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Abstract. It is shown that if f is a univalent harmonic mapping of the unit disk
onto a domain having a smooth boundary arc which is convex with respect to the

domain, and if the dilatation has modulus 1 on the arc, then the arc must be a line
segment.
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I. Introduction

In 1952, E. Heinz [H] used planar univalent harmonic mappings in the study of
the Gaussian curvature of nonparametric minimal surfaces over the unit disk. Since
that time, the study of univalent harmonic mappings has gained much attention in
its own right.

Let U be the unit disk {z: |z| < 1} and f = u + iv be a univalent (orientation
preserving) harmonic mapping of U onto a bounded domain Ω. Then f = h + g
where h and g are analytic in U . Furthermore, f satisfies the equation

(1.1) fz = afz

in U , where a(z) = g′(z)/h′(z), and |a(z)| < 1 in U . We shall assume henceforth
that the univalent harmonic mappings are orientation preserving.

By Fatou’s theorem, f and a must have radial limits a.e. on ∂U . However, even
if ∂Ω is smooth, the boundary correspondence between ∂U and ∂Ω can be quite
pathological. In particular the radial limit function f̂(eiθ) can have discontinuities,
and thus f need not extend to a homeomorphism of the closures of U and Ω. A
general description of the boundary behavior of univalent harmonic mappings of
U onto regions having locally connected boundary is given in [HS2; Theorem 4.3],
[HS1; Lemma 3.1]. If ∂Ω is locally connected, then outside a countable set E of the
boundary, f has unrestricted limits through points of U . For points in E, the limits

from the left and right (avoiding other points in E) for f̂ exist and are different;
the cluster sets at points of E are line segments joining these left and right limits.
At points of ∂U\E, the one sided limits (again taken outside of the set E) of f̂ are
equal.

In [HS1] Hengartner and Schober studied the boundary behavior of harmonic
mappings and proved that if Ω is convex and a(z) is a finite Blaschke product, then
Ω must be a polygon [HS1; Theorem 3.3]. In the present paper we shall localize the
argument of Hengartner and Schober to study the behavior of f if ∂Ω contains a
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C1 arc γ which is convex with respect to Ω. By this we mean that any line joining
distinct points of γ lies, with the exception of its endpoints, in Ω, and that the line
L joining the endpoints of γ separates Ω into two domains whose boundaries share
only L in common.

Theorem 1.1. Let f be a univalent harmonic mapping of U onto a domain Ω,
a(z) as in (1.1), and γ ⊂ ∂Ω a C1 arc, which is convex with respect to Ω. Suppose
that for any point ζ on γ, and any sequence ζn → ζ in Ω, if ζn = f(zn), we have
|a(zn)| → 1. Then γ must be a line segment.

It should be pointed out that in Theorem 1.1, a(z) could have radial limits of
modulus 1 almost everywhere without γ being a line segment. Indeed, if Φ(θ) is
a sense preserving homeomorphism of [θ, 2π) onto [θ, 2π) such that Φ′(θ) = 0 a.e.,
then by a theorem of Laugesen [L; Theorem 1], the Poisson integral f of Φ gives a
univalent harmonic mapping of U onto itself, such that |a(reiθ)| −→ 1 as r → 1−,
for a.e. θ.

From the standpoint of minimal surfaces, Theorem 1.1 has an interesting conse-
quence. Let S be a nonparametric minimal surface over a simply connected domain
Ω given by

(1.2) S = {(u, v, F (u, v)): u+ iv ∈ Ω},

where we have identified R2 with the complex plane in describing the domain Ω of
F . Then, in Ω, w = F (u, v) satisfies the minimal surface equation

(1 + (
∂F

∂v
)2)

∂2F

∂u2
− 2

∂F

∂u

∂F

∂v

∂2F

∂u∂v
+ (1 + (

∂F

∂u
)2)

∂2F

∂v2
= 0.

By the Weierstrass representation, we may reparametrize S in parametric form
by a pair (ω,G), where G is meromorphic in U and ω is analytic in U , having its
zeros at the poles of G with twice the multiplicity of the poles. The coordinate
functions are then given by

u(z) = Re
1

2

∫ z

ω(ζ)(1−G(ζ)2)dζ,

v(z) = Re
i

2

∫ z

ω(ζ)(1 +G(ζ)2)dζ,

w(z) = Re

∫ z

ω(ζ)G(ζ)dζ.

The functions u, v, w are harmonic in U , and with S being a graph, the first
two coordinate functions determine a univalent harmonic map. Furthermore, the
stereographic projection of the Gauss map G(u, v) of the surface pulls back by the
relation

(1.3) G(z) = G(u(z), v(z)) = i/
√
a(z)

where G is as above in the Weierstass representation, and a is as in (1.1). Thus,
by (1.3), in order for a univalent harmonic mapping f to arise in this way from a
minimal surface, a(z) must be the square of an analytic function.

From Theorem 1 1 we obtain the following
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Corollary 1.1. Let S be a nonparametric minimal surface over a simply connected
domain Ω with γ ⊂ ∂Ω, γ a C1 convex curve. If the Gauss map satisfies |G(u, v)| −→
1 as u+ iv −→ γ, then γ is a line segment.

In other words, if the normals to the surface tend to the horizontal over γ, then
γ is a line segment. The prototype for this situation is Scherk’s surface which has
the shape of a saddle over a square with |G| −→ 1 at the boundary.

Corollary 1.1 is somewhat reminiscent of a result of Finn [F], which says that if
the height function F in (1.2) has the property that F (u, v) −→ ∞ as u+ iv tends
to an arc γ of the boundary of Ω, then γ must be a line segment. On the other
hand by tilting Scherk’s surface, we obtain nontrivial smooth concave arcs γ such
that |G(u, v)| −→ 1 at all points of γ.

II. Proof of Theorem 1.1

We assume that γ is not a line segment. We may assume further that Ω is the
domain whose boundary consists of γ and the line segment L joining the endpoints
of γ. Indeed, if we denote this domain by Ω0 and let ϕ be a 1−1 conformal mapping
of U onto f−1(Ω0), then f(ϕ(z)) is again a univalent harmonic mapping of U onto
Ω0 having γ as a boundary arc. Replacing f by f ◦ϕ (which for simplicity we again
denote by f = h+ g), then the new a(z) defined by (1.1) again satisfies |a(z)| −→ 1
when f(z) tends to points of γ.

Now, as shown by Abu–Muhanna and Lyzzaik [AL; Theorem 1],

∫
σ

|h′||dz| <∞,∫
σ

|g′||dz| <∞ for almost all radii σ from 0 to ∂U . Also, by the aforementioned

theorem of Hengartner and Schober, f has unrestricted limits at each point of ∂U
except at countably many points, at which the cluster sets are line segments. Thus,
we may take end points w1, w2 of a closed proper subarc γ0 of γ, where w1 and w2

are arbitrarily near the two endpoints of γ and such that there are distinct radii
σ1, σ2 from 0 to ∂U such that f(z) −→ wj along σj, j = 1, 2, and

(2.1)

∫
σj

|h′(z)||dz| <∞
∫
σj

|g′(z)||dz| <∞ j = 1, 2.

Let S denote the sector in U bounded by σ1, σ2, and Γ = {eit : α ≤ t ≤ β}, where
Γ is the arc for which the radial limits of f are in γ0.

Let 0 < ρ < 1 such that |a(z)| = ρ for some z ∈ S, and choose ρ so that
a′(z) 6= 0 when |a(z)| = ρ. Let Sρ be the subset of S where |a(z)| > ρ, and
δ = sup

z∈Sρ
dist(z,Γ). Choose ρ large enough so that if z1, . . . , zn are the zeros of a(z)

in S, then dist(zj ,Γ) > δ
j = 1, . . . , n. Let Tρ be the component of Sρ whose boundary contains Γ. Such
a component must exist, since |a(z)| = 1 on Γ. Furthermore, ∂Tρ contains a level
arc Cρ which extends from a point z1 ∈ σ1 to a point z2 ∈ σ2. let σ1(ρ) be the ray
from 0 to z1 and σ2(ρ) be the ray from z2 to 0. Let Σρ be the contour obtained by
joining σ1(ρ), Cρ, and σ2(ρ).

We may parameterize Cρ by zρ(t) = r(t)eit αρ ≤ t ≤ βρ for ρ sufficiently close
to 1. Indeed, it follows from the Hopf maximum principle that ∂|a|/∂r is strictly
positive near Γ so C is strictly starlike with respect to 0 for ρ close to 1 Let
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M denote a measurable subset of the plane. Then for each ρ close to 1, we define
measures µρ having respective supports on Σρ by

µρ(M) = (1− ρ2)

∫
M∩Σρ

fzdz.

Then, on Cρ,

(1− ρ2)fzdz = (1− |a|2)fzdz = df − adf,

so µρ = µ
(1)
ρ + µ

(2)
ρ , where µ

(1)
ρ has support on σ1(ρ) ∪ σ2(ρ), µ

(2)
ρ has support on

Cρ, and

µ(1)
ρ (F ) = (1− ρ2)

∫
F

fzdz F ⊆ σ1(ρ) ∪ σ2(ρ),(2.2)

µ(2)
ρ (F ) =

∫
F

df − adf F ⊆ Cρ.(2.3)

Since fz is analytic,

(2.4)

∫
Σρ

zkdµρ = 0 k = 0, 1, 2.....

By (2.1) and (2.2), it follows that

(2.5) µ(1)
ρ → 0 as ρ→ 1−.

On Cρ

(2.6) |dµρ| = |dµ(2)
ρ | = (1− |a|2)|fz||dzρ|.

Since a(z) is analytic across Cρ, we have

(2.7)

∫
Cρ

|dzρ| = 0(1) (ρ −→ 1).

Also,

(2.8) 1− |a(z)|2 ≤ 0(1− |z|2)

uniformly as z tends to points of Γ.
By Poisson’s formula, for z near Γ,

(2.9) |fz(z)| = O(1− |z|).

Thus, by (2.6)-(2.9), for a sequence ρn −→ 1−, the sequence µ
(2)
ρn converges weakly

to a measure µ supported on Γ. Taking (2.5) into account, we then have that

µρn = µ
(1)
ρn + µ

(2)
ρn → µ weakly. Since µ has support on Γ, (2.4) implies that

(2.10)

∫
zkdµ = 0 k = 0, 1, 2......
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By the F. and M. Riesz theorem, µ is an absolutely continuous measure.

From (2.3) it follows that if f̂ denotes the radial limit function for f , then for
some constant C,

(2.11)

∫ t

α

dµ(eit) = f̂(eit)− a(eit)f̂(eit) +

∫ t

α

f̂(eiτ )da(eiτ ) + C

a.e. on [α, β]. Let ψ(t) =
∫ t
α
dµ(eit).

Since µ is absolutely continuous, and the integral on the right of (2.11) is an
absolutely continuous function, it follows that there exists an absolutely continuous
function ϕ(t) such that

ψ(t) = ϕ(eit) +

∫ t

α

f̂(eiτ )da(eiτ ) + C (α ≤ t ≤ β),

where

ϕ(t) = f̂(eit)− a(eit)f̂(eiτ ) a.e. on [α, β].

Now, (2.10) implies that if F (z) =

∫ 2π

0

dµ(eit)

1− ze−it , then F is analytic and is also

the Poisson integral of µ;

F (reiθ) =

∫ 2π

0

Pr(θ − t)dµ(eit)

which is 0 on an arc of ∂U . Thus,

(2.12) µ ≡ 0.

Following [HS1; p.201], we take a branch of
√
a on Γ, and note that for a.e.

t ∈ [α, β],

(2.13)
√
a(eit)ϕ(t) =

√
a(eit)(f̂(eit)− a(eit)f̂(eit) = 2iIm (a(eit)f̂(eit)).

As mentioned in §1, on a set E in ∂U , which exludes perhaps a countable set,

f has unrestricted limits (= f̂). Let E0 ⊂ E be those points in Γ. We may fix a

branch of arg
√
a and arg f̂ , the latter being inherited from a branch of the argument

on γ0. By (2.13), it follows that at any point eit ∈ E0,

(2.14)
1

2
arg a(eit) + arg(f̂(eit

+

)− f̂(eit
−

)) = kπ

for some integer k. Since a is analytic in a full neighborhood of Γ, the variation of
its argument is finite, and since |a| = 1 on Γ and |a| < 1 in U , it follows from the
Cauchy-Riemann equations that arg a(eit) is increasing for t ∈ [α, β]. Also, if

α(t) = inf
τ≥t,eiτ∈E0

arg(f̂(eiτ
+

)− f̂(eiτ
−

)),

then, since γ0 is convex and C1, α(t)is nondecreasing and bounded for t ∈ [α, β].
Thus (2 14) can hold for only finitely many k and we deduce that E is a finite set
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Following [HS1; p.204], we next deduce that f̂ is constant on Γ. We observe
from (2.12) that on Γ\E0,

(2.15) 0 =
√
a(eit)ψ′(t) =

√
a(eit)ϕ′(t) +

√
a(eit)f̂(eit)a′(eit).

Suppose that eit 6∈ E0. Then from (2.15), and the fact that E0 is a finite set,

0 = lim
h→0

(
√
a(eit)

ϕ(t+ h)− ϕ(t)

h
+
√
a(eit)f̂(eit)a(eit)

= lim
h→0

(
√
a(eit)

f̂(t+ h)− f̂(t)

h
−
√
a(eit)

f̂(ei(t+h))− f̂(eit)

h

−
√
a(eit)a′(eit)f̂(eit) +

√
a(eit)f̂(eit)a′(eit)

=2i lim
h→0

Im

(√
a(eit)

f̂(ei(t+h))− f̂(eit)

h

)
.(2.16)

If there is an arc A = {eit : α1 ≤ t ≤ β1} ⊆ Γ\E0 such that f̂(eiα1) 6= f̂(eiβ1),

there exists a sequence tk ∈ (α1, β1) such that df̂(eitk)/dt does not exist or is not
0. Then,

αk = lim
n−→∞

arg
f̂(ei(tk+hkn))− f̂(eitk)

hkn

exists for some hkn −→ 0. By (2.16), αk must be an integer multiple of π.

Thus, if α̃(t) = inf
t≤tk

αk, then, as before, arg
√
a(eit) is increasing and α̃(t) is

nondecreasing. Since α̃(t)+ arg
√
a(eit), is a multiple of π, it follows that A has

finitely many points. Since f̂ is continuous on A, it is constant there. Finally, since

the cluster set of f̂ at each point of E0 is a line segment, and γ is C1, we find that
γ must be a line segment, a contradiction.
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