
GROWTH OF SOLUTIONS TO THE MINIMAL SURFACE

EQUATION OVER DOMAINS IN A HALF PLANE

Allen Weitsman

Abstract. We consider minimal graphs u = u(x, y) > 0 over unbounded domains D with

u = 0 on ∂D. We shall study the rates at which u can grow when D is contained in a half

plane.

I. Introduction. Let D be an unbounded domain in the half plane H = {(x, y) : x >
0,−∞ < y < ∞} and u(x, y) a positive solution to the minimal surface equation with
vanishing boundary values

(1.1)
div

∇u√
1 + |∇u|2

= 0, u > 0 in D,

u = 0 on ∂D.

If H were replaced by a sector of opening less than π, then Nitsche [N; p.256] observed
that (1.1) would have no solutions. Thus, the first nontrivial sector is the half plane.
In this case we shall be concerned with upper and lower bounds for the growth of such
solutions. In what follows we shall use complex notation z = x+ iy for convenience.

Theorem 1. Let D be a domain in a half plane whose boundary is a Jordan arc. If u
satisfies (1.1) in D, then there exist positive constants M and R such that

(1.2) Mr ≤ max
|z|=r z∈D

u(z) ≤ eMr |z| > R.

One measure of growth for solutions to (1.1) is given by the order α of u,

α = lim sup
|z|→∞ z∈D

log u(z)

log |z| .

Regarding the lower bound, the left side of (1.2) shows that u cannot have sublinear
growth. Planes given by u(x, y) = cx show that this is best possible. With the hypotheses
of Theorem 1, the weaker condition on the order α ≥ 1 follows from [W; Theorem 1.1].
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Using catenoid surfaces

u(x, y) =

(√
cosh2 Cx− C2y2 − 1

)
/C,

in the subset of the right half plane where u > 0, we see that the upper bound in (1.2) is
also sharp.

Theorem 1 indicates that there are severe limitations on the growth of solutions to
the minimal surface equation. Some results have been obtained in recent years in this
direction. In §V we shall discuss this further as well as some open problems.
II. Preliminaries. If S is a minimal graph over a simply connected region D, then S
can be parametrized in isothermal coordinates by the Weierstrass functions x(ζ), y(ζ), U(ζ)
with ζ in the right half plane H, U(ζ) = u(x(ζ), y(ζ)) and (up to additive constants)

(2.1)

x(ζ) = <e1

2

∫ ζ

ζ0

ω(ζ̃)(1−G2(ζ̃)) dζ̃

y(ζ) = <e i
2

∫ ζ

ζ0

ω(ζ̃)(1 +G2(ζ̃)) dζ̃

U(ζ) = <e
∫ ζ

ζ0

ω(ζ̃)G(ζ̃) dζ̃.

Here, G(ζ) is the stereographic projection of the Gauss map corresponding to the upper
normal, ω is analytic for all values in H, and ω has zeros at the poles of G with multiplicity
of the zero twice the order of the pole of G.

Since S is a graph, the function z(ζ) = x(ζ)+iy(ζ) is univalent and with the hypotheses
of Theorem 1 we can normalize so that z(∞) =∞. Also, since U(ζ) is a positive harmonic
function in H which is zero on the imaginary axis (cf. [LP; Corollary 1]), it follows that

(2.2) U(ζ) = C<e ζ
for some positive constant C. From the third equation in (2.1) we then have

(2.3) ω(ζ) = C/G(ζ).

In particular, G(ζ) 6= 0,∞.
Since |G(ζ)| > 1, G has nontangential limits a.e. on ∂H so we may take ζ0 = 0,

translating if necessary so that G has finite nontangential limit at 0.
By (2.1) and (2.3), z(ζ) then satisfies

(2.4)

z(ζ) = (C/2)<e
∫ ζ

0

(1/G(ζ̃)−G(ζ̃)) dζ̃ + (C/2)<e i
∫ ζ

0

(1/G(ζ̃) +G(ζ̃)) dζ̃

= (C/4)(

∫ ζ

0

(1/G(ζ̃)−G(ζ̃)) dζ̃ +

∫ ζ

0

(1/G(ζ̃)−G(ζ̃)) dζ̃

−
∫ ζ

0

(1/G(ζ̃) +G(ζ̃)) dζ̃ +

∫ ζ

0

(1/G(ζ̃) +G(ζ̃)) dζ̃ )

= (C/2)

(
−
∫ ζ

0

G(ζ̃) dζ̃ +

∫ ζ

0

1/G(ζ̃) dζ̃

)
.
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III. Proof of the lower bound in (1.2). With the hypotheses of Theorem 1, let z(ζ)
be as in (2.4). Then z(ζ) is a harmonic function in H with <e z(ζ) > 0, so if

F (ζ) =

∫ ζ

0

(1/G(ζ̃)−G(ζ̃)) dζ̃,

then

(3.1)

F (ζ) = −
∫ ζ

0

G(ζ̃) dζ̃ +

∫ ζ

0

1/G(ζ̃) dζ̃ −
∫ ζ

0

1/G(ζ̃) dζ̃ +

∫ ζ

0

1/G(ζ̃) dζ̃

= (2/C)z(ζ)− 2=m
∫ ζ

0

1/G(ζ̃) dζ̃.

Thus, F (ζ) is analytic with <e F (ζ) > 0 in H, and (cf [T; p.152]) there exists a real
constant k (0 ≤ k <∞) such that in any sector Sβ = {z : | arg z| ≤ β < π/2},
(3.2) lim

|ζ|→∞ ζ∈Sβ
F ′(ζ) = k.

It follows from (3.1) and (3.2) that

lim
|ζ|→∞ ζ∈Sβ

(1/G(ζ)−G(ζ)) = k.

Since G is the stereographic projection of the Gauss map of the surface given by u > 0, it
follows that

(3.3) lim
|ζ|→∞ ζ∈Sβ

G(ζ) = K = −(k +
√
k2 + 4)/2.

In particular,

(3.4) K ≤ −1.

Returning to (2.4), this implies that

(3.5)

z(ζ) =(C/2)

(
−
∫ ζ

0

(K + o(1)) dζ̃ +

∫ ζ

0

(1/K + o(1)) dζ̃

)
=(C/2)(−Kζ + (1/K)ζ + o(ζ))

=(C/2)((−K + 1/K)σ − i(K + 1/K)τ + o(ζ)) (|ζ| → ∞, ζ = σ + iτ ∈ Sβ).

It follows from this that as ζ →∞ along the real axis we have

(3.6) |z(σ)| < C1σ (σ > σ0)

for some positive constants C1 and σ0. Using (2.2) and (3.6) we then have

U(σ)

|z(σ)| ≥
Cσ

C1σ
(σ > σ0).

In the xy plane with z = x+ iy we then have for some R > 0,

max
|z|=r z∈D

u(z)

|z| ≥
C

C1
r > R.

�
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IV. Proof of the upper bound in (1.2). We shall use the following result from
[H1; p.826].

Theorem A. Let Ω ⊆ Ω1 = {(x, y)|x > 0,−f(x) < y < f(x)}, where f , g ∈ C[0,∞), f, g ≥
0, g(0) = 0, f(t), g(t)/t increases as t increases, and let u ∈ C(Ω) ∩ C2(Ω).

Suppose that

i) div
∇u√

1 + |∇u|2
≥ 0 in Ω,

ii) u|∂Ω∩{x}×[−f(x),f(x)] ≤ g(x) for x ∈ [0,∞),

iii) 0 < κ(x) ≡ f(x)/(g(x)) < 1 for some x1 > 0 and all x > x1,

iv) κ(x) decreases in [x1,∞).

Then u(x, y) ≤ g(x)/(1− κ(x)) for every (x, y) ∈ Ω with x > x1.

Continuing from §III , we consider two cases in (3.3). Suppose first that K 6= −1. Then
from (3.5) we find that in Sβ,

(4.1)
U(ζ)

|z(ζ)| ≤
C|ζ|

(C/2)(−K + 1/K)|ζ| cosβ
(1 + o(1)) (ζ →∞, ζ ∈ Sβ).

Also from (3.5) it follows that z(Sβ) contains the portion of the x axis x > R for some
R > 0. So from(4.1) we deduce that, in particular, on the x axis,

lim
x→0

sup
u(x)

x
≤ 1

(1/2)(−K + 1/K) cosβ
.

Let D+ be the portion of D in the first quadrant and e−iπ/4D+ the clockwise rotation
of D+ by π/4. Then e−iπ/4D+ is contained in the sector Σ = {z : −π/4 < arg z < π/4}.
We now apply Theorem A with Ω = e−iπ/4D+ and Ω1 = Σ, so f(t) = t. We may take
g(t) = t2, since on one portion of the boundary of Ω u is 0, and on the other, (3.5) and
(4.1) imply that it has at most linear growth. Taking u − k for some constant k if need
be so that ii) above holds near the origin, Theorem A then shows that u(z) cannot grow
more rapidly than |z|2 in D+. The portion D− of D in the fourth quadrant can be handled
similarly.

Thus we need only consider the case

(4.2) lim
|ζ|→∞ ζ∈Sβ

G(ζ) = −1.

Now, |G(ζ)| > 1, so we may write

(4.3) G(ζ) = −eφ(ζ),

where φ(ζ) is analytic in H, and

(4.4) <e φ > 0 and lim
|ζ|→∞ ζ∈Sβ

φ(ζ) = 0.
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Using (2.4), (4.2), (4.3), and (4.4) we may then write with ζ = σ + iτ ,

(4.5)

z(ζ) =(C/2)

 ∞∑
j=0

∫ ζ

0

φ(ζ̃)j

j!
dζ̃ −

∞∑
j=0

∫ ζ

0

(−1)jφ(ζ̃)j

j!
dζ̃


=(C/2)

2i
∞∑
j=0

=m
∫ ζ

0

φ(ζ̃)2j

(2j)!
dζ̃ + 2

∞∑
j=0

<e
∫ ζ

0

φ(ζ̃)2j+1

(2j + 1)!
dζ̃

 .

With φ = u+ iv, taking the path of integration along the real axis we have

∞∑
j=0

<e
∫ σ

0

φ(σ̃)2j+1

(2j + 1)!
dσ̃ =

∫ σ

0

u(σ̃)dσ̃ +

∞∑
j=1

<e
∫ σ

0

(u(σ̃) + iv(σ̃))2j+1

(2j + 1)!
dσ̃.

Consider the term with j = n in the sum. This is the sum of 22n+1 terms of the form
u(σ̃)k(iv(σ̃))2n+1−k. These are pure imaginary when k is even. In particular this is the
case when k = 0. Thus, we may factor one u(σ̃) from all terms and obtain∣∣∣∣<e(u(σ̃) + iv(σ̃))2n+1

(2n+ 1)!

∣∣∣∣ ≤ 22n

(2n+ 1)!
u(σ̃)|φ(σ̃)|2n.

This with (4.4) then yields

(4.6)

∞∑
j=0

<e
∫ σ

0

φ(σ̃)2j+1

(2j + 1)!
dσ̃ =

∫ σ

0

u(σ̃)dσ̃(1 + o(1))

as σ →∞.
We also need an estimate on the imaginary part. Here we have on the real axis

=m z(σ) = (C/2)

∞∑
j=0

=m
∫ σ

0

(u(σ̃) + iv(σ̃))2j

(2j)!
dσ̃

Again, in the j = n term of the sum there are 22n terms of the form u(σ̃)k(iv(σ̃))2n−k.
These are pure real when k is even. Thus the j = 0 does not appear, and every other term
contains at least one u(σ̃) factor. We then have

(4.7)

∣∣∣∣ ∞∑
j=0

=m
∫ σ

0

(φ(σ̃))
2j

(2j)!
dσ̃

∣∣∣∣ ≤ ∞∑
j=1

∫ σ

0

22j

(2j)!
u(σ̃)|φ(σ̃)|2j−1dσ̃

= o

(∫ σ

0

u(σ̃)dσ̃

)
(σ →∞).

Now, since u is a positive harmonic function in H we may represent it [T; p. 149] by

(4.8) u(σ̃) =
σ̃

π

∫ ∞
−∞

dχ(s)

|σ̃ − is|2 + cσ̃
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where χ(s) is a nondecreasing function and c ≥ 0 a constant. By (4.2) and (4.3) we have

(4.9) c = 0.

Let δ > 0 be large enough so that χ(δ)− χ(−δ) = χ0 > 0. Then, from (4.8) and (4.9)∫ σ

0

u(σ̃)dσ̃ ≥
∫ σ

0

σ̃

π

∫ δ

−δ

dχ(s)

σ̃2 + δ2
dσ̃

=
χ0

π

∫ σ

1

σ̃

σ̃2 + δ2
dσ̃

=
χ0

2π
log(σ2 + δ2).

Using this in (4.5) and (4.6) we obtain

(4.10) <e z(σ) >
Cχ0

2π
(log(σ2 + δ2))(1 + o(1)) (σ →∞).

We are now in a position again to use Theorem A. We first note that given ε > 0, then
(4.5), (4.6), and (4.7) imply that on the real axis,

z(σ) ∈ Sε σ > σ0

for some σ0 > 0.
We take D+ = z({0 < arg ζ < π

2 }) ∩ {−ε < arg z < π
2 } (0 < ε < π/8). On one portion

of ∂D+ we have u = 0, and by (2.2) and (4.10) on the other we have

u(z)

ek|z|
=
U(z(σ))

e|kz(σ)| ≤
Cσ

exp((kCχ0/2π) log(σ2 + δ2)(1 + o(1)))

= Cσσ−(kCχ0/π)(1+o(1))).

Fixing k > π/Cχ0. We then have for this portion of ∂D+,

u(z) ≤ ek|z| (|z| > R0)

for some R0 > 0.
Now let e−(π/4−ε/2)iD+ be the clockwise rotation of D+ through π/4 − ε/2 so that

e−(π/4−ε/2)iD+ ⊂ Sπ
4 + ε

2
. Using Ω1 = Sπ

4 + ε
2

so that f(t) = (tan(π4 + ε
2 ))t, and Ω =

e−(π/4−ε/2)iD+ with g(t) = t2e2kt, the upper bound in (1.2) now follows for D+ by Theo-
rem A. The upper bound for D\D+ follows similarly. �
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V. Survey of results and open questions. In this section we shall discuss general
questions regarding solutions to

(5.1)
div

∇u√
1 + |∇u|2

= 0 in D,

u = 0 on ∂D.

In §I we assumed that u > 0 for convenience. For most questions this can be assumed
by separately considering components where u is positive and negative. Nitsche’s theorem
[N; p.256] then says that (5.1) has only trivial solutions if D is contained in a sector of
opening less than π.

The hypotheses of Theorem 1 include that topological condition that D be simply
connected. It seems unlikely that this assumption is needed for the upper bound. In this
regard, Hwang has studied the growth of solutions, but only in special regions contained
in the half plane [H2], [H3], [H4].

Problem 1. Is it true that for solutions to (5.1),

(5.2) max
|z|=r z∈D

u(z) ≤ eMr |z| > R.

holds for any region contained in a half plane?

It seems likely that there should be an upper bound for the growth of solutions to (5.1)
in any region.

Problem 1a. For solutions to (5.1), is there an upper bound for the rate of growth? In
particular, does (5.2) hold for solutions over general regions?

Regarding the lower bound in (1.2), it seems likely that the condition on the boundary
being a Jordan arc can be removed.

Problem 2. For solutions u > 0 to (5.1) in D, is the lower bound in (1.2) valid for any
simply connected D?

Without the assumption that D lie in a half plane, the results in [W] show that the
order must be at least 1/2 for regions bounded by a Jordan arc. The catenoid with axis
of symmetry perpendicular to the xy plane shows that simple connectivity in this case is
needed. However, it is easy to construct examples to show that 1/2 is the correct exponent.

Example. Let z(ζ) = x(ζ) + iy(ζ) be as in §II be defined by

z(ζ) = (ζ + 1)2/2− log(ζ + 1).

Then z(ζ) maps H onto a region D. Its Jacobian is |ζ + 1|2 − |ζ + 1|−1 > 0 in H, and its
imaginary part on the boundary ζ = it, −∞ < t < ∞ is t + tan−1 t which is monotone,
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so z(ζ) is univalent in H. The height function U(ζ) corresponding to z(ζ) is 2<e ζ. Thus,
for any z ∈ D, there is a ζ ∈ H such that z = z(ζ) and we have

u(z)

|z|1/2 =
u(z(ζ))

|z(ζ)|1/2 =
2<eζ

|(ζ + 1)2/2− log(ζ + 1)|1/2
.

It seems likely that a conclusion stronger than order 1/2 should be true.

Problem 2a. Is it true that for solutions u > 0 to (5.1) in general simply connected
domains D,

Mr1/2 ≤ max
|z|=r z∈D

u(z) |z| > R

holds for some positive constants M and R?

If something is known of the geometry of D, then further constraints are known to exist
regarding the lower growth of u. If D is simply connected, then the asymptotic angle β is
defined by

β = lim sup
r→∞

measθ(D ∩ {|z| = r})

where 0 < measθ ≤ 2π is the angular measure of the arc. For regions which are not simply
connected, in classical potential theory the quantity measθ is taken to be +∞ if D contains
the whole circle |z| = r. In any case, partial results [M2; Lemma 1], [S], and [W] raise the
following question.

Problem 3. If D has asymptotic angle β ≥ π, then must the order of any nontrivial
solution u of (5.1) in D be at least π/β?

From Nitsche’s theorem, it seems likely that the case β < π is different.

Problem 3a. If D has asymptotic angle less than π is it true that (5.1) has only trivial
solutions?

The estimates for asymptotic angle are useful in dealing with some conjectures of Meeks
presented at his Clay Institute lectures.

Problem 4.(Meeks) Can there be at more than 2 disjoint domains D over which there
are nontrivial solutions to (5.1)?

Meeks’s conjecture to this is that there can be at most 2. Partial results to this are
contained in [LW], [S], and [M2; Theorem 2]. In the case where u is of sublinear growth,
(|u(x)|/|x| → 0 as x→∞ in D) perhaps there is a stronger result.

Problem 4a.(Meeks) Can there be 2 disjoint domains D with nontrivial solutions to
(5.1), and having sublinear growth?

It seems reasonable to expect that the answer is no.
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