
ON THE GROWTH OF MINIMAL GRAPHS

Allen Weitsman

Abstract. We consider minimal graphs u = u(x, y) > 0 over unbounded domains D ⊂ R2

with ∂D a piecewise smooth curve on which u = 0. We give some lower growth estimates

for u in terms of the geometry of D.

I. Introduction. Let D be an unbounded domain in R2 bounded by a piecewise
differentiable arc, and 0 ≤ Θ(r) ≤ 2π be the angular measure of the set D ∩ {|z| = r}.

In the classical potential theory of harmonic functions, an important role is played by
estimates involving Θ(r). For example, if u(z) is the harmonic measure of D ∩ {|z| < r}
with respect to D ∩ {|z| = r}, then [T; p.116] we have

Theorem A. If z ∈ D and |z| < κr/2, then

u(z) ≤ 9√
1− κ

e
−π
∫
κr
2|z|

dρ
ρΘ∗(ρ) (0 < κ < 1),

where Θ∗(r) = Θ(r) if D does not contain the entire circle |z| = r, and Θ∗(r) = +∞
otherwise.

Theorem A is valid without topological assumptions on D, but with our current as-
sumption that ∂D is a piecewise differentiable arc, we have Θ∗(r) = Θ(r) for r > r0.

The proof of Theorem A for general domains is carried out by a method of Carleman.
When the domain is simply connected, as in the current setting, we may use the methods
of path families [F; p.102] or the Ahlfors distortion theorem [Ne; p.97]. In this work we
shall rely on the method of path families.

We define the asymptotic angle of D as

(1.1) β = lim sup
r→∞

Θ∗(r).

If u > 0 is defined in D, then the order of u in D is given by

(1.2) α = lim sup
z→∞ z∈D

logu(z)

log |z| .
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When u > 0 is harmonic in D with u = 0 on ∂D, it follows easily from Theorem A that

(1.3) α ≥ π/β.

We are interested in lower bounds for growth rates for solutions to the minimal surface
equation. Precisely, we consider solutions u to

(1.4) Lu = div

(
∇u√

1 + |∇u|2

)
= 0

in D with

(1.5) u > 0 in D, u = 0 on ∂D.

In his paper [S], Spruck proved (1.3) for β ≥ π, but under stringent side conditions on
the behavior of u. These are

i) |∇u(z)| → ∞ as |z| → ∞, z ∈ D
ii) |K(z, u(z))| ≤ C/(1 + |z|2) as z →∞, z ∈ D, where K is the Gauss curvature.

The methods of [S] are nonparametric, and the conditions i) and ii) make the solutions
resemble harmonic functions sufficiently closely so that Carleman’s method can be applied.
In the present work we shall use conformal parametric methods and remove the assump-
tions i) and ii). However, here we assume that ∂D is a single arc, whereas in [S] there are
no topological constraints.

We shall take advantage of the work of V. Mikljukov [M] on the moduli of path families
on minimal surfaces. We shall prove

Theorem 1.1. Let D be an unbounded domain whose boundary ∂D is a piecewise differ-
entiable arc, and u satisfy (1.4) and (1.5). If β ≥ π, then (1.3) holds.

The case α > 1 ( β < π) is ruled out for consideration in [S] by the assumption i). It is
also not covered by our Theorem 1.1. It seems reasonable in fact to conjecture that there
are no nontrivial solutions u to (1.4) and (1.5) with β < π. This is reinforced by Nitsche’s
observation [Ni; p.256] that (1.4) and (1.5) have no nontrivial solutions if D is contained
in a sector of opening less than π.

I would like to thank Professor Spruck for interesting conversations and providing a
preprint of his paper [S].

II. Modulus of a path family. Let D be a simply connected unbounded domain in
R2. Let F denote the surface given by u(z), z = x1 + ix2 ∈ D with

ds2
F = (1 + u2

x1
)dx2

1 + 2ux1
ux2

dx1dx2 + (1 + u2
x2

)dx2
2

and
dσF =

√
1 + |∇u|2 dx1dx2
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the respective length and area elements for F .

For a family Γ of curves in D we define the modulus of Γ in the metric of F by

modFΓ = inf

∫∫
D

ρ2(z)dσF ,

the inf being taken over all nonnegative measurable functions ρ on D satisfying

inf
γ∈Γ

∫
γ

ρ(z)dsF ≥ 1.

The utility of the modulus comes from the elementary observation that it is a conformal
invariant (cf. [M; p.65]).

We shall use estimates on the modulus for path families of curves on a surface F given
by solutions u(z) to the minimal surface equation over domains D as in (1.1) and (1.2).

III. Isothermal coordinates. Let D be an unbounded domain, bounded by a simple
piecewise differentiable arc and u satisfy (1.1) and (1.2) in D. We introduce a complex
isothermal coordinate ζ for the surface F given by u over D so that the map
ζ → (x1(ζ), x2(ζ), u(x1(ζ), x2(ζ)) is a conformal mapping onto F . We take the parameter
space as the upper half plane H = {ζ : =mζ > 0} with specified positively oriented points
a, b ∈ ∂D corresponding by (x1(ζ), x2(ζ)) to (0, 0), (0, 1) respectively, and ∞→∞. The
mapping f(ζ) = x1(ζ) + ix2(ζ) is then a univalent harmonic mapping of H onto D.

Path families Γ in H correspond to path families on F which project to path families
f(Γ) in D. By conformal invariance, the modulus may be computed either in H, or with
the surface metric in D.

When expressed in the coordinates of H, then u = u(ζ) is harmonic. With the special
conditions here that u = 0 on ∂H, u reflects to a harmonic function in the entire plane;
since u > 0 in H, it must be that u is of the form c=mζ for some real constant c > 0.

IV. The modulus estimate. In this section D is an unbounded domain whose boundary
is a simple piecewise differentiable curve, and D(r, R) = D ∩ {r < |z| < R}. Fix a and b
as in §3. For sufficiently large t > 0 let S(t) be the component of D ∩ {z : |z| = t}
separating a from ∞ in D. Choosing r large enough so S(r) separates b from ∞ in D,
and R > r, let T be the subdomain of D between S(r) and S(R) . Let Γ = Γ(r, R) be
the family of curves in T that join S(r) and S(R).
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Theorem 4.1. With the above notations, suppose that

(4.1) lim sup
z→∞ z∈D

u(z)

|z| = 0.

Then

(4.2) modFΓ(r, R) ≤ 1

(logR)2

 ∫∫
D(r,R)

(1 + o(1))
dx1dx2

|z|2 ) + 2π2

 (R→∞).

Proof. Following Mikljukov, we choose the density function

ρ(z) = (|z|2 + u2(z))−1/2,

for z ∈ B = T ∩D(r, R) and ρ(z) = 0 for all the remaining values z ∈ D. Hence

(4.3) modFΓ ≤

∫∫
B

(|z|2 + u2(z))−1dσF(
inf
γ∈Γ

∫
γ
(|z|2 + u2(z))−1/2dsF

)2 .

For the denominator in (4.3), let γ be a curve in Γ, γ̃ the curve above it in F , and l(γ̃)
its length. Then ∫

γ

ρ dsF =

∫
γ̃

d|x|√
x2

1 + x2
2 + x2

3

.
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Parametrizing γ̃ with respect to arc length and using the fact that

1√
x2

1 + x2
2 + x2

3

d

ds

√
x2

1 + x2
2 + x2

3 ≤
√

(dx1/ds)2 + (dx2/ds)2 + (dx3/ds)2√
x2

1 + x2
2 + x2

3

,

we have ∫
γ̃

d|x|√
x2

1 + x2
2 + x2

3

=

∫ l(γ̃)

0

√
(dx1/ds)2 + (dx2/ds)2 + (dx3/ds)2√

x2
1 + x2

2 + x2
3

ds

≥
∫ l(γ̃)

0

d
√
x2

1 + x2
2 + x2

3/ds√
x2

1 + x2
2 + x2

3

ds ≥
∫ l(γ̃)

0

dt

t+M
≥ log(1 +

R− r
M

)

where M = max
S(r)

(|z|2 + u2(z))1/2. Thus,

(4.4)

∫
γ

(|z|2 + u2(z))−1/2dsF ≥ log

(
1 +

R − r
M

)
,

To obtain a bound for the numerator, we let

η(z) =
1

|z| arctan δ(z), δ(z) =
u(z)

|z| ,

(4.5)
1

|z|2 + u2(z)
=

1

|z|2(1 + δ2(z))
.

To begin with, we note that

ηxi =
−xi
|z|3 arctan δ(z) +

1

|z|
1

1 + δ2(z)

(
uxi
|z| −

xiu

|z|3

)
,

and so

(4.6)

2∑
i=1

u2
xi

|z|2(1 + δ2(z))
√

1 + |∇u|2
=

2∑
i=1

ηxiuxi√
1 + |∇u|2

+
arctan δ(z)

|z|3
2∑
i=1

xiuxi√
1 + |∇u|2

+
1

|z|3
δ(z)

1 + δ2(z)

2∑
i=1

xiuxi√
1 + |∇u|2

.

Also, √
1 + |∇u|2 =

1√
1 + |∇u|2

+

2∑
i=1

u2
xi√

1 + |∇u|2
,
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and thus

(4.7)
2∑
i=1

u2
xi

|z|2(1 + δ2(z))
√

1 + |∇u|2
=

√
1 + |∇u|2

|z|2(1 + δ2(z))
− 1

|z|2(1 + δ2(z))
√

1 + |∇u|2
.

Finally, by Green’s Theorem

(4.8)

∫∫
B

2∑
i=1

ηxiuxi√
1 + |∇u|2

dx1dx2 +

∫∫
B

η

2∑
i=1

∂

∂xi

uxi√
1 + |∇u|2

dx1dx2

=

∫
∂B

η∇u · n√
1 + |∇u|2

|dz|,

with n being the outer unit normal. The middle term vanishes because of the minimal
surface equation.

Using (4.5)–(4.7) in (4.8) we then have∫∫
B

dσF

|z|2 + u2(z)
=

∫∫
B

1

(1 + δ2(z))
√

1 + |∇u|2
dx1dx2

|z|2

+

∫
∂B

η∇u · n√
1 + |∇u|2

|dz|

+

∫∫
B

arctan δ(z)

2∑
i=1

xiuxi

|z|
√

1 + |∇u|2
dx1dx2

|z|2

+

∫∫
B

δ(z)

1 + δ2(z)

2∑
i=1

xiuxi

|z|
√

1 + |∇u|2
dx1dx2

|z|2

Since
2∑
i=1

xiuxi

|z|
√

1 + |∇u|2
≤ |∇u|√

1 + |∇u|2
,

this gives ∫∫
B

dσF

|z|2 + u2(z)
≤
∫∫

B

1

(1 + δ2(z))
√

1 + |∇u|2
dx1dx2

|z|2

+

∫
∂B

η∇u · n√
1 + |∇u|2

|dz|
|z|

+

∫∫
B

arctan δ(z)
|∇u|√

1 + |∇u|2
dx1dx2

|z|2

+

∫∫
B

δ(z)

1 + δ2(z)

|∇u|√
1 + |∇u|2

dx1dx2

|z|2 .
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Since ∫
∂B

η∇u · n√
1 + |∇u|2

|dz|
|z| ≤

∫
∂B

η|∇u|√
1 + |∇u|2

|dz|
|z| ≤ 2π2,

and by (4.1) δ(z)→ 0, we have∫∫
B

dσF

|z|2 + u2(z)
≤
∫∫

B

(1 + o(1))
dx1dx2

|z|2 + 2π2 (R→∞).

Combining this with (4.3) and (4.4) we obtain (4.2). �

We now use the conformal invariance of the mapping H → F as described in §3 together
with the estimate of Theorem 4.1. With a, b, f(ζ) as in §3, continuing with [M; p.67]
we take r > 0 so that S(r) separates b and ∞ in D. For t ≥ r, let S∗(t) = f−1(S(t)) so

that S∗(t) has endpoints on ∂H in the ζ plane. Let l(t) denote the Jordan curve formed

by S∗(t) along with its reflection across ∂H and G the annular domain between l(r) and

l(R). Let Γ̃(r, R) be the family of curves separating l(r) and l(R) in G. Then since l(r)
and l(R) separate 0 (= f−1(a)) and 1 (= f−1(b)) from ∞, the modulus (in the Euclidean
metric) satisfies [LV; pp.32, 56 and 61 (2.10)]

mod Γ̃(r, R) ≤ 1

2π
log(16(P + 1)),

where

P = min
ζ∈l(R)

|ζ|.

Now let Γ∗(r, R) be the curves joining l(r) and l(R) inG. Then mod Γ∗(r, R) = 1/mod Γ̃(r, R).
This follows from conformal invariance and the fact that this is the case for a true annulus
[A; pp. 12,13]. Therefore,

(4.9) modΓ∗(r, R) ≥ 2π

log(16(m(R) + 1))
.

Let

m(t) = min
|z|=t
z∈D

|ζ(z)|.

Then by (4.9), the symmetry principle [A; p.16], and conformal invariance,

(4.10) modFΓ(r, R) ≥ π

log(16(m(R) + 1))
.

Thus, (4.10) taken together with Theorem 4.1 yields
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Theorem 4.2. With the above notation and conventions,,

lim
R→∞

inf
logm(R)

(logR)2

(∫∫
D(r,R)

(1 + o(1))
dx1dx2

|z|2 + 2π2

)
≥ π.

V. Proof of Theorem 1.1. We assume for some β ≥ π that (1.3) fails. Then

(5.1) u(z) = O(|z|π/β−ε) (ε > 0, z →∞, z ∈ D),

so (4.1) holds and we may apply Theorem 4.2. We have

(5.2)

π ≤ logm(R)

(logR)2

(∫∫
D(r,R)

(1 + o(1))
dtdθ

t
+O(1)

)
≤ logm(R)

(logR)2

(∫ R

r

β
dt

t
(1 + o(1)) +O(1)

)
≤ logm(R)

(
β(logR)−1(1 + o(1))

)
(R→∞)

By (5.2) we have

(5.3) R ≤ m(R)β/π+o(1).

With s = m(R),

(5.4) max
|ζ|=s
|f(ζ)| ≤ R.

Putting together (5.1), (5.3), (5.4), and using the maximum principle, we obtain

(5.5)
max

|ζ|=s ζ∈H
u(f(ζ)) ≤ max

|z|=R z∈D
u(z)

≤ O(Rπ/β−ε) = O(((m(R)β/π+o(1))π/β−ε) = o(|s|) (s→∞).

Now, our hypothesis implies that u(f(ζ) is harmonic and positive in H and 0 on ∂H.
As pointed out in §3, this implies that u(f(ζ)) = c=mζ. By (5.5) however, we have c = 0,
a contradiction. �
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