ON UNIVALENT HARMONIC
MAPPINGS AND MINIMAL SURFACES

ALLEN WEITSMAN

I. Introduction. Let f be a univalent harmonic mapping of the unit disk U. By
this it is meant not only that f is 1 — 1 and harmonic, but also that f is sense

preserving.

Harmonic univalent mappings were first studied in connection with minimal
surfaces by E. Heinz [H|. However, considerable interest in their function theoretic

properties, quite apart from this connection, was generated by [CS—S].
Now, the Jacobian of f(¢) is J = [f¢|* — [f¢]?, and f can be written
f=h+3g (1.1)
where h and g are analytic in U. If a(() is defined by

a(¢) = f=(¢)/ fc(¢) = g'(¢) /P (€), (1.2)

then a(() is analytic and |a(¢)| < 1 in U. We shall refer to a(¢) as the analytic
dilatation as opposed to the usual dilatation fZ/ f¢ in the theory of quasiconformal

mappings.

The case where a(() is a finite Blaschke product is of special interest since this
case arises in taking Fourier series of step functions [S—S]. Their function theoretic
properties have been studied in [HS2] as well as in [S—S|, and infinite Blaschke

products have been considered in [L].

In the present paper we shall study a connection between harmonic mappings
and the theory of minimal surfaces, and in §4 we use this to prove a special case
of uniqueness for the Riemann mapping theorem of Hengartner and Schober [HS1].

As we have shown elsewhere, uniqueness fails in general [W].
1
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II. Definition of the height function and conjugate height function. Using
the Weierstrass representation [O; p. 63| we shall associate with f, a minimal surface
given parametrically in a simply connected subdomain N C U where a(¢) does not

have a zero of odd order.

With g and h as in (1.1) we define up to an additive constant, a branch of

F(C) = 2i / VIO d¢ = 2i / W (¢)v/a(0) d¢ = 2i / fe(OVa(Q) de. (2.1)

Then, by (1.2) it follows that a branch of F' can be defined in N, and for { € N,

¢ = (£(¢), Re F(Q)) (2.2)

gives a parametric representation of a minimal surface. Here we have identified R?

with C by (z,y) <> (Re f,Im f).

Let U be the Riemann surface of the function v/a(¢). Then U has algebraic
branch points corresponding to those points ¢ € U for which a(¢) has a zero of odd
order. Specifically, U can be concretely described (the analytic configuration [Sp;
69-74]) in terms of function elements («, F,) where o € U, and F,, is a power series
expansion of a branch of F' in a neighborhood of « if a({) does not have a zero
of odd order at ( = «, and F,, a power series in 1/ — o otherwise. The mapping
p: (a, Fy) — « is the projection of the surface so realized. The mapping F' may now

be lifted to a mapping FonU.

By continuation, we may induce a mapping U — U to a surface U with a real
analytic structure defined in terms of elements (3, ﬁ’g) with 3 € f(U) by a = f~1(B)
and Fﬁ = F, o f~1. We again define a projection by : (3, Fg) — f.

We shall refer to a point ¢ € U to be over (, ifp(CA) = ¢, and Z € U to be over z
if m(2) = 2.
The harmonic mapping f:U — f(U) lifts to a mapping f’ :U — U which is

1 —1, onto, and satisfies the condition 7(f(¢)) = f(p(é)) for all ¢ € U. With these

notations, we shall extend the meaning of (2.2). Thus

~ ~

¢ = (f(Q),Re F()) (2.3)
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gives a parametric representation of a minimal surface in the sense that in a neigh-
borhood of CA € (7\8 where B is the branch set, that is, the points above the zeros of
a of odd order, then (2.2) is the same as (2.3) computed in terms of local coordinates

given by projection.

We may also define the surface nonparametrically on U\B, where B = f(B), as
follows. Let D be an open disk in f(U) such that f~1(D) contains no zeros of a of
odd multiplicity. Let w = ¢(x,y) be the nonparametric description of the minimal

surface corresponding to (2.2), that is, for ¢ € f=1(0) (cf. [HS3; p. 87]),

z=Ref(() y=Imf(Q),

(2.4)
¢(z,y) = Re F(().

Then, by continuation ¢ lifts to a function ¢ on U which satisfies the minimal
surface equation when computed in local coordinates given by projection off the
branch set B. We shall call P(2) a height function corresponding to f. Finally, we
define a conjugate height function 1)(z) by solving locally

by = /W, Yo = =y /W (W= /1+¢% +¢)) (2.5)

(cf. [F1; p. 344]) and lifting to U\B as was done for . Let F = @ + 4. Then F is
real analytic and locally quasiconformal on U \l’;’, with dilatation whose magnitude
is (W —1)/(W +1). The fact that ¢ and F are well defined on U\B follows from

Theorem 1.

A glossary of terminology is given schematically in Figure 1.
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Theorem 1. With the above notations, ' = F o f + C' for some constant C.

Proof. Let D be an open disk in f(U) such that f~!(D) contain no zeros of odd
multiplicities of a. We fix a branch of /a in f~(D), and consider ¢(¢) + ih(¢) =
F({) for points in a component of U over f~(D), and ¢(3)+i(Z) = F(Z) for points
in a component of U over D. Since we shall compute in local coordinates given by
projection, to reduce notation in this proof, we shall subsequently write 13’, D, ;ZA) in
place ofﬁ’opfl, pop~t, ;@opfl, and F, P, 7,5 in place of For™1, pom 1, 7,507r*1
respectively. With this notation, by (2.4) we have that

p=¢of, (2.6)
so it suffices to show that
v=1of+C. (2.7)

The result then follows from continuation.

In fact, since ¢ + it is analytic in f~1(D), it follows from (2.6) that to prove
(2.7) it suffices to show that F o f is analytic in f~*(D).

We first record the relationship between a({) of (1.2) and W(z) (z = f(¢)) of



UNIVALENT HARMONIC MAPPINGS 5

(2.5). This is given by [0; p. 105], [HS3; pp. 87-88] as

W -1
= . 2.
ol = 5 2.9
Now,
(Fof)e=F.fe+ Fsfe = F.fr + F5(fo). (2.9)
A simple computation using (2.5) gives
W+1 W -1
F,=——¢,, ITES z
w7 WY
When used in (2.9) these give
~ W+1._ W—-1_ - —
(Fof)Z: TSOsz—F 7¢P2(f<)~ (2.10)
Again, a direct computation gives
5. — ¢c(fo) — e (f7) 5o = ¢cfe —ocle
TR CIRE T TP
When used in (2.10) this gives
(Fof)z= 1 25 FTT + el FeP OV — 1 - 2L v 1)
CWSP ) T T £eP |
(2.11)

Now, by (1.2), (2.1), and (2.8) we have,
@C = ig//\/&7 @Z = —Z?/\/&, fC = gl/a7 fZ = ?7
and
| fI?
| fel?
Substituting into (2.11) we obtain

Fofy_ 1 2ig () 2igg? (W— 1)
CW(fP -1\ Vaa o Jala2 \W+1
=0.

W—1- W4+1) =W —1—|a!(W+1)=2(W —1)/(W +1).

Thus, F o f is analytic and (2.7) follows.
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ITII. The height function corresponding to Poisson integrals of step func-
tions. Let P be a polygon with vertices cy,...,c, given cyclically, and in order
induced by a positive orientation of OP. Let f be the Poisson integral of a step
function on QU having values ci,...,c, and suppose that f is then a univalent
harmonic mapping, f: U — P. If P is convex, for example, this will always be the
case [C], [K]. The analytic dilatation a({) for such mappings were studied in [HS2]
and [S-S]. In general, a(() is a Blaschke product of order at most n —2, and of order

precisely n — 2 if P is convex [S—S; pp. 469, 473].

We shall now explore the boundary behavior of height functions corresponding to
such mappings. The prototype for this is Scherk’s minimal surface over the square

—m/2<x<m/2 —m/2<y<m/2 given by

Y(x,y) = log(cosz/ cosy) (3.1)

which tends to +0o and —oo over alternate sides. It seems remarkable that this
type of behavior persists in general for height functions corresponding to all such

f described above.

Theorem 2. Let P be a polygon having vertices c1, ... ,c, given cyclically, and
ordered by a positive orientation on OP. Let f be a univalent harmonic mapping of
U such that f is the Poisson integral of a step function having the ordered sequence
Cly .. ,Cpn as its values. Then the analytic dilatation a(¢) of f is a finite Blaschke
product of order at most n—2, f(U) =P, and if ¢ is a height function for f, then
@ tends to +00 or —oo at points over the open segments making up the sides of P.

If P is convex, then +00 and —oo alternate on adjacent sides.

Proof. That a(¢) is a Blaschke product of order at most n —2 and f(U) = P follow
from general properties of Poisson integrals [S—S; p. 469], [HS2; p. 203].

Let f = h+ g as in (1.1). Then we may write A’ and ¢’ in the form [S-S;
pp. 460-461]

3

A — N~ Ok
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where a #0, k=1,....,n

With F as in (2.1), we are then interested in the branches of

= 23 —Oék
F(¢ 2/ ZC ZC Ck (3.2)

as ( — (g, k =1,...,n. The cluster sets for the nontangential approaches to
points over the (i give the points lying over the open segments making up the sides

of P.

Thus, take a vertex (;, and an open segment [; of P corresponding to it. Then,

as ¢ — (j,

—0k _oy]? o
Zc 2o = g o)

and hence, by (3.2), a branch of F' satisfies

F(¢) = £2|ay|log(¢ — ¢;) + o(1) (3.3)

as ¢ — (j, for a fixed branch of the log. Suppose the fixed branch of (3.3) has minus
sign, and let ¢(z) = Re Fof~1(2) be a corresponding branch in P for points near the
corresponding side /;. Now suppose P is convex and F(¢) is analytically continued
to an adjacent point, say (j41, so that ¢ is then continued to a corresponding side
l;+1 having common endpoint ¢; with I;. Since ¢ — —oo as z — [, it remains to
show that ¢ — 400 as 2z — [j;1. This effect has been noted for minimal surfaces
[JS], and can be accomplished by a simple barrier argument. I thank Professor

Finn for pointing this out.

Let 0 < 8 < m be the angle in P between /; and /; ;. Suppose that $ — —oo on
both open segments I; and ;1. Since ¢ satisfies the minimal surface equation, ¢
can only tend to —oo over line segments [O; p. 102]. Since we make no assumption
at the common endpoint c;, in order to get a contradiction we must show that
¢ — —oo at ¢; as well. We may assume that ¢; = (7/2,0), and [;, ;11 make the
angle § symmetrically with respect to the x axis, opening toward the origin. Let

0 < e < (m/2)cot(B/2) be small enough so that the isosceles triangle N formed by



8 ALLEN WEITSMAN

the sector and the line x = 7/2 — ¢ has the given branch of F' single valued. Then,
two of the sides of IV are contained in the segments /; and l; 11, and the third is
r=m/2—¢, —0 <y <6, where § = etan(3/2). If ¢ is the height function for
Scherk’s surface given by (3.1), then for any M > 0, clearly

d(z,y) < —Y(z—m+e,y) — M (3.4)

on ON\{c;}. By the extended maximum principle [F1; pp. 342-343], it follows that
(3.4) holds thoughout N. Since M > 0 was arbitrary, it follows that ¢ = —oo on

N, a contradiction. Thus ¢ = 400 on l; ;.

IV. An application to the Riemann mapping theorem. One of the most
basic results in the theory of univalent harmonic mappings is the Riemann mapping

theorem of Hengartner and Schober [HS1].

Theorem A. Let D be a bounded simply connected domain whose boundary is
locally connected. Fix wg € D, and let a(¢) be analytic in U, with a(U) CU. Then

there exists a univalent harmonic mapping f with the following properties.

a) f maps U into D and f(0) = wp, f.(0) > 0.

b) f satisfies the equation (ff) =afc.

¢) Except for a countable set E C OU, the unrestricted limit f*(e'*) = Clim f(Q)
—ett

exists and belongs to 0D.

d) The one sided limits lim+ f*(e7), lim f*(e'™) through values of €™ ¢ E
T—1 Tt

exist and belong to OD; for et & E they are equal and for et € E they are
different.

e) The cluster set of f at e'* € E is the straight line segment joining the left and

right limits in d).

If in Theorem A, the set D is convex, and a(() is a finite Blaschke product, one

can say more [HS2; p. 203], [S-S; p. 473].
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Theorem B. Let f be as in Theorem A with D bounded and convex, and a({) a
Blaschke product of order n—2. Then f(U) is a polygon with n vertices all of which
lie on OD.

We shall prove uniqueness in the case a({) = (™ and D convex. The case of

uniqueness when D = U and a(¢) = ¢ was done in [HS2; p. 204].

The proof involves a combinatorial argument with the level sets of the height
function. Such arguments are often useful in the theory of partial differential equa-

tion, and in particular the minimal surface equation [F1], [FO], [JS], [Se].

Theorem 3. The solution f({) to the Riemann mapping theorem above with D

convex and
a(¢) =¢"? (4.1)

1s unique for each n = 3,4, ...

Proof. Let f; and f; be Riemann mappings corresponding to D. We may assume

f1(0) = f2(0) = 0. Let A be a disk centered at 0, and contained in f1(U) N f2(U).

If n is even, then U = U and if n is odd U is a two sheeted cover of U with
branch point over 0. Similarly, if U; corresponds to fi(U) and Uy to f(Us), then
Ul and (72 are one or two sheeted according as n is even or odd. We consider the
case where n is odd. The even case goes the same way, but is simpler since one can

bypass discussion of Riemann surfaces.

Let ©;,v;, 85, %;, Fj, U;,mj, j =1,2be the quantities of §2 defined for f; and fo
respectively. We may assume that £ (0) = F5(0) = 0. If A represents the Riemann
surface of \/z over A, then we may consider A - Ul and A - UQ, so that Fl and

F, may both be considered as defined for all z € A. For brevity of notation, we

shall write F' for F' o L.

Since the analytic dilatation for f1(¢) and f2(¢) is 0 when ¢ = 0, it follows from
(1.2), (4.1), and a) of Theorem A, that

fi(Q) = ¢i¢(L+0(1)) (=0, ¢; >0, j=1,2). (4.2)
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Then, from (2.1), (4.1), (4.2), and Theorem 1 we may take determinations of F}
and 13’2 in A so that

3;(2) + i (2) = Fj(z) = d;2"*(1+0(1)) (j=1,2 z—0) (4.3)
with di,ds > 0 and 2"/2 is some fixed branch.

Having thus fixed branches in (4.3) we may then take a constant A > 0 such that
Fi(2) = AFy(2/)) = C2" (1+0(1)) (2 — 0) (4.4)

for some constant C' and integer p > n. We suppose A > 1; otherwise we interchange
Fy and F,. Now, the change from F(z) to AF'(z/\) corresponds to replacing f by
Af. Then the analytic dilatation is unchanged, and following the change in (2.1) it
gives the parametrization ¢ — (Af(¢), Re AF'(()).

Let g03,¢3,¢3,1;3 correspond to f3 = Afs so that f3(U), is nothing more than
f1(U) dilated by the constant A > 1, and (4.5) becomes

Fi(2) = F3(3) = C2" (1+0(1)) (2= 0). (4.5)
Case 1. C = 0 for every p. Since Fy(2?) — F3(2?) is real analytic, then Fy = Fj.
Thus, in particular A = 1 and f1(U) = f3(U) = P. In order to show that f; = f3
we use the subordination principle of [BHH; p. 170]. Briefly, since P is a convex
polygon by Theorem B, and (f1).(0), (f3).(0) > 0, we may apply the argument
principle in [BHH; p. 170] to

G(2) = (f3):(0)f1(2) = (f1)2(0)f3(2)

to deduce that (f1).(0) = (f3).(0). Then, another application of the argument
principle as in [BHH] to G.(z) = (1 +¢) f1(2) — f3(z) (¢ — 0) shows that f; = fs.

Case 2. C # 0 for some p > n. In this case, near the origin on A, by (4.5) there
are 2p + 4 level curves $; — ¢3 = 0 emanating from 0. Between the level curves,
p1 — p3 alternates in sign. In order to analyze the component sets between the

level sets, we must modify fs.
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Let 71,72, ... be homeomorphisms of || = 1 onto the boundary of AD, which
converge to the (step function) boundary values of f3, and let ?En), n=12....
their corresponding Poisson integrals so that fén) — f3 uniformly on compact

subsets of U.

The level sets of ¢1 — ¢p3 = 0 create 2p + 4 disjoint component open sets
01, 02, ce ,02p+4 where (,51 — @3 > 0 in Ogjfl and (,51 — (,53 <0in Ogj for

j=1,...,p+ 2. These components alternate in position around the origin.

For ¢ > 0 we can find nonempty components at O1(e), Oz(e),...,Ozp1a(c)
where @1 — ()5:(3”) > ¢ in Ogj_1(¢€), ¢ — géé") = ¢ on 002;_1(¢), AN O2;-1(e) C

O2j-1, j =1,...,2p, and analogous statements hold for O;(¢), j=1,...,p+2.

Now, féj )(U ) = AD, so by the maximum principle for solutions to the minimal
surface equation, the level sets forming the boundaries of the O;(e)’s must extend
to points over the boundary of P = fi(U). As in [FO; pp. 357-358], we observe
that since F is +00 over the sides of P by Theorem 2, if a component O, (e) has
a boundary point over an interior point of a side of P, then the boundary must
contain that side. Since, by Theorem B, P has n sides, then P = 7 }(P) has 2n
sides. This implies that there are at most 2n sets O,(¢) whose boundaries have
interior points over OP. If O;(e) were a component whose boundary contained no
points over P, then its boundary could only be interior points over P, or vertices.
As pointed out in [FO; p. 358], this is impossible by a theorem of Finn [F1; pp.
342-343]. Thus, 2p + 4 < 2n. Since p > n, we obtain a contradiction and the

theorem is proved.
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