|p−2 ∂u

∂n
ds = t0Capp(Γ).(8.21)

By (8.20) and (8.21),

t0 ≤ C9 κα
2 Capp(Γ)1/(p−1) := M (C9 = C

1/(p−1)
8 ).(8.22)

As in §7, we distinguish two possibilities, namely, (i) T > M , and (ii) T ≤M . Let
us first assume that (i) holds. Thus for 0 < κ ≤ κ1, (8.19) yields

∫
F (T )

|Du|p ≥ (T −M)p(1 + C7α
2)

 A(T )∫
1

φ(t)dt


1−p

.(8.23)

We may now use the usual isoperimetric inequality over the interval (T, 1) to obtain

1− T ≤

 ∫
F (1)\F (T )

|Du|p


1/p 4∫
A(T )

φ(t)dt


(p−1)/p

.
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This together with (8.23) and Hölder’s inequality gives us

(1−M)p ≤

 ∫
F (1)

|Du|pdxdy



(

1

1 + C7α2

)1/(p−1)
A(T )∫
1

φ(t)dt +

4∫
A(T )

φ(t)dt


p−1

=

1 +

{(
1

1 + C7α2

)1/(p−1)

− 1

} A(T )∫
1
φ(t)dt

4∫
1
φ(t)dt


p−1 ∫

F (1)

|Du|pdxdy


 4∫

1

φ(t)dt

p−1

.

(8.24)

Set Z to be the square bracket term on the right hand side of (8.24), and take
S = Capp(Γ)/Capp(Γ

∗). Then S ≥ 1, and (8.24) says that (1−M) ≤ S1/pZ1/p, or by
(8.22),

1− C9 κα
2 S1/(p−1) Capp(Γ

∗)1/(p−1) ≤ S1/p Z1/p.

Since S1/(p−1) ≥ S1/p, it follows that

S1/(p−1) ≥ 1

Z1/p + C9 κα2 Capp(Γ
∗)1/(p−1)

.

This in turn implies,

Capp(Γ) ≥
(

1

Z1/p + C9 κα2 Capp(Γ
∗)1/(p−1)

)p−1

Capp(Γ
∗).(8.25)

Since it is easy to see that Z ≤ 1 − C10α
2, the result then follows from (8.25) for

sufficiently small κ.

We next consider case (ii), i.e., T ≤ M . Now,∫
F (1)

|Du|pdxdy =
1

T

∫
F (T )

|Du|pdxdy,

so that by (8.22),

T ≤ C9 κα
2

 1

T

∫
F (T )

|Du|pdxdy


1/(p−1)

.

Hence,

T ≤ (C9 κα
2)(p−1)/p

 ∫
F (T )

|Du|pdxdy


1/p

.(8.26)
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We employ the usual isoperimetric inequality and the coarea formula over the interval
(T, 1) (see §5) to obtain

1− T ≤

 ∫
F (1)\F (T )

|Du|pdxdy


1/p  1∫

A(T )

φ(t)dt


(p−1)/p

.

This together with (8.26), (2.12), and Hölder’s inequality results in

1 ≤

 ∫
F (1)

|Du|pdxdy


C9 κα

2 +

1∫
A(T )

φ(t)dt


p−1

≤

 ∫
F (1)

|Du|pdxdy


1 +

C9 κα
2

4∫
1
φ(t)dt

−

A(T )∫
1
φ(t)dt

4∫
1
φ(t)dt


p−1 4∫

1

φ(t)dt

p−1

≤

 ∫
F (1)

|Du|pdxdy


1 +

C9κα
2 −

1+η∫
1
φ(t)dt

4∫
1
φ(t)dt


p−1 4∫

1

φ(t)dt

p−1

,

which again gives the result for κ sufficiently small. Thus, the proof of Theorem 1 is
complete for p 6= 2.

9 Sharpness of the exponent 2

In this section we show that the condenser with elliptical inner set of small eccentricity
gives the proper order of magnitude for capacity to show that the exponent 2 is sharp.
Although there is no reason to believe that this case gives the sharp constant Kp in
Theorem 1, it is convenient from the standpoint of calculations. On the other hand,
there is some delicacy in choosing the inner set. For example, putting a small bump
or a circle would result in an exponent of 1 instead of 2 on α.

Let ε be a small positive number. For each ε, let Eε denote the closed domain
bounded by the ellipse x = r0(1+ε)1/2 cos θ, y = r0 sin θ where r0 = 1/(

√
π/(1+ε)1/4).

Then A(Eε) = 1. Let Γε denote the condenser Γ(Eε, IR
2\B(0, 2/

√
π)). From [6; pp

88-89] we have that α = α(Eε) = ε/2π +O(ε2), (ε→ 0). In order to prove our claim,
we note from (1.4) and (1.5) that it is sufficient to exhibit a function u, belonging to
the class of admissible functions for (1.4), with the property that∫ ∫

IR2
|∇u|pdxdy = Capp(Γ

∗) +O(ε2) (ε→ 0),

where Γ∗ is as in Theorem 1. This will then imply that

Capp(Γε) = Capp(Γ
∗) +O(ε2) (ε→ 0).(9.1)

30



Theorem 2 : Let ε > 0, be small, Γε be the condenser whose inner set is Eε and
outer set is IR2\B(0, 2/

√
π). Then for each fixed p > 1, there is a function u = uε,p

with u = 0 on Eε and u = 1 on IR2\B(0, 2/
√
π), such that∫ ∫

IR2
|∇u|pdxdy = Capp(Γ

∗) +O(ε2) (ε→ 0).(9.2)

Proof: We shall present details for p 6= 2; the case p = 2 is similar. Set R = 2/
√
π

and ρ = 1/
√
π. Then r0 = ρ/(1 + ε)1/4. By (1.6),

Capp(Γ
∗) =

2π|d|p−1

|Rd − ρd|p−1
,(9.3)

where d = (p− 2)/(p− 1).

Let r, θ be the polar coordinates, and define u(r, θ) = uε,p(r, θ) as

u(r, θ) = 1− Rd − rd
Rd − rd0(1 + ε cos2 θ)d/2

,(9.4)

in B(0, 2/
√
π)\Eε, u = 0 on Eε, and u = 1 on IR2\B(0, 2/

√
π). Then u is absolutely

continuous, and in B(0, 2/
√
π)\Eε,

|∇u| = |d|rd−1

|Rd − rd0(1 + ε cos2 θ)d/2| +O(ε2) (ε→ 0).(9.5)

Then, by (9.5),

∫ ∫
IR2
|∇u|pdxdy = |d|p

∫ 2π

0

∫ R

r0
√

1+ε cos2 θ

rp/(1−p)

|Rd − rd0(1 + ε cos2 θ)d/2|p rdrdθ +O(ε2)

= |d|p−1
∫ 2π

0

|Rd − rd0(1 + ε cos2 θ)d/2|
|Rd − rd0(1 + ε cos2 θ)d/2|pdθ +O(ε2)

= |d|p−1
∫ 2π

0

1

|Rd − rd0(1 + ε cos2 θ)d/2|p−1
dθ +O(ε2) (ε→ 0).(9.6)

By the definition of r0 and ρ,

|Rd − rd0(1 + ε cos2 θ)d/2| =

∣∣∣∣∣∣Rd − ρd
(

1 + ε cos2 θ√
1 + ε

)d/2∣∣∣∣∣∣
=

∣∣∣∣∣∣Rd − ρd + ρd

1− (1 + ε cos2 θ√
1 + ε

)d/2∣∣∣∣∣∣ .(9.7)

Set

h(ε) = 1−
(

1 + ε cos2 θ√
1 + ε

)d/2
.
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Now,

h(ε) = −d
2
(cos2 θ − 1

2
)ε+O(ε2) (ε→ 0).(9.8)

Thus, (9.7) and (9.8) imply, as ε→ 0,

|Rd − rd0(1 + ε cos2 θ)d/2|1−p = |Rd − ρd|1−p
[
1 +

ρdh(ε)

(Rd − ρd)

]1−p

= |Rd − ρd|1−p
[
1− (p− 1)ρdh(ε)

(Rd − ρd)

]
+ O(ε2)

= |Rd − ρd|1−p
[
1 +

(p− 1)dρd(cos2θ − 1/2)

2(Rd − ρd) ε

]
+O(ε2).(9.9)

Using (9.9) in (9.6), we have, as ε→ 0,∫ ∫
IR2
|∇u|pdxdy =

|d|p−1

|Rd − ρd|p−1

∫ 2π

0
1 +

d(p− 1)ρd

2(Rd − ρd)(cos2 θ − 1

2
)εdθ +O(ε2).

Since ∫ 2π

0
cos2 θ − 1

2
dθ = 0,

we obtain (9.2).

10 Logarithmic Capacity

We now outline the proof of (1.3). Let Ω be a compact subset of the complex plane
C with ∂Ω a finite union of rectifiable curves. Let G(z) denote Green’s function for

Ĉ\Ω with pole at ∞, extended to be 0 on Ω. Then

− log Cap(Ω) = lim
z→∞

(G(z)− log |z|) .(10.1)

For λ > 0, let Ωλ = {z : G(z) ≤ λ}. Then G(z) − λ is Green’s function for the
complement of Ωλ. Let Γλ be the condenser Γ(Ω,C\Ωλ). The definition of Cap(Γλ)
is as given in (1.4) with p = 2. In this instance, the minimizer is harmonic and is
given by G(z)/λ. For 0 < t ≤ λ, write F (t) = {z : G(z) < t}, and A(t) = A(F (t)).
We will assume throughout that λ is larger than some λ0 in order to ensure that
A(Ωλ) ≥ 2A(Ω) = 2. We continue to assume that A(Ω) = 1. In the event that
A(Ω) 6= 1, all areas may be scaled by 1/A(Ω) to recover the result. We will apply the
coarea formula directly to G(z). We take η = 0.01 in (2.10) - (2.13) and begin with
Case 1. Set s0 = inf{t > 0 : A(t) ≥ 1.01} and T0 = sup{t : A(t) ≤ 1.02}. Inserting
p = 2 and η = 0.01 in Lemma 5.1, we obtain

Lemma 10.1: For λ ≥ λ0, if T0 is such that A(T0) = 1.02, then∫ ∫
F (T0)

|DG|2dxdy =
4πT 2

0

log 1.02
(1 +D1α

2),(10.2)
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where D1 depends only on κ.

We now proceed as in §5. Applying the usual isoperimetric inequality over the
interval T0 < t < λ, we obtain

(λ− T0)
2 ≤ 1

4π
log

A(λ)

A(T0)

(∫ ∫
Ωλ\F (T0)

|DG|2dxdy
)
.

Combining this with (10.2) via Hölder’s inequality, we see that∫ ∫
Ωλ

|DG|2dxdy ≥ 4πλ2

log {A(λ)(1.02)−D1α2/1+D1α2}(10.3)

Since, G(z) − log |z| is harmonic at ∞, it follows that with r = |z|, ∂G/∂r =
1/r + o(1/r2) as r →∞. By Green’s Theorem, we have as r →∞,∫ ∫

Ωλ

|DG|2dxdy = λ
∫
∂Ωλ

∂G

∂n
ds = λ

∫
|z|=r

∂G

∂r
ds = λ2πr

(
1

r
+ o(

1

r2
)
)
→ 2πλ.(10.4)

It follows from (10.1) that for z ∈ ∂Ωλ, |z| = Cap(Ω)eλ(1 + o(1)), so that

A(λ) = π
[

Cap(Ω)eλ
]2

(1 + o(1)) as λ→∞. This with (10.3) and (10.4), gives

2π

λ
≥ 4π

log
[
π { Cap(Ω)eλ}2 (1 + o(1))(1.02)−D1α2/1+D1α2

] .
Thus,

Cap(Ω) ≥ (1.02)(D1α2/2)/1+D1α2

√
1

π
.

The inequality in (1.3) now follows in Case 1.

We now discuss Case 2. As in §6, we may assume that there is a t0 > 0 such that
(6.8) - (6.10) hold. Let F1 = F1(T ),Ω1 = F1(T ) ∩ F (t0) as in §6 and let Γc be the
condenser Γ(Ω1,C\F1). Since F1 and Ω1 are both level sets for G(z), it follows that

Cap(Γc) =
∫ ∫

F1\Ω1

|Dv|2dxdy =
1

(T − t0)2

∫ ∫
F1\Ω1

|DG|2dxdy,(10.5)

where v(z) = (G(z)−t0)/(T −t0). Using Lemma 4.1 in (10.5) and choosing 0 < κ < κ0

for some small κ0, we may show that∫ ∫
F (T )
|DG|2dxdy ≥ 2π(T − t0)2

logR/ρ
(1 +Bα2),(10.6)

where B is an absolute constant. From (6.29)(x), R/ρ depends only on η. As was done
in Case 1, we apply the usual isoperimetric inequality on T < t ≤ λ, and combine the
result with (10.6) via Hölder’s inequality to obtain

4π(λ− t0)2 ≤ log
{
A(λ)(1.01)−Bα

2/1+Bα2
} ∫ ∫

Ωλ

|DG|2dxdy.(10.7)
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To estimate t0, observe that F (t0) is a level set of G(z), and G(z)/t0 is harmonic
in F (t0)\Ω. Thus,

Cap (Γ(Ω,C\F (t0))) =
1

t20

∫ ∫
F (t0)\Ω

|DG|2dxdy ≥ 4π

logA(t0)
.

Using the inequality (6.8) and an argument similar to that in (10.4) we have

t20 ≤
1

4π
log(1 + κα2)

∫ ∫
F (t0)
|DG|2dxdy =

t0

2
log(1 + κα2).(10.8)

Clearly then, t0 ≤ κα2. Using (10.4), the estimate on A(λ) (see Case 1) and the bound
on t0, in (10.7), we have

4π(λ− κα2)2 ≤ 2πλ
(
log

{
π
[
Cap(Ω)eλ

]2
(1 + o(1))(1.01)

−Bα2

1+κα2

})
.

Simplifying the above,

Cap(Ω) ≥ e−2κα2

(1.01)
Bα2/2

1+Bα2

√
1

π
.

Fixing κ such that 0 < κ ≤ κ0, we obtain (1.3).

11 The constants Kp

Let Γ(Ω,Ω′) be a condenser as in §1, and set χ = A(IR2\Ω′)/A(Ω). Let B(0, R) and
B(0, R̄) be discs such that A(B(0, R)) = A(Ω) and A(B(0, R̄)) = A(IR2\Ω′). Let
Γ∗ = Γ(B̄(0, R), IR2\B(0, R̄)) and set d = (p− 2)/(p− 1). Then

Cap2(Γ
∗) = 4π/ logχ,

and, for p 6= 2,

Capp(Γ
∗) =

2πp/2|d|p−1A(Ω)(2−p)/2

|ξd/2 − 1|p−1
=

2π|d|p−1

|R̄d − Rd|p−1
.

In this section we will discuss how the constants Kp = Kp(χ) in (1.5) behave as χ
varies. Note that we have taken χ = 4 in Theorem 1. Although determining the
dependence on χ involves only routine modifications of the proofs, this was avoided in
the text since such consideration involves carrying along additional parameters and the
introduction of numerous subcases. In what follows, K̂p represents positive constants
depending only on p. Our methods give the following:

(i) 1 < p < 2,

Kp =


K̂p(χ− 1)2, 1 < χ ≤ 2,

K̂p (independent of χ), χ > 2,
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(ii) p = 2,

K2 =


K̂2(χ− 1)2, 1 < χ ≤ 2

K̂2/ logχ, χ > 2,

(iii) p > 2,

Kp =


K̂p(χ− 1)2, 1 < χ ≤ 2,

K̂p/|χd/2 − 1|, χ > 2.
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