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1. Introduction and Definitions

In the classical Nevanlinna theory of meromorphic functions (cf. [H]), a central role

is played by the lemma of the logarithmic derivative [H; p.36]. This was generalized by

Vitter [V] to several complex variables, and to subharmonic functions by Rudin [R]. In

the present work, we shall prove the lemma of the logarithmic derivative in the setting of

value distribution for minimal surfaces as developed by Beckenbach and his students in

the 1970’s [B], [BC], [BH], [BET]. This theory generalized the original Nevanlinna theory

to minimal surfaces in Rn. More recently, Fujimoto [F] extended many of these results to

minimal immersions from M to Rn where M is a Riemann surface of parabolic type.

In this paper we shall be primarily concerned with minimal surfaces immersed in R3, or

more precisely with meromorphic minimal surfaces which are a generalization introduced

by Beckenbach.

Classically, a minimal surface is defined to be a surface whose mean curvature vanishes

at every point. We will associate with a minimal surface, a representation in parametric

form given by

(1) ~X(u, v) = (x1(u, v), x2(u, v), x3(u, v))

which is defined in a domain Ω ⊂ R2 and where xj(u, v) is a twice continuously differen-

tiable real-valued function for j = 1, 2, 3.

By a theorem of Weierstrass [10; p.27], a surface ~X(u, v) given locally in terms of

isothermal parameters in a domain Ω, that is

(2) E = G = λ(u, v) and F = 0
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where

(3) E =
3∑
j=1

(
∂xj

∂u

)2

, G =
3∑
j=1

(
∂xj

∂v

)2

, and F =
3∑
j=1

∂xj

∂u

∂xj

∂v
,

is minimal if and only if the coordinate functions are harmonic.

A surface ~X(u, v) is regular or unramified provided λ(u, v) 6= 0 for all (u, v) ∈ Ω. As

a notational convention, for any two either real or complex vectors ~a = (a1, a2, a3),~b =

(b1, b2, b3), we will define

~a · ~b =

3∑
j=1

ajbj,

and

||~a|| =

 3∑
j=1

a2
j


1
2

.

In this notation, λ(u, v) = || ~Xu(u, v)||2. We will also be assuming throughout this paper

that all minimal surfaces are orientable and, unless otherwise stated, may be ramified.

The Gauss map is defined to be the map of the parameter space into the unit sphere

which assigns to each point in Ω, the point on the sphere with the identical normal vector.

The (u, v)-plane can be naturally identified with the complex plane C with parameter

z = u+ iv. We will thus be referring to the parameter space Ω as a subset of the complex

plane. We will also denote the disk {|z| < r} in the complex plane by D(0, r).

If Ω ⊂ C is a domain, we shall define a minimal surface in Ω to be a map ~X(z) : Ω→ R3

which satisfies (2) and (3) for all z ∈ Ω. With this convention, the surface may be ramified

or even constant. By (3), in any simply connected subdomain Ω′ ⊂ Ω we can write

(4) ~X(z) = < ~F (z) = <(F1(z), F2(z), F3(z))

where Fj(z) is analytic in Ω′ for j = 1, 2, 3. Using this notation, condition (2) becomes

(5) ~F ′(z) · ~F ′(z) ≡ 0,

and the induced metric is given by λ(z) =

3∑
j=1

|F
′

j (z)|2, where | | is the standard complex

absolute value. If ~X(z) is a nonconstant minimal surface, then Fj(z) is a nonconstant

analytic function for at least one j, and thus the places where λ(z) = 0 are isolated. By

deleting these branch points from the domain Ω′ we obtain a regular minimal surface in this
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punctured region. Much of the recent work on minimal surfaces has assumed regularity at

all points; however, the Gauss map extends continuously to the branch points [4; p.27] in

the case of nonconstant minimal surfaces, and so the normal vector is always defined.

We now summarize the concept of a meromorphic minimal surface as defined by Beck-

enbach and Hutchinson [4].

Suppose ~X(z) is a minimal surface in a punctured disk

Ω∗ε (z0) = {z : 0 < |z − z0| < ε}.

In Ω∗ε (z0), using (4), we can write the surface in the form of a series

~X(z) = <
(
~c log(z − z0) +

∞∑
k=−∞

~ck(z − z0)
k

)

where ~c ∈ R3 and ~ck ∈ C3. If we let ~ck = ~ak − i~bk where ~ak,~bk ∈ R3 and let z − z0 = reiθ,

then

~X(z) = <
(
~c log(reiθ) +

∞∑
k=−∞

(~ak − i~bk)(reiθ)k
)

= ~c log r +
∞∑

k=−∞
rk(~ak cos kθ +~bk sin kθ).(6)

We can arbitrarily set the constant ~b0 equal to ~0; all other constants are uniquely deter-

mined. In this case, we say the surface has an isolated singularity at z0. If

(7) ||~ak||2 6= 0

for infinitely many negative k, then z0 is an essential singularity. Otherwise, let τ be the

smallest index for which (7) holds. If τ < 0 then we say ~X(z) has a pole of order |τ | at

z0. If τ ≥ 0, the singularity can be removed by defining ~X(z) = ~a0. Clearly, τ > 0 implies
~X(z) has a zero of order τ at z0. If τ = 0, then either ~an = ~0 for all n > 0, (in which case
~X is a constant minimal surface) or if t is the smallest positive index for which (7) holds,

then we say ~X(z) has an ~a0-point of order t at z0. If ~X(z) has a pole of order −t > 0 or

an ~a0-point of order t > 0, then (5) implies

(8) ||~at||2 = ||~bt||2 6= 0 and ~at ·~bt = 0.

If (7) does not hold for any k < 0, then (5) implies

(9) ~c = ~0,
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so no singularities are purely logarithmic.

With these definitions, if Ω ⊂ C is a domain, we can define a meromorphic minimal

surface in Ω to be a surface which is minimal in Ω except for poles. If Ω is the whole plane,

then either ~X(z) has no poles, in which case we call it an entire minimal surface, or it has

poles and is called a meromorphic minimal surface. We see that a meromorphic function

is a special case of a meromorphic minimal surface. Indeed, if f(z) is a meromorphic

function, then

(10) ~X(z) = (<f(z),=f(z), 0)

gives a minimal surface in R3 contained in the plane x3 = 0. The branch points of this

surface correspond to the points where f ′(z) = 0, the critical points of the function f.

Beckenbach [2; p.21] proved that if ~X is a meromorphic minimal surface and has a pole

of order −t > 0 at a point z0, then in a neighborhood of z0,

|| ~X(z)||2 = ||~at||2r2t + o(r2t)

where z − z0 = reiθ. He also proved that if ~X has an ~a0-point of order t > 0 at a point z0,

then in a neighborhood of z0,

|| ~X(z)− ~a0||2 = ||~at||2r2t + o(r2t).

These results show that the poles and the ~a0-points of a non-constant meromorphic minimal

surface are isolated. Thus if a meromorphic minimal surface is constant on an open set,

the surface is constant.

Once it is known that the image points are isolated, a Nevanlinna theory can be

developed. Beckenbach applied the ideas of Nevanlinna to minimal surfaces and generalized

many of the theorems to these surfaces. His results apply to minimal surfaces defined in

Rn; however, we will restrict ourselves to minimal surfaces defined in R3. The main starting

point, as with the classical theory, is the Poisson-Jensen formula, the proof of which is

found in [14; p.14].

Theorem A. Let ~X(z) be a nonconstant meromorphic minimal surface in |z| ≤
R, 0 < R < ∞. Let 0 < |z1| ≤ |z2| ≤ · · · ≤ |zN | < R be the non-zero zeros of ~X(z)

repeated according to multiplicity and 0 < |ζ1| ≤ |ζ2| ≤ · · · ≤ |ζM | < R be the non-zero

poles of ~X(z). If ~X(z) has a zero or pole at the origin, let t be the order of the zero or −t
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be the order of the pole; otherwise, let t = 0. Then for |z| < R,

log || ~X(z)|| = 1

2π

∫ 2π

0

log || ~X(Reiθ)|| P (Reiθ, z) dθ

− 1

2π

∫ R

0

1

s

[∫∫
B(s,z)

∆ log || ~X(w)||dA
]
ds−

N∑
k=1

log

∣∣∣∣ R2 − z̄kz
R(z − zk)

∣∣∣∣(11)

+

M∑
k=1

log

∣∣∣∣ R2 − ζ̄kz
R(z − ζk)

∣∣∣∣+ t log
∣∣∣ z
R

∣∣∣
where

P (Reiθ, reiφ) =
R2 − r2

R2 − 2rR cos(θ − φ) + r2

and

B(s, z) =

{
w :

R2|z − w|
|R2 − z̄w| ≤ s

}
.

We now recall the standard Nevanlinna functions for meromorphic minimal surfaces

as defined in [4].

Let R3 = R3∪{∞} and let ~X(z) be a meromorphic minimal surface from |z| < R ≤ ∞
into R3. If ρ < R and ~a ∈ R3, we let n(ρ,~a, ~X) be the number of solutions of ~X(z) = ~a

counted according to multiplicity in |z| < ρ and let n(ρ,∞, ~X) be the number of solutions

of ~X(z) = ∞ also counted according to multiplicity in the same disk. If ~X(0) = ~a or
~X(0) =∞, then let n(0,~a, ~X) or n(0,∞, ~X) be the multiplicity of those points respectively.

If r < R, we define the counting function by

(12)

N(r,∞, ~X) =

∫ r

0

n(ρ,∞, ~X)− n(0,∞, ~X)

ρ
dρ+ n(0,∞, ~X) log r,

N(r, a, ~X) =

∫ r

0

n(ρ, a, ~X)− n(0, a, ~X)

ρ
dρ+ n(0, a, ~X) log r.

The proximity function for ~X(z) is defined by

(13)

m(r,∞, ~X) =
1

2π

∫ 2π

0

log+ || ~X(reiθ)|| dθ,

m(r, a, ~X) =
1

2π

∫ 2π

0

log+ 1

|| ~X(reiθ)− a||
dθ

where log+ x = max (log x, 0).
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In summarizing Beckenbach’s results, we first note the second term on the right-hand-

side of equation (11) does not appear in the version of the same theorem for meromorphic

functions. If f(z) is a meromorphic function, then the Cauchy-Riemann equations imply

∆ log |f(z)| ≡ 0 for any z which is not a zero or pole of f. This new term in (11) gives rise

to a new function, called the visibility function, which is defined by

(14)

H(r,∞, ~X) = 0

H(r,~a, ~X) =

∫ r

0

h(ρ,~a, ~X)

ρ
dρ

where

(15)

h(ρ,~a, ~X) =
1

2π

∫∫
D(0,ρ)

∆ log || ~X − ~a|| dA

=

∫∫
D(0,ρ)

|| ~X − ~a||2|| ~Xu||2 −
[
( ~X − ~a) · ~Xu

]2
−
[
( ~X − ~a) · ~Xv

]2
π|| ~X − ~a||4

dA

=

∫∫
D(0,ρ)

(( ~X − ~a) · ~N)2

π|| ~X − ~a||4
|| ~Xu||2 dA

=

∫∫
D(0,ρ)

cos2 θ

π|| ~X − ~a||2
λ dA

and θ is the angle between the vectors ~X(z)− ~a and the unit normal

~N(z) =
~Xu(z)× ~Xv(z)

λ(z)
.

The notion of visibility arises since geometrically, H(r,~a, ~X) can be interpreted as mea-

suring the amount of the image of |z| < r under ~X which can be seen from ~a. Notice

H(r,~a, ~X) is large if θ = 0 (it is easy to “see” the surface near ~X(z) from a point on

the normal vector), and small if θ =
π

2
(it is hard to “see” the surface near ~X(z) from a

point on the tangent plane). Also note if ~a goes to infinity along a ray from ~X(z), then

the numerator in (15) remains constant while the denominator goes to infinity. Thus the

visibility goes to 0 corresponding to the notion that it is harder to “see” the surface from

farther away. If θ ≡ π

2
for all z, then the surface is planar and ~a lies in the plane and we

are back in the situation (10). Finally, we define the Nevanlinna characteristic of ~X(z) by

T (r, ~X) = m(r,∞, ~X) +N(r,∞, ~X) +H(r,∞, ~X).
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Noting the identity log x = log+ x − log+ 1

x
, then given ~a ∈ R3, we can rewrite the

Poisson-Jensen formula for the surface ~X(z)− ~a to obtain Nevanlinna’s first fundamental

theorem for minimal surfaces [4; p.38]

Theorem B. Let ~X(z) be a nonconstant meromorphic minimal surface. Then for

each ~a ∈ R3,

(16) T (r, ~X) = m(r,~a, ~X) +N(r,~a, ~X) +H(r,~a, ~X) + C(r,~a, ~X)

where C(r,~a, ~X) is a bounded function of r for each ~a.

Beckenbach and Cootz [3] then generalized Nevanlinna’s second fundamental theorem

to minimal surfaces. First, let us define the ramification function, which counts multiple

points of the surface, by

N1(r, ~X) = N(r, 0, ~Xu)−N(r,∞, ~Xu) + 2N(r,∞, ~X).

Note that if the surface is regular, N(ρ, 0, ~Xu) = 0. Now define a new curvature term

H1(r, ~X) = H(r, 0, Xu) =

∫ r

0

1

2π

 ∫∫
D(0,ρ)

∆ log [λ(z)]
1
2 dA

 dρ
ρ

=

∫ r

0

1

2π

 ∫∫
D(0,ρ)

(−λ(z) K(z)) dA

 dρ
ρ

where K(z) denotes the Gaussian curvature of the surface ~X(z). The second fundamental

theorem for minimal surfaces [3] is

Theorem C. Let ~X(z) be a nonconstant meromorphic minimal surface. Let ~a1,~a2, . . . ,~aq
be q points in R3 and let k > 0. Then

(17)

q∑
j=1

m(r,~aj, ~X) +m(r, ~X) ≤ 2T (r, ~X)−N1(r, ~X)−H1(r, ~X) + S(r, ~X)

where

(18) S(r, ~X) = O(log rT (r, ~X))

for r outside an open set ∆k such that∫
∆k

rkdr <∞.
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The function S(r, ~X) plays the role of an insignificant error term similar to the corre-

sponding term in the classical theory.

With the definition of the Nevanlinna characteristic and the second fundamental the-

orem in hand, deficiencies of minimal surfaces can be defined. If ~X(z) is a nonconstant

meromorphic minimal surface, we define

δ(~a, ~X) = lim
r→∞

m(r,~a, ~X)

T (r, ~X)

to be the deficiency of the point ~a ∈ R3. A point ~a is said to be deficient if δ(~a, ~X) > 0.

By the second fundamental theorem, the sum of the deficiencies for all points must be

bounded by 2 (i.e.
∑
~a∈R3

δ(~a, ~X) ≤ 2) and therefore the number of deficient values must be

countable. Since N(r, ~X) = 0 for an entire minimal surface, ∞ is a deficient value with

deficiency 1.

The order of a meromorphic minimal surface ~X is given by

(19) ρ( ~X) = lim
r→∞

logT (r, ~X)

log r
.

The hyperspherical characteristic function for minimal surfaces (analogous to the spher-

ical characteristic function developed by Ahlfors [1] and Shimizu [12]) was defined by Beck-

enbach and Hutchinson [4] using stereographic projection in R3. The hyperplane x4 = 0

(where the minimal surface lies) is mapped onto the hypersphere S : ||~x− ~c||2 = 1
2 , where

~c = (0, 0, 0, 1
2
) ∈ R4 and the chordal distance is used as the metric. If ~x and ~y are finite

points in R3, we define the chordal distance between their images on S by

d(~x, ~y) =
||~x− ~y||

(1 + ||~x||2) 1
2 (1 + ||~y||2) 1

2

,

and letting ~y →∞ gives

d(~x,∞) =
1

(1 + ||~x||2) 1
2

.

The hyperspherical proximity function is defined as

m◦(r,~a, ~X) =
1

2π

∫ 2π

0

log
(1 + || ~X(reiθ)||2) 1

2 (1 + ||~a||2) 1
2

|| ~X(reiθ)− ~a||
dθ

m◦(r,∞, ~X) =
1

2π

∫ 2π

0

log(1 + || ~X(reiθ)||2) 1
2 dθ.
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and the hyperspherical characteristic function is defined as

T ◦(r, ~X) = m◦(r,∞, ~X) +N(r,∞, ~X) +H(r,∞, ~X) + C(∞, ~X)

where C(∞, ~X) is a constant chosen so that the right-hand side tends to 0 as r → 0. The

Ahlfors-Shimizu form of the first fundamental theorem for nonconstant minimal surfaces

is

(20) T ◦(r, ~X) = m◦(r,~a, ~X) +N(r,~a, ~X) +H(r,~a, ~X) + C(~a, ~X)

where C(~a, ~X) is a constant chosen so that the right-hand side tends to 0 as r → 0. Beck-

enbach and Hutchinson showed that |m◦(r,∞, ~X)−m(r,∞, ~X)| = O(1), so the difference

T ◦(r, ~X)−T (r, ~X) is a bounded function of r, so the two characteristics are interchangable.

2. The Lemma of the Logarithmic Derivative

Beckenbach and Cootz used the differential-geometric approach to prove the second

fundamental theorem. In this method, one defines a positive metric σ(a) on the hyper-

sphere S which is continuous at all but finitely many singular points and has unit total

mass. The Ahlfors-Shimizu form of the first fundamental theorem (20) is multiplied by

this metric and the resulting equation is integrated over S to give

(21) T (r, ~X) = m◦σ(r, ~X) +Nσ(r, ~X) +Hσ(r, ~X) + Cσ(~a, ~X)

where

m◦σ(r, ~X) =

∫
S
m◦(r,~a, ~X) σ(~a) dVS

and similar expressions exist for the other quantities in (21). Following the Ahlfors ap-

proach, Beckenbach and Cootz used a metric which has singularities at those points ~aj
which occur in the statement of the second fundamental theorem. To prove the lemma of

the logarithmic derivative for minimal surfaces using this approach, we use a metric which

has singularities only at the origin and at infinity. If ~X(z) is a meromorphic minimal

surface, let us define

m(r,
~Xu

~X
) =

1

2π

∫ 2π

0

log+ || ~Xu(re
iθ)||

|| ~X(reiθ)||
dθ.
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Theorem 1. Let X(z) be a nonconstant meromorphic minimal surface in R3, and let

k ≥ 0. Then

m(r,
~Xu

~X
) = S(r, ~X)

where S(r, ~X) is an error term satisfying (18) for all r /∈ Jk where

∫
Jk

rkdr <∞.

Proof. Let S2 be the unit sphere in R3 and dω be the area measure on S2. Define a

metric on the hypersphere S by

σ(~a) =
1

4 π2

(1 + ||~a||2)3

||~a||3(1 + (log ||~a||)2)
.

Then σ(~a) is a positive mass distribution which is continuous except at ~a = ~0 and has total

mass 1 since ∫
S
σ dVS =

1

4π2

∫
R3

(1 + ||~a||2)3

||~a||3(1 + (log ||~a||)2)

dV (~a)

(1 + ||~a||2)3

=
1

4π2

∫
S2

∫ ∞
0

1

ρ3(1 + (log ρ)2)
ρ2 dρ dω

=
1

π

∫ ∞
0

1

ρ(1 + (log ρ)2)
dρ =

1

π

∫ ∞
−∞

1

1 + u2
du = 1.

By the properties of σ, since the surface has 3-dimensional measure zero,

Nσ(r, ~X) = 0.

From equation (21), choosing r0 < r,

T (r, ~X)− T (r0, ~X) = m◦σ(r, ~X)−m◦σ(r0, ~X) +Hσ(r, ~X)−Hσ(r0, ~X)

or

Hσ(r, ~X)−Hσ(r0, ~X) = T (r, ~X)− T (r0, ~X) +m◦σ(r0, ~X)−m◦σ(r, ~X)

< T (r, ~X) +m◦σ(r0, ~X).

Now by definition (14) of H(r, ~X),

Hσ(r, ~X)−Hσ(r0, ~X) =

∫
R3

∫ r

r0

 ∫∫
D(0,ρ)

1

2π
∆ log || ~X(z)− ~a|| dA

 dρ

ρ

σ(~a)
dV (~a)

(1 + ||~a||2)3

=

∫ r

r0

(∫ ρ

0

µ(t, ~X) t dt

)
dρ

ρ
(22)
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where by (15)

µ(t, ~X) =
1

2π

∫ 2π

0

[∫
R3

∆ log || ~X(teiθ)− ~a|| σ(~a)
dV (~a)

(1 + ||~a||2)3

]
dθ

=
1

π

∫ 2π

0

[∫
R3

cos2 θa

|| ~X(teiθ)− ~a||2
|| ~Xu(te

iθ)||2 σ(~a)
dV (~a)

(1 + ||~a||2)3

]
dθ

=
1

π

∫ 2π

0

I dθ,

where

I =

∫
R3

cos2 θa

|| ~X(teiθ)− ~a||2
|| ~Xu(te

iθ)||2 σ(~a)
dV (~a)

(1 + ||~a||2)3
,

and θa is the angle between the vectors ~X(z)− ~a and the normal vector ~N(z).

Now we estimate log+ µ(t, ~X) from above and below. Using (22), let

Hσ(r, ~X)−Hσ(r0, ~X) = K(r, ~X) =

∫ r

r0

L(ρ, ~X)
dρ

ρ

where L(ρ, ~X) =

∫ ρ

0

µ(t, ~X) t dt. Let J1k be the set of intervals where µ(r, ~X) > rk−1
[
L(r, ~X)

]2
,

and let J2k be the set of intervals where L(r, ~X) > rk+1
[
K(r, ~X)

]2
, where k is from the

statement of the theorem. The length of both sets of intervals is finite since

length(J1k) =

∫
J1k

dr ≤
∫
J1k

rk dr <

∫
J1k

µ(r, ~X)

(L(r, ~X))2
r dr =

∫
J1k

d(L(r, ~X))

(L(r, ~X))2
<∞

length(J2k) =

∫
J2k

dr ≤
∫
J2k

rk dr <

∫
J2k

L(r, ~X)

(K(r, ~X))2

dr

r
=

∫
J2k

d(K(r, ~X))

(K(r, ~X))2
<∞.

If we let Jk = J1k ∪ J2k, then if r /∈ Jk,

µ(r, ~X) ≤ rk−1[L(r, ~X)]2 ≤ rk−1
[
rk+1(K(r, ~X))2

]2
= r3k+1[K(r, ~X)]4 < r3k+1

(
T (r, ~X) +m◦σ(r0, ~X)

)4

.

This implies that

(23) log+ µ(r, ~X) < O(log rT (r, ~X))
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for all r /∈ Jk.

We now estimate log+ µ(r, ~X) from below. Fix z ∈ C which is neither a zero nor a

pole of ~X. Then

I =
|| ~Xu(z)||2

4 π2

∫
R3

cos2 θa

|| ~X(z)− ~a||2
dV (~a)

||~a||3(1 + (log ||~a||)2)
.

Let B(0, r) be the ball in R3 centered at the origin with radius r, and B = B(0, 4|| ~X(z)||).
If ||~a|| > 4|| ~X(z)||, then || ~X(z) − ~a|| ≤ || ~X(z)|| + ||~a|| ≤ 2||~a||. Changing to spherical

coordinates we have

I ≥ ||
~Xu(z)||2
4 π2

∫
R3\B

cos2 θa

|| ~X(z)− ~a||2
dV (~a)

||~a||3(1 + (log ||~a||)2)

≥ ||
~Xu(z)||2
4 π2

∫
R3\B

cos2 θa
4||~a||2

dV (~a)

||~a||3(1 + (log ||~a||)2)

=
|| ~Xu(z)||2

4 π2

∫
S2

∫ ∞
4|| ~X(z)||

cos2 θaρ
2 dρ dω

4ρ5(1 + (log ρ)2)

≥ ||
~Xu(z)||2
16 π2

∫
S2

[∫ 5|| ~X(z)||

4|| ~X(z)||

cos2 θadρ

ρ3(1 + (log ρ)2)

]
dω

≥ || ~Xu(z)||2

16 π2(5|| ~X(z)||)3(1 + (log 5|| ~X(z)||)2

∫
S2

∫ 5|| ~X(z)||

4|| ~X(z)||
cos2 θadρ dω.

Now we need to bound cos θa away from 0. Since ~X(z) and ~N(z) are fixed, let Ω be the

double cone in R3 with vertex at ~X(z) such that cos θa ≥
1

2
for all ~a in Ω. The ω measure

of the intersection of Ω with any of the spheres ||~a|| = R, 4|| ~X(z)|| ≤ R ≤ 5|| ~X(z)|| is

bounded below by some constant ω0 > 0. To see this, at ~X(z) let ~ν be an arbitrary unit

vector and K(~ν, ~X(z)) be the double cone centered on ~ν with vertex ~X(z) and aperture

2π/3. Let ω(~ν, R) be the ω measure of the intersection of K(~ν, ~X(z)) with the sphere

||~a|| = R. Then ω is continuous in ~ν and R, so it must take on a minimum value ω0 > 0

over all ~ν and 4||| ~X(z)|| ≤ R ≤ 5|| ~X(z)||. This argument is dilation invariant, so ω0 does

not depend upon ~X(z) and long as z is not a zero or pole which was assumed at the outset.
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ν

−>−>−>

−>

K

K

 

5||X||       4||X||||X||
|

Thus, letting C denote constants not depending on || ~X(z)|| we have

I ≥ C || ~Xu(z)||2

|| ~X(z)||2(1 + (log 5|| ~X(z)||)2)
.

Therefore, for those circles |z| = r not having zeros and poles,

log+ µ(r, ~X) ≥ log+ 1

2π

∫ 2π

0

C || ~Xu(re
iθ)||2

|| ~X(reiθ)||2(1 + (log 5|| ~X(reiθ)||)2)
dθ

≥ 1

2π

∫ 2π

0

log+ C || ~Xu(re
iθ)||2

|| ~X(reiθ)||2(1 + (log 5|| ~X(reiθ)||)2)
dθ − log 2.

Since ~X has finitely many zeros and poles in |z| < r, we can use (23) to show that outside

a set intervals for which
∫
rkdr <∞,

m

(
r,
~Xu

~X

)
=

1

4π

∫ 2π

0

log+ || ~Xu(re
iθ)||2

|| ~X(reiθ)||2
dθ

≤ 1

4π

∫ 2π

0

log+ C || ~Xu(re
iθ)||2

|| ~X(reiθ)||2(1 + (log 5|| ~X(reiθ)||)2)
dθ

+
1

4π

∫ 2π

0

log+(1 + log(5|| ~X(reiθ)||)2) dθ +O(1)

≤ 1

2
log+ µ(r, ~X) +

1

2
log+ 1

2π

∫ 2π

0

2 log(5|| ~X(reiθ)||) dθ +O(1)

≤ O(log r T (r, ~X)) +
1

2
log+(m(r, ~X)) +O(1)

= O(log r T (r, ~X)).

13



By applying the previous theorem to the minimal surface ~X(z)− ~a, we see

m

(
r,

~Xu

~X − ~a

)
= S(r, ~X).

Unless otherwise stated, for the remainder of this chapter, S(r, ~X) will denote a quan-

tity satisfying (18) except possibly outside a set of finite linear measure.

Before we proceed with some applications of Theorem 1, we will prove some lemmas

to be used later.

Lemma 1. Let ~X(z) be a nonconstant meromorphic minimal surface defined in D(0, R),

where 0 < R ≤ ∞ with finite order ρ. Then the second fundamental theorem (Theorem C)

holds for all r ≤ R.

Proof. Note the second fundamental theorem can be equivalently stated as follows:

(q − 2) T (r, ~X) ≤
q∑
j=1

(
N(r,~aj, ~X) +H(r,~aj, ~X)

)
−N1(r, ~X)−H1(r, ~X) + S(r, ~X)

Thus it is sufficient to show that the above holds for all r ≤ R.
Let ∪jIj be the exceptional set from Theorem C and choose k > max(1, ρ). Let r ∈ Ij,

and let r′ be the right endpoint of Ij . By the integral condition of the exceptional set,

(r′)k − rk = k

∫ r′

r

tk−1dt = O(1) log r′ − log r = O(1).

Now, N(r,~a, ~X) ≤ T (r, ~X) ≤ O(rk), thus

O(rk) ≥ N(2r,~a, ~X)−N(r,~a, ~X) =

∫ 2r

r

n(r,~a, ~X)

r
dr ≥ n(r,~a, ~X) log 2.

Hence, n(r,~a, ~X) ≤ O(rk). This implies

N(r′,~a, ~X)−N(r,~a, ~X) =

∫ r′

r

n(t,~a, ~X)
dt

t
= O

(∫
Jk

tρ−1dt

)
= O(1).

Replacing N with H, the previous argument can be repeated to obtain

H(r′,~a, ~X)−H(r,~a, ~X) = O(1).

Since T (r, ~X), N1(r, ~X) andH1(r, ~X) are all increasing functions of r and that S(r, ~X) =

O(log r),

14



(q − 2) T (r, ~X) +N1(r, ~X) +H1(r, ~X) ≤ (q − 2) T (r′, ~X) +N1(r
′, ~X) +H1(r

′, ~X)

≤
q∑
j=1

(
N(r′,~aj, ~X) +H(r′,~aj, ~X)

)
+O(log r′)

≤
q∑
j=1

(
N(r,~aj, ~X) +H(r,~aj, ~X)

)
+O(log r)

and we conclude the inequality holds for all r.

Beckenbach [2; p.34] showed that T (r, ~X) is an increasing function of r. With a pole

of ~Xu defined by the maximum order of a pole the F ′j j = 1, 2, 3 from (4) we now define

N(r, ~Xu) in the standard way, and

m(r, ~Xu) =
1

2π

∫ 2π

0

log+ | ~Xu(re
iθ)| dθ.

Then we let

T (r, ~Xu) = m(r( ~Xu) +N(r, ~Xu).

Lemma 2. If ~X(z) is a nonconstant meromorphic minimal surface defined in D(0, R),

where 0 < R ≤ ∞, then T (r, ~Xu) is an increasing function of r.

Proof. Let 0 < R1 < R such that ~Xu has no poles on |z| = R1, and Ω∗ = D(0, R1) \{
∪Nj=1{zj} ∪ {0}

}
where z1, z2, ...., zN are the poles of ~Xu(z) in Ω∗, each pole appearing

the same number of times as its order, and p be the multiplicity of the pole at 0. Define

u(z) = log+ || ~Xu(z)||+ log

N∏
j=1

∣∣∣∣ zzj − 1

∣∣∣∣+ p log |z|.

Beckenbach [2; p.24] showed that log+ || ~Xu(z)|| is subharmonic in Ω∗, and since log

∣∣∣∣ zzj − 1

∣∣∣∣
is also subharmonic in Ω∗, we have u(z) is subharmonic in Ω∗. Now u(z) is continuous and

thus bounded above in D(0, R1). Since a subharmonic function which bounded above in a

finitely punctured region can be extended to a subharmonic function in the entire region

[14; p.78], we can extend u(z) to be subharmonic in D(0, R1). Then by [14; p.40],

1

2π

∫ 2π

0

u(reiθ) dθ
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is an increasing function of r, for r < R1. Now using [9; p.176], we have

1

2π

∫ 2π

0

log

∣∣∣∣reiθzj − 1

∣∣∣∣ dθ = log+ r

|zj |
.

Therefore, if we let

T (r, ~Xu) =
1

2π

∫ 2π

0

u(reiθ) dθ = m(r, ~Xu) +
∑
|zj |≤r

log
r

|zj |

then T (r, ~Xu) is an increasing function of r.

Now we use the lemma of the logarithmic derivative to bound the growth of the deriv-

ative by the growth of the surface.

Theorem 2. Let ~X(z) be a nonconstant meromorphic minimal surface. Then

T (r, ~Xu) ≤ T (r, ~X) +N(r, ~X) + S(r, ~X) ≤ 2T (r, ~X) + S(r, ~X)

holds for all r if ρ( ~X) <∞, and outside a set of finite linear measure otherwise.

Proof. By Theorem 1,

m(r, ~Xu) ≤ m(r,
~Xu

~X
) +m(r, ~X) +O(1) ≤ m(r, ~X) + S(r, ~X)

outside an exceptional set of r values of finite measure. A pole of order p of ~X(z) is a pole

of order p+ 1 of ~Xu(z), and thus

N(r, ~Xu) ≤ 2N(r, ~X),

which implies

T (r, ~Xu) ≤ T (r, ~X) +N(r, ~X) + S(r, ~X)

outside the exceptional set.

Now assume ρ( ~X) <∞. From the proof of Lemma 1, we haveN(r′,~a, ~X)−N(r,~a, ~X) =

O(1), and h(r,~a, ~X) ≤ O(rk), where k > max(1, ρ).

Using the formula of Beckenbach [2, p.33]

T ◦(r, ~X) =

∫ r

0

1

V

[∫
S
h(t,~a, ~X) dV (~a)

]
dt

t
,

where V is the content of S, we have

T ◦(r′, ~X)− T ◦(r, ~X) =

∫ r′

r

1

V

[∫
S
h(t,~a, ~X)dV (~a)

]
dt

t
= O

(∫
Jk

tk−1dt

)
= O(1).

Therefore, by Lemma 2 and since T ◦(r, ~X)− T (r, ~X) is a bounded function of r,

T (r, ~Xu) ≤ T (r′, ~Xu) ≤ T (r′, ~X) +N(r′, ~X) +O(log r′)

≤ T (r, ~X) +N(r, ~X) +O(log r).

Thus, the theorem holds for all r is the order of ~X is finite.
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