ON UNIVALENT HARMONIC MAPPINGS AND MINIMAL SURFACES

Allen Weitsman

I. Introduction. Let f be a univalent harmonic mapping of the unit disk U. By this it is meant not only that f is 1 - 1 and harmonic, but also that f is sense preserving.

Harmonic univalent mappings were first studied in connection with minimal surfaces by E. Heinz [H]. However, considerable interest in their function theoretic properties, quite apart from this connection, was generated by [CS–S].

Now, the Jacobian of $f(\zeta)$ is $J = |f_{\zeta}|^2 - |f_{\overline{\zeta}}|^2$, and f can be written

$$f = h + \overline{g} \tag{1.1}$$

where h and g are analytic in U. If $a(\zeta)$ is defined by

$$a(\zeta) = \overline{f_{\overline{\zeta}}(\zeta)} / f_{\zeta}(\zeta) = g'(\zeta) / h'(\zeta), \qquad (1.2)$$

then $a(\zeta)$ is analytic and $|a(\zeta)| < 1$ in U. We shall refer to $a(\zeta)$ as the *analytic* dilatation as opposed to the usual dilatation $f_{\overline{\zeta}}/f_{\zeta}$ in the theory of quasiconformal mappings.

The case where $a(\zeta)$ is a finite Blaschke product is of special interest since this case arises in taking Fourier series of step functions [S–S]. Their function theoretic properties have been studied in [HS2] as well as in [S–S], and infinite Blaschke products have been considered in [L].

In the present paper we shall study a connection between harmonic mappings and the theory of minimal surfaces, and in §4 we use this to prove a special case of uniqueness for the Riemann mapping theorem of Hengartner and Schober [HS1]. As we have shown elsewhere, uniqueness fails in general [W]. II. Definition of the height function and conjugate height function. Using the Weierstrass representation [O; p. 63] we shall associate with f, a minimal surface given parametrically in a simply connected subdomain $N \subseteq U$ where $a(\zeta)$ does not have a zero of odd order.

With g and h as in (1.1) we define up to an additive constant, a branch of

$$F(\zeta) = 2i \int \sqrt{h'(\zeta)g'(\zeta)} \, d\zeta = 2i \int h'(\zeta)\sqrt{a(\zeta)} \, d\zeta = 2i \int f_{\zeta}(\zeta)\sqrt{a(\zeta)} \, d\zeta. \quad (2.1)$$

Then, by (1.2) it follows that a branch of F can be defined in N, and for $\zeta \in N$,

$$\zeta \to (f(\zeta), \operatorname{Re} F(\zeta))$$
 (2.2)

gives a parametric representation of a minimal surface. Here we have identified \mathbb{R}^2 with \mathbb{C} by $(x, y) \leftrightarrow (\operatorname{Re} f, \operatorname{Im} f)$.

Let \hat{U} be the Riemann surface of the function $\sqrt{a(\zeta)}$. Then \hat{U} has algebraic branch points corresponding to those points $\zeta \in U$ for which $a(\zeta)$ has a zero of odd order. Specifically, \hat{U} can be concretely described (the *analytic configuration* [Sp; 69–74]) in terms of function elements (α, F_{α}) where $\alpha \in U$, and F_{α} is a power series expansion of a branch of F in a neighborhood of α if $a(\zeta)$ does not have a zero of odd order at $\zeta = \alpha$, and F_{α} a power series in $\sqrt{\zeta - \alpha}$ otherwise. The mapping $p: (\alpha, F_{\alpha}) \to \alpha$ is the *projection* of the surface so realized. The mapping F may now be lifted to a mapping \hat{F} on \hat{U} .

By continuation, we may induce a mapping $\hat{U} \to \tilde{U}$ to a surface \tilde{U} with a real analytic structure defined in terms of elements $(\beta, \tilde{F}_{\beta})$ with $\beta \in f(U)$ by $\alpha = f^{-1}(\beta)$ and $\tilde{F}_{\beta} = F_{\alpha} \circ f^{-1}$. We again define a projection by $\pi: (\beta, \tilde{F}_{\beta}) \to \beta$.

We shall refer to a point $\hat{\zeta} \in \hat{U}$ to be over ζ , if $p(\hat{\zeta}) = \zeta$, and $\tilde{z} \in \tilde{U}$ to be over z if $\pi(\tilde{z}) = z$.

The harmonic mapping $f: U \to f(U)$ lifts to a mapping $\hat{f}: \hat{U} \to \tilde{U}$ which is 1-1, onto, and satisfies the condition $\pi(\hat{f}(\hat{\zeta})) = f(p(\hat{\zeta}))$ for all $\zeta \in \hat{U}$. With these notations, we shall extend the meaning of (2.2). Thus

$$\hat{\zeta} \to (\hat{f}(\hat{\zeta}), \operatorname{Re} \hat{F}(\hat{\zeta}))$$
 (2.3)

gives a parametric representation of a minimal surface in the sense that in a neighborhood of $\hat{\zeta} \in \hat{U} \setminus \mathcal{B}$ where \mathcal{B} is the branch set, that is, the points above the zeros of a of odd order, then (2.2) is the same as (2.3) computed in terms of local coordinates given by projection.

We may also define the surface nonparametrically on $\tilde{U}\setminus\tilde{\mathcal{B}}$, where $\tilde{\mathcal{B}} = \hat{f}(\mathcal{B})$, as follows. Let D be an open disk in f(U) such that $f^{-1}(D)$ contains no zeros of a of odd multiplicity. Let $w = \varphi(x, y)$ be the nonparametric description of the minimal surface corresponding to (2.2), that is, for $\zeta \in f^{-1}(0)$ (cf. [HS3; p. 87]),

$$x = \operatorname{Re} f(\zeta) \qquad y = \operatorname{Im} f(\zeta),$$

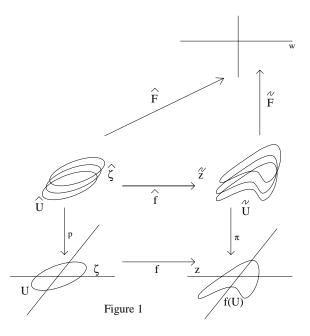
$$\varphi(x, y) = \operatorname{Re} F(\zeta).$$
(2.4)

Then, by continuation φ lifts to a function $\tilde{\varphi}$ on \tilde{U} which satisfies the minimal surface equation when computed in local coordinates given by projection off the branch set $\tilde{\mathcal{B}}$. We shall call $\tilde{\varphi}(\tilde{z})$ a *height function* corresponding to f. Finally, we define a *conjugate height function* $\tilde{\psi}(z)$ by solving locally

$$\psi_y = \varphi_x / W, \ \psi_x = -\varphi_y / W \qquad (W = \sqrt{1 + \varphi_x^2 + \varphi_y^2})$$
(2.5)

(cf. [F1; p. 344]) and lifting to $\tilde{U} \setminus \tilde{\mathcal{B}}$ as was done for φ . Let $\tilde{F} = \tilde{\varphi} + i\tilde{\psi}$. Then \tilde{F} is real analytic and locally quasiconformal on $\tilde{U} \setminus \tilde{\mathcal{B}}$, with dilatation whose magnitude is (W-1)/(W+1). The fact that $\tilde{\psi}$ and \tilde{F} are well defined on $\tilde{U} \setminus \tilde{B}$ follows from Theorem 1.

A glossary of terminology is given schematically in Figure 1.



Theorem 1. With the above notations, $\hat{F} = \tilde{F} \circ \hat{f} + C$ for some constant C.

Proof. Let D be an open disk in f(U) such that $f^{-1}(D)$ contain no zeros of odd multiplicities of a. We fix a branch of \sqrt{a} in $f^{-1}(D)$, and consider $\hat{\varphi}(\hat{\zeta}) + i\hat{\psi}(\hat{\zeta}) = \hat{F}(\hat{\zeta})$ for points in a component of \hat{U} over $f^{-1}(D)$, and $\tilde{\varphi}(\tilde{z}) + i\tilde{\psi}(\tilde{z}) = \tilde{F}(\tilde{z})$ for points in a component of \hat{U} over D. Since we shall compute in local coordinates given by projection, to reduce notation in this proof, we shall subsequently write \hat{F} , $\hat{\varphi}$, $\hat{\psi}$ in place of $\hat{F} \circ p^{-1}$, $\hat{\varphi} \circ p^{-1}$, $\hat{\psi} \circ p^{-1}$, and \tilde{F} , $\tilde{\varphi}$, $\tilde{\psi}$ in place of $\tilde{F} \circ \pi^{-1}$, $\tilde{\varphi} \circ \pi^{-1}$, $\tilde{\psi} \circ \pi^{-1}$ respectively. With this notation, by (2.4) we have that

$$\hat{\varphi} = \tilde{\varphi} \circ f, \tag{2.6}$$

so it suffices to show that

$$\hat{\psi} = \tilde{\psi} \circ f + C. \tag{2.7}$$

The result then follows from continuation.

In fact, since $\hat{\varphi} + i\hat{\psi}$ is analytic in $f^{-1}(D)$, it follows from (2.6) that to prove (2.7) it suffices to show that $\tilde{F} \circ f$ is analytic in $f^{-1}(D)$.

We first record the relationship between $a(\zeta)$ of (1.2) and W(z) $(z = f(\zeta))$ of

(2.5). This is given by [0; p. 105], [HS3; pp. 87–88] as

$$|a| = \frac{W-1}{W+1}.$$
 (2.8)

Now,

$$(\tilde{F} \circ f)_{\overline{\zeta}} = \tilde{F}_z f_{\overline{\zeta}} + \tilde{F}_{\overline{z}} \overline{f}_{\overline{\zeta}} = \tilde{F}_z f_{\overline{\zeta}} + \tilde{F}_{\overline{z}} \overline{(f_{\zeta})}.$$
(2.9)

A simple computation using (2.5) gives

$$F_z = rac{W+1}{W} arphi_z, \qquad F_{\overline{z}} = rac{W-1}{W} arphi_{\overline{z}}.$$

When used in (2.9) these give

$$(\tilde{F} \circ f)_{\overline{\zeta}} = \frac{W+1}{W} \tilde{\varphi}_z f_{\overline{\zeta}} + \frac{W-1}{W} \tilde{\varphi}_{\overline{z}} \overline{(f_{\zeta})}.$$
(2.10)

Again, a direct computation gives

$$\tilde{\varphi}_z = \frac{\hat{\varphi}_{\overline{\zeta}}(\overline{f_{\zeta}}) - \hat{\varphi}_{\overline{\zeta}}(\overline{f_{\overline{\zeta}}})}{|f_{\zeta}|^2 - |f_{\overline{\zeta}}|^2} , \quad \tilde{\varphi}_{\overline{z}} = \frac{\hat{\varphi}_{\overline{\zeta}}f_{\zeta} - \hat{\varphi}_{\zeta}f_{\overline{\zeta}}}{|f_{\zeta}|^2 - |f_{\overline{\zeta}}|^2}.$$

When used in (2.10) this gives

$$(\tilde{F} \circ f)_{\overline{\zeta}} = \frac{1}{W(|f_{\zeta}|^2 - |f_{\overline{\zeta}}|^2)} \left(2\hat{\varphi}_{\zeta} f_{\overline{\zeta}}(\overline{f_{\zeta}}) + \hat{\varphi}_{\overline{\zeta}} |f_{\zeta}|^2 (W - 1 - \frac{|f_{\overline{\zeta}}|^2}{|f_{\zeta}|^2} (W + 1)) \right). \tag{2.11}$$

Now, by (1.2), (2.1), and (2.8) we have,

$$\hat{\varphi}_{\zeta} = ig'/\sqrt{a}, \ \hat{\varphi}_{\overline{\zeta}} = -i\overline{g'}/\sqrt{a}, \ f_{\zeta} = g'/a, \ f_{\overline{\zeta}} = \overline{g'},$$

and

$$W - 1 - \frac{|f_{\overline{\zeta}}|^2}{|f_{\zeta}|^2}(W + 1) = W - 1 - |a|^2(W + 1) = 2(W - 1)/(W + 1).$$

Substituting into (2.11) we obtain

$$\begin{split} (\tilde{F} \circ f)_{\overline{\zeta}} &= \frac{1}{W(|f_{\zeta}|^2 - |f_{\overline{\zeta}}|^2)} \left(\frac{2ig'(\overline{g'})^2}{\sqrt{a\overline{a}}} - \frac{2i\overline{g'}|g'|^2}{\sqrt{a}|a|^2} \left(\frac{W-1}{W+1} \right) \right) \\ &= 0. \end{split}$$

Thus, $\tilde{F} \circ f$ is analytic and (2.7) follows.

III. The height function corresponding to Poisson integrals of step functions. Let \mathcal{P} be a polygon with vertices c_1, \ldots, c_n given cyclically, and in order induced by a positive orientation of $\partial \mathcal{P}$. Let f be the Poisson integral of a step function on ∂U having values c_1, \ldots, c_n and suppose that f is then a univalent harmonic mapping, $f: U \to \mathcal{P}$. If \mathcal{P} is convex, for example, this will always be the case [C], [K]. The analytic dilatation $a(\zeta)$ for such mappings were studied in [HS2] and [S-S]. In general, $a(\zeta)$ is a Blaschke product of order at most n-2, and of order precisely n-2 if \mathcal{P} is convex [S–S; pp. 469, 473].

We shall now explore the boundary behavior of height functions corresponding to such mappings. The prototype for this is Scherk's minimal surface over the square $-\pi/2 < x < \pi/2, \ -\pi/2 < y < \pi/2$, given by

$$\psi(x,y) = \log(\cos x / \cos y) \tag{3.1}$$

which tends to $+\infty$ and $-\infty$ over alternate sides. It seems remarkable that this type of behavior persists in general for height functions corresponding to all such f described above.

Theorem 2. Let \mathcal{P} be a polygon having vertices c_1, \ldots, c_n given cyclically, and ordered by a positive orientation on $\partial \mathcal{P}$. Let f be a univalent harmonic mapping of U such that f is the Poisson integral of a step function having the ordered sequence c_1, \ldots, c_n as its values. Then the analytic dilatation $a(\zeta)$ of f is a finite Blaschke product of order at most n-2, $f(U) = \mathcal{P}$, and if φ is a height function for f, then φ tends to $+\infty$ or $-\infty$ at points over the open segments making up the sides of \mathcal{P} . If \mathcal{P} is convex, then $+\infty$ and $-\infty$ alternate on adjacent sides.

Proof. That $a(\zeta)$ is a Blaschke product of order at most n-2 and $f(U) = \mathcal{P}$ follow from general properties of Poisson integrals [S–S; p. 469], [HS2; p. 203].

Let $f = h + \overline{g}$ as in (1.1). Then we may write h' and g' in the form [S–S; pp. 460–461]

$$h'(\zeta) = \sum_{k=1}^{n} \frac{\alpha_k}{\zeta - \zeta_k}, \ g'(\zeta) = -\sum_{k=1}^{n} \frac{\overline{\alpha_k}}{\zeta - \zeta_k},$$

where $\alpha_k \neq 0$, $k = 1, \ldots, n$.

With F as in (2.1), we are then interested in the branches of

$$F(\zeta) = 2i \int \sqrt{\sum_{k=1}^{n} \frac{\alpha_k}{\zeta - \zeta_k} \sum_{k=1}^{n} \frac{-\overline{\alpha_k}}{\zeta - \zeta_k}} \, d\zeta \tag{3.2}$$

as $\zeta \to \zeta_k$, k = 1, ..., n. The cluster sets for the nontangential approaches to points over the ζ_k give the points lying over the open segments making up the sides of \mathcal{P} .

Thus, take a vertex ζ_j , and an open segment l_j of $\partial \mathcal{P}$ corresponding to it. Then, as $\zeta \to \zeta_j$,

$$\sum_{k=1}^{n} \frac{\alpha_k}{\zeta - \zeta_k} \sum \frac{-\overline{\alpha_k}}{\zeta - \zeta_k} = -\frac{|\alpha_j|^2}{(\zeta - \zeta_j)^2} (1 + o(1)),$$

and hence, by (3.2), a branch of F satisfies

$$F(\zeta) = \pm 2|\alpha_j|\log(\zeta - \zeta_j) + o(1) \tag{3.3}$$

as $\zeta \to \zeta_j$, for a fixed branch of the log. Suppose the fixed branch of (3.3) has minus sign, and let $\phi(z) = \operatorname{Re} F \circ f^{-1}(z)$ be a corresponding branch in \mathcal{P} for points near the corresponding side l_j . Now suppose \mathcal{P} is convex and $F(\zeta)$ is analytically continued to an adjacent point, say ζ_{j+1} , so that ϕ is then continued to a corresponding side l_{j+1} having common endpoint c_j with l_j . Since $\phi \to -\infty$ as $z \to l_j$, it remains to show that $\phi \to +\infty$ as $z \to l_{j+1}$. This effect has been noted for minimal surfaces [JS], and can be accomplished by a simple barrier argument. I thank Professor Finn for pointing this out.

Let $0 < \beta < \pi$ be the angle in \mathcal{P} between l_j and l_{j+1} . Suppose that $\phi \to -\infty$ on both open segments l_j and l_{j+1} . Since ϕ satisfies the minimal surface equation, ϕ can only tend to $-\infty$ over line segments [O; p. 102]. Since we make no assumption at the common endpoint c_j , in order to get a contradiction we must show that $\phi \to -\infty$ at c_j as well. We may assume that $c_j = (\pi/2, 0)$, and l_j , l_{j+1} make the angle β symmetrically with respect to the x axis, opening toward the origin. Let $0 < \varepsilon < (\pi/2) \cot(\beta/2)$ be small enough so that the isosceles triangle N formed by the sector and the line $x = \pi/2 - \varepsilon$ has the given branch of F single valued. Then, two of the sides of N are contained in the segments l_j and l_{j+1} , and the third is $x = \pi/2 - \varepsilon$, $-\delta < y < \delta$, where $\delta = \varepsilon \tan(\beta/2)$. If ψ is the height function for Scherk's surface given by (3.1), then for any M > 0, clearly

$$\phi(x,y) < -\psi(x - \pi + \varepsilon, y) - M \tag{3.4}$$

on $\partial N \setminus \{c_j\}$. By the extended maximum principle [F1; pp. 342-343], it follows that (3.4) holds thoughout N. Since M > 0 was arbitrary, it follows that $\phi \equiv -\infty$ on N, a contradiction. Thus $\phi = +\infty$ on l_{j+1} .

IV. An application to the Riemann mapping theorem. One of the most basic results in the theory of univalent harmonic mappings is the Riemann mapping theorem of Hengartner and Schober [HS1].

Theorem A. Let D be a bounded simply connected domain whose boundary is locally connected. Fix $w_0 \in D$, and let $a(\zeta)$ be analytic in U, with $a(U) \subseteq U$. Then there exists a univalent harmonic mapping f with the following properties.

- a) f maps U into D and $f(0) = w_0, f_z(0) > 0.$
- b) f satisfies the equation $\overline{(f_{\overline{\zeta}})} = af_{\zeta}$.
- c) Except for a countable set $E \subseteq \partial U$, the unrestricted limit $f^*(e^{it}) = \lim_{\zeta \to e^{it}} f(\zeta)$ exists and belongs to ∂D .
- d) The one sided limits $\lim_{\tau \to t^+} f * (e^{i\tau})$, $\lim_{\tau \to t^-} f^*(e^{i\tau})$ through values of $e^{i\tau} \notin E$ exist and belong to ∂D ; for $e^{it} \notin E$ they are equal and for $e^{it} \in E$ they are different.
- e) The cluster set of f at $e^{it} \in E$ is the straight line segment joining the left and right limits in d).

If in Theorem A, the set D is convex, and $a(\zeta)$ is a finite Blaschke product, one can say more [HS2; p. 203], [S–S; p. 473].

Theorem B. Let f be as in Theorem A with D bounded and convex, and $a(\zeta)$ a Blaschke product of order n-2. Then f(U) is a polygon with n vertices all of which lie on ∂D .

We shall prove uniqueness in the case $a(\zeta) = \zeta^n$ and D convex. The case of uniqueness when D = U and $a(\zeta) = \zeta$ was done in [HS2; p. 204].

The proof involves a combinatorial argument with the level sets of the height function. Such arguments are often useful in the theory of partial differential equation, and in particular the minimal surface equation [F1], [FO], [JS], [Se].

Theorem 3. The solution $f(\zeta)$ to the Riemann mapping theorem above with D convex and

$$a(\zeta) = \zeta^{n-2} \tag{4.1}$$

is unique for each $n = 3, 4, \ldots$

Proof. Let f_1 and f_2 be Riemann mappings corresponding to D. We may assume $f_1(0) = f_2(0) = 0$. Let Δ be a disk centered at 0, and contained in $f_1(U) \cap f_2(U)$.

If n is even, then $\hat{U} = U$ and if n is odd \hat{U} is a two sheeted cover of U with branch point over 0. Similarly, if \tilde{U}_1 corresponds to $f_1(U)$ and \tilde{U}_2 to $f(U_2)$, then \tilde{U}_1 and \tilde{U}_2 are one or two sheeted according as n is even or odd. We consider the case where n is odd. The even case goes the same way, but is simpler since one can bypass discussion of Riemann surfaces.

Let $\varphi_j, \psi_j, \tilde{\varphi}_j, \tilde{\psi}_j, \tilde{F}_j, \tilde{U}_j, \pi_j, \quad j = 1, 2$ be the quantities of §2 defined for f_1 and f_2 respectively. We may assume that $\tilde{F}_1(\tilde{0}) = \tilde{F}_2(\tilde{0}) = 0$. If $\tilde{\Delta}$ represents the Riemann surface of \sqrt{z} over Δ , then we may consider $\tilde{\Delta} \subseteq \tilde{U}_1$ and $\tilde{\Delta} \subseteq \tilde{U}_2$, so that \tilde{F}_1 and \tilde{F}_2 may both be considered as defined for all $\tilde{z} \in \tilde{\Delta}$. For brevity of notation, we shall write \tilde{F} for $\tilde{F} \circ \pi^{-1}$.

Since the analytic dilatation for $f_1(\zeta)$ and $f_2(\zeta)$ is 0 when $\zeta = 0$, it follows from (1.2), (4.1), and a) of Theorem A, that

$$f_j(\zeta) = c_j \zeta(1+o(1)) \quad (\zeta \to 0, \ c_j > 0, \ j = 1, 2).$$
 (4.2)

Then, from (2.1), (4.1), (4.2), and Theorem 1 we may take determinations of \tilde{F}_1 and \tilde{F}_2 in $\tilde{\Delta}$ so that

$$\tilde{\varphi}_j(z) + i\tilde{\psi}_j(z) = \tilde{F}_j(z) = d_j z^{n/2} (1 + o(1)) \quad (j = 1, 2 \ z \to 0)$$
 (4.3)

with $d_1, d_2 > 0$ and $z^{n/2}$ is some fixed branch.

Having thus fixed branches in (4.3) we may then take a constant $\lambda > 0$ such that

$$\tilde{F}_1(z) - \lambda \tilde{F}_2(z/\lambda) = C z^{\frac{p+2}{2}} (1+o(1)) \quad (z \to 0)$$
 (4.4)

for some constant C and integer $p \ge n$. We suppose $\lambda \ge 1$; otherwise we interchange \tilde{F}_1 and \tilde{F}_2 . Now, the change from F(z) to $\lambda F(z/\lambda)$ corresponds to replacing f by λf . Then the analytic dilatation is unchanged, and following the change in (2.1) it gives the parametrization $\zeta \to (\lambda f(\zeta), \operatorname{Re} \lambda F(\zeta))$.

Let $\varphi_3, \psi_3, \tilde{\varphi}_3, \tilde{\psi}_3$ correspond to $f_3 = \lambda f_2$ so that $f_3(U)$, is nothing more than $f_1(U)$ dilated by the constant $\lambda \geq 1$, and (4.5) becomes

$$\tilde{F}_1(\tilde{z}) - \tilde{F}_3(\tilde{z}) = C z^{\frac{p+2}{2}} (1 + o(1)) \quad (z \to 0).$$
 (4.5)

Case 1. C = 0 for every p. Since $\tilde{F}_1(z^2) - \tilde{F}_3(z^2)$ is real analytic, then $\tilde{F}_1 \equiv \tilde{F}_3$. Thus, in particular $\lambda = 1$ and $f_1(U) = f_3(U) = \mathcal{P}$. In order to show that $f_1 \equiv f_3$ we use the subordination principle of [BHH; p. 170]. Briefly, since \mathcal{P} is a convex polygon by Theorem B, and $(f_1)_z(0)$, $(f_3)_z(0) > 0$, we may apply the argument principle in [BHH; p. 170] to

$$G(z) = (f_3)_z(0)f_1(z) - (f_1)_z(0)f_3(z)$$

to deduce that $(f_1)_z(0) = (f_3)_z(0)$. Then, another application of the argument principle as in [BHH] to $G_{\varepsilon}(z) = (1 + \varepsilon)f_1(z) - f_3(z)$ ($\varepsilon \to 0$) shows that $f_1 \equiv f_3$.

Case 2. $C \neq 0$ for some $p \geq n$. In this case, near the origin on $\tilde{\Delta}$, by (4.5) there are 2p + 4 level curves $\tilde{\varphi}_1 - \tilde{\varphi}_3 = 0$ emanating from $\tilde{0}$. Between the level curves, $\tilde{\varphi}_1 - \tilde{\varphi}_3$ alternates in sign. In order to analyze the component sets between the level sets, we must modify f_3 .

Let η_1, η_2, \ldots be homeomorphisms of $|\zeta| = 1$ onto the boundary of λD , which converge to the (step function) boundary values of f_3 , and let $f_3^{(n)}$, $n = 1, 2, \ldots$ their corresponding Poisson integrals so that $f_3^{(n)} \to f_3$ uniformly on compact subsets of U.

The level sets of $\tilde{\varphi}_1 - \tilde{\varphi}_3 = 0$ create 2p + 4 disjoint component open sets $O_1, O_2, \ldots, O_{2p+4}$ where $\tilde{\varphi}_1 - \tilde{\varphi}_3 > 0$ in O_{2j-1} and $\tilde{\varphi}_1 - \tilde{\varphi}_3 < 0$ in O_{2j} for $j = 1, \ldots, p+2$. These components alternate in position around the origin.

For $\varepsilon > 0$ we can find nonempty components at $O_1(\varepsilon)$, $O_2(\varepsilon)$,..., $O_{2p+4}(\varepsilon)$ where $\tilde{\varphi}_1 - \tilde{\varphi}_3^{(n)} > \varepsilon$ in $O_{2j-1}(\varepsilon)$, $\tilde{\varphi} - \tilde{\varphi}_3^{(n)} = \varepsilon$ on $\partial O_{2j-1}(\varepsilon)$, $\tilde{\Delta} \cap O_{2j-1}(\varepsilon) \subseteq O_{2j-1}$, $j = 1, \ldots, 2p$, and analogous statements hold for $O_{2j}(\varepsilon)$, $j = 1, \ldots, p+2$.

Now, $f_3^{(j)}(U) = \lambda D$, so by the maximum principle for solutions to the minimal surface equation, the level sets forming the boundaries of the $O_j(\varepsilon)$'s must extend to points over the boundary of $\mathcal{P} = f_1(U)$. As in [FO; pp. 357-358], we observe that since \tilde{F}_1 is $\pm \infty$ over the sides of \mathcal{P} by Theorem 2, if a component $O_j(\varepsilon)$ has a boundary point over an interior point of a side of \mathcal{P} , then the boundary must contain that side. Since, by Theorem B, \mathcal{P} has n sides, then $\tilde{\mathcal{P}} = \pi_1^{-1}(\mathcal{P})$ has 2nsides. This implies that there are at most 2n sets $O_j(\varepsilon)$ whose boundaries have interior points over $\partial \mathcal{P}$. If $O_j(\varepsilon)$ were a component whose boundary contained no points over $\partial \mathcal{P}$, then its boundary could only be interior points over \mathcal{P} , or vertices. As pointed out in [FO; p. 358], this is impossible by a theorem of Finn [F1; pp. 342-343]. Thus, $2p + 4 \leq 2n$. Since $p \geq n$, we obtain a contradiction and the theorem is proved.

ALLEN WEITSMAN

References

- [BHH] D. Bshouty, N. Hengartner, and W. Hengartner, A constructive method for starlike harmonic mappings, Numer. Math. 54 (1988), 167–178.
- [C] G. Choquet, Sur un type de transformation analytique généralisant la représentation conforme et définie an moyen de fonctions harmoniques, Bull. Sci. Math. 69 (1945), 156–165.
- [CS-S] J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. AI Math. 9 (1984), 3–25.
- [F1] R. Finn, New estimates for equations of minimal surface type, Arch. Rat. Mech. Anal. 14 (1963), 337–375.
- [F2] R. Finn, Remarks relevant to minimal surfaces and to surfaces of prescribed mean curvature, J. d'Analyse Math. 14 (1965), 139–160.
- [FO] R. Finn and R. Osserman, On the Gauss curvature of non-parametric minimal surfaces, J. d'Analyse Math. 12 (1964), 351–364.
- [H] E. Heinz, Über die Losungen der Minimalflachengleichung, Nachr. Akad. Wiss. Gottingen Math. Phys. K1 (1952), 51–56.
- [HS1] W. Hengartner and G. Schober, Harmonic mappings with given dilatation, J. Lond. Math. Soc. (2) 33 (1986), 473–483.
- [HS2] W. Hengartner and G. Schober, On the boundary behavior of orientation-preserving harmonic mappings, Complex Variables 5 (1986), 197–208.
- [HS3] W. Hengartner and G. Schober, Curvature estimates for some minimal surfaces, Complex Analysis, Birkhaüser Verlag, 1988, pp. 87-100.
- [JS] H. Jenkins and J. Serrin, Variational problems of minimal surface type II. Boundary value problems for the minimal surface equation, Arch. Rat. Mech. Anal. **21** (1965/66), 321–342.
- [K] H. Kneser, Lösung der Aufgabe 41, Jahresber. Deutsch. Math. Verein. 35 (1925), 123–4.
- R. Laugesen, Planar harmonic maps with inner and Blaschke dilatations, J. Lond. Math. Soc.(2) 56 (1997), 37–48.
- [O] R. Osserman, A Survey of Minimal Surfaces, Dover, 1986.
- [Se] J. Serrin, A priori estimates for solutions of the minimal surface equation, Arch. Rat. Mech. Anal. 14 (1963), 376–383.
- [Sp] G. Springer, Introduction to Riemann Surfaces, Addison–Wesley, 1957.
- [S-S] T. Sheil-Small, On the Fourier series of a step function, Mich. Math. J. 36 (1989), 459– 475.
- [W] A. Weitsman, A counterexample to uniqueness in the Riemann mapping theorem for univalent harmonic mappings, Bull. Lond. Math. Soc. 31 (1999), 87–89.