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A NOTE ON THE PARABOLICITY OF MINIMAL
GRAPHS

Allen Weitsman

Abstract. We show that minimal graphs over finitely connected domains are
parabolic.

1. Introduction

Let M be a noncompact Riemann surface with nonempty boundary β (cf. [AS;
p. 117]). There are many equivalent definitions of parabolicity of M (cf. [CKMR],
[LP], [MP], [P]); for example, M is parabolic if bounded harmonic functions on M
are determined by their boundary values on β. If M were the right half plane with
β the imaginary axis, then M would be parabolic, whereas if β were the positive
imaginary axis it would not be.

In §1- §3 we shall confine ourselves to smooth boundaries as has been tradi-
tionally done in the study of parabolicity of minimal surfaces with boundary. We
shall refer to this as the ”classical sense”.

In §4 we shall extend the results by giving a variant more suitable for applica-
tions to general boundary value problems.

A convenient way to define parabolicity ofM is in terms of its harmonic measure
ω(x,E), x ∈M , E ⊂ β (cf. [LP], [P]). For an interval I ⊂ β and an open set Ω ⊂M
having compact closure in M ∪ β, define ωΩ(x, I) to be the bounded solution to

∆ωΩ(x, I) = 0 x ∈ Ω,

ωΩ(x, I) = 1 x ∈ β ∩ Io,
ωΩ(x, I) = 0 x ∈ β\I.

Then, if Ω ranges over an expanding sequence {Ωk} such that ∪Ωk = M , the
corresponding ωΩk converge to a harmonic limit ω(x, I). If ω(x, β) ≡ 1, then
ω(x, I) serves as harmonic measure. See [P; §1] for further details. In particular M
is parabolic if ω(x, β) ≡ 1.

In [CKMR] it is proved that if M is a connected properly immersed minimal
surface in the upper half space x3 ≥ 0 of R3, then M is parabolic; in particular, if
M is a proper minimal graph in R3 which is bounded from below, it is parabolic.
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In [LP] it is proved that if M is a proper minimal graph lying above a vertical
negative half catenoid then M is parabolic. As usual, proper here means that the
inclusion map of the surface in R3 is proper, that is, the inverse image of a compact
set is compact.

It has been conjectured by Meeks that proper minimal graphs are parabolic in
general. We have the following

Theorem 1.1. Let M be a proper surface with nonempty boundary β given by
the graph of a solution u to the minimal surface equation over a simply connected
plane domain D. If ω is as defined above, then ω(x, β) ≡ 1 on M .

We then have

Corollary 1.1. If M is a proper minimal graph in R3 over a simply connected
domain D, then M is parabolic.

2. Proof of Theorem 1.1

Proof. We parametrize M with isothermal coordinate ζ in the unit disk ∆.
Specifically, then M is given by (f(ζ), U(ζ), where f : ∆→ D is a univalent planar
harmonic mapping and U(ζ) = u(f(ζ)).

In the Weierstrass representation we may write

f(ζ) = h(ζ) + g(ζ),(2.1)

where g and h are analytic in ∆ and

|h′(ζ)| > |g′(ζ)| ζ ∈ ∆.(2.2)

The height function U(ζ) can then be given by

U(ζ) = <e2i
∫ √

h′(ζ)g′(ζ)dζ.(2.3)

Now if ω(z, β) is a bounded harmonic function on M with ω(z, β) ≡ 1 on β, and

µ(ζ) = ω(f(ζ), β),(2.4)

then µ is harmonic in ∆. Since µ is bounded, it has radial limits a.e. on ∂∆. We
wish to show that for a.e. θ ∈ [0, 2π),

lim
r→1−

µ(reiθ) = 1,(2.5)

from which it will follow that µ(ζ) ≡ 1 in ∆.
Let T be the set of θ for which

lim
r→1−

µ(reiθ) = α = α(θ) 6= 1.(2.6)

In order to analyze the boundary behavior of µ, we must take a closer look at
f(ζ) and U(ζ).

In [AL; p. 2], Abu-Muhanna and Lyzzaik showed that with h the analytic part
of a univalent harmonic mapping as in (2.1),∣∣∣∣h′′(ζ)h′(ζ)

∣∣∣∣ ≤ c

1− |ζ| ζ ∈ ∆(2.7)
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for some constant c, that is, log h′ is a Bloch function. This together with (2.2)
and a result of Clunie and MacGregor [CM] (cf. also [Mak]) imply that for almost
every θ, ∫ 1

0

|h′(reiθ)|dr <∞ and

∫ 1

0

|g′(reiθ)|dr <∞.(2.8)

Therefore, h and g and hence f have finite radial limits a.e. on ∂∆. By (2.3) it
also follows that U also has finite radial limits a.e.

Let rn → 1−, ζn = rne
iθ, and suppose that z∗ is an accumulation point of

{f(ζn)}. Since f is a homeomorphism, z∗ /∈ D, so either z∗ ∈ β or {U(ζn)} is
unbounded. In the first case, from (2.4) and (2.6) it follows that θ /∈ T , and in the
latter case, the set of all such θ has measure 0.

The only other possibility is that f(ζn)→∞ as ζn → eiθ. However, again the
set of such θ has measure 0. Thus, the set T for which (2.6) holds has measure 0.
This means that (2.5) holds a.e. and µ ≡ 1. �

3. Finitely connected domains

It is easy to extend the results of §1 to domains which are finitely connected,
that is domains having finitely generated fundamental group.

Theorem 3.1. Let M be a proper surface with nonempty boundary which is the
graph of a solution u : R2 → R of the minimal surface equation, and D is finitely
connected. Then M is parabolic in the classical sense.

Proof. By hypothesis ∂D has a finite number of compact Jordan curve com-
ponents γ1, γ2, ...., γn. Suppose first that ∂D\ ∪nk=1 γk 6= φ. Then we introduce
disjoint arcs βj , j = 1, ...., n joining γj with ∂D\ ∪nk=1 γk. We may take a neigh-

borhood N of (∪nk=1γk)∪ (∪nk=1βk) with smooth boundary such that N is compact

and D′ = D\N is simply connected. If M ′ is the portion of M above D′, then by
Theorem 1.1, the closure of M ′ in M is parabolic. Thus [P; p. 167], M is parabolic.

Otherwise, ∂D = ∪nk=1γk. Take R large enough so that ∪nk=1γk is contained
in the disk DR of radius R centered at the origin. Let ΓR be the circle of radius
R and ωR denote the harmonic function on the portion ∆R of M above D ∩DR

which is 1 on the portion of M corresponding to ∪nk=1γk, and 0 on the portion
above ΓR. Then, |∇ωR| gives the extremal for the modulus of the family of curves
in ∆R joining ∪nk=1γk to ΓR [M; p. 253]. However, [M; p. 258] the moduli tend to
0 as R→∞. This implies that |∇ωR| → 0 which establishes the parabolicity of M
in this case as well. �

4. Extensions

As remarked in §1, the traditional setting for the study of parabolicity is very
restrictive. Another definition has been proposed by Fang and Hwang for their
study [FH]. Let M be the graph of a solution to the minimal surface equation over
a domain D and {xn} a sequence of points in M which is a Cauchy sequence in the
surface metric. Two Cauchy sequences {xn} and {yn} are considered equivalent if
d(xn, yn) → 0 where d is the distance on the surface given by the surface metric.
Then the boundary γ will consist of those equivalence classes of Cauchy sequences
which do not converge to points in M . Then the distance function d can be extended
to M ∪ γ in the obvious way. With this, the definition given in [FH] is as follows.
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Definition. With M and γ as above, M∪γ is parabolic if there are no nonconstant
nonnegative bounded subharmonic functions vanishing on γ.

It is easy to see that a surface which is parabolic in the sense of §1 is parabolic
in the current sense.

We next extend the Corollary of §1 to the current setting, and allow D to be
finitely connected. This first requires a restating the result of Clunie and MacGregor
used in §1 in slightly more generality.

Theorem A. Let h be a locally analytic univalent function in the unit disk ∆
such that for some constant C,∣∣∣∣h′′(z)

h′(z)

∣∣∣∣ ≤ C

1− |z| z ∈ ∆.(4.1)

Then, for any 0 < β < π and δ > 1/2,

lim
z→eiθ z∈Sβ(θ)

log |h′(z)|
(log(1/(1− |z|)δ = 0(4.2)

for almost all θ, where Sβ(θ) is the Stolz sector of opening β at eiθ.

We shall indicate the necessary modifications for the proof of Theorem A in §5.

Theorem 4.1. Let M be a minimal graph over a domain D which is finitely
connected. If γ is defined as above, then M ∪ γ is parabolic.

Proof. We first dismiss point components in the complement of D. In fact
points are removable for solutions to the minimal surface equation [B], so any
bounded subharmonic function in a punctured neighborhood of the point has a
removable singularity. Thus we may assume that the components of the complement
of D are nondegenerate continua.

Now M is homeomorphic to the plane region D so it is schlichtartig [S; p. 219]

and hence there exists a conformal mapping F : ∆̃→ M [S; p. 224] where ∆̃ may

be taken as Ĉ\ ∪nj=1 ∆j and the {∆j} are a finite collection of disjoint open disks

(cf. [T; p. 424]).
Corresponding to the ∆j = {z : |z − zj| < rj} j = 1, ...., n, let Aj = {z : rj <

|z− zj| < ρj} be disjoint annuli, and ARj = {z ∈ Aj : −3π/4 < arg(z− zj) < 3π/4}
and ALj = {z ∈ Aj : π/2 < arg(z − zj) < 3π/2}. We can map the ARj and ALj one
to one conformally onto the unit disk and apply the procedure of §1. Consider for
example ARj , and let φ denote a 1-1 conformal map of ARj onto the unit disk ∆. If

we write F (z) = (f(z), U(z)) where f is a univalent harmonic mapping and restrict

it to ARj , then we may write f(φ−1(ζ)) = h(ζ) + g(ζ), ζ ∈ ∆, and (2.7) holds as
before.

By Theorem A, for a given 0 < β < π and δ > 1/2, then (4.2) holds for h, and
by (2.2) also for g. Since φ maps the open arc lj of |z− zj | = rj in ∂ARj onto an arc
of ∂∆, it extends analytically across the arcs. Transferring the statement (4.2) and
its counterpart for g over to lj , and letting Tβ(θ) denote the ”exterior Stolz angle”,
we obtain

lim
z→zj+rjeiθ

z∈Tβ(θ)

log |h′(z)|
(log(1/(|zj + rjeiθ − z|)δ

= 0, lim
z→zj+rjeiθ

z∈Tβ(θ)

log |g′(z)|
(log(1/(|zj + rjeiθ − z|)δ

= 0

(4.3)
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outside a set of one dimensional Hausdorff measure 0.
Applying this to each ARj and ALj we obtain that (4.3) holds for each ∂∆j , j =

1, ...., n outside a set of one dimensional Hausdorff measure 0.
Let ψ be a proper n to 1 mapping of ∆̃ onto the unit disk ∆ as in [T; p. 418].

By (4.3) and again by conformality at the boundary, if we take any fixed branch in
a neighborhood of ζ ∈ ∂∆, then outside a set of one dimensional Hausdorff measure
0, h ◦ ψ−1 and g ◦ ψ−1 satisfy (4.2). It follows from this that in a neighborhood of
every eiθ ∈ ∂∆, any branches of f ◦ ψ−1 and U ◦ ψ−1 have finite radial limits a.e.

Let v be a function which is bounded and subharmonic on M , and vanishes on
γ. Define the subharmonic function µ by

µ(w) = max
ψ(ζ)=w

v ◦ F (ζ) w ∈ ∆.

Since ψ is proper and each branch of F ◦ψ−1(= (f ◦ψ−1, U ◦ψ−1)) has finite radial
limit a.e., it follows that for 0 < θ ≤ 2π,

lim
r→1−

µ(reiθ) = 0 a.e.(4.4)

Now, in any disk ∆ρ = {|w| ≤ ρ < R < 1},

µ(w) ≤ 1

2π

∫ 2π

0

(R2 − r2)µ(Reiθ) dθ

R2 − 2Rr cos(θ − ϕ) + r2
, (w = reiϕ).(4.5)

Fixing ρ and letting R → 1−, then (4.4) and (4.5) imply that µ(w) ≤ 0 in ∆ρ .
Since ρ < 1 was arbitrary, the inequality holds in ∆. This immediately implies that
v ≤ 0 on M . �

5. The Clunie-MacGregor theorem

Theorem 3 of [CM] is proved for univalent functions and radial limits. We
indicate the modifications needed to carry this over to locally univalent functions
satisfying (4.1) and with (4.2) holding in Stolz angles. The result in [CM] of interest
is Theorem 3. One step in the proof of Theorem 3 relies on Theorem 1 of [CM], but
the proof of Theorem 1 goes over without change using only (4.1). The fact that
local univalence and (4.1) are only needed in these proofs was mentioned already
in [Mac]. With the hypothesis of local univalence on an analytic function h with
(4.1) this gives, for given λ > 0,∫ 2π

0

| log |h′(reiθ)||λdθ ≤ C(log(1/(1− r))λ/2 0 ≤ r < 1.(5.1)

Using (4.1), the proof of Theorem 3 goes through yielding (4.2) for radial limits
instead of limits in Stolz angles. However, suppose that eiθ ∈ ∂∆ is a point for
which (4.2) holds in the radial sense. Given 0 < β < π, let Γβ(r) be the circular
arc {reit : θ − β(1 − r) < t < θ + β(1 − r)}. For ζ ∈ Γβ(r), if Γβ(r, ζ) denotes the
subarc of Γβ(r) from reiθ to ζ, then by (4.1)

| log |h′(ζ)| − log |h′(reiθ)|| ≤
∫

Γβ(r,ζ)

∣∣∣∣h′′(reit)h′(reit)

∣∣∣∣ r dt ≤ Cβ(1 − r)
1− r = Cβ,

so (4.2) for the radial point implies the same for all ζ ∈ Γβ(r). Thus (4.2) holds in
Stolz angles for a.e. θ.
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