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I. Introduction. Let f(eis) be a sense preserving homeomorphism of the unit

circle. In order to study the Fourier coefficients of f , we consider 2π-periodic

functions eiω(s) formed with nondecreasing ω(s), and the Fourier series

(1.1) eiω(s) ∼
∞∑

n=−∞
cne

ins.

In general extremals for coefficient estimates do not exist in the class of homeomor-

phisms; rather they are limits of the form (1.1) which may have discontinuities at

a countable set {tj}. At such points, we shall define ω by

(1.2) ω(tj) =
ω(t+j ) + ω(t−j )

2
,

where ω(t+j ) and ω(t−j ) denote right and left limits respectively. We shall refer to

the limits of these homeomorphisms f , that is those corresponding to 2π-periodic

functions eiω(s) with ω increasing but not necessarily continuous, as pseudohomeo-

morphisms.

In this paper we shall prove

Theorem 1. Let ω(s) be a nondecreasing function with eiω(s) 2π-periodic, ω(2π) =

ω(0) + 2π, and having Fourier expansion (1.1). Then

(1.3) |c0|+ |c1| ≥ 2/π.

The inequality (1.3) is sharp, and is achieved for ω(s) = 0 when 0 < s < π, and

ω(s) = π when π < s < 2π. It is easy to see that there are no positive lower bounds
1
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for |c0| and |c1| individually. In the former case, take ω(s) = s, and for the latter,

take a sequence of f ’s tending to a constant for 0 < s < 2π.

There are partial results of the type (1.3). In [H1], Hall obtained |c0| + |c1| >

1/2, and Titus and Ullman [UT] proved (1.3) for functions eiω satisfying certain

symmetry conditions.

In [H2], Hall proved (1.3) assuming c0 = 0. In view of this and the fact that

c1 = 0 only for the constant function (cf. [H1; p. 187]), we may assume for simplicity

that

(1.4) c0 6= 0 and c1 6= 0.

We shall establish (1.3) through variational arguments. The variations require

that the monotonicity of ω be preserved. This difficulty presents itself also in [DS1],

[DS2], [G], [W1], and [W2]. Our proof was inspired by Wegmann’s detailed analysis

[W1], and especially his delicate treatment of second variations.

I should like to thank Richard Hall for sharing his wisdom on the intricacies of

Fourier coefficients with me during my visit to the University of York in the spring

of 1997.

II. Preliminary Calculations. Let ω(s) (−∞ < s <∞) be nondecreasing such

that eiω(s) is 2π-periodic and satisfies (1.1) and (1.4). We shall consider variations

ωε of ω in the functional

(2.1) Φ(eiωε) = λ|c0|+ |c1| = λ

√
α2

1 + α2
2 +

√
α2

3 + α2
4 (λ > 1),

where c0(ε) = α1(ε) + iα2(ε), c2(ε) = α3(ε) + iα4(ε), and show that Φ cannot

have a minimizer with (1.4). We then let λ → 1. The actual extremal satisfies

c0 = 0, c1 = 2/π.

Suppose that ω is a minimizer for Φ. For simplicity, we may adjust (1.4) by

replacing ω(s) by θ1 + ω(s+ θ2) for appropriate θ1, θ2 so that (1.4) becomes

(2.2) c0(0) = α1(0) > 0 and c1(0) = α3(0) > 0.
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Let ωε be a variation of ω. Then,

dΦ

∂ε
=

∂Φ

∂α1

dα1

dε
+

∂Φ

∂α2

dα2

dε
+

∂Φ

∂α3

dα3

dε
+
∂Φ

∂α4

dα4

dε

= λ

2π∫
0

cosωε(s)ds
d
dε

2π∫
0

cosωε(s)ds+
2π∫
0

sinωε(s)ds
d
dε

2π∫
0

sinωε(s)ds√(
2π∫
0

cosωε(s)ds

)2

+

(
2π∫
0

sinωε(s)ds

)2

+

2π∫
0

cos(ωε(s)− s)ds ddε
2π∫
0

cos(ωε(s)− s)ds+
2π∫
0

sin(ωε(s)− s)ds ddε
2π∫
0

sin(ωε(s)− s)ds√(
2π∫
0

cos(ωε(s)− s)ds
)2

+

(
2π∫
0

sin(ωε(s)− s)ds
)2

,

With (2.2), we have at ε = 0,

(2.3)
dΦ

dε
= λ

d

dε

∫ 2π

0

cosωε(s)ds+
d

dε

∫ 2π

0

cos(ωε(s)− s)ds.

In case the second variation exists, we have at ε = 0,

(2.4)

d2Φ

dε2
=

4∑
i,j=1

∂2Φ

∂αi∂αj

dαi

dε

dαj

dε
+

4∑
i=1

∂Φ

∂αi

d2αi

dε2

=
λ

α1
(
dα2

dε
)2 +

1

α3
(
dα4

dε
)2 + λ

d2α1

dε2
+
d2α3

dε2
.

We shall use the notation

(2.5) β(s) = λ+ e−is (λ > 1)

in the following sections.

III. Points of discontinuity. In this section we determine the behavior of ω(s)

at the points {tj} of discontinuity.

Lemma 3.1. Let eiω(s) be a minimizer for Φ as given in (2.1) and satisfying (2.2).

If ω has a discontinuity at s = tj (−π ≤ ω(tj) < π) and arg β(t) is chosen so that

−π/2 < arg β(tj) < π/2, then

(3.1) ω(tj) + argβ(tj) = 0,
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and hence,

(3.2) −π/2 < ω(tj) < π/2.

Proof. At the point tj we let ωj = ω(t−j ), ωj+1 = ω(t+j ), and use the variation

(cf. [W1; 178–179]) defined by

u1(s) =

{
ω(s) s < tj

ωj s ≥ tj
,

u2(s) =

{
ωj+1 s ≤ tj
ω(s) s > tj

,

ωε(s) =

{
u1(s) s ≤ tj + ε

u2(s) s > tj + ε
.

Then, by (2.3) and the definition (1.2),

0 =
dΦ

dε

∣∣∣∣
ε=0

= λ cosωj − λ cosωj+1 + cos(ωj − tj)− cos(ωj+1 − tj)

= 2 sin

(
ωj+1 − ωj

2

)
(λ sinω(tj) + sin(ω(tj)− tj)).

Using this and the definition (2.5) we have

(3.3) Im eiω(tj)β(tj) = 0.

Regarding the possible values for ω(tj), we fix ψ such that ωj < ψ < ωj+1 and

make a one sided variation by

ωε =


ω(s) s < tj

ψ tj < s < tj + ε

ω(s) s > tj + ε

(0 < ε < δ).

Then, for 0 < ε < δ, we have as in (2.3),

0 ≤ dΦ

dε

∣∣∣∣
ε=0+

= 2 sin

(
ωj+1 − ψ

2

)(
λ sin

(
ωj+1 + ψ

2

)
+ sin

(
ωj+1 + ψ

2
− tj

))
.

Using this, (3.3), and the fact that sin

(
ωj+1 − ψ

2

)
> 0, then (3.1) follows when

−π ≤ ω(tj) < π and −π/2 < arg β(tj) < π/2. Since −π/2 < β(tj) < π/2, we also

obtain (3.2). �
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IV. Points of monotonicity. We next consider points where ω is monotone. By

this we shall mean points where either

(4.1) ω(t+ δ) > ω(t+)

or

(4.2) ω(t− δ) < ω(t−)

for all δ > 0.

Lemma 4.1. Let eiω(s) be a minimizer for Φ as in (2.1) and satisfying (2.2). If

(4.1) or (4.2) hold at s = t, with 0 ≤ ω(t−) ≤ ω(t+) < 2π, and arg β(t) chosen so

that −π/2 < argβ(t) < π/2, then

(4.3) ω(t−) + argβ(t) = ω(t+) + argβ(t) = π.

Proof. We consider only the case (4.1). The case (4.2) can be handled similarly.

We may take sequences {t1,ν}, {t2,ν}, {t3,ν}, {t4,ν} converging to t, such that

t < t1,ν+1 < t2,ν+1 < t3,ν+1 < t4,ν+1 < t1,ν , ...., ω(t2,ν) > ω(t1,ν) and ω(t4,ν) >

ω(t3,ν), and t3,ν − t2,ν ≥ (t4,ν − t1,ν)/2, (ν = 1, 2, ....). We may assume t4,1 <

2π. Throughout this proof we shall use variations Φ(eiωε,ν ) for each ν = 1, 2, .....

However, to simplify notation we shall suppress the dependence on ν.

Let {vν} be continuous functions with the properties (cf. [W1; p. 180]) :

1. 0 ≤ vν(s) ≤ 1 ∀s

2. vν(s) = 0 s ≤ t1,ν , s ≥ t4,ν

3. vν(s) = 1 t2,ν ≤ t ≤ t3,ν

4. ω(s) + εvν is increasing if |ε| is sufficiently small.

With ωε = ωε,ν = ω + εvν , it follows from (2.3) that

dΦ

dε

∣∣∣∣
ε=0

= −λ
∫ 2π

0

vν(s) sinω(s)ds−
∫ 2π

0

vν(s) sin(ω(s)− s))ds.
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Setting this equal to 0 and letting ν →∞, we obtain the relation

λ sinω(t+) + sin(ω(t+)− t) = 0.

Thus, if β(s) is as in (2.5) we have

(4.4) Im eiω(t+)β(t) = 0.

We now use the second variation to analyze (4.4) further. Using (2.4) we have

for each ν = 1, 2, ...., that at ε = 0,

(4.5)
λ

α1
(
dα2

dε
)2 +

1

α3
(
dα4

dε
)2 + λ

d2α1

dε2
+
d2α3

dε2
≥ 0.

Computing the quantity on the left side of (4.5) we obtain

λ

α1
(

∫ 2π

0

vν(s) cosω(s)ds)2 +
1

α3
(

∫ 2π

0

vν(s) cos(ω(s)− s)ds)2

(4.6)

−Re

∫ 2π

0

vν(t)
2eiω(t)β(t)dt ≥ 0.

Now, the support of vν is in [t1,ν, t4,ν ], and t3,ν−t2,ν ≥ (t4,ν−t1,ν)/2. Furthermore,

from the definition (2.5) it is clear that β 6= 0 so that from (4.4) it follows that

Re eiω(t+)β(t) 6= 0. Thus, for ν sufficiently large, the first two terms in (4.6) may

be absorbed in the third and we deduce that

Re eiω(t+)β(t) < 0.

Thus, for t ∈ [−π, π) we find that the determination of ω(t+) in [0, 2π) and

−π2 < arg β(t) < π
2 by (4.4) and (4.6) satisfy (4.3). The fact that ω(t−) also

satisfies (4.3) now follows from Lemma 3.1. �

V. Reduction to step functions. In this section we prove the following
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Lemma 5.1. Let eiω(s) be a minimizer for Φ as in (2.1) and satisfying (2.2). Then

ω(s) must be a step function having a finite number of steps for 0 ≤ s < 2π.

Proof. We suppose that the lemma is false. Then there is a point t ∈ [0, 2π] such

that either (4.1) or (4.2) holds. We assume (4.1) holds for some t ∈ [0, 2π). The

case where (4.2) holds for some t ∈ (0, 2π] can be handled similarly.

We distinguish two possibilities. First suppose there is a subsequence of the

sequence {tj} of discontinuities, which we continue to call {tj}, such that t1 > t2 >

.... → t; we may assume that −π ≤ ω(tj) < π for j = 1, 2, ..... Then, Lemma 3.1

applies, and we obtain (3.1) for each j = 1, 2, ..... Hence, ω(t+) + argβ(t) = 0.

However, for ω in the above specified range, we have by Lemma 4.1 that ω(t+) +

argβ(t) = π or − π, a contradiction.

Since ω must be continuous at t by (4.3), and we have shown above that t is

not the limit point of discontinuities, we are left with only the possibility that ω is

continuous on an interval [t, b), where t < b ≤ t+2π. We now show that this is not

possible. Indeed, if ω were continuous, then not only (4.1) would hold at s = t, but

also at infinitely many other points. At each such point t̃ we then have by Lemma

4.1 that

(5.1) ω(t̃) + argβ(t̃) = π + 2nπ

for some integer n = n(t̃). But eiω being a pseudohomeomorphism of the circle

implies that n in (5.1) can only take on one value, which we may assume is 0 so

that (5.1) becomes

(5.2) ω(t̃) = π − arg β(t̃).

Now β(s) 0 ≤ s < 2π traces out a circle clockwise in the right half plane, so

−arg β(s) is monotone decreasing, then increasing, then decreasing on respective

intervals I1, I2, I3. Since ω is nondecreasing, the points of monotonicity, that is

those t̃ satisfying (5.2) are confined to the middle interval I2. Thus, there is a point
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τ on the closure of I2 where (4.1) is not satisfied, and hence ω must be constant on

an interval to the right of τ . By the monotonicity properties of β on I1, I2, and

I3, then ω would then have to be constant on the entire interval from τ to τ + 2π,

again giving a contradiction. The lemma is therefore established. �

VI. Proof of the Theorem. We again suppose that eiω is a minimizer for Φ

satisfying (2.2). By Lemma 5.1 we may also assume that ω is a step function,

whose discontinuities occur at points 0 ≤ t1 < t2 < .... < tn < 2π, and those points

modulo 2π, with ω(s) = ωj for tj−1 < s < tj , −π ≤ ω1 < ω2 < .... < ωn < π,

with ω(s) extended as a monotone increasing function so that eiω(s) is periodic with

period 2π.

As in (1.2) we define

(6.1) ω(tj) =
ωj + ωj+1

2
.

Now, Lemma 3.1 holds for all the points tj . To conclude the proof we now observe

that this is not possible since eiω(s) is periodic. To use periodicity, we expand the

values of ω to the interval [−π, 2π] and augment the sequence {ωj} accordingly. In

this range (3.2) becomes

(6.2) ω(tj) ∈ (−π/2, π/2)∪ (3π/2, 2π].

Suppose in the expanded listing, there were a value ωj ∈ [π, 3π/2], say ωj = π+η

(0 ≤ η ≤ π/2). Then, by (6.1) and (6.2), it must be that ωj−1 < −η. By

periodicity, we would then have ωj+1 < 2π− η which would force the contradiction

ω(tj) ∈ (π+η+η, 3π/2) to (6.2). The case ωj ∈ [π/2, π] could be handled the same

way.

We now have the only possibility is ωj ∈ (−π/2, π/2). Let ωj be the largest

value for ω on (−π/2, π/2). Since we have assumed ω nonconstant, take −π/2 <
ωj−1 < ωj < π/2. Then,

(ωj−1 + 2π) + ωj

2
< 3π/2,
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which implies in (6.1) that π/2 < ω(tj) < 3π/2 contradicting (6.2). This completes

the proof. �
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