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Abstract. Let Ω be a bounded convex domain and let ω be a
finite Blaschke product of order N = 1, 2, · · · . It is known that
the elliptic differential equation fz/fz = ω admits a one-to-one
solution normalized by f(0) = 0, fz(0) > 0 and maps the open
unit disc D onto a convex (n + 2)−gon whose vertices belong to
∂Ω. In this paper it is shown that this solution is unique.

1. Introduction

A sense-preserving harmonic mapping f of the open unit disk D is a
solution of the elliptic differential equation

fz(z)

fz(z)
= ω(z),(1)

where ω, known as the analytic dilatation of f, is an analytic function
in D with ω(D) ⊂ D. A useful form of f is

f = h+ g,

where h and g are analytic functions in D. In this case ω = g′/h′ and
the Jacobian of f is

J(f) = |h′|2 − |g′|2 = |h′|2(1− |ω|2).
It is known that f is an open map, and that it is locally one-to-one

except possibly at isolated points where it behaves locally like ana-
lytic functions near zero derivatives. We call f univalent or locally
univalent if it is one-to-one or locally one-to-one in D respectively.

The Riemann mapping theorem (RMT) states: If |ω| < k < 1 in
D, Ω is a bounded simply connected domain with a locally connected
boundary, and if w0 ∈ Ω, then there exists a univalent solution f of (1)
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that maps D onto Ω with f(0) = w0 and fz(0) > 0. Moreover, if Ω is a
Jordan domain, then f extends to a homeomorphism from D onto Ω.

If ||ω(z)||∞ = 1, then the RMT is no longer true and the following
more general Riemann mapping theorem (GRMT) of Hengartner and
Schober [6] holds.

Theorem A. Let Ω be a bounded simply connected domain with locally
connected boundary, and let w0 be a fixed point of Ω. Also, let ω be an
analytic function of D with ω(D) ⊂ D. Then there exists a univalent
harmonic mapping f of D that satisfies the following properties:

(a) f is a solution of (1).
(b) f maps D into Ω with f(0) = w0 and fz(0) > 0.
(c) The unrestricted limit f ∗(eit) = limz→eit f(z) exists and belongs

to ∂Ω for all but a countable subset E of the unit circle T = ∂D.
(d) The one-sided limits lims→t+ f

∗(eis) and lims→t− f
∗(eis), through

values eis 6∈ E, exist, belong to ∂Ω, and are equal if eit 6∈ E and
distinct otherwise.

(e) The cluster set of f at eit ∈ E is the straight line segment
joining the one-sided limits lims→t+ f

∗(eis) and lims→t− f
∗(eis).

We remark that if ||ω||∞ < 1, then the GRMT reduces to the RMT.
For distinct points c, d ∈ C, let [c, d] denote the directed straight line

segment from c to d. For distinct points c1, c2, · · · , cN+2 ∈ C, where
N = 1, 2, · · · , the directed closed polygonal curve [c1, c2, · · · , cN+2, c1] =∑N+2

j=1 [cj , cj+1], with cN+3 = c1, is called an (N + 2)−gon whose ver-

tices are the points cj and sides the segments [cj, cj+1]; here it is as-
sumed that vertices and segments might be collinear. Also, we call
[c1, c2, · · · , cN+2, c1] a Jordan or convex (N + 2)−gon if it bounds a
Jordan or convex region in C.

In the case where Ω is convex and ω is a finite Blaschke product of
order N = 1, 2, · · · of form

ω(z) = λ

N∏
k=1

z − pk
1− pkz

; |pk| < 1, |λ| = 1,

then results of W. Hengartner and G. Schober [7] and T. Sheil-Small
[10] lead to the following theorem.

Theorem B. Let Ω be a bounded convex domain, and let ω be a
Blaschke product of order N = 1, 2, · · · . If f is a function defined as
in Theorem A, then f(D) is the inner domain of a positively-directed
convex (N + 2)−gon [c1, c2, · · · , cN+2, c1] whose vertices cj lie on ∂Ω,
and the boundary function f ∗ of f is a step function defined by

f ∗(eit) = cj, tj−1 < t < tj, 1 ≤ j ≤ N + 2,
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where
0 ≤ t0 < t1 < t2 < · · · < tN+2 = t0 + 2π.

Surprisingly, little is known about the uniqueness of the harmonic
mapping f described in the RMT and obviously in the GMRT. How-
ever, the uniqueness of f in the RMT is known for each of the following
cases:

(i) Ω is symmetric about the real axis, ∂Ω is sufficiently smooth,
and the Maclaurin series of ω has real coefficients; see D. Bshouty,
N. Hengartner and O. Hossian [4].

(ii) Ω is a strictly starlike domain; see D. Bshouty, N. Hengartner
and W. Hengartner [3] and P. Duren [5, pp. 133-135] for a proof
attributed to R. Kühnau.

(iii) fz(0) is fixed and ∂Ω is sufficiently smooth; see J. Gergen and
F. Dressel [8], [9] and B. Bojarskii [1].

On the other hand, the uniqueness of f in the GMRT is known only in
the case where ω(z) = zn, where n = 1, 2, · · · ; see A. Weitsman [11].

The purpose of this paper is to extend the latter uniqueness result
of [11] for the case where the dilatation ω is a finite Blaschke product.
Our result states as follows.

Theorem 1. Let

(a) Ω be a bounded convex domain,
(b) w0 be a fixed point of Ω,
(c) ω be a finite Blaschke product of order N = 1, 2, · · · , and
(d) f be a function defined as in Theorem A.

Then f is unique.

2. Proof of Theorem 1.

We establish the proof by contradiction. We assume without loss of
generality that w0 = 0. Suppose that there exist two different functions
f and F defined as in Theorem A with fz(0) ≤ Fz(0). Then, by The-
orem B, f(D) and F (D) are the inner domains of positively-directed
convex (N + 2)−gons [c1, c2, · · · , cN+2, c1] and [d1, d2, · · · , dN+2, d1] re-
spectively, whose vertices cj and dj lie on ∂Ω, and the boundary func-
tions f ∗ and F ∗ are step functions defined by

f ∗(eit) = cj, tj−1 < t < tj, 1 ≤ j ≤ N + 2,

where
0 ≤ t0 < t1 < t2 < · · · < tN+2 = t0 + 2π,

and
F ∗(eis) = dj, sj−1 < s < sj, 1 ≤ j ≤ N + 2,
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where

0 ≤ s0 < s1 < s2 < · · · < sN+2 = s0 + 2π.

Set

{ϕj : 0 ≤ j ≤ K + 1} = {tj : 0 ≤ j ≤ N + 1} ∪ {sj : 0 ≤ j ≤ N + 1},
where

0 ≤ ϕ0 < ϕ1 < ϕ2 < · · · < ϕK+2 = ϕ0 + 2π.

It is immediate that f ∗(eiϕ) and F ∗(eiϕ) are constants on every interval
(ϕj−1, ϕj), 1 ≤ j ≤ K + 2. For each 0 ≤ λ ≤ 1, let P λ = f − λF. Then
P λ is a bounded harmonic mapping, P λ(0) = 0, and the boundary
function (P λ)∗(eiϕ) = f ∗(eiϕ)− λF ∗(eiϕ) of P λ is a step function on T
that takes a constant value on every interval (ϕj−1, ϕj), 1 ≤ j ≤ K+2,.
Note that (P λ)∗ attains at least two different step values, and that all
the step values are nonzero in case 0 ≤ λ < 1 since every λdj ∈ Ω,
1 ≤ j ≤ N + 2. Thus every P λ, 0 ≤ λ < 1, is a nonconstant function
in D. The cluster sets at the jumps of P λ are the line segments which
we denote by P λ(∂D).

We show that neither P λ
z nor P λ

z can be identically zero in D. If P λ
z

(or P λ
z ) is identically zero in D, then P λ is analytic (or anti-analytic)

in D. Since P λ is bounded, P λ(0) = 0, and (P λ)∗ is a step function, P λ

is identically zero in D and we have a contradiction.
Thus P λ

z is not identically zero in D. But

P λ
z = f z − λF z = ω(fz − λFz) = ωP λ

z .

Hence, each P λ is an open sense-preserving harmonic mapping in D
with analytic dilatation ω. Since |ω| < 1, the argument principle ap-
plies (cf. [5, pp. 7-10]). In particular the notion of the order of a
zero [5, p. 8] is well defined. Since P λ(0) = 0, it follows that when-
ever the origin does not belong to P λ(∂D), the winding number for the
positively oriented image satisfies

n(P λ(∂D), 0) ≥ 1.(2)

Assume that 0 ≤ λ < 1 unless otherwise is specified. With an abuse
of notation we denote by aλj and bλj , 1 ≤ j ≤ K + 2, the values of

(P λ)∗(eiϕ) on the intervals (ϕj−1, ϕj) and (ϕj , ϕj+1), with ϕK+3 = ϕ1.
This abuse comes from the fact that the aλj ’s and bλj ’s change roles on
adjacent intervals.

Then the cluster set of P λ at each eiϕj , 1 ≤ j ≤ K+2, is the directed
line segment `λj = [aλj , b

λ
j ] which is a point in case aλj = bλj . Note that aλj

and bλj never coincide with the origin. With Γλ = P λ(∂D) =
∑K+2

j=1 `λj ,
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if none of the segments `λj contains the origin, then the winding number

of Γλ about the origin satisfies

n(Γλ, 0) =
1

2π

K+2∑
j=1

Arg(bλj /a
λ
j ),

where Arg(·) denotes the principal argument.
We proceed in the proof by establishing the following lemma which

shows that Γλ passes through the origin only for finitely many values
0 ≤ λ < 1.

Lemma. Fix 1 ≤ j ≤ K + 2. Then there exist at most two values of λ
for which `λj passes through the origin.

(a) If no such value λ exists, then Arg(bλj /a
λ
j ) is a continuous func-

tion on [0, 1).
(b) If exactly one such value λ, say λj, exists, then one of the fol-

lowing cases holds:
(i) Arg(bλj /a

λ
j ) is a continuous function on [0, 1) and

lim
λ→λj

Arg(bλj /a
λ
j ) = π.

(ii) Arg(bλj /a
λ
j ) is a continuous function on [0, 1) except for a

jump discontinuity at λj such that

lim
λ→λ−j

Arg(bλj /a
λ
j ) = π and lim

λ→λ+
j

Arg(bλj /a
λ
j ) = −π.

(c) If two such values of λ, say λj and µj with λj < µj, exist, then
Arg(bλj /a

λ
j ) is a continuous function on [0, 1) except for jump

discontinuities at λj and µj such that

lim
λ→λ−j

Arg(bλj /a
λ
j ) = π and lim

λ→λ+
j

Arg(bλj /a
λ
j ) = −π.

and

lim
λ→µ−j

Arg(bλj /a
λ
j ) = −π and lim

λ→µ+
j

Arg(bλj /a
λ
j ) = π.

Proof. There are three distinct types of ϕj : (1) ϕj = sk 6= ti for some
1 ≤ k ≤ N + 2 and all 1 ≤ i ≤ N + 2, (2) ϕj = ti 6= sk for some
1 ≤ i ≤ N + 2 and all 1 ≤ k ≤ N + 2, and (3) ϕj = ti = sk for some
1 ≤ i ≤ N + 2 and some 1 ≤ k ≤ N + 2. We prove the lemma for each
of these cases separately as follows.

(1) ϕj = sk 6= ti for some 1 ≤ k ≤ N + 2 and all 1 ≤ i ≤ N + 2. In
this case aλj = cr−λdk and bλj = cr−λdk+1, where cr = f(eiϕj ) for some
1 ≤ r ≤ N + 2 and dN+3 = d1. By the convexity of Ω, the points λdk
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and λdk+1 lie in the open half-plane containing Ω and determined by a
support line of Ω passing through cr. Hence Arg(bλj /a

λ
j ) is a continuous

function of λ on [0, 1) and |Arg(bλj /a
λ
j )| < π for every 0 ≤ λ < 1. This

gives Lemma 2.a for Case 1.
(2) ϕj = ti 6= sk for some 1 ≤ i ≤ N + 2 and all 1 ≤ k ≤ N + 2.

In this case aλj = ci − λdr and bλj = ci+1 − λdr, where dr = F (eiϕj) for
some 1 ≤ r ≤ N + 2. Here we consider two cases:

(i) dr belongs to or lies on the left-hand side of the directed straight
line from ci to ci+1; dr is an interior point of [ci, ci+1] only if [ci, ci+1] is
a subset of ∂Ω. Then, by the convexity of Ω, the points λdr lie on the
left-hand side of the line and Lemma 2.a follows as in Case 1.

(ii) dr lies on the right-hand side of the directed straight line from
ci to ci+1. Then =(ci+1/dr) > 0 and =(ci/dr) < 0. Define the Möbius
transformation

T (λ) =
bλj

aλj
=
ci+1 − λdr
ci − λdr

.

A value 0 ≤ λ < 1 for which `λj passes through the origin is precisely the
same value for which T (λ) attains a negative value. Since T (ci+1/dr) =

0, T (ci/dr) = ∞, T maps the extended real line R̂ to a positively-

directed circle T (R̂) that separates the origin and infinity; it shall be

assumed throughout that T (R̂) is endowed with the direction inherited

from the positive direction of R̂ via T. Define the half-open subarc

C : w = T (λ), 0 ≤ λ < 1, of T (R̂). The statement of the lemma
may be formulated to say that if C intersects the negative real axis
R− = {x : x < 0}, then the first time is by moving from the upper
half-plane to the lower half-plane. Since T (0) = ci+1/ci, =T (0) > 0,
T (1) = (ci+1 − dr)/(ci − dr), and =T (1) < 0, the arc C starts from
the point T (0) in the upper half-plane to the point T (1) in the lower
half-plane thus meeting R− exactly once in the desired manner. Hence
Lemma 2.b.ii holds and the proof of Lemma 2 for Case 2 is complete.

(3) ϕj = ti = sk for some 1 ≤ i ≤ N + 2 and some 1 ≤ k ≤ N + 2.
In this case aλj = ci − λdk and bλj = ci+1 − λdk+1, where cN+3 = c1 and
dN+3 = d1.

Suppose that ci+1dk − cidk+1 = 0. Then bλj /a
λ
j = ci+1/ci = dk+1/dk.

Since =(ci+1/ci) > 0, Arg(bλj /a
λ
j ) is a constant value in (0, π) for every

0 ≤ λ < 1 and Lemma 2.a holds.
For the rest of the proof we assume ci+1dk − cidk+1 6= 0. Then

T (λ) =
bλj

aλj
=
ci+1 − λdk+1

ci − λdk



UNIQUENESS OF HARMONIC MAPPINGS 7

is a Möbius transformation which maps R̂ homeomorphically onto an
extended straight line or a circle. We argue as above in Case 2.ii. Define

the subarc C : w = T (λ), 0 ≤ λ < 1, of T (R̂) as above in 2.ii. Note that
T (0) = ci+1/ci, =T (0) > 0, T (ci/dk) = ∞, T (ci+1/dk+1) = 0, and, by
the convexity of Ω, ci/dk and ci+1/dk+1 do not belong to [0, 1). Hence,
C is a half-open directed straight line segment, a ray, or a directed
circular arc that starts from T (0) in the upper half-plane and avoids
the origin. We consider three cases.

(a) =(ci/dk)=(ci+1/dk+1) = 0. If =(ci/dk) = 0, then, by the convexity
of Ω, ci/dk < 0 and C either is a directed straight line segment or a
ray. In either case, C either does not meet R− and Lemma 2.a holds,
or meets it exactly once as desired and Lemma 2.b.ii holds.

If =(ci+1/dk+1) = 0 and =(ci/dk) 6= 0, then, by the convexity of Ω,

ci+1/dk+1 < 0 and T (R̂) is a circle that passes through the origin. Since
0 6∈ C, C either does not meet R− and Lemma 2.a holds, or meets it

once only if T (R̂) is positively-directed.

(b) =(ci/dk)=(ci+1/dk+1) > 0. In this case T (R̂) is a circle that does
not separate the origin and ∞. Then C either does not meet R− and
Lemma 2.a holds, meets it once and Lemma 2.b.i holds, or meets it
twice and Lemma 2.c holds.

(c) =(ci/dk)=(ci+1/dk+1) < 0. In this case T (R̂) is a circle that sep-
arates the origin and ∞.

If T (R̂) is positively-directed, then C either does not meet R− and
Lemma 2.a holds, or meets it once and Lemma 2.b.i holds.

If T (R̂) is negatively-directed, then 0 < Arg(ci/dk) < π, −π <
Arg(ci+1/dk+1) < 0, and, by the convexity of Ω, ci and ci+1 are interior
points of the subarc of the positively-directed ∂Ω with initial and ter-
minal points dk and dk+1 respectively. Moreover, we see that Arg(T (λ))
is decreasing in λ and Arg(T (1)) ≥ −π which implies that C does not
meet R− and Lemma 2.a holds.

This proves Lemma 2 for Case 3, and the proof of Lemma 2 is com-
plete.

Now we complete the proof of Theorem 1. It follows from the Lemma
that n(Γλ, 0) ≤ n(Γ0, 0) for 0 < λ < 1. Indeed, by the Lemma, n(Γλ, 0)
varies continuously with λ on intervals until perhaps some `j passes
through the origin. Since n(Γλ, 0) is integer valued, it must be constant
on the intervals of continuity. For the exceptional values of λ = λj,
then n(Γλ, 0) undergoes a jump decrease in both cases ii) and iii),
then a compensating jump increase in case iii). Since n(Γ0, 0) = 1,
equation (2) yields n(Γλ, 0) = 1 for all 0 ≤ λ < 1.
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Suppose that λ = fz(0)/Fz(0) < 1. Then P λ
z (0) = 0 and, conse-

quently, P λ
z (0) = 0 since P λ is a sense-preserving harmonic mapping.

Hence, the Jacobian of P λ at the origin is zero, P λ has a zero of order
at least 2 at the origin, and n(Γλ, 0) ≥ 2. This yields a contradiction
and fz(0) = Fz(0).

Evidently, the function P λ converges uniformly in D to the function
P 1 = f − F as λ → 1−. We are assuming, contrary to Theorem 1
that P 1 6≡ 0 so that P 1 then also has dilatation ω. By the argument
used in the previous paragraph, P 1 has a zero of order m ≥ 2 at the
origin. Since P 1 is locally one-to-one outside a discrete set, there exists
a sufficiently small circle C centered at the origin on which P 1 is never
zero and n(P 1(C), 0) = m. Then for λ sufficiently close to 1,

m = n(P 1(C), 0) = n(P λ(C), 0) ≤ n(Γλ, 0) = 1,

contradicting the fact that m ≥ 2.
It must then be that f ≡ F, and the proof of Theorem 1 is complete.

�

3. Concluding Remarks

Regarding the general question of uniqueness in the GRMT, it is
possible that the condition (c) of Theorem 1 might be relaxed to simply
ω(D) ⊂ D, but we are unable to do this. It seems more difficult to
predict if the convexity condition (a) is really needed. An example of
nonuniqueness in this case was claimed by the third author in the Bull.
Lond. Math. Soc., 31 (1999), but it contains an error and the problem
remains open.
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