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1 Introduction

A function u(z) defined in the complex plane is called δ-subharmonic if it
may be represented as a difference of two subharmonic functions

u(z) = u+(z)− u−(z) ,

where u+ and u− have no common Riesz mass.
To simplify our further considerations we can assume that u+(0) = u−(0) =

0. Nevanlinna’s characteristics N(r, u), m(r, u) and T (r, u) are defined by

N(r, u) =
1

2π

∫ 2π

0
u−(reiϕ) dϕ ,

m(r, u) =
1

2π

∫ 2π

0
max(u, 0)(reiϕ) dϕ ,

T (r, u) =
1

2π

∫ 2π

0
max(u+, u−)(reiϕ) dϕ .

Since the representation u(z) = u+(z) − u−(z) is unique up to a harmonic
summand, then the characteristic T (r, u) may be defined as

T (r, u) = m(r, u) +N(r, u)

as well.
The order ρ of the function u(z) is defined by

ρ = lim sup
r→∞

log T (r, u)

log r
.
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Nevanlinna’s deficiency of infinity is defined as

δ = δ(∞, u) = lim inf
r→∞

m(r, u)

T (r, u)
= 1− lim sup

r→∞

N(r, u)

T (r, u)

If f(z) is a meromorphic function defined in the whole complex plane,
then the function u(z) = log |f(z)| is δ-subharmonic and the conventional
Nevanlinna characteristic of f(z) coincides with that given above for u.

The celebrated spread relation of A. Baernstein [3] states that if f is a
meromorphic function of finite order ρ and positive Nevanlinna deficiency
δ = δ(∞), then

lim sup
r→∞

|E(r)| ≥ min
(

2π, 4ρ−1 arcsin
√
δ/2

)
.(1.1)

Here,
E(r) = {θ : |f(reiθ)| > 1},(1.2)

and |E(r)| refers to the angular Lebesgue measure. We note for later reference
that (1.1) implies

1− δ ≤ cosσδ,(1.3)

where σ is half the right hand side of (1.1).
In [4], Baernstein proved that if f is entire and we denote the longest arc

in the set E(r) by L(r), then (1.1) is true with |E(r)| replaced by |L(r)| (See
also [1]). Later, Weitsman [10] generalized this result to any meromorphic
function with δ = 1.

We shall prove the analogue of (1.1) with E(r) replaced by L(r) for
δ−subharmonic functions. Namely, we prove

Theorem 1.1 Let U be a δ−subharmonic function of order ρ. If

L(r) = longest arc of {z : U(z) > 0} ∩ {z : |z| = r},

then

lim sup
r→∞

|L(r)| ≥ min
(

2π, 4ρ−1 arcsin
√
δ/2

)
.(1.4)

We will say that a set Ω does not contain arcs of opening greater than 2l
if for every r > 0 the intersections

Ω ∩ {z : |z| = r}, r > 0,
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do not contain arcs of angular opening greater that 2l.
The analysis of [10] for δ = 1, was based on an estimate for the Green’s

functions of the components of the open set where log |f | > 0, f meromor-
phic. In [6, Theorem 2], Fryntov proves an estimate involving the circular
means of such Green’s functions. The proof of Theorem 1.1 will be based on
the following modification of Fryntov’s result, a modification needed to deal
with the slight complication that the set where a δ−subharmonic function is
greater than zero need not be open.

Theorem 1.2 Let Ω be a domain, M > 2, A be the annulus {M−1 < |z| <
M}, and F be a countable union of open intervals containing those r (M−1 <

r < M) such that the circle of radius r centered at 0 intersects Ω with arcs
of opening greater than 2l (0 < l < π). Let Ω0 be the angle {z : | arg z| < l}
and G(z, ξ) and G0(z, |ξ|) be the respective Green’s functions for Ω and Ω0

with pole at ξ ∈ Ω.
If ε > 0 is given, then there exists a τ (0 < τ < 1), such that if meas(F ) <

τ , and z ∈ Ã = {z : M̃−1 < |z| < M̃ |} with M̃/M < τ , then∫ 2π

0
G(z, Reit) dt ≤

∫ 2π

0
G0(|z|, Reit) dt+ ε (M̃−1 < R < M̃).(1.5)

( Here we assume that G(z, ξ) and G0(z, |ξ|) are zero if either argument is
outside Ω or Ω0 respectively.)

2 Proof of Theorem 1.2.

We begin by recalling the method of [6]. For a δ−subharmonic function u
defined in an annulus {z : |z| ∈ (r1, r2)}, let

u(z) = u+(z)− v(z)(2.1)

be one of its representations as a difference of two subharmonic functions
which may have common Riesz mass. Let {z = reiθ : r ∈ (r1, r2), θ ∈ (0, l)}
be an annular sector and u∗l be defined in the sector by

u∗l (re
iθ) = sup{

∫
E
u(reiφ)dφ : E ∈ Γ(θ, l)}.(2.2)
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Here Γ(θ, l) is the family of measurable sets of the real axis satisfying the
conditions

(a) |E| = 2θ,
(b) diam(E) ≤ 2l,

where (b) means that there exists an arc I such that |I| = 2l and E ⊆ I.
As in [6], we apply the notion of u∗l to

u(z) = uR(z) =
1

2π

∫ π

−π
G(z, Reit)dt,

where G is the Green’s function for Ω (extended to be 0 outside Ω). Thus,
in (2.1) we may take

v(z) =
∫ π

−π
log |z − Reit|dt.(2.3)

For the Green’s function G(z) = G(z, ξ), and v(z) as in (2.3), we shall
then define

T ∗l (reiθ, G) = u∗l (re
iθ) +

∫ θ

−θ
v(reit)dt(2.4)

which is continuous and subharmonic [6, p 513]. We define T ∗l (reiθ, G0)
similarly.

The proof will rest on a comparison of T ∗l (z,G) with T ∗l (z,G0) in the
annular sector

Sl = {z = reiθ : θ ∈ (0, l)} ∩ {z : M ′−1 < |z| < M ′},

where M ′ (M̃ < M ′ < M) will be specified later.
Now let Ψ(z) = T ∗l (z,G) − T ∗l (z,G0). Then, as in [6], we observe that

Ψ(z) is subharmonic in Sl and vanishes on the positive real axis. To estimate
Ψ on the inner and outer circular boundary arcs of S`, let M̃ < M ′ < M . If
Ω∗ is the circular symmetrization of Ω, and GΩ∗(z, |ξ|) is the Green’s function
for Ω∗ with pole at |ξ|, then [3, Theorem 5], it follows that

max
|z|=r

G(z, ξ) ≤ GΩ∗(r, |ξ|).

Using the maximum principle and the fact that the set where Ω∗ contains full
circles is contained in the set F , we deduce that for M̃/M ′, M ′/M sufficiently
small, M̃−1 < |ξ| < M̃ and 0 ≤ θ ≤ 2π,
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max
θ
G(M ′eiθ, ξ) ≤ log

(
M
′1/2 + |ξ|1/2

M ′1/2 − |ξ|1/2

)
+
ε

8
<
ε

4
,

max
θ
G(M

′−1eiθ, ξ) ≤ log

(
|ξ|1/2 +M

′−1/2

|ξ|1/2 −M ′−1/2

)
+
ε

8
<
ε

4
.

Thus, by taking τ > 0 sufficiently small we may assume

Ψ(reiθ) <
εθ

2
(r = M

′−1, r = M ′).(2.5)

We next estimate Ψ on the arm arg z = ` of S`. We first observe that there
exists a constant η such that∫ 2π

0
G(z, Reit)dt ≤ η.(2.6)

The inequality (2.6) follows from the fact that the capacity of the complement
of Ω in the circle centered at the origin of radius R is comparable to R.

Let
∑
` = S` ∪ {z : z ∈ S`} ∪ {z = x + iy : M ′−1 < x < M ′, y = 0}

and h(z) be the harmonic measure of
∑
` with respect to the set {z : arg z =

±`, |z| ∈ F}. Then, for τ sufficiently small we may take

h(reiθ) < ε/4η (|θ| ≤ `/2).(2.7)

Let H(z) be the harmonic function in S` defined by

H(reiθ) = η
∫ θ

−θ
h(reit)dt.(2.8)

Now consider the subharmonic function Ψ(z)−H(z) in S`. Then H is zero
on the real axis, and on |z| = M ′−1 and M ′. We thus consider Ψ − H for
points in S` with arg z = ` and M ′−1 < |z| < M ′. For a function g(z) defined
in S` we use the notation

∂−g(reiθ)

∂θ

∣∣∣∣
θ=`

= lim sup
θ→`−

g(rei`)− g(reiθ)

`− θ .(2.9)

The important observation here is that

∂−Ψ(reiθ)

∂θ

∣∣∣∣
θ=`
≤
{
η, r ∈ F
0, r ∈ [M−1,M ]\F.(2.10)
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To verify (2.10), we need only note that for each θ, there is a set E for which
the sup in (2.2) is realized (cf.[6, p. 512]) and then apply (2.9) with g = u∗` .

By (2.5),(2.8) and (2.10), we find that the subharmonic function

V (z) = Ψ(z)−H(z)− εθ

2

is 0 on the portion of ∂S` on the real axis, is less than or equal to 0 on the
portion on |z| = M

′−1 and |z| = M ′, and ∂−V/∂θ|θ=` < 0 on the remainder
of ∂S`. Thus, V (z) ≤ 0 in S`, or Ψ(reiθ) ≤ H(reiθ) + εθ

2
. Since both sides

are 0 when θ = 0, the inequality is preserved when one differentiates with
respect to θ and evaluates the derivatives at θ = 0. Then using (2.7) and
(2.8) we obtain (1.5).

Remark 1.1. With all the notation and hypotheses of Theorem 1.2, let
u(z, R) be the harmonic measure of Ω ∩ {|z| = R} with respect to {|z| =
R} and let u0(z, R) be defined similarly with Ω0 in place of Ω. By using
the arguments in the proof of Theorem 1.2, we easily obtain the following
inequality:

u(z, R) ≤ u0(|z|, R) + ε (M̃−1 < R < M̃).(2.11)

We omit the details.
(We note that the above inequality, with u0 multiplied by an absolute

constant, can be obtained by using a standard harmonic measure estimate
found for example in [9, p.112], once one realizes that the estimate holds not
only for measure but also for longest arc.)

3 Proof of Theorem 1.1

Let U(z) be δ-subharmonic function satisfying the conditions of Theorem
1.1, and {rm} be a sequence of Pólya peaks of order ρ of T (r, U) . Recall
that a sequence {rm} is called a sequence of Pólya peaks of order ρ for U if
there exists a positive sequence ηm → 0 as m→∞, such that

T (r, U) ≤ T (rm, U)(r/rm)ρ(1 + ηm), r ∈ [r′m, r
′′
m],

where r′m = ηmrm, r′′m = (ηm)−1rm . By [5] such a sequence exists.
If we replace U by U − 1, then {rm} is again a sequence of Pólya peaks

for T (r, U − 1), and δ remains the same. By mollifying U − 1, we obtain
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continuous δ-subharmonic functions u = u+ − u− = um which, in the Pólya
peak annuli {z : r′m ≤ |z| ≤ r′′m} can be made to approximate U − 1 (see [2,
p. 150]) by

|U(z)− 1− u(z)| < 1 (r′m ≤ |z| ≤ r′′m),(3.1)

outside a countable set of disks, the sum of whose radii is less than any
prescribed εm > 0, and N , m, and T for U − 1 are all within εm of N , m,
and T for u. For fixed M , and m sufficiently large, the open set Ω = Ωm =
{z : u(z) > 0} then satisfies the conditions of Theorem 1.2, and meas(F ) can
be made less than any given τ > 0.

By adapting the argument of [8, p. 25] to δ-subharmonic functions, and
using the fact that the sums of the diameters of the exceptional disks for
(3.1) is arbitrarily small, we may choose sequences {s(1)

m } and {s(2)
m } so that

s(1)
m ∈ (r′m, rm); s(2)

m ∈ (rm, r
′′
m),(3.2)

s(1)
m /r′m →∞, s(1)

m /rm → 0, s(2)
m /rm →∞, s(2)

m /r′′m → 0,

and for i = 1, 2

M(s(i)
m , u) ≤ K

(
s(i)
m

rm

)ρ
T (rm, u),(3.3)

where K is independent of m and M(r, u) is the maximum modulus of u.
Here we have used the Pólya peak inequality along with the δ-subharmonic
analogue of the inequality

1

r

∫ r

1
M(r, u)dr ≤ K(α)T (αr, u),

from [8, p 25], where α > 1 and K depends only on α. We shall estimate
m(r, u) by the inequality

m(rm, u) =
1

2π

∫ 2π

0
u(rme

iθ)dθ(3.4)

≤
∫ ∫

s
(1)
m ≤|ζ|≤s(2)

m

1

2π

∫ 2π

0
G(rme

iθ, ζ)dν(ζ)dθ

+
2∑
i=1

M(s(i)
m , u)

2π

∫ 2π

0
ω(rme

iθ, |z| = s(i)
m )dθ

= I + II,
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where ν is the Riesz mass of u−, G is the Green’s function for Ω, and ω is
the harmonic measure of Ω ∩ {s(1)

m ≤ |z| ≤ s(2)
m } with respect to the circular

arcs specified.
Denote the left side of (1.4) by l. We may assume that l < π/ρ; otherwise

we are done. This assumption, the fact that meas(F ) can be made arbitrarily
small, (3.3) with the Pólya peak inequality, and (2.11) show that

II = o(T (rm)), m→∞.(3.5)

For s(1)
m ≤ r, |ζ | ≤ s(2)

m and β = π/l, we have by Theorem 1.1 that

1

2π

∫ 2π

0
G(reiθ, ζ)dθ ≤ 1

2π

∫ 2π

0
G0(reiθ, |ζ |)dθ+ εm,(3.6)

where

G0(reiθ, t) = log

∣∣∣∣∣ tβ + (reiθ)β

tβ − (reiθ)β

∣∣∣∣∣ .(3.7)

We may take
εm < 1/n(r′′m),(3.8)

where n(t) is the ν measure of the closed disk of radius t. Changing the order
of integration, integrating by parts twice and using (3.6)-(3.8) (see also [7];
p 126]), we obtain

I ≤ 1

2π

∫ 2π

0

∫ s
(2)
m

s
(1)
m

(G0(rme
iθ, t) + εm) dn(t) dθ(3.9)

≤ 1

2π

∫ s
(2)
m

s
(1)
m

(
2βrβtβ

t2β + r2β

)
N(t, U)

dt

t
−N(rm, U) + o(T (rm, U)).

We now use the Pólya peak inequality in (3.9) along with the inequality

N(t, U) ≤ (1− δ + o(1))T (t, U)

to obtain

I ≤ 2β

π
(1− δ)

(∫ ∞
0

tβrβ

t2β + r2β

(
t

rm

)ρ dt
t

+ o(1)

)
.(3.10)

A contour integration of the right side of (3.10), together with (3.4),(3.5)
and (1.3) gives that l is at least as large as the right hand side of (1.4). The
theorem is proved.

We remark that by using the appropriate Pólya peak sequence, Theorem
1.1 is true with lower order replacing order.
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