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The most influential paper on resolution of singularities is Hironaka’s magnum
opus [Hir64]. Its starting point is a profound shift in emphasis from resolving
singularities of varieties to resolving “singularities of ideal sheaves”. Principal ideals
are the simplest ones, and so the aim is to transform an arbitrary ideal sheaf into
a locally principal one by a sequence of blow ups. Ideal sheaves are much more
flexible than varieties, and this opens up new ways of running induction.

Since then, resolution of singularities emerged as a very unusual subject in that
its main object has been a deeper understanding of the proof, rather than the search
for new theorems. A better grasp of the proof leads to improved theorems, though
the ultimate aim of extending the method to positive characteristic seems still far
off. Two, seemingly contradictory, aspects make it very interesting to study and
develop Hironaka’s approach.

First, the method is very robust, in that many variants of the proof work. Thus
one can change almost any part of the argument and be rather confident that the
other parts can be modified to fit.

Second, the complexity of the proof is very sensitive to details. Small changes
in definitions and presentation may result in major simplifications.

This duality also makes it difficult to write a reasonable historical presentation
and to correctly appreciate the contributions of various researchers. Each step
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2 JÁNOS KOLLÁR

ahead can be viewed as small or large, depending on whether we focus on the
change in the ideas or on their effect. In some sense, all the results of the past
40 years have their seeds in [Hir64], nevertheless, the improvement in the methods
has been enormous. Thus, instead of historical notes, here is a list of the most
important contributions to the development of the Hironaka method, more or less
in historical order.

Hironaka [Hir64, Hir77], Giraud [Gir74], Villamayor [Vil89, Vil92, Vil96] with
his coworkers Bravo [BV01] and Encinas [EV98, EV03], Bierstone and Milman
[BM89, BM91, BM97, BM03], Encinas and Hauser [EH02] and W lodarczyk [W lo05].
The following proof reflects my understanding of these works, with [W lo05] the most
influential.

I have also benefited from the surveys and books [Gir95], [Lip75], [AHV77],
[CGO84], [HLOQ00], [Hau03] and [Cut04].

Abhyankar’s book [Abh66] shows some of the additional formidable difficulties
that appear in positive characteristic.

A very elegant approach to resolution following de Jong’s results on alterations
[dJ96] is developed in the papers [BP96, AdJ97, AW97]. See [Par99] for a very
clear survey. This method produces a resolution as in (2) which is however neither
strong (3) nor functorial (4).

Another feature of the study of resolutions is that everyone seems to use different
terminology, so I also felt free to introduce my own.

It is very instructive to compare the current methods with Hironaka’s “Idealistic”
paper [Hir77]. The main theme is that resolution becomes simpler if we do not try
to control the process very tightly, as illustrated by the following 3 examples.

(1) The original method of [Hir64] worked with the Hilbert–Samuel function of
an ideal sheaf at a point. It was gradually realized that the process simplifies if one
considers only the vanishing order of an ideal sheaf; a much cruder invariant.

(2) The notion of idealistic exponent declares two ideals equivalent if they behave
the “same” with respect to any birational map. Now we see that it is easier to work
with an equivalence relation that requires the “same” behavior only with respect
to smooth blow ups along subvarieties where the vanishing order is maximal.

(3) The concept of distinguished presentation attempts to pick a local coordinate
system that is optimally adjusted to the resolution of a variety or ideal sheaf.
A key result of W lodarczyk [W lo05] says that for a suitably modified ideal, all
reasonable choices are equivalent, thus we do not have to be very careful. In fact,
local coordinate systems are not needed at all.

The arguments given here differ from their predecessors in two additional aspects.
The first of these is a matter of choice, but the second one makes the structure of
the proof patent.

(4) The cleanest form of resolution would be to define an invariant on points

of varieties inv(x, X̂) with values in an ordered set satisfying the descending chain
condition, such that

(i) x 7→ inv(x, X̂) is a constructible and upper semi continuous function on every
variety X ,

(ii) at each step of the resolution we blow up the locus where the invariant is
maximal, and

(iii) the invariant decreases with each blow up.
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With some modification, this is accomplished in [Vil89, BM97] and [EH02]. Their
invariants are, however, rather complicated. Already [W lo05] suggested that with
his methods it should not be necessary to define such an invariant. A slight trick
in Section 12 allows one to proceed without it.

(5) Traditionally, the results of Sections 9–12 constituted one intertwined pack-
age, that had to be carried through the whole induction together. The introduction
of the notions of D-balanced and MC-invariant ideal sheaves makes it possible to
disentangle these to obtain 4 independent parts. Similar ideas were also considered
by Kawanoue [Kaw05].

1. What is a good resolution algorithm?

Before we consider the resolution of singularities in general, it is worthwhile to
contemplate what should the properties of a good resolution algorithm be.

Here I concentrate on the case of resolving singularities of varieties only. In
practice, one may want to keep track and improve additional objects, for instance
subvarieties or sheaves as well, but for now these variants would only obscure the
general picture.

1 (Weakest resolution). Given a variety X, find a projective variety X ′ such that
X ′ is smooth and birational to X.

This is what the Albanese method gives for curves and surfaces. In these cases
one can then use this variant to get better resolutions, so we do not lose anything at
the end. These strengthenings are, however, not automatic, and it is not at all clear
that such a “weakest resolution” would be powerful enough in higher dimensions.

(Note that even ifX is not proper, we have to insist onX ′ being proper, otherwise
one could take the open subset of smooth points of X for X ′.)

In practice it is useful, sometimes crucial, to have additional properties.

2 (Resolution). Given a variety X, find a variety X ′ and a projective morphism
f : X ′ → X such that X ′ is smooth and f is birational.

This is the usual definition of resolution of singularities.
For many applications this is all one needs, but there are plenty of situations

when additional properties would be very useful. Here are some of these.
2.1 Singularity theory. Let us start with an isolated singularity x ∈ X . One

frequently would like to study it by taking a resolution f : X ′ → X and connecting
the properties of x ∈ X with properties of the exceptional divisor E = Ex(f). Here
everything works best if E is projective, that is, when E = f−1(x).

It is reasonable to hope that we can achieve this. Indeed, by assumption, X \
{x} is smooth, so it should be possible to resolve without blowing up anything
intersecting X \ {x}.

2.2 Open varieties. It is natural to study a noncompact variety X0 via a com-
pactification X ⊃ X0. Even if X0 is smooth, the compactifications that are easy
to obtain are usually singular. Then one would like to resolve the singularities of
X and get a smooth compactification X ′. If we take any resolution f : X ′ → X ,
the embedding X0 →֒ X does not lift to an embedding X0 ⊂ X ′. Thus we would
like to find a resolution f : X ′ → X such that f is an isomorphism over X0.

In both of the above examples, one would like the exceptional set E or the
boundary X ′ \X0 to be “simple”. Ideally we would like them to be smooth, but
this is rarely possible. The next best situation is when E or X ′ \ X0 are normal
crossing divisors.
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These considerations lead to the following variant.

3 (Strong resolution). Given a variety X, find a variety X ′ and a projective mor-
phism f : X ′ → X such that

(1) X ′ is smooth and f is birational,
(2) f : f−1(Xns)→ Xns is an isomorphism, and
(3) f−1(SingX) is a divisor with normal crossings.

This seems to be the variant that is most frequently used in applications. There
are, of course, variants, that are sometimes needed. For instance, one might need
the last condition scheme theoretically.

A more important question arises when one has several varieties Xi to work
with simultaneously. In this case we may need to know that certain morphisms
φij : Xi → Xj lift to the resolutions φ′ij : X ′

i → X ′
j .

It would be nice to have this for all morphisms, which would give a “resolution
functor” form the category of all varieties and morphisms to the category of smooth
varieties. This is, however, impossible.

3.1 Example. Let S := (uv−w2 = 0) ⊂ A3 be the quadric cone and consider the
morphism

φ : A2
x,y → S given by (x, y) 7→ (x2, y2, xy).

The only sensible resolution of A2 is itself, and any resolution of S dominates the
minimal resolution S′ → S obtained by blowing up the origin.

The morphism φ lifts to a rational map φ′ : A2 99K S′, but φ′ it is not a
morphism.

It seems that the best one can hope for is that the resolution commutes with
smooth morphisms.

4 (Functorial resolution). For every variety X find a strong resolution fX : X ′ →
X which is functorial with respect to smooth morphisms. That is, any smooth
morphism φ : X → Y lifts to a smooth morphism φ′ : X ′ → Y ′ which gives a fiber
product square

X ′ φ′

−→ Y ′

fX ↓ � ↓ fY

X
φ
−→ Y

Note that if φ′ exists, it is unique, so we indeed get a functor form the category
of all varieties and smooth morphisms to the category of smooth varieties (and
smooth morphisms).

This is a quite strong property with many useful implications.
4.1 Group actions. Functoriality of resolutions implies that any group action on

X lifts to X ′. For discrete groups this is just functoriality plus the observation that
the only lifting of the identity map on X is the identity map of X ′. For an algebraic
group G a few more steps are needed, see (9.1).

4.2 Localization. Let fX : X ′ → X be a functorial resolution. The embedding
of any open subset U →֒ X is smooth, so the functorial resolution of U is the
restriction of the functorial resolution of X . That is,

(fU : U ′ → U) ∼= (fX |f−1
X

(U) : f−1
X (U)→ U).

Equivalently, a functorial resolution is Zariski local. More generally, a functorial
resolution is étale local since étale morphisms are smooth.
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Conversely, we show in (9.2) that any resolution which is functorial with respect
to étale morphisms is also functorial with respect to smooth morphisms.

4.3 Formal localization. Any sensible étale local construction in algebraic ge-
ometry is also “formal local”. In our case this means that the behaviour of the
resolution fX : X ′ → X near a point x ∈ X should depend only on the com-
pletion Ôx,X . (Technically speaking, Spec Ôx,X is not a variety and the map

Spec Ôx,X → SpecOx,X is only formally smooth, so this is a stronger condition
than functoriality.)

4.3 Resolution of products. It may appear surprising, but a sensible resolution
should not commute with products.

For instance, consider the quadric cone 0 ∈ S = (x2 + y2 + z2 = 0) ⊂ A3. This
is resolved by blowing up the origin f : S′ → S with exceptional curve C ∼= P1. On
the other hand,

f × f : S′ × S′ → S × S

can not be the outcome of an étale local strong resolution. The singular locus of
S × S has two components, Z1 = {0} × S and Z2 = S × {0} and correspondingly
the exceptional divisor has two components, E1 = C × S′ and E2 = S′ × C which
intersect along C × C.

If we work étale locally at (0, 0), we can not tell whether the two branches of
the singular locus Z1 ∪ Z2 are on different irreducible components of SingS or on
one nonnormal irreducible component. Correspondingly, the germs of E1 and E2

could be on the same irreducible exceptional divisor, and in a strong resolution they
should not intersect.

So far we concentrated on the end result fX : X ′ → X of the resolution. Next
we look at some properties of the resolution algorithm itself.

5 (Resolution by blowing up smooth centers). For every variety X find a resolution
fX : X ′ → X such that fX is a composite of morphisms

fX : X ′ = Xn
pn−1
−→ Xn−1

pn−2
−→ · · ·

p1−→ X1
p0−→ X0 = X,

where each pi : Xi+1 → Xi is obtained by blowing up a smooth subvariety Zi ⊂ Xi.
If we want fX : X ′ → X to be a strong resolution, then the condition Zi ⊂

SingXi may also be required.
Let us note first that in low dimensions some of the best resolution algorithms

do not have this property:

(1) The quickest way to resolve a curve is to normalize it. The normalization
usually can not be obtained by blowing up points (though it is a composite
of blow ups of points).

(2) A normal surface can be resolved by repeating the procedure: “blow up the
singular points and normalize” [Zar39].

(3) A toric variety is best resolved by toric blow ups. These are rarely given
by blow ups of subvarieties (cf. [Ful93, 2.6]).

(4) More generally, many of the best studied singularities are easier to resolve
by doing a weighted blow up first. (It is, of course, a valid point that we
mostly study singularities which are given by polynomials involving only a
few monomials, and these tend to be weighted homogeneous. So the last
example may say more about our inability to study complicated objects
than about the merit of various resolution procedures.)
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On the positive side, resolution by blowing up smooth centers has the great
advantage that we do not mess up what is already nice. For instance, if we want
to resolve X , and Y ⊃ X is a smooth variety containing X , then a resolution by
blowing up smooth centers automatically carries along the smooth variety. Thus
we get a sequence of smooth varieties Yi fitting in a diagram

Xn
pn−1
−→ Xn−1 · · · X1

p0−→ X0 = X
↓ ↓ ↓ ↓

Yn
qn−1
−→ Yn−1 · · · Y1

q0−→ Y0 = Y,

where the vertical arrows are closed embeddings.
The theory Nash blow ups offers a – so far entirely hypothetical – approach to

resolution that does not rely on blowing up smooth centers, cf. [Hir83].

Once we settle on resolution by blowing up smooth centers, the main question
is how to find the centers that we need to blow up. From the algorithmic point of
view, the best outcome would be the following.

6 (Iterative resolution, one blow up at a time). For any variety X, identify a
smooth subvariety Z ⊂ X consisting of the “‘worst” singularities W (X) ⊂ X , and
set R(X) := BW (X)X. Then we get the resolution by iterating this procedure. That
is, Rm(X) is smooth for m≫ 1.

Such an algorithm exists for curves with W (X) = SingX .
The situation is not so simple in higher dimensions.

6.1 Example. Consider the pinch point, or Whitney umbrella, S := (x2 − y2z =
0) ⊂ A3. S is singular along the line (x = y = 0). It has a normal crossing point if
z 6= 0 but a more complicated singularity at (0, 0, 0).

If we blow up the “worst” singular point (0, 0, 0) of the surface S then in the
chart with coordinates x1 = x/z, y1 = y/z, z1 = z we get the birational transform
S1 = (x2

1 − y
2
1z1 = 0). This is isomorphic to the original surface.

Thus we conclude that one can not resolve surfaces by blowing up the “worst”
singular point all the time.

We can, however, resolve the pinch point by blowing up the whole singular line.
In this case, using the multiplicity (which is a rough invariant) gives the right blow
up, whereas distinguishing the pich point from a normal crossing point (using some
finer invariants) gives the wrong blow up. The message is that we should not look
at the singularities too carefully.

The situation gets even worse for normal threefolds.

6.2 Example. Consider the 3–fold

X := (x2 + y2 + zmtm = 0) ⊂ A4.

The singular locus is the union of the 2 lines

L1 := (x = y = z = 0) and L2 := (x = y = t = 0).

There are two reasons why no sensible resolution procedure should start by blowing
up either of the lines:

(i) The two lines are interchanged by the involution τ : (x, y, z, t) 7→ (x, y, t, z),
thus they should be blown up in a τ -invariant way.



RESOLUTION OF SINGULARITIES – SEATTLE LECTURE 7

(ii) An étale local resolution procedure can not tell if L1 ∪ L2 is a union of
2 lines or just 2 local branches of an irreducible curve. Thus picking one
branch does not make sense globally.

Therefore we must start by blowing up the intersection point (0, 0, 0, 0).
Computing the t-chart x = x1t1, y = y1t1, z = z1t1, t = t1 we get

X1,t = (x2
1 + y2

1 + zm1 t
2m−2
1 = 0),

and similarly in the z-chart. Thus on B0X the singular locus consists of 3 lines:
L′

1, L
′
2 and an exceptional line E.

For m = 2 we are thus back to the original situation, and and for m ≥ 3 we
made the singularities worse by blowing up. In the m = 2 case there is nothing else
one can do, and we get our first negative result:

6.3 Claim. There is no iterative resolution algorithm which works one blow up
at a time.

The way out is to notice that our two objections (6.2.i-ii) to first blowing up
one of the lines L1 or L2 are not so strong when applied to the 3 lines L1, L2

and E on the blow up B0X . Indeed, we know that the new exceptional line E
is isomorphic to CP1 and it is invariant under every automorphism lifted from X .
Thus we can safely blow up E ⊂ B0X . In the m = 2 case we can then blow up
the birational transforms of the two lines L1 and L2 simultaneously, to achieve
resolution. (Additional steps are needed for m ≥ 3.)

In general, we have to ensure that the resolution procedure has some “memory”.
That is, at each step the procedure is allowed use information about the previous
blow ups. For instance, it could keep track of the exceptional divisors that were
created by earlier blow ups of the resolution and in which order they were created.

The remaining question is, how much we have to remember from the previous
steps of the resolution to get a good algorithm. This issue is addressed in [EH02],
though their answer is still rather complicated.

7 (Other considerations). There are several other ways to judge how good a reso-
lution algorithm is.

7.1 Elementary methods. A good resolution method should be part of “ele-
mentary” algebraic geometry. Both Newton’s method of rotating rulers and the
Albanese projection method pass this criterion. On the other hand, several of the
methods for surfaces discussed in Chapter II rely on more advanced machinery (like
higher direct images). The resolution technique of [AdJ97, BP96] is quick once you
know enough about the moduli of curves, but it is by no means elementary.

7.2 Computability. In concrete cases, one may wish to explicitly determine res-
olutions by hand or by a computer. As far as I can tell, the existing methods do
rather poorly on the simplest singularities. In a more theoretical direction, one can
ask for the worst case or average complexity of the algorithms. See [BS00b, BS00a]
for a computer implementation.

8. Our resolution is functorial with respect to smooth morphisms and it proceeds
by blowing up smooth centers.

On the other hand, it is very far from being iterative if we want to work one
blow up at a time. Instead, at each step we specify a long sequence of blow ups to
be performed. In fact, it may happen that at some stage we blow up a subvariety
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Zi ⊂ Xi along which the variety Zi is smooth. This of course only happens for
subvarieties that sit over the original singular locus, so at the end we still can have
a strong resolution.

My feeling is that the method can be reformulated as an iterative method with
memory, but this may not be straightforward and to some extent it would go against
the spirit of the method.

The computability of the algorithm has not been investigated much, but the early
indications are not promising. One issue is that starting with say a hypersurface
(f = 0) ⊂ An of multiplicity m, the first step is to replace the ideal (f) with another
ideal W (f) which has more than emn generators, each of multiplicity at least em,
see (41.3). Then we reduce to a resolution problem in n− 1-dimensions, and at the
next reduction step we again may have an exponential increase of the multiplicity
and the number of generators.

For any reasonable computer implementation, some shortcuts seem essential.

Aside 9. Here we prove the two claims made in (4). These are not used in the
rest of the chapter.

Proposition 9.1. The action of an algebraic group G on a variety X lifts to an action
of G on its functorial resolution X ′.

Proof. The action of an algebraic group G on a variety X is given by a smooth
morphism m : G ×X → X . So the resolution (G ×X)′ of G ×X is given by the
pull back of X ′ via m, that is by

f∗
X(m) : (G×X)′ → X ′.

On the other hand, the second projection π2 : G × X → X is also smooth, so
(G×X)′ = G×X ′. Thus we get a commutative diagram

m′ : G×X ′ ∼= (G×X)′
f∗

X (m)
−→ X ′

↓ idG × fX ↓ fX
G×X = G×X

m
−→ X.

We claim that the composite in the top row, m′ : G × X ′ → X ′ defines a group
action. This means that the following diagram is commutative, wheremG : G×G→
G is the group multiplication.

G×G×X ′ idG×m′

−→ G×X ′

mG × idX′ ↓ ↓ m′

G×X ′ m′

−→ X ′.

Since m : G × X → X defines a group action, we know that the diagram is
commutative over a dense open set. Since all schemes in the diagram are reduced,
this implies commutativity. �

Proposition 9.2. Any resolution which is functorial with respect to étale morphisms
is also functorial with respect to smooth morphisms.

Proof. Since any resolution f : X ′ → X is birational, it is an isomorphism over
some smooth points of X . Any two smooth points of X are étale equivalent, thus
a resolution which is functorial with respect to étale morphisms is an isomorphism
over smooth points.
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Etale locally a smooth morphism is a direct product, so it is sufficient to prove
that (X ×A)′ ∼= X ′×A for any Abelian variety A. Such an isomorphism is unique
thus it is enough to prove existence for X proper.

Since (X × A)′ is proper, the connected component of its automorphism group
is an algebraic group G (see, for instance, [Kol96, I.1.10]). Let G1 ⊂ G denote the
subgroup whose elements commute with the projection π : (X ×A)′ → X .

Let Z ⊂ Xns be a finite subset. Then π−1(Z) ∼= Z × A and the action of A
on itself gives a subgroup A ∼= AZ →֒ Aut(π−1(Z)). There is a natural restriction
map σZ : G1 → Aut(π−1(Z)); set GZ := σ−1

Z AZ .
As we increase Z, the subgroups GZ form a decreasing sequence, which eventu-

ally stabilizes at a subgroup GX ⊂ G such that for every finite set Z ⊂ Xns, the
action of GX on π−1(Z) is through the action of A on itself. This gives an injective
homomorphism of algebraic groups GZ →֒ A.

On the other hand, A acts on X ×A by isomorphisms, and by assumption this
action lifts to an action of the discrete group A on (X × A)′. Thus the injection
GZ →֒ A has a set theoretic inverse, so it is an isomorphism of algebrac groups. �

2. Examples of resolutions

We start the study of resolutions with some examples. First we describe how the
resolution method deals with two particular surface singularities S ⊂ A3. While
these are relatively simple cases, they allow us to isolate six Problems facing the
method. Four of these we solve later and we can live with the other two.

Then we see how the Problems can be tackled for Weierstrass polynomials and
what this solution tells us about the general case.

Key idea 10. We look at the trace of S ⊂ A3 on a suitable smooth surface H ⊂ A3

and reconstruct the whole resolution of S from S ∩H .

More precisely, starting with a surface singularity 0 ∈ S ⊂ A3 of multiplicity m,
we will be guided by S ∩H until the multiplicity of the birational transform of S
drops below m. Then we need to repeat the method to achieve further multiplicity
reduction.

Example 11 (Resolving S := (x2 + y3 − z6 = 0) ⊂ A3). Set H := (x = 0) ⊂ A3

and work with S ∩H .

Step 1. Although the trace S ∩H = (y3 − z6 = 0) ⊂ A2 has multiplicity 3, we
came from a multiplicity 2 situation, and we blow up until the multiplicity drops
below 2.

Here it takes 2 blow ups to achieve this. The crucial local charts are:

x2 + y3 − z6

x2
1 + (y3

1 − z
3
1)z1 x1 = x

z , y1 = y
z , z1 = z

x2
2 + (y3

2 − 1)z2
2 x2 = x1

z1
, y2 = y1

z1
, z2 = z1.

At this stage the trace of the dual graph of the birational transform of S on the
birational transform of H is the following, where the numbers indicate the mul-
tiplicity (and not minus the selfintersection number as usual) and • indicates the
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birational transform of the original curve S ∩H .

1 − 2
�
−
�

•

•

•

Step 2. The birational transform of S∩H intersects some of the new exceptional
curves which appear with positive coefficient. We blow up until these intersections
are removed.

In our case each intersection point needs to be blown up twice. At this stage the
trace of the birational transform of S on the birational transform of H looks like

1 − 2
�
−
�

1 − 0 − •

1 − 0 − •

1 − 0 − •

where multiplicity 0 indicates that the curve is no longer contained in the birational
transform of H (so strictly speaking we should not draw it at all).

Step 3. The trace now has multiplicity < 2 along the birational transform of
S ∩H , but it still has some points of multiplicity ≥ 2. We remove these by blowing
up the exceptional curves with multiplicity ≥ 2.

In our case there is only one such curve. After blowing it up, we get the final
picture

1 − 0
�
−
�

1 − 0 − •

1 − 0 − •

1 − 0 − •

where the boxed curve is elliptic.

More details of the resolution method appear in the following example.

Example 12 (Resolving S := (x3+(y2−z6)2+z21) = 0) ⊂ A3). As before, we look
at the trace of S on the plane H := (x = 0) and reconstruct the whole resolution
of S from S ∩H .

Step 1. Although the trace S ∩H = ((y2− z6)2 + z21 = 0) ⊂ A2 has multiplicity
4, we came from a multiplicity 3 situation, and we blow up until the multiplicity
drops below 3.

Here it takes 3 blow ups to achieve this. The crucial local charts are:

x3 + (y2 − z6)2 + z21

x3
1 + z1(y2

1 − z
4
1)2 + z18

1 x1 = x
z , y1 = y

z , z1 = z
x3

2 + z2
2(y2

2 − z
2
2)2 + z15

2 x2 = x1

z1
, y2 = y1

z1
, z2 = z1

x3
3 + z3

3(y2
3 − 1)2 + z12

3 x3 = x2

z2
, y3 = y2

z2
, z3 = z2

The birational transform of S ∩H has equation

(y2
3 − 1)2 + z9

3 = 0,
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and has two higher cusps at y3 = ±1 on the last exceptional curve. The trace of
the birational transform of S on the birational transform of H looks like

1 − 2 − 3
�

�

•

•

(As before, the numbers indicate the multiplicity and • indicates the birational
transform of the original curve S ∩ H . Also note that here the curves marked •
have mutiplicity 2 at their intersection point with the curve marked 3.)

Step 2. The birational transform of S∩H intersects some of the new exceptional
curves which appear with positive coefficient. We blow up until these intersections
are removed.

In our case each intersection point needs to be blown up three times and we get
the following picture:

1 − 2 − 3
�

�

2 − 1 − 0 − •

2 − 1 − 0 − •

Step 3. The trace now has multiplicity < 3 along the birational transform of
S ∩ H , but it still has some points of multiplicity ≥ 3. There is one exceptional
curve with multiplicity ≥ 3, we blow that up. This drops its coefficient from 3 to 0.
There are 4 more points of multiplicity 3. After blowing these up we get the final
picture

1 − 0 − 2 − 0
�

�

2 − 0 − 1 − 0 − •

2 − 0 − 1 − 0 − •

13 (Problems with the method). There are at least 6 different problems with the
method. Some are clearly visible from the examples, some are hidden by the pre-
sentation.

Problem 13.1. In (11) we end up with 8 exceptional curves, when we need only
1 to resolve S. In general, for many surfaces the method gives a resolution that
is much bigger than the minimal one. However, in higher dimensions there is no
minimal resolution, and it is not clear how to measure the “wastefullness” of a
resolution.

We will not be able to deal with this issue.

Problem 13.2. The resolution problem for surfaces in A3 was reduced not to the
resolution problem for curves in A2, but to a related problem that also takes into
account exceptional curves and their multiplicities in some way.

We have to set up a somewhat artificial looking resolution problem that allows
true induction on the dimension.
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Problem 13.3. The end result of the resolution process guarantees that the bi-
rational transform of S has multiplicity < 2 along the birational transform of
H = (x = 0), but we have said nothing about the singularties that occur out-
side the birational transform of H .

There are indeed such singularties if we do not choose H carefully. For instance,
if we take H ′ := (x − z2 = 0) then at the end of (11.Step.1), that is, after 2 blow
ups, the birational transform of H ′ is (x2 − 1 = 0), which does not contain the
singularity which is at the origin (x2 = y2 = z2 = 0).

Thus a careful choice of H is needed. This is solved by the theory of maximal
contact, developed by Hironaka and Giraud [Gir74].

Problem 13.4. In some cases, the opposite problem happens. All the singularities
end up on the birational transforms of H , but we also pick up extra tangencies, so
we see too many singularities.

For instance, take H ′′ := (x − z3 = 0). Since

x2 + y3 − z6 = (x− z3)(x + z3) + y3,

the trace of S on H ′′ is a triple line. The trace shows a 1–dimensional singular set
when we have only an isolated singular point.

In other cases, these problems may appear only after many blow ups.
At a first glance, this may not be a problem at all. This simply means that we

make some unnecessary blow ups as well. Indeed, if our aim is to resolve surfaces
only, then this problem can be mostly ignored. However, for the general inductive
procedure this is a serious difficulty since unnecessary blow ups can increase the
multiplicity. For instance,

S = (x4 + y2 + yz2 = 0) ⊂ A3

is an isolated double point. If we blow up the line (x = y = 0), in the x-chart we
get a triple point

x3
1 + x1y

2
1 + y1z

2 = 0 where x = x1, y = y1x1.

In a crucial change of emphasis, we switch from resolving varieties to “resolving”
ideal sheaves by introducing a coefficient ideal C(S) such that

(i) resolving S is equivalent to “resolving” C(S), and
(ii) resolving the traces C(S)|H does not generate extra blow ups for S.

Problem 13.5. No matter how carefully we choose H , we can never end up with a
unique choice. For instance, the analytic automorphism of S = (x2 + y3 − z6 = 0)

(x, y, z) 7→ (x+ y3, y 3
√

1− 2x− y3, z)

shows that no internal property distinguishes the choice x = 0 from the choice
x+ y3 = 0.

Even with the careful “maximal contact” choice of H , we end up with cases
when the traces S ∩H are not isomorphic. Thus our resolution process seems to
depend on the choice of H .

This is again only a minor inconvenience for surfaces, but in higher dimensions
we have to deal with patching together the local resolution processes into a global
one. (We can not even avoid this issue by pretending to care only about isolated
singularities, since blowing up frequently leads to nonisolated singularities.)



RESOLUTION OF SINGULARITIES – SEATTLE LECTURE 13

An efficient solution of this problem developed in [W lo05] replaces S with an
ideal W (S) such that

(i) resolving S is equivalent to resolving W (S), and
(ii) the traces W (S)|H are locally analytically isomorphic for all hypersurfaces

of maximal contact through s ∈ S.

The local ambiguity is thus removed from the process and there is no patching
problem any more.

Problem 13.6. At Steps 2 and 3 in (11), the choices we make are not canonical.
For instance, in Step 2 we could have blown up the central curve with multiplicity
2 first, to complete the resolution in just one step. Even if we do Step 2 as above,
in general there are many curves to blow up in Step 3 and the order of blow ups
matters. (In A3, one can blow up 2 intersecting smooth curves in two different
orders, and the resulting 3–folds are not isomorphic.)

This problem, too, remains unsolved. We make a choice, and it is good enough
that the resolutions we get commute with any smooth morphism. Thus we get a
resolution which one can call “functorial”. I would not call it a “canonical” reso-
lution, since even in the framework of this proof other, equally functorial, choices
are possible.

This is very much connected with the lack of minimal resolutions.

Next we see how Problems 2–5 can be approached for hypersurfaces using Weier-
strass polynomials. As was the case with curves and surfaces, this example motivi-
ates the whole proof. (To be fair, this example provides much better guidance with
hindsight. One might argue that the whole history of resolution by smooth blow
ups is but an ever improving understanding of this single example. It has taken a
long time to sort out how to generalize various aspects of it, and it is by no means
certain that we have learned all the right lessons.)

Example 14. Let X ⊂ Cn+1 be a hypersurface. Pick a point 0 ∈ X where
mult0X = m. Choose suitable local coordinates x1, . . . , xn, z and apply the Weier-
strass preparation theorem to get (in an analytic neighborhood) an equation of the
form

zm + a1(x)zm−1 + · · ·+ am(x) = 0

for X . We can kill the zm−1 term by a substitution z = y− 1
ma1(x) to get another

local equation

f := ym + b2(x)ym−2 + · · ·+ bm(x) = 0. (14.1)

Here mult0 bi ≥ i since mult0X = m.
Let us blow up the pont 0 to get π : B0X → X and consider the chart x′i =

xi/xn, , x
′
n = xn, y

′ = y/xn. We get an equation for B0X

F := (y′)m + (x′n)−2b2(x′1x
′
n, . . . , x

′
n)(y′)m−2 + · · ·+ (x′n)−mbm(x′1x

′
n, . . . , x

′
n).

(14.2)
Where are the points of multiplicity ≥ m on B0X? Locally we can view B0X

as a hypersurface in Cn+1 given by the equation F (x′, y′) = 0, and a point p has
multiplicity ≥ m iff all the (m− 1)st partials of F vanish. First of all, we get that

∂m−1F

∂y′m−1 = m! · y′ vanishes at p. (14.3)
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This means that all points of multiplicity ≥ m on B0X are on the birational
transform of the hyperplane (y = 0). Since the new equation (14.2) has the same
form as the original (14.1), the conclusion continues to hold after further blow ups,
solving Problem (13.3):

Claim 14.4. After a sequence of blow ups at points of multiplicity ≥ m

Π : Xr = Bpr−1Xr−1 → Xr−1 = Bpr−2Xr−2 → · · · → X1 = Bp0X → X,

all points of multiplicity ≥ m on Xr are on the birational transform of the hyper-
plane H := (y = 0), and all points of Xr have multiplicity ≤ m.

This property of the hyperplane (y = 0) will be encapsulated by the concept of
hypersurface of maximal contact.

In order to determine the location of points of multiplicity m, we need to look
at all the other (m− 1)st partials of F restricted to (y′ = 0). These can be written
as

∂m−1F

∂x′i−1∂y′m−i |(y′=0) = (m− i)! ·
∂i−1

(
(x′n)−ibi(x

′
1x

′
n, . . . , x

′
n)
)

∂x′i−1 . (14.5)

Thus we can actually read off from H = (y = 0) which points of B0X have
multiplicity m. For this, however, we need not only the restriction f |H = bm(x)
but all the other coefficients bi(x) as well.

There is one further twist. The usual rule for transforming a polynomial under
a blow up is

b(x1, . . . , xn) 7→ (x′n)−mult0 bb(x′1x
′
n, . . . , x

′
n),

but instead we use the rule

bi(x1, . . . , xn) 7→ (x′n)−ibi(x
′
1x

′
n, . . . , x

′
n).

That is, we “pretend” that bi has multiplicity i at the origin. To handle this, we
introduce the notion of a marked function (f,m) and define the birational transform
of a marked function (g,m) to be

π−1
∗

(
g(x1, . . . , xn),m

)
:=
(
(x′n)−mg(x′1x

′
n, . . . , x

′
n),m

)
. (14.6)

By induction we define Π−1
∗ (g,m) where Π is a sequence of blow ups as in (14.4).

(Warning: if we change coordinates, the right hand side of (14.6) changes by a
unit. Thus the ideal (π−1

∗ (g,m)) is well defined, but not π−1
∗ (g,m) itself. Fortu-

nately, this does not lead to any problems.)
This leads to a solution of Problems (13.2) and (13.4):

Claim 14.7. After a sequence of blow ups at points of multiplicty ≥ m

Π : Xr = Bpr−1Xr−1 → Xr−1 = Bpr−2Xr−2 → · · · → X1 = Bp0X → X,

a point p ∈ Xr has multiplicity < m on Xr iff

(i) either p 6∈ Hr, the birational transform of H ,
(ii) or there is an index i = i(p) such that

multp(Π|Hr
)−1
∗ (bi(x), i) < i.

A further observation is that we can obtain the bi(x) from the derivatives of f :

bi(x) =
1

(m− i)!
·
∂m−if

∂ym−i
(x, y)|H .

Thus (14.7) can be restated in a more invariant looking but also vaguer form:
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Principle 14.8. Multiplicity reduction for the n + 1-variable function f(x, y) is
equivalent to multiplicity reduction for certain n-variable functions constructed
from the partial derivatives of f with suitable markings.

14.9. So far we have completely ignored that everything we did depends on
the initial choice of the coordinate system (x1, . . . , xn, z). The fact that in (14.7–
8) we get equivalences suggests that the choice of the coordinate system should
not matter much. The problem, however, remains, that in globalizing the local
resolutions constructed above, we have to choose local resolutions out of the many
possibilities and hope that the different local choices patch together.

This has been a surprisingly serious obstacle. One way to overcome this is to
obtain coordinate invariant expressions out of the coefficients bi and use only these
in the resolution algorithm.

This leads to a more basic question: What other functions or ideals can one
associate to f in a coordinate invariant manner?

14.10. (Derivative ideals) Given a variety X ⊂ Cn+1, there are not many other
varieties that one can canonically associate to X . The only one that comes to mind
is X 7→ SingX , which is also of great interest to us. Algebraically this corresponds
to going from an ideal I to the ideal D(I) generated by I and all the first partials
of elements of I.

Thus starting with f as in (14.1), we have a chain of ideals

(f) ⊂ D(f) ⊂ D2(f) ⊂ · · · ⊂ Dm(f).

Note that Dm(f) contains ∂mf/∂ym = m!, thus Dm(f) is the trivial ideal of all
functions.

14.11. The whole resolution process started with an artificial choice of the cood-
inate z which then lead to the special coordinate y. We need a more systematic
way to do this. If

g := zm + a1(x)zm−1 + a2(x)zm−2 + · · ·+ am(x)

is an arbitrary polynomial, then

∂m−1g

∂zm−1
= m! ·

(
z + 1

ma1

)
,

thus our special case (14.1) where a1 = 0 is distinguished by the property that
y ∈ Dm−1(f). Conversely, if

f = ym + b2(x)ym−2 + · · ·+ bm(x)

and mult0 bi > i for every i (which is a typical hard case for resolution) then y
is the only linear function in Dm−1(f). (In general there are some exceptions to
the converse though. If f = xa1x

b
2 then m = a + b and x1, x2 ∈ Dm−1(f), but for

a, b ≥ 1 neither of them can be used as y in (14.1). However, any y := c1x1 + c2x2

with c1c2 6= 0 works, so the converse almost holds.) With some wishful thinking,
we arrive at the following:

Principle 14.12. Any multiplicity 1 function in Dm−1(f) should be able to play the
role of the special coordinate y in (14.7–8).

What else can be computed from the bi? At first sight it would seem by looking
at

f = ym + b2(x)ym−2 + · · ·+ bm(x)
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that every derivative of f can be computed from y and the bi-s. This is, however,
the wrong way to think about it. We want to resolve the singularities of the
hypersurface X = (f = 0), thus we want our resolution to depend on X and not
on the choice of the equation f . Assuming that we know only the ideals (y) and
(bi), there is no reason to believe that (f) itself can be computed. We can get
expressions of the form

(unit)ym + (unit)b2(x)ym−2 + · · ·+ (unit)bm(x)

but these generate an ideal strictly larger than (f) which depends on the coordinate
system. Thus the relevant question is:

Question 14.13. Which derivative ideals of (f) can be computed from the ideals (y)
and (b2), . . . , (bm)?

Let us start with Dm−1(f). For some j = |J | ≤ m− 1, an (m− 1)-st derivative
of f can be written as

∂m−1f

∂ym−1−j∂xJ
∈

(
yj+1−i ∂

jbi
∂xJ

: 0 ≤ i ≤ j + 1

)
.

If i < j + 1 then on the right hand side we have a term in (y) ⊂ Dm−1(f) and for
i = j + 1 we get a term in Di−1(bi). Thus

Dm−1(f) = (y) +

m∑

i=2

Di−1(bi).

We run into some trouble for Dm−2(f) since we get terms involving y2 and
yDi−1(bi) besides the expected terms in Di−2(bi). Note that y2, yDi−1(bi) ⊂(
Dm−1(f)

)2
, but there is no reason to assume that the latter is contained in

Dm−2(f). We still get, however, that

Dm−2(f) +
(
Dm−1(f)

)2
= (y2) + y

m∑

i=2

Di−1(bi) +

m∑

i=2

Di−2(bi).

To sort this out in general, let us concentrate on the multiplicity of various functions.
The original f has multiplicity m, a typical first derivative of f has multiplicty

m− 1, and a typical r-th derivative of f has multiplicty m− r. Now it makes sense
to introduce the ideals

Ws(f) :=

(
products of derivatives of f
of expected multiplicity ≥ s

)
.

Thus, for example,

W1(f) = Dm−1(f),

W2(f) = Dm−2(f) +
(
Dm−1(f)

)2
, and

W3(f) = Dm−3(f) +Dm−1(f) ·Dm−2(f) +
(
Dm−1(f)

)3
.

Similarly, y has multiplicity 1 and we assigned multiplicity i to bi thus we should
assign multiplicity i− r to an r-th derivative of bi. Set

Ws(y, b2, . . . , bm) :=

(
products of y and of derivatives of the bi

of assigned multiplicity ≥ s

)
.

One can now prove by induction the following:

Proposition 14.14. For every s ≥ 1, Ws(f) = Ws(y, b2, . . . , bm).
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This suggests, though by no means proves, that we have managed to isolate some
coordinate invariant properties of the equation (14.1).

Let us make a jump here and state the almost final result:

Theorem 14.15. Notation as above.

(1) Up to isomorphism, the tower of ideals

W1(b2, . . . , bm) ⊂W2(b2, . . . , bm) ⊂ · · · ⊂ C[[x1, . . . , xn]]

depends only on X and not on the choice of the coordinates x1, . . . , xn, z.
(2) Multiplicity reduction for f is equivalent to a multiplicity reduction type

problem for the above ideal tower.

Remarks 14.16. It seems that the isomorphism in (14.15.1) is not canonical. In
order to patch local resolutions, we have to show that we actually get the same
blow ups from the multiplicity reduction problem for the above ideal tower, no
matter which coordinates we use.

The fact that we have an infinite tower is not important. One can easily see
from the definition that the whole tower is determined by the ideals W1, . . . ,Wm.

Alternatively, and this is the path that we choose, all the relevant information
can be gleaned from a single ideal Ws when s is a multiple of lcm(2, . . . ,m). For
notational convenience we frequently work with Wm!.

The method of [W lo05] suggests a different choice. Instead of the ideals Ws, one
could consider

Hs(b2, . . . , bm) :=
∑

0≤i≤j

Di(bj)
(
W1(b2, . . . , bm)

)s+i−j
⊂Ws(b2, . . . , bm).

One can see that (14.15) also holds for the ideals Hs, but the Ws have other good
properties which make them easier to handle.

3. Statement of the main results

So far we have been concentrating on resolution of singularities, but now we
switch our focus and instead of dealing with singular varieties, we consider ideal
sheaves on smooth varieties. A projective scheme X ⊂ PN is pretty much equivalent
to its ideal sheaf IX ⊂ OPN , and we will be able to turn a “resolution” of the ideal
sheaf IX into a resolution of X .

15 (Note on terminology). For many people, the phrase “resolution of an ideal
sheaf I” brings to mind a long exact sequence

· · · → E2 → E1 → I → 0

where the Ei are locally free sheaves. This has nothing to do with resolution of
singularities. Thus, rather reluctantly, I follow convention and talk about princi-
palization of an ideal sheaf I.

Notation 16. Let g : Y → X be a morphism of schemes and I ⊂ OX an ideal
sheaf. I will be sloppy and use g∗I to denote the inverse image ideal sheaf of I. This
is the ideal sheaf generated by the pull backs of local sections of I. (It is denoted
by g−1I · OY or by I · OY in [Har77].)

We should be mindful that g∗I (as an inverse image ideal sheaf) may differ from
the usual sheaf theoretic pull back, also commonly denoted by g∗I; see [Har77,
Caution II.7.12.2]. This can happen even if X,Y are both smooth.



18 JÁNOS KOLLÁR

For the rest of the chapter, we use only inverse image ideal sheaves, so hopefully
this should not lead to any confusion.

We start with the simplest version of principalization (17) and its first conse-
quence, the resolution of indeterminacies of rational maps (18). Then we consider
a stronger version of principalization (19) which implies resolution of singularities
(20). The proof of the strongest variant of principalization (26) occupies the rest
of the chapter.

Theorem 17 (Principalization I.). Let X be a smooth variety and I ⊂ OX an ideal
sheaf. Then there is a smooth variety X ′ and a birational and projective morphism
f : X ′ → X such that f∗I ⊂ OX′ is a locally principal ideal sheaf.

Corollary 18 (Elimination of indeterminacies). Let X be a smooth variety and
g : X 99K P a rational map to some projective space. Then there is a smooth
variety X ′ and a birational and projective morphism f : X ′ → X such that the
composite g ◦ f : X ′ → P is a morphism.

Proof. Since P is projective and X is normal, there is a subset Z ⊂ X of
codimension ≥ 2 such that g : X \ Z → P is a morphism. Thus g∗OP(1) is a line
bundle on X \ Z. Since X is smooth, it extends to a line bundle on X ; denote it
by L. Let J ⊂ L be the subsheaf generated by g∗H0(P,OP(1)). Then I := J ⊗L−1

is an ideal sheaf, and so by (17) there is a projective morphism f : X ′ → X such
that f∗I ⊂ OX′ is a locally principal ideal sheaf.

Thus the global sections

(g ◦ f)∗H0(P,OP(1)) ⊂ H0(X ′, f∗L)

generate the locally free sheaf L′ := f∗I ⊗ f∗L. Therefore g ◦ f : X ′ → P is a
morphism given by the nowhere vanishing subspace of global sections

(g ◦ f)∗H0(P,OP(1)) ⊂ H0(X ′, L′). �

Theorem 19 (Principalization II.). Let X be a smooth variety and I ⊂ OX an ideal
sheaf. Then there is a smooth variety X ′ and a birational and projective morphism
f : X ′ → X such that

(1) f∗I ⊂ OX′ is a locally principal ideal,
(2) f : X ′ → X is a composite of smooth blow ups, and
(3) f : X ′ → X is an isomorphism over X \ cosupp I.

Corollary 20 (Resolution of singularities I.). Let X be a singular quasi–projective
variety. Then there is a smooth variety X ′ and a birational and projective morphism
g : X ′ → X. Moreover, g : X ′ → X is a composite of smooth blow ups.

Proof. Choose an embedding X →֒ PN where N ≥ dimX + 2. Let X̄ ⊂ PN

denote the closure and I ⊂ OPN its ideal sheaf. Let ηX ∈ PN be the generic point
of X .

By (19), there is a sequence of smooth blow ups

Π : P ′ = Pn
πn−1
−→ Pn−1

πn−2
−→ · · ·P1

π0−→ P0 = PN

such that Π∗I is localy principal.
As I is not locally principal at ηX , there is a first blow up in our sequence

πj : Pj+1 → Pj with center Zj ⊂ Pj such that ηX ∈ Zj .
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By (19.3), this implies that ηX is the generic point of Zj.
Zj is smooth since we blow it up at the next step and by assumption we only

blow up smooth subvarieties. Moreover

πj−1 · · ·π0 : Pj → PN

is a local isomorphism around ηX since the earlier blow ups have centers not con-
taining ηX . Thus

g := πj−1 · · ·π0 : Zj → X̄

is birational, hence a resolution of singularities. Set X ′ := g−1(X) ⊂ Zj. Then
g : X ′ → X is a resolution of singularities of X and g : X ′ → X is a composite of
smooth blow ups. �

Before we state the final results, we fix our notation. Due to the iterative nature
of the resolution algorithms, the proliferation of indices makes a precise notation
rather cumbersome. Some shortcuts have to be made.

Notation 21 (Blow up sequences). Let X be a smooth variety. A smooth blow up
sequence of length r starting with X is a chain of morphisms

Π : X ′ = Xr
πr−1
−→ Xr−1

πr−2
−→ · · ·

π1−→ X1
π0−→ X0 = X (21.1)

where each πi : Xi+1 → Xi is a smooth blow up with center Zi ⊂ Xi and exceptional
divisor Fi+1 ⊂ Xi+1. Set

Πij := πj ◦ · · · ◦ πi−1 : Xi → Xj and Πi := Πi0 : Xi → X0.

For the rest of the chapter, π always denotes a smooth blow up, Πij a composite
of blow ups and Π the composite of all blow ups in a smooth blow up sequence
(whose length we frequently leave unspecified).

21.2 Let X be a smooth variety, S ⊂ X a smooth subvariety and

Π := Sr
πr−1
−→ Sr−1

πr−2
−→ · · ·

π1−→ S1
π0−→ S0 = S

a smooth blow up sequence with centers Zi ⊂ Si. This naturally corresponds to a
smooth blow up sequence starting with X

ΠX : Xr

πX
r−1
−→ Xr−1

πX
r−2
−→ · · ·

πX
1−→ X1

πX
0−→ X0 = X

whose centers are defined inductively via the inclusions Zi ⊂ Si →֒ Xi.

Definition 22. Let X be a smooth variety and E =
∑
Ei a normal crossing

divisor on X . This means that each Ei is smooth and for each point x ∈ X one
can choose local coordinates z1, . . . , zn ∈ mx in the maximal ideal of the local ring
OX,x (42) such that for each i

(1) either x 6∈ Ei, or
(2) Ei = (zc(i) = 0) for some c(i) in some open neighborhood of x.

A subvariety Z ⊂ X is in normal crossings with E if one can choose z1, . . . , zn
as above such that in addition

(3) Z = (zj1 = · · · = zjs = 0) for some j1, . . . , js, again in some open neighbor-
hood of x.

Definition 23. Let g : X ′ → X be a birational morphism and E an effective
divisor on X . The total transform of E is given by

g−1
tot(E) := divisorial part of (g−1(E) ∪ Ex(g)).
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If X is smooth then g−1(E) ∪ Ex(g) has pure codimension 1, and so g−1
tot(E) =

g−1(E) ∪ Ex(g).
Let E be a normal crossing divisor on X and

Π : X ′ = Xr
πr−1
−→ Xr−1

πr−2
−→ · · ·

π1−→ X1
π0−→ X0 = X

a smooth blow up sequence. We say that the centers have normal crossings with E
if each blow up center Zi ⊂ Xi has normal crossings (22) with the total transform
(Πi)

−1
tot(E). If this holds then each total transform (Πi)

−1
tot(E) is a normal crossing

divisor.
We frequently assume that E =

∑
j∈J E

j and the index set J is ordered. In this

case we can order the index set of (Π)−1
tot(E) as follows. First we take the original

indices J , then the exceptional divisors of the blow ups in the order that they
appear. Note that this ordering depends not only on Π but also on the particular
order of the blow ups.

24 (Resolution functors). We will deal with many functors R which map a triple
T = (X, I,E) consisting of a smooth variety X , an ideal sheaf I ⊂ OX and an ef-
fective normal crossing divisor E =

∑
j∈J E

j with ordered index set to a quadruple

R(X, I,E) := (ΠT , RT (X), RT (I), RT (E))

where (RT (X), RT (I), RT (E)) is another triple as above and ΠT : RT (X) → X is
a birational morphism.

For instance, the Principalization theorem (19) can be viewed as such a functor
given by

R : (X, I, ∅) 7→ (f,X ′, f∗I, ∅).

It is rather cumbersome to write out the functor fully. In all our examples, ΠT :
RT (X) → X almost determines RT (I) and RT (E). Thus we frequently say that
the resolution functor R is given by

R : (X, I,E) 7→ (Π : RI,E(X)→ X)

when it is clear how RT (I) and RT (E) are computed.

25 (Functoriality package). There are 3 functoriality properties of such resolution
functors R that we are interested in. Note that in all 3 cases the claimed isomor-
phism is unique, hence the existence is a local question.

25.1 (Smooth morphisms.) We say that R commutes with smooth morphisms,
if for every smooth morphism h : Y → X there is a smooth morphism R(h) =
R(h, I, E) such that

(i) the following diagram is a fiber product square

Rh∗I,h−1(E)(Y )
R(h)
−→ RI,E(X)

ΠY ↓ � ↓ ΠX

Y
h
−→ X,

(ii) Rh∗I,h−1(E)(h
∗I) = R(h)∗RI,E(I), and

(iii) Rh∗I,h−1(E)(h
−1(E)) = R(h)−1RI,E(E).

Most of the time we use this property for open embeddings h : Y →֒ X , which
corresponds to localization (4.2). By (9.2), knowing (25.1) for étale morphisms im-
plies it for all smooth morphisms. See (43) for its relationship to formal localization
(4.3).
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25.2 (Closed embeddings.) We say that R commutes with closed embeddings if
the following holds.

Assume that we are given

(i) a closed embedding of smooth varieties j : Y →֒ X ,
(ii) ideal sheaves IY ⊂ OY and IX ⊂ OX such that OX/IX = j∗(OY /IY ), and

(iii) a normal crossing divisor E on X such that E|Y is also a normal crossing
divisor on Y .

Then j lifts to a closed embedding

R(j) : RIY ,E|Y (Y ) →֒ RIX ,E(X)

such that
RIY ,E|Y (IY ) = R(j)∗

(
RIX ,E(IX)

)
and

RIY ,E|Y (E|Y ) =
(
RIX ,E(E)

)
∩RIY ,E|Y (Y ).

25.3 (Change of fields.) Let σ : K →֒ L be a field extension. Given a K-scheme
of finite type XK → SpecK, we can view SpecL as a scheme over SpecK (possibly
not of finite type) and take the fiber product

XL,σ := XK ×SpecK SpecL,

which is an L-scheme of finite type. If I is an ideal sheaf and E a divisor on X
then similarly we get IL,σ and EL,σ.

We say that R commutes with change of fields if
(
R(XK , I, E)

)
L,σ

= R
(
XL,σ, IL,σ, EL,σ

)

for every K,L, σ and (XK , I, E).

We are now ready to state the main theorem on principalization of ideal sheaves.

Theorem 26 (Principalization III.). Let K denote a field of characteristic zero,
X a smooth quasi projective K-variety, I ⊂ OX an ideal sheaf and E a normal
crossing divisor with ordered index set on X. There is resolution functor

R : (X, I,E) 7→
(
Π : RI,E(X)→ X,Π∗I,Π−1

tot(E)
)

such that

(1) RI,E(X) is smooth and Π : RI,E(X)→ X is birational and projective,
(2) Π∗I ⊂ ORI,E(X) is a locally principal ideal sheaf,
(3) Π : RI,E(X)→ X is an isomorphism over X \ cosupp I.
(4) R satisfies the functoriality properties (25.1-2-3).
(5) Π is a composite of smooth blow ups

Π : RI,E(X) = Xr
πr−1
−→ Xr−1

πr−2
−→ · · ·

π1−→ X1
π0−→ X0 = X

whose centers are in normal crossing with E. (This implies that Π−1
tot(E) =

Π−1(cosupp I ∪ E) is a normal crossing divisor.)

As a consequence we get the main theorem on resolution of singularities.

Theorem 27 (Resolution of singularities II.). Let K be a field of characteristic
zero and X a reduced, separated, quasi projective K-scheme of finite type.

Then there is a smooth K-scheme of finite type R(X) and a birational and
projective morphism

ΠX : R(X)→ X

such that
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(1) ΠX : R(X)→ X is an isomorphism over the smooth locus X \ SingX.
(2) R satisfies the functoriality properties (25.1) and (25.3).
(3) ΠX is a composite of smooth blow ups

ΠX : R(X) = Xr
πr−1
−→ Xr−1

πr−2
−→ · · ·

π1−→ X1
π0−→ X0 = X

Proof for X quasi projective. We have already seen in (20) that given a (lo-
cally closed) embedding i : X →֒ PN , we get a resolution R(X) → X from the
principalization of the ideal sheaf of the closure of i(X).

The problem is that different embeddings may give different resolutions. Thus
assume that Π1 : R1(X)→ X and Π2 : R2(X)→ X are two resolutions constructed
this way. Since

Π−1
2 ◦Π1 : R1(X) 99K R2(X)

is birational, global uniqueness follows once we prove that resolutions of affine
schemes via embeddings into smooth affine schemes are unique. Using that R
commutes with closed embeddings (25.2), it is enough to prove uniqueness for
resolutions constructed from embeddings into affine spaces X →֒ An. Moreover, we
are allowed to increass n any time by taking a further embedding An →֒ An+m.

As (28) shows, any two embeddings i1, i2 : X →֒ An become equaivalent in A2n,
which gives the required uniqueness. �

Lemma 28. Let X be an affine scheme and i1 : X →֒ An and i2 : X →֒ Am two
closed embeddings. Then the two embeddings into the coordinate subspaces

i′1 : X →֒ An →֒ An+m and i′2 : X →֒ Am →֒ An+m

are equivalent under a (nonlinear) automorphism of An+m.

Proof. We can extend i1 to a morphism j1 : Am → An and i2 to a morphism
j2 : An → Am.

Let x be coordinates on An and y coordinates on Am. Then

(x,y) 7→ (x,y + j2(x))

is an automorphism of An+m which sends the image of i′1 to

im
[
i1 × i2 : X → An × Am

]
.

Similarly,

(x,y) 7→ (x + j1(y),y)

is an automorphism of An+m which sends the image of i′2 to

im
[
i1 × i2 : X → An × Am

]
. �

Remark 29. We proved the implication (26) ⇒ (27) assuming X to be quasi–
projective, since we constructed the resolution using an embedding X →֒ PN . More
generally, the method works for any K–scheme that can be embedded into a smooth
K–scheme. We see in (33) that not all K–schemes can be embedded into a smooth
K–scheme, so in general one has to proceeed differently. It is worthwhile to con-
template further the local nature of resolutions and its implications.

Let X be a separated K-scheme of finite type and X = ∪Ui an affine cover. For
each Ui we have just checked that we get a unique resolution R(Ui) → Ui. Since
the injections Ui ∩ Uj →֒ Ui are smooth, the functoriality property (25.1) shows
that the R(Ui) patch together into a resolution R′(X)→ X .
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There is, however, one problem. By construction, R′(X)→ X is locally projec-
tive, but it may not be globally projective. The following is an example of this type.

29.1 Example. Let X be a smooth 3–fold, C1, C2 a pair of irreducible curves,
intersecting at two points p1, p2. Assume furthermore that Ci is smooth away from
pi where it has a cusp whose tangent cone is transversal to the other curve. Let
I ⊂ OX be the ideal sheaf of C1 ∪ C2.

On U1 = X\{p1}, the curve C1 is smooth, we can blow it up first. The birational
transform of C2 becomes smooth and we can blow it up next to get Y1 → U1. Over
U2 = X \ {p2} we would work in the other order. Over U1 ∩ U2 we get the same
thing, thus Y1 and Y2 glue together to a variety Y such that Y → X is proper,
locally projective but not globally projective.

We see that the gluing problem comes from the circumstance that the birational
map Y1 ∩ Y2 → U1 ∩ U2 is the blow up of two disjoint curves, and we dont know
which one to blow up first.

For a sensible resolution algorithm there is only one choice: we have to blow
them up at the same time. Thus in the above example, the “correct” method is to
blow up the points p1, p2 first. The curves C1, C2 become smooth and disjoint and
then both can be blown up. (More blow ups are needed if we want to have only
normal crossings.)

These problems can be avoided if we make (26) a little sharper.

Complement 30. Under the assumptions of (26) one can also achieve the follow-
ing:

(6) The whole sequence of smooth blow ups obtained in (26.5)

Π : RI,E(X) = Xr
πr−1
−→ Xr−1

πr−2
−→ · · ·

π1−→ X1
π0−→ X0 = X

satisfies the functoriality properties (25.1-2-3).

30.1 Explanation. This needs to be made more precise. To see what the problem
is, let U ⊂ X be an open set and Ui ⊂ Xi its preimage in Xi. Restricting the
sequence to these open sets gives

Π|Ur
: Ur

πr−1
−→ Ur−1

πr−2
−→ · · ·

π1−→ U1
π0−→ U0 = U.

The composite map Π|Ur
: Ur → U is the correct resolution, but it may well

happen that some centers Zi ⊂ Xi are disjoint from Ui. In this case Ui+1 → Ui is
the identity map and it can be deleted from the sequence. Thus the precise meaning
of (30) is:

30.2 The functoriality properties (25.1-2-3) are satisfied, up to deleting identity
maps from the blow up sequences.

One can now extend our results to algebraic spaces:

Theorem 31 (Principalization IV.). Let K denote a field of characteristic zero,
X a smooth algebraic space of finite type over K, I ⊂ OX an ideal sheaf and E a
normal crossing divisor with ordered index set on X. There is resolution functor

R : (X, I,E) 7→
(
Π : RI,E(X)→ X,Π∗I,Π−1

tot(E)
)

satisfying (26.1–5) and (30.6).
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Corollary 32 (Resolution of singularities III.). Let K be a field of characteristic
zero and X an algebraic space of finite type over K.

Then there is a smooth algebraic space of finite type R(X) over K and a bira-
tional and projective morphism

ΠX : R(X)→ X

satisfying the properties (27.1–3).

Aside 33. We give an example of a normal, proper surface S over C which can
not be embedded into a smooth scheme.

Start with P1 × C where C is any smooth curve of genus ≥ 1. Take two points
c1, c2 ∈ C. First blow up (0, c1) and (∞, c2) to get f : T → P1×C. We claim that:

(i) The birational transforms C1 ⊂ T of {0} ×C and C2 ⊂ T of {∞}×C can
be contracted and we get a normal, proper surface g : T → S.

(ii) If OC(c1) and OC(c2) are independent in Pic(C) then S can not be embed-
ded into a smooth scheme.

To get the first part, it is easy to check that a multiple of the birational transform
of {1}×C+P1×{ci} on T is base point free and contracts Ci only, giving gi : T → Si.
Now S1 \ C2 and S2 \ C1 can be glued together to get g : T → S.

If D is a Cartier divisor on S then OT (g∗D) is trivial on both C1 and C2.
Therefore f∗(g∗D) is a Cartier divisor on T such that

OP1×C(f∗(g∗D))|Ci
is a multiple of OCi

(ci) for i = 1, 2.

Since Pic(P1 ×C) = Pic(C)×Z, under the assumption (ii) we conclude that every
Cartier divisor on S is linearly equivalent to a multiple of {1}×C. Thus the points
of {1} × C ⊂ S can not be separated from each other by Cartier divisors on S.

Assume now that S →֒ Y is an embedding into a smooth scheme. Pick a point
p ∈ {1} × C ⊂ Y and let p ∈ U ⊂ Y be an affine neighborhood. Any two points of
U can be separated from each other by Cartier divisors on U . Since Y is smooth,
the closure of a Cartier divisor on U is automatically Cartier on Y . Thus any
two points of U ∩ S can be separated from each other by Cartier divisors on S, a
contradiction. �

An example of a toric Fano variety with no Cartier divisors is given in [Ful93,
p.65]. This again has no smooth embeddings.

4. Plan of the proof

This section contains a still somewhat informal review of the main steps of the
proof. For simplicity, the role of the divisor E is ignored for now. All the definitions
and theorems will be made precise later.

We need some way to measure how complicated an ideal sheaf is at a point. For
the present proof a very crude measure, the order of vanishing or simply order is
enough.

Definition 34. Let X be a smooth variety and I ⊂ OX an ideal sheaf. For a point
x ∈ X with maximal ideal sheaf mx we define the order of vanishing or order of I
at x to be

ordx I := max{r : mr
xOx,X ⊃ IOx,X}.

It is easy to see that x 7→ ordx I is a constructible and upper semi continuous
function on X .
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For an irreducible subvariety Z ⊂ X we define the order of I along Z ⊂ X as

ordZ I := ordη I where η ∈ Z is the generic point.

Frequently we also use the notation ordZ I = m when Z is not irreducible. In this
case we always assume that the order of I at every generic point of Z is m.

The maximal order of I along Z ⊂ X is

max-ordZ I := max{ordz I : z ∈ Z}.

We frequently use max-ord I to denote max-ordX I.

If I = (f) is a principal ideal then the order of I at a point x is the same as
the multiplicity of the hypersurface (f = 0) at x. This is a simple but quite strong
invariant.

In general, however, the order is a very stupid invariant. For resolution of sin-
gularities we always start with an embedding X →֒ PN where N is larger than the
embedding dimension of X at any point. Thus the ideal sheaf IX of X contains
an order 1 element at every point (the local equation of a smooth hypersurface
containing X), so the order of IX is 1 at every point of X . Hence the order of IX
does not “see” the singularities of X at all.

While the technical heart of the proof is a result that reduces the order of I,
the above example shows that reducing the order to 1 is useless for resolution of
singularities. Eveything hinges on reducing the order of I from 1 to 0. For an ideal
I ⊂ OX of order 1, at least locally, there is a smooth hypersurface H ⊂ X and an
ideal IH ⊂ OH such that OX/I = OH/IH , and principalization for I easily reduces
to principalization for IH . By repeatedly passing to such hypersurfaces, eventually
we run into a higher order ideal, and that is the point where serious work starts.
Thus the whole machinery is necessary.

There one useful property of ordZ I, which is exactly what we need:

The number ordZ I equals the multiplicity of the exceptional divisor of the
blow up π : BZX → X in the divisorial part of π∗I.

Definition 35 (Birational transforms of ideals). Let X be a smooth variety and
I ⊂ OX an ideal sheaf. For dimX ≥ 2 an ideal can not be written as the product
of prime ideals, but the codimension 1 primes can be separated from the rest. That
is, there is a unique largest effective divisor Div(I) such that I ⊂ OX(−Div(I))
and we can write

I = OX(−Div(I)) · Icod≥2 where Supp(OX/Icod≥2) ≥ 2.

We call OX(−Div(I)) the divisorial part of I and Icod≥2 = OX(Div(I)) · I the
codimension ≥ 2 part of I.

Let f : X ′ → X be a birational morphism, X ′ also smooth and assume for
simplicity that I has no divisorial part, that is I = Icod≥2. We are interested in
the codimension ≥ 2 part of f∗I, which we call the birational transform of I and
denote it by f−1

∗ I (45). Thus

f−1
∗ I = OX′(Div(f∗I)) · f∗I.

We have achieved principalization iff the codimension ≥ 2 part of f∗I is not there,
that is, when f−1

∗ I = OX′ .
For reasons connected with Problem 2 (13.2), we also need another version,

denoted by f−1
∗ (I,m) which contains some of the divisorial part of f∗I (47). If
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f : X ′ → X is the blow up of a smooth irreducible subvariety Z with ordZ I ≥ m
and E ⊂ X ′ is the exceptional divisor, then we set

f−1
∗ (I,m) = OX′(mE) · f∗I.

If ordZ I = m then this coincides with f−1
∗ I, but for ordZ I > m the cosupport

of f−1
∗ (I,m) also contains E. One can iterate this procedure to define f−1

∗ (I,m)
whenever f : X ′ → X is the composite of blow ups of smooth irreducible subvari-
eties as above. (One has to be quite careful with this, see (50).) In general,

f−1
∗ (I,m) = OX′(Div(f∗I,m)) · f∗I

for some effective divisor Div(f∗I,m) ≤ Div(f∗I).

36 (Order reduction theorems). The technical core of the proof consists of two
order reduction theorems using smooth blow ups that match the order that we work
with.

Let I be an ideal sheaf with max-ord I ≤ m. A blow up sequence of order m
starting with (X, I) is a smooth blow up sequence (21)

Π : (Xr, Ir)
πr−1
−→ (Xr−1, Ir−1)

πr−2
−→ · · ·

π1−→ (X1, I1)
π0−→ (X0, I0) = (X, I)

where each πi : Xi+1 → Xi is smooth blow up with center Zi ⊂ Xi, the Ii are
defined recursively by the formula Ii+1 := (πi)

−1
∗ Ii and ordZi

Ii = m for every
i < r.

A blow up sequence of order ≥ m starting with a marked ideal (X, I,m) is defined
analogously, except that we use the recursion formula (Ii+1,m) := (πi)

−1
∗ (Ii,m) and

we require ordZi
Ii ≥ m for every i < r.

Using these notions, the inductive versions of the main results are the following:

36.1 (Order reduction for ideals.) Let X be a smooth variety, I ⊂ OX an ideal
sheaf and m = max-ord I. By a suitable blow up sequence of order m we eventually
get f : X ′ → X such that max-ord f−1

∗ I < m.

36.2 (Order reduction for marked ideals.) Let X be a smooth variety, I ⊂ OX an
ideal sheaf and m ≤ max-ord I a natural number. By a suitable blow up sequence
of order ≥ m we eventually get f : X ′ → X such that max-ordf−1

∗ (I,m) < m.

We prove these theorems together in a spiraling induction with two main reduc-
tion steps.

Order reduction for marked ideals in dimension n− 1

⇓

Order reduction for ideals in dimension n

⇓

Order reduction for marked ideals in dimension n

The two steps are independent and use different methods.
The second implication is relatively easy and has been well understood for a long

time. We leave it to the end, to Section 13.
Here we focus on the proof of the harder part which is the first implication.
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37 (The heart of the proof). Methods to deal with Problems 3,4 and 5 listed
in (13) form the key steps of the proof. My approach is to break apart the tra-
ditional inductive proof. The Problems can be solved independently, but only for
certain ideals. Then we need one more step to show that order reduction for an
arbitrary ideal is equivalent to order reduction for an ideal with all the required
good properties. At the end we have to patch the local order reductions.

37.1 (Maximal contact) This deals with Problem (13.3) by showing that for
suitable hypersurfaces H ⊂ X , every step of an order reduction algorithm for (X, I)
with m = max-ord I is also a step of an order reduction algorithm for (H, I|H ,m).
This is explained in (38) and completed in Section 8.

37.2 (D-balanced ideals) Problem (13.4) has a solution for certain ideals only.
For the so called D-balanced ideals, the converse of maximal contact theory holds.
That is, for every hypersurface S ⊂ X , every order reduction step for (S, I|S ,m) is
also an order reduction step for (X, I). This is outlined in (39) with all details in
Section 9.

37.3 (MC-invariant ideals) The solution of Problem (13.5) requires the consider-
ation of maximal contact invariant or MC-invariant ideals. For these, all hypersur-
faces of maximal contact are locally analytically isomorphic, with an isomorphism
preserving the ideal I. See (40), with full proofs in Section 10.

37.4 (Tuning ideals) It remains to show that order reduction for an arbitrary ideal
I can be transformed into an equivalent order reduction problem for an ideal W (I)
which is both D-balanced and MC-invariant. This turns out to be surprisingly easy,
see (41) and Section 11.

37.5 (Final assembly) The main remaining problem is that a hypersurface of
maximal contact can be found only locally, not globally. The local pieces are united
in Section 12, which also takes care of the divisor E that we ignored so far.

Let us now see these steps in more detail.

38 (Maximal contact). Following the examples (11) and (12), given X and I
with m = max-ord I, we would like to find a smooth hypersurface H ⊂ X such that
order reduction for I follows from order reduction for (I|H ,m).

As we noted in Problem (13.3), first we have to ensure that the points where the
birational transform of I has order ≥ m stay on the birational transform of H all
the time. That is we want to achieve the following:

38.1 (Going down property of maximal contact)

Blow up sequences of order m for (X, I).
⋂

Blow up sequences of order ≥ m for (H, I|H ,m).

If this holds then we say that H is a hypersurface of maximal contact. At least
locally, these are easy to find.

38.2 (Local construction of maximal contact.) Let x1, . . . , xn be a local coordinate
system at a point p ∈ X and f ∈ I a local section of order m = ordp I. Any xi
occurring in a degree m monomial in f defines a hypersurface of maximal contact
in an open neighborhood of p.
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More invariantly put, any order 1 function in the ideal of (m− 1)–st partials

(
∂m−1f

∂xc11 · · ·∂x
cn
n

:
∑

ci = m− 1

)

is a hypersurface of maximal contact in an open neighborhood of p.

39 (D-balanced ideals). It is harder to deal with Problem (13.4). No matter how
we choose the hypersurface of maximal contact H , usually the restriction (I|H ,m)
is “more singular” than I, in the sense that order reduction for (I|H ,m) may involve
blow ups which are not needed for the order reduction procedure of I.

There are, however, some ideals for which this problem does not happen. To
define these, we need to consider derivatives.

Derivations of a smooth variety X form a sheaf DerX , locally generated by the
usual partials ∂/∂xi. For an ideal sheaf I, let D(I) denote the ideal sheaf generated
by all derivatives of local sections of I. By induction we can define higher derivative
ideals Di(I) as well.

If ordp f = m then typically ordp(∂f/∂xi) = m−1, so a nontrivial ideal is never
D-closed. The best one can hope for is that I is D–closed, after we “correct for the
lowering of the order”:

An ideal I with m = max-ord I is called D-balanced if

(
Di(I)

)m
⊂ Im−i ∀ i < m.

Such ideals behave very well with respect to restrictions to smooth subvarieties.

39.1 (Going up property of D-balanced ideals) Let I be a D-balanced ideal with
m = max-ord I. Them for any smooth hypersurface S ⊂ X such that S 6⊂ cosupp I
we have the inclusion

Blow up sequences of order m for (X, I).
⋃

Blow up sequences of order ≥ m for (S, I|S ,m).

39.2 Example. Start with the double point ideal I = (xy − zn). Restricting to
S = (x = 0) creates an n-fold line, and blowing up this line is not an order 2 blow
up for I.

We can D-balance the ideal I by adding to it D(I)2. Then

I +D(I)2 = (xy, x2, y2, xzn−1, yzn−1, zn),

and it is now D-balanced. If we restrict I + D(I)2 to x = 0 we get the ideal
(y2, yzn−1, zn) which is an isolated point of order 2.

It is easy to check that the whole resolution of S is correctly predicted by order
reduction for (y2, yzn−1, zn).

Putting (38.1) and (39.1) together, we get the first dimension reduction result:

39.3 Corollary. (Maximal contact for D-balanced ideals) Let I be a D-balanced
ideal with m = max-ord I. Then, for every open subset X0 ⊂ X and for every
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smooth hypersurface of maximal contact H0 ⊂ X0 we have an equivalence

Order reduction for (X0, I|X0).

m

Order reduction for (H0, I|H0 ,m).

40 (MC-invariant ideals). Dealing with Problem 5 (13.5) is again possible only
for certain ideals. We say that an ideal I is maximal contact invariant or MC-
invariant if

MC(I) ·D(I) ⊂ I, (40.1)

where MC(I) is the ideal of maximal contacts defined in (38.2). Note that if
m = max-ord I then MC(I) = Dm−1(I), thus we can rewrite the above condition
as

Dm−1(I) ·D(I) ⊂ I. (40.2)

In this form it is quite close in spirit to the D-balanced condition. The expected
order of Dm−1(I)·D(I) is m, so we can assume inclusion without needing to correct
for the change of order first.

For MC-invariant ideals the hypersurfaces of maximal contact are still not unique,
but different choices are equivalent under local analytic isomorphisms (42).

40.3 (Analytic uniqueness of maximal contact.) Let I be an MC-invariant ideal
sheaf on X and H1, H2 ⊂ X two hypersurfaces of maximal contact through a point
x ∈ X.

Then there is a local analytic automorphism (42) φ : (x ∈ X̂) → (x ∈ X̂) such
that

(i) φ−1(Ĥ1) = Ĥ2, and

(ii) φ∗Î = Î.

41 (Tuning ideals). Order reduction using dimension induction is now in quite
good shape for ideals which are both D-balanced and MC-invariant.

The rest is taken care of by “tuning” the ideal I first. (I do not plan to give a
precise meaning to the word “tuning.”) There are in fact many ways to tune an
ideal, here is one of the simplest ones.

To an ideal I of order m we would like to associate the ideal generated by all
products of derivatives of order at least m. The problem with this is that if f has
order m then ∂f/∂xi has order m− 1, and so we are able to add (∂f/∂xi)

2 (which
has order 2m− 2) but we really would like to add (∂f/∂xi)

m/(m−1) (which should
have order m in any reasonable definition).

We can avoid these fractional exponent problems by working with all prod-
ucts of derivatives whose order is sufficiently divisible. For instance, the condition
(order) ≥ m! works.

Enriching an ideal with its derivatives was used by Hironaka [Hir77] and then
developed by Villamayor [Vil89]. An even larger ideal is introduced in [W lo05],

The ideal W (I) introduced below is even larger and this biggest choice seems
more natural to me. This is also considered by Kawanoue [Kaw05].
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That is, we set

W (I) :=




m∏

j=0

(
Dj(I)

)cj
:
∑

(m− j)cj ≥ m!



 ⊂ OX . (41.1)

The ideal W (I) has all the properties that we need.

41.2 Theorem. (Well tuned ideals) Let X be a smooth variety, I ⊂ OX an ideal
sheaf and m = max-ord I. Then

(1) max-ordW (I) = m!,
(2) W (I) is D-balanced,
(3) W (I) is MC-invariant, and
(4) there is an equivalence

Order reduction for (X, I).

m

Order reduction for (X,W (I)).

41.3 It should be emhasized that there are many different ways to choose an
ideal with the properties of W (I) as above, but all known choices have rather high
order.

I chose the order m! for notational simplicity, one could work with any multiple
of lcm(1, 2, . . . ,m) instead. The smallest choice would be lcm(1, 2, . . . ,m), which is
roughly like em. As discussed in (7.2), this is still too big for effective computations.
Even if we fix the order to be m!, many choices remain.

Definition 42 (Completions). This is the only piece of commutative algebra that
we use.

For a local ring (R,m) its completion in the m-adic topology is denoted by R̂,

cf. [AM69, Chap.10]. If X is a K-variety and x ∈ X then we denote by X̂x or by

X̂ the completion of X at x, which is SpecK ÔX,x.

We say that x ∈ X and y ∈ Y are formally or analytically isomorphic if X̂x is
isomorphic to Ŷy .

We need Krull’s intersection theorem (cf. [AM69, 10.17]) which says that for an
ideal I ⊂ R, we have

I = ∩∞s=1

(
I +ms

)
.

Equivalently, I = J iff Î = Ĵ .

Remark 43. By the approximation theorem of Artin [Art69], x ∈ X and y ∈ Y
are formally isomorphic iff there is a z ∈ Z and étale morphisms

(x ∈ X)← (z ∈ Z)→ (y ∈ Y ).

This implies that any resolution functor which commutes with étale morphisms also
commutes with formal isomorphisms.

Our methods give resolution functors which commute with formal isomorphisms
by construction, so we do not need to rely on [Art69].
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Aside 44 (Maximal contact in positive characteristic). Maximal contact, in the
form presented above, works in positive characteristic as long as the order of the
ideal is less than the characteristic, but fails in general. In some cases there is
no smooth hypersurface at all which contains the set of points where the order is
maximal. The following example is taken from [Nar83]. In characteristic 2 consider

X := (x2 + yz3 + zw3 + y7w = 0) ⊂ A4.

The maximal multiplicity is 2 and the singular locus is given by

x2 + yz3 + zw3 + y7w = z3 + y6w = yz2 + w3 = zw2 + y7 = 0.

It contains the monomial curve

C := im[t 7→ (t32, t7, t9, t15)]

(in fact, it is equal to it). In any case, C is not contained in any smooth hypersurface
since none of the numbers (32, 7, 9, 15) is a positive linear combination of the other
three.)

5. Birational transforms and marked ideals

45 (Birational transform of ideals). Let X be a smooth variety, Z ⊂ X a smooth
subvariety and π : BZX → X the blow up with exceptional divisor F ⊂ BZX .

Let I ⊂ OX be an ideal sheaf and set ordZ I = m. Then π∗I ⊂ OBZX vanishes
along F with multiplicity m, and we aim to remove the ideal sheaf OBZX(−mF )
from π∗I.

More generally, if π : X ′ → X is any birational morphism, then there is a unique
largest effective π-exceptional divisor Div(π∗I) such that π∗I ⊂ OX′(−Div(π∗I))
and we define the birational transform (controlled transform in [W lo05]) of I by
the formula

π−1
∗ I := OX′(Div(π∗I)) · π∗I ⊂ OX′ . (45.1)

This is consistent with the definition given in (36) in a special case.

(Warning. This birational transform of ideals is not always consistent with the
usual notion of birational transform of a subvariety. If Y ⊂ X is a subvariety with
ideal sheaf I then π−1

∗ I is contained in the ideal sheaf of BZ∩Y Y but the two may
differ along the exceptional divisor F .

For instance, if ordZ Y = 0 then π−1
∗ I = π∗I and so dim cosuppπ−1

∗ I can be
bigger than dimY ; for instance if dimX ≥ dimZ + dimY + 2.

Similar problems can happen even if Z ⊂ Y .)

One problem we have to deal with in resolutions is that if Z ⊂ H ⊂ X is
a smooth hypersurface with birational transform BZH ⊂ BZX and projection
πH : BZH → H , then restriction to H does not commute with taking birational
transform. That is,

(πH)−1
∗ (I|H) ⊃ (π−1

∗ I)|BZH , (45.2)

but equality holds only if ordZ I = ordZ(I|H).

The next definition is designed to remedy this problem. We replace the ideal
sheaf I by a pair (I,m) where m keeps track of the order of vanishing that we
pretend to have. The advantage is that we can redefine the notion of birational
transform to achieve equality in (45.2).
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Definition 46. Let X be a smooth variety. A marked function on X is a pair
(f,m) where f is a regular function on (some open set of) X and m a natural
number.

A marked ideal sheaf on X is a pair (I,m) where I ⊂ OX is an ideal sheaf on X
and m a natural number.

The cosupport of (I,m) is defined by

cosupp(I,m) := {x ∈ X : ordx I ≥ m}.

The product of marked functions or marked ideal sheaves is defined by

(f1,m1) · (f2,m2) := (f1f2,m1 +m2) and (I1,m1) · (I2,m2) := (I1I2,m1 +m2).

The sum of marked functions or marked ideal sheaves is only sensible when the
markings are the same:

(f1,m) + (f2,m) := (f1 + f2,m) and (I1,m) + (I2,m) := (I1 + I2,m).

The cosupport has the following elementary properties:

(1) If I ⊂ J then cosupp(I,m) ⊃ cosupp(J,m).
(2) cosupp(I1I2,m1 +m2) ⊃ cosupp(I1,m1) ∩ cosupp(I2,m2).
(3) cosupp(I,m) = cosupp(Ic,mc).
(4) cosupp(I1 + I2,m) = cosupp(I1,m) ∩ cosupp(I2,m).

Definition 47. Let X be a smooth variety, Z ⊂ X a smooth subvariety and
π : BZX → X the blow up with exceptional divisor F ⊂ BZX . Let (I,m) be a
marked ideal sheaf on X such that m ≤ ordZ I. In analogy with (45) we define the
birational transform of (I,m) by the formula

π−1
∗ (I,m) :=

(
OBZX(mF ) · π∗I,m

)
. (47.1)

Informally speaking, we use the definition (45.2) but we “pretend that ordZ I = m”.
It is worth calling special attention to the case when Z has codimension 1 in

X . Then BZX ∼= X and so scheme theoretically there is no change. However, the
vanishing order of π−1

∗ (I,m) along Z is m less than the vanishing order of I along
Z.

In order to do explicit computations, choose local coordinates (x1, . . . , xn) such
that Z = (x1 = · · · = xr = 0). Then

y1 = x1

xr
, . . . , yr−1 = xr−1

xr
, yr = xr , . . . , yn = xn (47.2)

give local coordinates on a chart of BZX and we define

π−1
∗ (f(x1, . . . , xn),m) :=

(
y−mr f(y1yr, . . . , yr−1yr, yr, . . . , yn),m

)
. (47.3)

This formula is the one we use to compute with blow ups, but it is coordinate
system dependent. As we change coordinates, the result of π−1

∗ changes by a unit.
So we are free to use π−1

∗ to compute the birational transform of ideal sheaves, but
one should not use it for individual functions, whose birational transform can not
be defined (as a function).

The following lemmas are easy:

Lemma 48. Let X be a smooth variety, Z ⊂ X a smooth subvariety, π : BZX → X
the blow up and I ⊂ OX an ideal sheaf. Assume that ordZ I = max-ord I. Then

max-ordπ−1
∗ I ≤ max-ord I.
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Proof. Choose local coordinates as above and pick f(x1, . . . , xn) ∈ I such that
ordp f = m. Its birational transform is computed as

π−1
∗ f = y−mr f(y1yr, . . . , yr−1yr, yr, . . . , yn).

Since f(x1, . . . , xn) contains a monomial of degree m, the corresponding monomial
in f(y1yr, . . . , yr−1yr, yr, . . . , yn) has degree ≤ 2m, thus in π−1

∗ f we get a monomial
of degree ≤ 2m−m = m.

This shows that ordp′ π
−1
∗ I ≤ m where p′ ∈ BZX denotes the origin of the chart

we consider. Performing a linear change of the (x1, . . . , xr)–coordinates moves the
origin of the chart, and every preimage of p appears as the origin after a suitable
linear change. Thus our computation applies to all points of the exceptional divsior
of BZX . �

Lemma 49. Notation as in (48). Let Z ( H ⊂ X be a smooth hypersurface with
birational transform BZH ⊂ BZX and projection πH : BZH → H. If m ≤ ordZ I
then

(πH)−1
∗ (I|H ,m) =

(
π−1
∗ (I,m)

)
|BZH .

Proof. Again choose coordinates and assume that H = (x1 = 0). Working with
the chart as in (47.2), the birational transform of H is given by y1 = 0 and we see
that it does not matter weather we set first x1 = 0 and compute the transform or
first compute the transform and then set y1 = 0.

The only point we need to contemplate is what happens in the chart

z1 = x1, . . . , zr−1 = xr−1

x1
, zr = xr

x1
, zr+1 = xr+1, . . . , zn = xn.

This chart, however, does not contain any point of the birational transform of H ,
so it does not matter. �

Note that (49) can fail if Z = H . In this case I|H is the zero ideal, πZ is an
isomorphism and we have only the bad chart which we did not need to consider in
the proof above. Because of this, we will have to consider codimension one subsets
of cosupp I separately.

Warning 50. Note that while the birational transform of an ideal is defined for
an arbitrary birational morphism (45), we have defined the birational transform of
a marked ideal only for a single smooth blow up (47). This can be extended to a
sequence of smooth blow ups, but one has to be very careful. Let

Π : X ′ = Xr
πr−1
−→ Xr−1

πr−2
−→ · · ·

π1−→ X1
π0−→ X0 = X (50.1)

be a smooth blow up sequence. We can inductively define the birational transforms
of the marked ideal (I,m) by

(1) (I0,m) := (I,m) and
(2) (Ij+1,m) := (πj)

−1
∗ (Ij ,m) as in (47).

At the end we get (Ir,m) which I rather sloppily also denote by Π−1
∗ (I,m).

It is very important to keep in mind that this notation assumes that we have a
particular blow up sequence in mind. That is, Π−1

∗ (I,m) depends not only on Π
but the actual sequence of blow ups we use to get it.

Here is the simplest example to show what can happen.
Let p ∈ C be a smooth pointed curve in a smooth 3–fold X0. We can first blow

up p and then the birational transform of C to get

Π : X2
π1−→ X1 = BpX0

π0−→ X0, (50.2)
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with exceptional divisors E0, E1 ⊂ X2, or we can blow up first C and then the
preimage D = σ−1

0 (p) to get

Σ : X ′
2

σ1−→ X ′
1 = BCX0

σ0−→ X0 (50.3)

with exceptional divisors E′
0, E

′
1 ⊂ X

′
2

It is easy to see that X2
∼= X ′

2 and under this isomorphism E1 corresponds to
E′

0 and E0 corresponds to E′
1.

Let us now compute the birational transforms of (I, 1) where I := I2
C . The first

blow up sequence gives

(π0)−1
∗ (I, 1) = OX1 (E0) · π∗

0I and
(π1)−1

∗

(
(π0)−1

∗ (I, 1)
)

= OX2 (E1) · π∗
1

(
(π0)−1

∗ (I, 1
)
) = OX2(E0 + E1) ·Π∗I.

On the other hand, the second blow up sequence gives

(σ0)−1
∗ (I, 1) = OX′

1
(E′

0) · σ∗
0I and

(σ1)−1
∗

(
(σ0)−1

∗ (I, 1)
)

= OX′

2
(E′

1) · σ∗
1

(
(σ0)−1

∗ (I, 1)
)

= OX′

2
(E′

0 + 2E′
1) · Σ∗I

since σ∗
1OX′

1
(E′

0) = OX′

2
(E′

0 + E′
1).

Thus Π−1
∗ (I, 2) 6= Σ−1

∗ (I, 2), although Π = Σ.

6. The inductive setup of the proof

In this section we set up the final notation and state the main Order reduction
theorems.

Notation 51. For the rest of the chapter, (X, I,E) (respectively (X, I,m,E))
denotes a triple1 where

(1) X is a smooth, equidimensional scheme of finite type over a field K of
characteristic 0,

(2) I ⊂ OX is a coherent ideal sheaf, (respectively (I,m) is a marked ideal
sheaf) and

(3) E = (E1, . . . , Es) is an ordered set of smooth divisors on X such that
∑
Ei

is a normal crossing divisor. Each Ei is allowed to be reducible or empty.

In using this notation we usually suppress the base field K.
In the resolution process the divisor E plays an ancillary role as a device that

keeps track of the exceptional divisors that we created and of the order in which we
created them. As we saw in (6.3), one has to carry along some information about
the resolution process.

As we observed in (6.2) and (29.1), it is necessary to blow up disjoint subvarieties
simultaneously. Thus we usually do get reducible smooth divisors Ej . We also
frequently restrict to open subsets U ⊂ X and Ei|U may be empty.

Definition 52. Given (X, I,E) with max-ord I = m, a smooth blow up of order m
is a smooth blow up π : BZX → X such that

(1) Z ⊂ X has normal crossings only with E, and
(2) ordZ I = m.

The birational transform of (X, I,E) under the above blow up is

π−1
∗ (X, I,E) = (BZX,π

−1
∗ I, π−1

tot (E)),

1I consider the pair (I, m) as one item, so (X, I, m, E) is still a triple.
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where π−1
tot(E) consists of the birational transform of E (with the same ordering as

before) plus the exceptional divisor F ⊂ BZX added as the last divisor.
A smooth blow up of (X, I,m,E) is a smooth blow up π : BZX → X such that

(1’) Z ⊂ X has normal crossings only with E, and
(2’) ordZ I ≥ m.

The birational transform of (X, I,m,E) under the above blow up is defined as

π−1
∗ (X, I,m,E) = (BZX,π

−1
∗ (I,m), π−1

tot (E)).

(We could have defined the notion of a blow up of (X, I,m,E) of order ≥ m′

but we do not need it. Also, the role of the marking m is to fix the vanishing order
that we want to consider, so this more general concept would not make much sense
for us.)

Definition 53. A smooth blow up sequence of order m and of length r starting
with (X, I,E) such that max-ord I = m is a smooth blow up sequence (21)

Π : (Xr, Ir, Er)
πr−1
−→ (Xr−1, Ir−1, Er−1)

πr−2
−→ · · ·

π1−→ (X1, I1, E1)
π0−→ (X0, I0, E0) = (X, I,E)

where

(1) the (Xi, Ii, Ei) are defined recursively by the formula

(Xi+1, Ii+1, Ei+1) := (πi)
−1
∗ (Xi, Ii, Ei),

(2) each πi : Xi+1 → Xi is smooth blow up with center Zi ⊂ Xi and exceptional
divisor Fi+1 ⊂ Xi+1,

(3) for every i, Zi ⊂ Xi has normal crossings with Ei, and
(4) each πi is a blow up of order m of (Xi, Ii, Ei).

Similarly, a smooth blow up sequence of order ≥ m and of length r starting with
(X, I,m,E) is a smooth blow up sequence

Π : (Xr, Ir ,m,Er)
πr−1
−→ (Xr−1, Ir−1,m,Er−1)

πr−2
−→ · · ·

π1−→ (X1, I1,m,E1)
π0−→ (X0, I0,m,E0) = (X, I,m,E)

where

(1’) the (Xi, Ii,m,Ei) are defined recursively by the formula

(Xi+1, Ii+1,m,Ei+1) := (πi)
−1
∗ (Xi, Ii,m,Ei),

(2’–3’) the sequence satisfies (2) and (3) above, and
(4’) each πi is a blow up of order ≥ m of (Xi, Ii,m,Ei).

Remark 54. The difference between the marked an unmarked versions is signifi-
cant, since the birational transforms of the ideals are computed differently. If we
have a blow up sequence starting with (X, I,m,E), then simply deleting m does
not give us a blow up sequence starting with (X, I,E).

There is one significant case, however, when one can freely pass between the
above versions. If I is an ideal with max-ord I = m then in any blow up sequence
of order ≥ m starting with (X, I,m,E), max-ord Ii ≤ m by (48), and so every blow
up has order = m. Thus, by deleting m, we automatically get a blow up sequence
of order m starting with (X, I,E). The converse also holds.

We can now state the two main technical theorems that are formulated to allow
an inductive proof of resolution.
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Theorem 55 (Order reduction for ideals). Let K be a field of characteristic zero,
and (X, I,E) a triple as in (51). Fix an integer m ≥ max-ord I.

Then there is a smooth K-variety Rm(X, I,E) and a birational and projective
morphism

Π = Π(X,I,E) : Rm(X, I,E)→ X

such that

(1) Π(X,I,E) is a composite of a blow up sequence of order m starting with
(X, I,E)

Π : Rm(X, I,E) = (Xr, Ir, Er)
πr−1
−→ (Xr−1, Ir−1, Er−1)

πr−2
−→ · · ·

π1−→ (X1, I1, E1)
π0−→ (X0, I0, E0) = (X, I,E),

(2) max-ord Ir < m, and
(3) Rm satisfies the functoriality properties (25.1-2-3).

In our examples, the case max-ord I < m is trivial, that is Rm(X, I,E) = X .

Theorem 56 (Order reduction for marked ideals). Let K be a field of characteristic
zero, X a smooth K-variety, I ⊂ OX an ideal sheaf, E a normal crossing divisor
with ordered index set on X and m ≥ 1 a natural number.

Then there is a smooth K-variety Rm(X, I,m,E) and a birational and projective
morphism

Π = Π(X,I,m,E) : Rm(X, I,m,E)→ X

such that

(1) Π(X,I,m,E) is a composite of a blow up sequence of order ≥ m starting with
(X, I,m,E)

Π : Rm(X, I,m,E) = (Xr, Ir,m,Er)
πr−1
−→ (Xr−1, Ir−1,m,Er−1)

πr−2
−→ · · ·

π1−→ (X1, I1,m,E1)
π0−→ (X0, I0,m,E0).

(2) max-ord Ir < m, and
(3) Rm satisfies the functoriality properties (25.1-2-3).

57 (Proof of (55) ⇒ (26).). Starting with (X, I,E = ∅), we apply (55) with m =
max-ord I. The end result is

(
Π(X,I,m) : Rm(X, I,E)→ X, Ir(m), Er(m)

)

where max-ord Ir(m) < m. Next we again apply (55) to
(
Rm(X, I,E), Ir(m), Er(m)

)

with m− 1 to obtain
(
Π(X,I,m−1) : Rm−1(X, I,E)→Rm(X, I,E), Ir(m−1), Er(m−1)

)

such that max-ord Ir(m−1) < m− 1. After m steps we get the composite map
(
Π(X,I) : R(X, I,E)→ X, Ir(1), Er(1)

)

such that max-ord Ir(1) = 0, that is, Ir(1) = OR(X,I,E). This implies that Π∗
(X,I)I

is a locally principal ideal which can be written down explicitly as follows.
Let Fj ⊂ Xj+1 denote the exceptional divisor of the jth step in the above smooth

blow up sequence for Π(X,I) : R(X, I,E)→ X and assume that it appeared in the
order reduction step for order m(j). Then

Π∗
(X,I)I = OR(X,I,E)

(
−
∑

jΠ
∗
r(1),j+1(m(j)Fj)

)
,

where Πr(1),j+1 : R(X, I,E)→ Xj+1 is the composite of blow ups. �
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58 (Main inductive steps of the proof). We prove (55) and (56) together in
two main reduction steps.

58.1. (56) in dimensions ≤ n− 1 ⇒ (55) in dimension n, and

58.2. (55) in dimensions ≤ n ⇒ (56) in dimension n.

The easier part is (58.2). Its proof is given in Section 13. Everything before that
is devoted to proving (58.1).

7. Birational transform of derivatives

Definition 59 (Derivative of an ideal sheaf). On a smooth variety X let DerX
denote the sheaf of derivations OX → OX . If x1, . . . , xn are local coordinates at a
point p ∈ X then the derivations ∂/∂x1, . . . , ∂/∂xn are local generators of DerX .
Derivation gives a k–bilinear map

(DerX ,OX)→ OX .

Let I ⊂ OX be an ideal sheaf. Its first derivative is the ideal sheafD(I) generated
by all derivatives of elements of I. That is

D(I) :=
(
im[(DerX , I)→ OX ]

)
. (59.1)

Note that I ⊂ D(I), as shown by the formula

f =
∂(xf)

∂x
− x

∂f

∂x
.

In terms of generators we can write D(I) as

D(f1, . . . , fs) =
(
fi,

∂fi
∂xj

: 1 ≤ i ≤ s, 1 ≤ j ≤ n
)
.

Higher derivatives are defined inductively by

Dr+1(I) := D(Dr(I)). (59.2)

(Note that Dr(I) contains all rth partial derivatives of elements of I but over
general rings it is bigger; try second derivatives over Z[x]. Over characteristic zero
fields they are actually equal, as one can see using formulas like

∂f

∂y
=
∂2(xf)

∂y∂x
− x

∂f

∂y∂x
and 2

∂f

∂x
=
∂2(xf)

∂x2
− x

∂f

∂x2
.

The inductive definition is easier to work with.)
If max-ord I ≤ m then Dm(I) = OX thus the Dr(I) give an ascending chain of

ideal sheaves

I ⊂ D(I) ⊂ D2(I) ⊂ · · · ⊂ Dm(I) = OX .

This is, however, not the right way to look at derivatives. Since differentiating a
function r times is expected to reduce its order by r, we define the derivative of a
marked ideal by

Dr(I,m) := (Dr(I),m− r) for r ≤ m. (59.3)

Before we can usefully compare the ideal I and its higher derivatives, we have to
correct for the difference in their markings.

Higher derivatives have the usual properties:

Lemma 60. Notation as above. Then
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(1) Dr(Ds(I)) = Dr+s(I),
(2) Dr(I · J) ⊂

∑r
i=0D

i(I) ·Dr−i(J) (product rule),
(3) Supp(I,m) = Supp(DrI,m− r) (characteristic 0 only!).
(4) If f : Y → X is smooth then D(f∗I) = f∗(D(I)).

(5) D
(
Î
)

= D̂(I) (42). �

60.6. (Aside about positive characteristic.) The above definition of higher deriva-
tives is “correct” only in characteristic zero. In general, one should use the Hasse–
Dieudonné derivatives which are essentially given by

1

r1! · · · rn!
·

∂
∑
ri

∂xr11 · · · ∂x
rn
n
.

These operators then have other problems. One of the main difficulties of resolution
in positive characteristic is a lack of good replacement for higher derivatives.

61 (Birational transform of derivatives). Let X be a smooth variety, Z ⊂ X a
smooth subvariety and π : BZX → X the blow up with exceptional divisor F ⊂
BZX . Let (I,m) be a marked ideal sheaf on X such that m ≤ ordZ I. Choose
local coordinates (x1, . . . , xn) such that Z = (x1 = · · · = xr = 0), then

y1 = x1

xr
, . . . , yr−1 = xr−1

xr
, yr = xr , . . . , yn = xn

are local coordinates on a chart of BZX . Let us compute the derivatives of

π−1
∗ (f(x1, . . . , xn),m) =

(
y−mr f(y1yr, . . . , yr−1yr, yr, . . . , yn),m

)
,

defined in (47.3). The easy formulas are

∂
∂yj

π−1
∗ (f,m) = π−1

∗

(
∂
∂xj

f,m− 1) for j < r,
∂
∂yj

π−1
∗ (f,m) = 1

yr
π−1
∗

(
∂
∂xj

f,m− 1) for j > r,

and a more complicated one using the chain rule for j = r:

∂
∂yr

π−1
∗ (f,m) = yi

yr

∑
i<r π

−1
∗

(
∂
∂xi

f,m− 1) + 1
yr
π−1
∗

(
∂
∂xr

f,m− 1)+

+(−myr
,−1) · π−1

∗ (f,m),

where, as in (46), multiplying by (−myr
,−1) means multiplying the function by −m

yr

and lowering the marking by 1.
These can be rearranged to

π−1
∗

(
∂
∂xj

f,m− 1) = ∂
∂yj

π−1
∗ (f,m) for j < r, (61.1)

π−1
∗

(
∂
∂xj

f,m− 1) = yr
∂
∂yj

π−1
∗ (f,m) for j > r, (61.2)

π−1
∗

(
∂
∂xr

f,m− 1) = yr
∂
∂yr

π−1
∗ (f,m)− yr

∑
i<r

∂
∂yi

π−1
∗ (f,m)+

+(m,−1) · π−1
∗ (f,m). (61.3)

Observe that the right hand sides of these equations are in D(π−1
∗ (f,m)). Thus we

have proved the following elementary but important statement.

Theorem 62. Let (I,m) be a marked ideal and Π : Xr → X the composite of a
blow up sequence of order ≥ m starting with (X, I,m). Then

Π−1
∗

(
Dj(I,m)

)
⊂ Dj

(
Π−1

∗ (I,m)
)

for every j ≥ 0.

Proof. For j = 1 and for one blow up this is what the above formulas (61) say.
The rest follows by induction on j and on the number of blow ups. �
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Corollary 63. Let

Π : (Xr, Ir,m)
πr−1
−→ (Xr−1, Ir−1,m)

πr−2
−→ · · ·

π1−→ (X1, I1,m)
π0−→ (X0, I0,m)

be a smooth blow up sequence of oredr ≥ m starting with (X, I,m).
Fix j ≤ m and define inductively the ideal sheaves Ji by

(Ji+1,m− j) := (πi)
−1
∗ (Ji,m− j) and J0 := Dj(I).

Then,

(1) Ji ⊂ Dj(Ii) for every i, and
(2) we get a blow up sequence starting with (X,Dj(I),m− j)

Π : (Xr, Jr,m− j)
πr−1
−→ (Xr−1, Jr−1,m− j)

πr−2
−→ · · ·

π1−→ (X1, J1,m− j)
π0−→ (X0, J0,m− j).

Proof. We need to check that for every i < r, the inequality ordZi
Ji ≥ m − j

holds where Zi ⊂ Xi is the center of the blow up πi : Xi+1 → Xi. If Πi : Xi → X
is the composition then

Ji = (Πi)
−1
∗ (DjI,m− j) ⊂ Dj

(
(Πi)

−1
∗ (I,m)

)
= Dj(Ii,m)

where the containment in the middle follows from (62).
By assumption ordZi

Ii ≥ m, thus ordZi
Dj(Ii) ≥ m− j by (60.3). �

8. Maximal contact and going down

Definition 64. Let X be a smooth variety, I ⊂ OX an ideal sheaf and m =
max-ord I. A smooth hypersurface H ⊂ X is called a hypersurface of maximal
contact if the following holds.

For every open set X0 ⊂ X and for every blow up sequence of order m starting
with (X0, I0 := I|X0)

Π : (X0
r , Ir)

πr−1
−→ (X0

r−1, Ir−1)
πr−2
−→ · · ·

π1−→ (X0
1 , I1)

π0−→ (X0
0 , I0)

the center of every blow up Z0
i ⊂ X0

i is contained in the birational transform
H0
i ⊂ X

0
i of H0 := H ∩X0. This implies that

Π|H0
r

: (H0
r , Ir|H0

r
,m)

πr−1
−→ (H0

r−1, Ir−1|H0
r−1

,m)
πr−2
−→ · · ·

π1−→ (H0
1 , I1|H0

1
,m)

π0−→ (H0
0 , I0|H0

0
,m)

is a blow up sequence of order ≥ m starting with (H0, I|H0 ,m).
For now we ignore the divisorial part E of a triple (X, I,E) since we can not

guarantee that E|H is still a normal crossing divisor.

Definition 65. Let X be a smooth variety, I ⊂ OX an ideal sheaf and m =
max-ord I. The maximal contact ideal of I is

MC(I) := Dm−1(I).

Note that MC(I) has order 1 at x ∈ X if ordx I = m and 0 if ordx I < m. Thus

cosuppMC(I) = cosupp(I,m).
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Theorem 66 (Maximal contact). Let X be a smooth variety, I ⊂ OX an ideal
sheaf and m = max-ord I. Let L be a line bundle on X and h ∈ H0(X,L⊗MC(I))
a section with zero divisor H := (h = 0).

(1) If H is smooth, then H is a hypersurface of maximal contact.
(2) Every x ∈ X has an open neighborhood x ∈ Ux ⊂ X and hx ∈ H0(Ux, L ⊗

MC(I)) such that Hx := (hx = 0) ⊂ Ux is smooth.

Proof. Being a hypersurface of maximal contact is a local question, thus we may
assume that L = OX . Let

Π : (Xr, Ir)
πr−1
−→ (Xr−1, Ir−1)

πr−2
−→ · · ·

π1−→ (X1, I1)
π0−→ (X0, I0)

be a blow up sequence of order m starting with (X, I) where πi is the blow up of
Zi ⊂ Xi.

Applying (63) for j = m − 1, we obtain a blow up sequence starting with
(X,MC(I), 1)

Π : (Xr, Jr, 1)
πr−1
−→ (Xr−1, Jr−1, 1)

πr−2
−→ · · ·

π1−→ (X1, J1, 1)
π0−→ (X0, J0, 1).

Let Hi := (Πi)
−1
∗ H ⊂ Xi denote the birational transform of H ⊂ X . Since

OX0(−H0) ⊂ J0 and H0 is smooth, we see that OXi
(−Hi) ⊂ Ji for every i. By

assumption ordZi
Ii ≥ m, thus, using (60.3) and (63.1) we get that

ordZi
Ji ≥ ordZi

MC(Ii) ≥ 1,

hence also ordZi
Hi ≥ 1. Thus each Hi is smooth and Zi ⊂ Hi for every i.

To see the second claim, pick x ∈ X such that ordx I = m. Then ordxMC(I) = 1
by (60.3), thus there is a local section of MC(I) which has order 1 at x and so its
zero divisor is smooth in a neighborhood of x. �

Aside 67. A section h ∈ MC(I) such that H = (h = 0) is smooth always exists
locally, but usually not globally, even if we tensor I by a very ample line bundle
L. By the Bertini type theorem of [Kol97, 4.4], the best one can achieve globaly
is that H has cA-type singularities. (These are given by local equations x1x2 +
(other terms) = 0.)

The above results says that every blow up sequence of order m starting with
(X, I) can be seen as a blow up sequence starting with (H, I|H ,m).

An important remaining problem is that not every blow up sequence starting
with (H, I|H ,m) corresponds to a blow up sequence of order m starting with (X, I),
thus we can not yet construct an order reduction of (X, I) from an order reduction
of (H, I|H ,m).

Here are some examples that show what can go wrong.

Example 68. Let I = (xy − zn). Then ord0 I = 2 and D(I) = (x, y, zn−1).
H := (x = 0) is a surface of maximal contact, and

(H, I|H) ∼= (A2
y,z, (z

n)).

Thus (H, I|H) shows a 1–dimensional singular locus of multiplicity n, whereas we
have an isolated singular point of multiplicity 2. The same happens if we use (y = 0)
as a surface of maximal contact.

In this case we do better if we use a general surface of maximal contact. Indeed,
setting Hg := (x− y = 0), then

(Hg, I|Hg
) ∼= (A2

x,z, (x
2 − zn)),
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and we get an equivalence between blow up sequences of order ≥ 2 starting with
(A3, (xy − zn)) and blow up sequences starting with (A2, (x2 − zn)).

In some cases, even the general hypersurface of maximal contact fails to produce
an equivalence. There are no problems on H itself but difficulties appear after blow
ups.

Let I = (x3 + xy5 + z4). A general surface of maximal contact is given by

H := (x+ u1xy
3 + u2y

4 + u3z
2 = 0) where the ui are units.

Let us compute 2 blow ups given by x1 = x/y, y1 = y, z1 = z/y and x2 =
x1/y1, y2 = y1, z2 = z1/y1. We get the equations

x3 + xy5 + z4 x + u1xy
3 + u2y

4 + u3z
2

x3
1 + x1y

3
1 + y1z

4
1 x1 + u1x1y

3
1 + u2y

3
1 + u3y1z

2
1

x3
2 + x2y2 + y2

2z
4
2 x2 + u1x2y

3
2 + u2y

2
2 + u3y

2
2z

2
2 .

The second birational transform of the ideal has order 2 on this chart. However,
its restriction to the birational transform H2 of H still has order 3 since we can use
the equation of H2 to eliminate x2 by the substitution

x2 = y2
2(u2 + u3z

2
2)(1 + u1y

3
2)−1

to obtain that I2|H2 ⊂ (y3
2 , y

2
2z

4
2).

9. Restriction of derivatives and going up

69. Even in the simplest examples we see that computing the order of an ideal
does not commute with restrictions (11).

For any ideal sheaf I and subvariety S ⊂ X we have the equality

S ∩ cosupp I = cosupp(I|S),

but for a marked ideal (I,m) and a smooth subvariety S ⊂ X , we have only an
inequality

S ∩ cosupp(I,m) ⊂ cosupp(I|S ,m),

which is usually not an equality for m ≥ 2, as shown by the examples (68). We
can correct this problem by looking at all higher derivative ideals. We get that for
a marked ideal (I,m) and a smooth subvariety S ⊂ X

S ∩ cosupp(I,m) =

m−1⋂

0

cosupp
(
(DrI)|S ,m− r

)
. (69.1)

At first this looks like a useful formula, but it is only a complicated way of writ-
ing something obvious. Indeed, by (60.3), cosupp(I,m) = cosuppDm−1I and so
coupled with the trivial equality S ∩ cosuppDm−1I = cosupp(Dm−1I|S) we get
that

S ∩ cosupp(I,m) = cosupp
(
(Dm−1I)|S , 1

)
=

m−1⋂

0

cosupp
(
(DrI)|S ,m− r

)
,

so most of the right hand side of (69.1) is not needed at all.
The formula (69.1) becomes, however, very interesting and useful for birational

transforms, as suggested by (14.6).
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Theorem 70. Consider a blow up sequence of order ≥ m starting with (X, I,m)

Π : (Xr, Ir,m)
πr−1
−→ (Xr−1, Ir−1,m)

πr−2
−→ · · ·

π1−→ (X1, I1,m)
π0−→ (X0, I0,m) = (X, I,m).

Let S ⊂ X be a smooth hypersurface and Si ⊂ Xi its birational transforms. Assume
that for each blow up, the center Zi is contained in Si. Then

Sr ∩ cosupp
(
Π−1

∗ (I,m)
)

=

m−1⋂

j=0

cosupp(Π|Sr
)−1
∗

(
(DjI)|S ,m− j

)
.

Before starting the proof, let us derive from this a precise form of the going up
property of D-balanced ideals (39.1).

Definition 71. As in (39), an ideal I with m = max-ord I is called D-balanced if
(
Di(I)

)m
⊂ Im−i ∀ i < m.

If I is D-balanced then for any S ⊂ X ,
(
Di(I)|S

)m
is integral over Im−i|S . Thus

if f : X ′ → X is a composite of smooth blow up sequence of order ≥ m starting
with (I,m), then

cosupp f−1
∗ (Di(I)|S ,m− i) = cosupp f−1

∗

((
Di(I)

)m
|S ,m(m− i)

)

⊃ cosupp f−1
∗

(
Im−i|S ,m(m− i)

)

= cosupp f−1
∗ (I|S ,m).

(71.1)

Theorem 72 (Going up property of D-balanced ideals). Let X be a smooth variety
and I a D-balanced sheaf of ideals with m = max-ord I. Let S ⊂ X be any smooth
hypersurface such that S 6⊂ cosupp(I,m) and

ΠS : (Sr, Jr,m)
πS

r−1
−→ (Sr−1, Jr−1,m)

πS
r−2
−→ · · ·

πS
1−→ (S1, J1,m)

πS
0−→ (S0, J0,m) = (S, I|S ,m)

a smooth blow up sequence of order ≥ m where πSi is the blow up of Zi ⊂ Si. Then
the corresponding sequence (21.2)

Π : (Xr, Ir)
πr−1
−→ (Xr−1, Ir−1)

πr−2
−→ · · ·

π1−→ (X1, I1)
π0−→ (X0, I0) = (X, I)

is a smooth blow up sequence of order m.

Proof. By induction, assume that this already holds up to r − 1. We need to
show that the last blow up also has order ≥ m, that is

Zr−1 ⊂ cosupp Ir−1 = cosupp(Πr−1)−1
∗ I,

where Πr−1 : Xr−1 → X is the composite map. Using first (70) for Πr−1, then the
D-balanced property (71.1) in line 2 we obtain that

Sr−1 ∩ cosupp(Ir−1,m) =
⋂m−1
j=0 cosupp(ΠS

r−1)−1
∗

(
(DjI)|S ,m− j

)

⊃
⋂m−1
j=0 cosupp(ΠS

r−1)−1
∗

(
I|S ,m

)

= cosupp(ΠS
r−1)−1

∗

(
J0,m

)
= cosupp(Jr−1,m).

By assumption Zr−1 ⊂ cosupp(Jr−1,m), hence Zr−1 ⊂ cosupp(Ir−1,m). �
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Corollary 73 (Going up and down). Let X be a smooth variety, I ⊂ OX a D-
balanced ideal sheaf with m = max-ord I and E a divisor with normal crossings.
Let H ⊂ X be a smooth hypersurface of maximal contact such that E|H is again a
divisor with normal crossings and H 6⊂ cosupp(I,m).

Then order reduction for (X, I,E) is equivalent to order reduction for (H, I|H ,m,E|H).

Proof. This follows from (72), and (66), except for the role played by E.
Adding E to (X, I) (resp. to (H,m, I|H)) means that now we can use only

blow ups whose centers are in normal crossing with E (resp. E|H) and their to-
tal transforms. Since E|H is again a divisor with normal crossings, this poses
the same restriction on order reduction for (X, I,E) as on order reduction for
(H, I|H ,m,E|H). �

74 (Proof of (70)). Using that cosupp(I,m) = cosuppDm−1I, (70) becomes a
consequence of the s = m− 1 case of its sheafified version:

Proposition 75. Notation as in (70). Then

(
DsΠ−1

∗ (I,m)
)
|Sr

=

s∑

j=0

Ds−j(Π|Sr
)−1
∗

(
(DjI)|S ,m− j

)
.

Before we start the proof, a few remarks about restrictions of derivatives are
necessary.

76 (Logarithmic derivatives). Let X be a smooth variety, S ⊂ X a smooth hyper-
surface and at a point p ∈ S pick local coordinates x1, . . . , xn such that S = (x1 =
0).

If f is any function, then

∂f

∂xi
|S =

∂
(
f |S
)

∂xi
for i > 1,

but ∂(f |S)/∂x1 does not even make sense. Therefore we would like to decompose
D(f) into two parts

(i) ∂f/∂xi for i > 1 (these commute with restriction to S), and
(ii) ∂f/∂x1 (which does not).

Such a decomposition is, however, not coordinate invariant. The best one can do
is the following.

Let DerX(− logS) ⊂ DerX be the largest subsheaf that maps OX(−S) into itself
by derivations. It is called the sheaf of logarithmic derivations along S. In the above
local coordinates we can write

DerX(− logS) =
(
x1

∂

∂x1
,
∂

∂x2
, . . . ,

∂

∂xn

)

For an ideal sheaf I set

D(− logS)(I) :=
(
im[(DerX(− logS), I)→ OX ]

)
and

Dr+1(− logS)(I) := D(− logS)(Dr(− logS)(I)) for r ≥ 1.

These log derivations behave well with respect to restriction to S:

D(− logS)(I)|S = D(I|S). (76.1)

We can filter the sheaf Ds(I) by subsheaves

Ds(− logS)(I) ⊂ Ds−1(− logS)(D(I)) ⊂ Ds−2(− logS)(D2(I)) ⊂ · · · ⊂ Ds(I).
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In the local coordinates x1, . . . , xn we can write

Ds(I) = Ds(− logS)(I) +Ds−1(− logS)
( ∂I
∂x1

)
+ · · ·+

(∂sI
∂xs1

)
(76.2)

and the first j + 1 summands span Ds−j(− logS)(Dj(I)). Restricting to S we get
the fomula

(
DsI

)
|S = Ds

(
I|S
)

+Ds−1
( ∂I
∂x1
|S
)

+ · · ·+
(∂sI
∂xs1
|S
)
. (76.3)

77 (Proof of (75)). This is a local question on X , so choose coordinates x1, . . . , xn
as in (76) such that S = (x1 = 0) and the center of π0 is (x1 = · · · = xr = 0). On
the first blow up X1 we have a typical local chart

y1 = x1

xr
, . . . , yr−1 = xr−1

xr
, yr = xr, . . . , yn = xn,

and S1 = (y1 = 0) is the birational transform of S. Note that the blow up is
covered by r different charts, but only r − 1 of these can be written in the above
forms where xr is different from x1. These r − 1 charts, however, completely cover
S1.

Applying (76.2) to (π0)−1
∗ (I,m) we obtain that

Ds(π0)−1
∗ (I,m) =

s∑

j=0

Ds−j(− logS1)

(
∂j(π0)−1

∗ (I,m)

∂yj1

)
.

Although usually differentiation does not commute with birational transforms, by
(61.1) it does so for ∂/∂x1 and ∂/∂y1, so we can rewrite the formula as

Ds(π0)−1
∗ (I,m) =

s∑

j=0

Ds−j(− logS1)

(
(π0)−1

∗

(
∂j(I,m)

∂xj1

))
.

For a sequence of blow ups, we need to change coordinates at every step, so the
above summands change. However, as noted in (76), the filtration is well defined.
Thus we can use the above argument repeatedly to obtain that

DsΠ−1
∗ (I,m) =

s∑

j=0

Ds−j(− logSr)

(
Π−1

∗

(
∂j(I,m)

∂xj1

))
. (77.1)

Using (62) we get that

Π−1
∗

(
∂j(I,m)

∂xj1

)
⊂ Π−1

∗

(
Dj(I,m)

)
⊂ Dj

(
Π−1

∗ (I,m)
)
.

Thus we can enlarge the right hand side of (77.1) to get

DsΠ−1
∗ (I,m) =

s∑

j=0

Ds−j(− logSr)Π
−1
∗ (DjI,m− j). (77.2)

Restricting to Sr and using (49) we get that

(
DsΠ−1

∗ (I,m)
)
|Sr

=

s∑

j=0

Ds−j(Π|Sr
)−1
∗

(
(DjI)|S ,m− j

)
. �

Remark 78. More generally, (70) and (75) hold for any smooth subvariety S ⊂ X ,
but we use them only for hypersurfaces. The proof in the general case can be done
similarly or obtained from the above by induction.
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10. Uniqueness of maximal contact

As we saw in (68), for a given ideal I, its restrictions to different hypersurfaces
of maximal contact H and H ′ can be very different so the blow ups we get from
restricting to H may differ from the blow ups we get from restricting to H ′. There
is no such problem, however, if an automorphism of X carries H into H ′, while
leaving I and E invariant.

Usually X itself has no automorphisms (not even Zariski locally), so we have to
work in a formal or étale neighborhood of a point x ∈ X . (See (42) for completions.)

Definition 79. Let X be a smooth variety, p ∈ X a point I an ideal sheaf such
that max-ord I = ordp I = m and E = E1 + · · ·+Es a normal crossing divisor. Let
H,H ′ ⊂ X be two hypersurfaces of maximal contact.

We say that H and H ′ are formally equivalent at p with respect to (X, I,E) if

there is an automorphism of the completion φ : X̂ → X̂ such that

(1) φ(Ĥ) = Ĥ ′,

(2) φ∗(Î) = Î, φ(Êi) = Êi for i = 1, . . . , s, and
(3) for any blow up sequence of order m

(Xr, Ir, Er)
πr−1
−→ · · ·

π0−→ (X0, I0, E0) = (X, I,E)

the action of φ lifts to automorphisms φi of Xi ×X X̂ .

While this is the important concept, it is somewhat inconvenient to use since all
our definitions concerning resolution, order reduction etc. concern algebraic varieties

and not for general schemes like X̂.
Even very simple formal automorphisms can not be realized as algebraic auto-

morphisms on some étale cover. (Check this for the map x 7→ x2 which is a formal

automorphisms of (1 ∈ Ĉ).) Thus we need a slightly modified definition.
We say that H and H ′ are étale equivalent at p with respect to (X, I,E) if there

are étale maps ψ1, ψ2 : (u ∈ U) ⇉ (p ∈ X) such that

(1’) ψ−1
1 (H) = ψ−1

2 (H ′),
(2’) ψ∗

1(I) = ψ∗
2(I), ψ−1

1 (Ei) = ψ−1
2 (Ei) for i = 1, . . . , s, and

(3’) for any blow up sequence of order m

(Xr, Ir, Er)
πr−1
−→ · · ·

π0−→ (X0, I0, E0) = (X, I,E)

the identity of U lifts to isomorphisms ρi : U ×ψ1,X Xi
∼= U ×ψ2,X Xi.

The connection with the formal case comes from noting that ψ1 is invertible after

completion, and then φ := ψ̂2 ◦ ψ̂−1 : X̂ → X̂ is the automorphism we seek.

A key observation of [W lo05] is that for certain ideals I, any two smooth hyper-
surfaces of maximal contact are formal and étale equivalent. Recall (40) that an
ideal I is maximal contact invariant or MC-invariant if

MC(I) ·D(I) ⊂ I,

where MC(I) is the ideal of maximal contacts defined in (38.2). Since taking

derivatives commutes with completion (60.5), we see that M̂C(I) = MC(Î).
The precise statements are the following.

Theorem 80 (Uniqueness of maximal contact). Let X be a smooth variety, p ∈ X
a point and X̂ the completion of X at p. For (X, I,E), let H,H ′ ⊂ X be two
hypersurfaces of maximal contact, both smooth at p such that H + E and H ′ + E



46 JÁNOS KOLLÁR

both have normal crossings at p. Then H and H ′ are étale equivalent with respect
to (X, I,E).

We start with a general result relating automorphisms and derivations of com-
plete local rings. Since derivations are essentially the first order automorphisms,
it is reasonable to expect that an ideal is invariant under a subgroup of automor-
phisms iff it is invariant to first order. We are, however, in an infinite dimensional
setting, so it is safer to work out the details.

Notation 81. Let K be a field of characteristic 0 and R = K[[x1, . . . , xn]] the
formal power series ring in n variables with maximal ideal m. For g1, . . . , gn ∈ m
the homomorphism g : xi 7→ gi is an automorphism of R iff the induced map
g : m/m2 → m/m2 is an isomophism. Equivalently, when the linear parts of the gi
are linearly independent.

Let B ⊂ m be an ideal. For bi ∈ B the homomorphism g : xi 7→ xi + bi need not
be an automorphism, but

g : xi 7→ xi + λibi is an automorphism for general (λ1, . . . , λn) ∈ Kn.

We call these automorphisms of the form 1 +B.

Proposition 82. Notation as above and let I ⊂ R be an ideal. The following are
equivalent:

(1) I is invariant under every automorphism of the form 1 +B.
(2) B ·D(I) ⊂ I.
(3) Bj ·Dj(I) ⊂ I for every j ≥ 1.

Proof. Assume that Bj ·Dj(I) ⊂ I for every j ≥ 1. Given any f ∈ I, we need
to prove that f(x1 + b1, . . . , xn + bn) ∈ I. Take the Taylor expansion

f(x1 + b1, . . . , xn + bn) = f(x1, . . . , xn) +
∑

i

bi
∂f

∂xi
+

1

2

∑

i,j

bibj
∂2f

∂xi∂xj
+ . . .

For any s ≥ 1 this gives that

f(x1 + b1, . . . , xn + bn) ∈ I +B ·D(I) + · · ·+Bs ·Ds(I) +ms+1 ⊂ I +ms+1

since Bj ·Dj(I) ⊂ I by assumption. Letting s go to infinity, by Krull’s intersection
theorem (42) we conclude that f(x1 + b1, . . . , xn + bn) ∈ I.

Conversely, for any b ∈ B and general λi ∈ K, invariance under the automor-
phism (x1, x2, . . . , xn) 7→ (x1 + λib, x2, . . . , xn) gives that

f(x1 + λib, x2, . . . , xn) = f(x1, . . . , xn) + λib
∂f

∂x1
+ · · · (λib)

s ∂f
s

∂xs1
∈ I +ms+1.

Use s different values λ1, . . . , λs. Since the Vandermonde determinant (λji ) is in-
vertible, we conclude that

b
∂f

∂x1
∈ I +ms+1.

Letting s go to infinity, we obtain that B ·D(I) ⊂ I.
Finally, we prove by induction that Bj ·Dj(I) ⊂ I for every j ≥ 1. Bj+1 ·Dj+1(I)

is generated by elements of the form b0 · · · bj ·D(g) where g ∈ Dj(I). The product
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rule gives that

b0 · · · bj ·D(g) = b0 ·D(b1 · · · bj · g)−
∑
i≥1D(bi) · (b0 · · · b̂i · · · bj · g)

∈ B ·D(Bj ·Dj(I)) +Bj ·Dj(I)
⊂ B ·D(I) +Bj ·Dj(I) ⊂ I,

where the entry b̂i is omitted from the products. �

83 (Proof of (80)). Let us start with formal equivalence. Pick local sections x1, x
′
1 ∈

MC(I) such that H = (x1 = 0) and H ′ = (x′1 = 0). Choose other local coordinates
x2, . . . , xs+1 at p such that Ei = (xi+1 = 0) for i = 1, . . . , s. For a general choice of
xs+2, . . . , xn we see that x1, x2, . . . , xn and x′1, x2, . . . , xn are both local coordinate
systems.

Since x1 − x′1 ∈MC(I), the automorphism

φ∗(x′1, x2, . . . , xn) = (x′1 + (x1 − x
′
1), x2, . . . , xn) = (x1, x2, . . . , xn)

is of the form 1 +MC(I), hence by (82) we conclude that φ∗
(
Î
)

= Î. By construc-

tion φ(Ĥ) = Ĥ ′ and φ(Êi) = Êi.
Finally, Z0 is contained in H ∩H ′, so both x1 and x′1 vanish on Z0. Thus φ is

the identity on Z0 ×X X̂, and so φ lifts to an isomorphism φ̂1 : X̂1 → X̂1 which
maps Ĥ1 to Ĥ ′

1.
In order to compute the liftings of φ, we can assume that after possibly permuting

the x2, . . . , xn, Z0 = (x1 = x2 = · · · = xk = 0). Thus also Z0 = (x′1 = x2 = · · · =
xk = 0), and in the local chart

y1 = x1

xr
, . . . , yr−1 = xr−1

xr
, yr = xr , . . . , yn = xn

with y′1 =
x′

1

xr
, the automorphism φ lifts as

φ∗(y′1, y2, . . . , yn) = (y1, y2, . . . , yn).

As before, the next center Z1 is contained in (y1 = y′1 = 0), thus φ1 lifts to the
blow up of Z1, and so on. This proves the formal case of (80).

In order to go from the formal to the étale case, the key point is to realize the
automorphism φ on some u ∈ U . Existence follows from the general approximation
theorems of [Art69], but in our case the choice is clear.

Take X ×X and let x11, x12, . . . , x1n a be the corresponding local coordinate on
the first factor and x′21, x22, . . . , x2n on the second factor. Set

U1 := (x11 − x
′
21 = x12 − x22 = · · · = x1n − x2n = 0) ⊂ X ×X.

The completion of U1 at (p, p) is the graph of φ. By shrinking U1, we get (p, p) ∈
U2 ⊂ U1 such that the both cordinate projections ψ1, ψ2 : U2 ⇉ X are étale.

From our previous considerations we know that ψ−1
1 (H) = ψ−1

2 (H ′), ψ∗
1I = ψ∗

2I,
and ψ−1

1 (Ei) = ψ−1
2 (Ei) hold after taking completions at (p, p). Thus they also

hold in a possibly smaller neighborhood of (p, p) in U2.
Assume that we already have liftings

ψ1,j , ψ2,j : Uj ⇉ Xj

such that φj = ψ̂2,j ◦ ψ̂
−1
1,j . This implies that ψ−1

1,j (Zj) and ψ−1
2,j (Zj) have the same

completion at (p, p), hence they agree in a possibly smaller neighborhood of (p, p).
Thus, after shrinking U2, we can lift ψ1,j, ψ2,j to ψ1,j+1, ψ2,j+2. �
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11. Tuning ideals

Following the Principle (14.9) and (63), we are looking for ideals that contain
information about all derivatives of I with equalized markings.

Definition 84 (Maximal coefficient ideals). Let X be a smooth variety, I ⊂ OX
an ideal sheaf and m = max-ord I. The maximal coefficient ideal of order s of I is

Ws(I) :=




m∏

j=0

(
Dj(I)

)cj
:
∑

(m− j)cj ≥ s



 ⊂ OX .

The ideals Ws(I) satisfy a series of useful properties:

Proposition 85. Let X be a smooth variety, I ⊂ OX an ideal sheaf and m =
max-ord I. Then

(1) Ws+1(I) ⊂Ws(I) for every s,
(2) Ws(I) ·Wt(I) ⊂Ws+t(I),
(3) D(Ws(I)) ⊂Ws−1(I).
(4) MC(Ws(I)) ⊂W1(I) = MC(I),
(5) Ws(I) is MC-invariant,
(6) Ws(I) ·Wt(I) = Ws+t(I) whenever s = r · lcm(2, . . . ,m) and t ≥ (m− 1) ·

lcm(2, . . . ,m),

(7)
(
Ws(I)

)j
= Wjs(I) whenever s = r · lcm(2, . . . ,m) for some r ≥ m−1, and

(8) Ws(I) is D-balanced whenever s = r · lcm(2, . . . ,m) for some r ≥ m− 1.

Proof. Assertions (1) and (2) are clear and (3) follows from the product rule.
Applying (3) repeatedly gives that MC(Ws(I)) ⊂W1(I) which in turn contains

Dm−1(I) by definition. Conversely, W1(I) is generated by products of derivatives,
at least one of which is a derivative of order < m. Thus

W1(I) ⊂
∑

j<m

Dj(I) = Dm−1(I),

proving (4). Together with (2) and (3) this implies (5).
Thinking of elements of Dm−j(I) as variables of degree j, (6) is implied by the

combinatorial lemma (85.8) and (7) is a special case of (6).
Finally, using (3) and (7) we get that

(
Di(Ws(I))

)s
⊂
(
Ws−i(I)

)s
⊂Ws(s−i)(I) =

(
Ws(I)

)s−i
. �

Claim 85.9. Let u1, . . . , um we variables such that deg(ui) = i. Then any
monomial U =

∏
uci

i with deg(U) ≥ (r +m− 1) · lcm(2, . . . ,m) can be written as
U = U1 · U2 where deg(U1) = r · lcm(2, . . . ,m).

Proof. Set Vi = u
lcm(2,...,m)/i
i and write uci

i = V bi

i ·Wi where degWi < lcm(2, . . . ,m).

If
∑
bi ≥ r then choose 0 ≤ di ≤ bi such that

∑
di = k and take U1 =

∏
V bi

i .
Otherwise degU < (r− 1) · lcm(2, . . . ,m) +m · lcm(2, . . . ,m), a contradiction. �

Aside 85.10. Note that one can think of (85.9) as a statement about certain mul-
tiplication maps H0(X,OX(a)) ×H0(X,OX(b)) → H0(X,OX(a + b)) where X is
the weighted projective space P(1, 2, . . . ,m). The above claim is the combinatorial
version of the Castelnuovo–Mumford regularity theorem in this case (cf. [Laz04,
Sec.1.8]).
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It seems to me that (85.6) should hold for t ≥ lcm(2, . . . ,m) and even for many
smaller values of t as well.

It is easy to see that (m− 1) · lcm(2, . . . ,m) ≤ m! for m ≥ 6 and one can check
by hand that (85.6) holds for t ≥ m! for m = 1, 2, 3, 4, 5. Thus we conclude that
Wm!(I) is D-balanced. This is not important, but the traditional choice of the
coefficient ideal corresponds to Wm!(I).

The following close analog of (63) leads to ideal sheaves which behave the “same”
as a given ideal I, as far as order reduction is concerned.

Theorem 86. Let X be a smooth variety, I ⊂ OX an ideal sheaf and m =
max-ord I. Let s ≥ 1 be an integer and J any ideal sheaf satisfying

Is ⊂ J ⊂Wms(I).

Then there is an equivalence between the two sets:

(1) Blow up sequences of order m starting with (X, I).
(2) Blow up sequences of order ms starting with (X, J).

Proof. Consider a blow up sequence starting with (X, I,m)

(Xr, Ir,m)
πr−1
−→ (Xr−1, Ir−1,m)

πr−2
−→ · · ·

π1−→ (X1, I1,m)
π0−→ (X0, I0,m) = (X, I,m).

We prove by induction on r that it gives a blow up sequence starting with (X, J,ms)

(Xr, Jr,ms)
πr−1
−→ (Xr−1, Jr−1,ms)

πr−2
−→ · · ·

π1−→ (X1, J1,ms)
π0−→ (X0, J0,ms) = (X, J,ms).

Assume that this holds up to step r − 1. We need to show that last blow up
πr−1 : Xr → Xr−1 is a blow up for (Xr−1, Jr−1,ms). That is, we need to show
that

ordZ Ir−1 ≥ m ⇒ ordZ Jr−1 ≥ ms for all Z ⊂ Xr−1.

Let Πr−1 : Xr−1 → X0 denote the composite. Since J ⊂Wms(I), we know that

Jr−1 =
(
Πr−1

)−1

∗
(J,ms)

⊂
(
Πr−1

)−1

∗
(Wms(I),ms)

=
(
Πr−1

)−1

∗

(∏
j

(
DjI,m− j

)cj
:
∑

(m− j)cj ≥ ms
)

=
(∏

j

((
Πr−1

)−1

∗
(DjI,m− j)

)cj
:
∑

(m− j)cj ≥ ms
)

⊂
(∏

j

(
Dj(

(
Πr−1

)−1

∗
(I,m)

)cj
:
∑

(m− j)cj ≥ ms
)

by (62)

=
(∏

j

(
Dj(Ir−1,m)

)cj
:
∑

(m− j)cj ≥ ms
)
.

If ordZ Ir−1 ≥ m then ordZ D
j(Ir−1) ≥ m− j and so

ordZ
∏

j

(
Dj(Ir−1,m)

)cj ≥
∑

(m− j)cj ≥ ms,

proving one direction.
In order to prove the converse, let

(Xr, Jr,ms)
πr−1
−→ (Xr−1, Jr−1,ms)

πr−2
−→ · · ·

π1−→ (X1, J1,ms)
π0−→ (X0, J0,ms) = (X, J,ms).
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be a blow up sequence starting with (X, J,ms). Again by induction we show that
it gives a blow up sequence starting with (X, I,m). Since Is ⊂ J , we know that

Isr−1 =
((

Πr−1

)−1

∗
I
)s
⊂
(
Πr−1

)−1

∗
(J,ms) = Jr−1.

Thus if ordZ Jr−1 ≥ ms then ordZ Ir−1 ≥ m, and so πr−1 : Xr → Xr−1 is also a
blow up for (Xr−1, Ir−1,m). �

Corollary 87. Let X be a smooth variety, I ⊂ OX an ideal sheaf with m =
max-ord I and E a divisor with normal crossings. Let s = r · lcm(2, . . . ,m) for
some r ≥ m− 1. Then Ws(I) is

(1) MC-invariant,
(2) D-balanced, and
(3) order reduction for (X, I,E) is equivalent to order reduction for (X,Ws(I), E).

Proof. Everyting follows from (85) and (86), except for the role played by E.
Adding E to (X, I) (resp. to (X,Ws(I))) means that now we can use only blow

ups whose centers are in normal crossing with E and its total transforms. This
poses the same restriction on order reduction for (X, I,E) as on order reduction
for (X,Ws(I), E). �

12. Order reduction for ideals

The precise statement is the following.

Theorem 88. Assume that (56) holds in dimensions < n.
Let (X, I,E) be a triple with dimX = n and ord I = m. Then there is a smooth

blow up sequence of order m starting with (X, I,E)

Π : Rm(X, I,E) = (Xr, Ir, Er)
πr−1
−→ (Xr−1, Ir−1, Er−1)

πr−2
−→ · · ·

π1−→ (X1, I1, E1)
π0−→ (X0, I0, E0) = (X, I,E),

such that max-ord Ir < m and Rm satisfies the functoriality properties (25.1-2-3).

The proof is done in four steps:

(1) (Changing I) By (87), there is an ideal W (I) = Ws(I) for suitable s which
is D-balanced, MC-invariant and order reduction for (X, I,E) is equivalent
to order reduction for (X,W (I), E). Thus from now on we assume that I
is D-balanced and MC-invariant.

(2) (Maximal contact case) Here we assume that there is a smooth hypersurface
of maximal contact H ⊂ X . This is always satisfied in a suitable open
neighborhood of any point (66.2), but it may hold globally as well.

Under a smooth blow up of orderm, the birational transform of a smooth
hypersurface of maximal contact is again a smooth hypersurface of maximal
contact, thus we stay in the maximal contact case.

We intend to restrict everything to H , but we run into the problem that
E|H need not be a normal crossing divisor. We thus proceed in two steps.
(a) We restrict I to the components of E one by one. By applying (72),

after some blow ups we are reduced to the case when max-ordE I < m.
Note that the new exceptional divisors obtained in the process (and
added to E) have normal crossings with the birational transforms of
H (and of any other hypersurface of maximal contact as well), so we
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do not need to worry about them. (Those who do not like using the
ordering of the index set should consult (92.)

(b) Then we restrict everything to the birational transform H and we
obtain order reduction using dimension induction and (73).

(3) (Quasi projective case) There may not be a global smooth hypersurface of
maximal contact H ⊂ X , but we cover X with large open subsets X(j) ⊂ X
such that
(a) on eachX(j) there is a smooth hypersurface of maximal contactH(j) ⊂

X(j), and
(b) for every open subset U ⊂ X with a smooth hypersurface of maximal

contact HU ⊂ U , every blow up of the order reduction for (U, I|U , E|U )
constructed in the previous case corresponds to a nontrivial blow up
for (X(j), I|X(j) , E|X(j)).
This condition assures that the local order reductions glue without
trouble.

(4) (Algebraic space case) This is essentially automatic since every étale local
construction should extend from schemes to algebraic spaces.

89 (Maximal contact case). We start with a triple (X, I,E) where I is D-balanced
and MC-invariant and such that there is a smooth hypersurface of maximal contact
H ⊂ X .

Warning. As we blow up, we get birational transforms of I which may be neither
D-balanced nor MC-invariant. We do not attempt to “fix” this problem, since the
relevant consequences of these properties (72) and (80) are established for any
sequence of blow ups of order m. This also means that we should not try to pick
new hypersurfaces of maximal contact after a blow up, but stick with the birational
transforms of the old ones.

89.1 (Making cosupp(I,m) and SuppE disjoint.)
Assume for simplicity of notation that E =

∑s
i=0E

i and set (X0, I0, E0) :=
(X, I,E) and H0 := H . We make cosupp(I,m) disjoint from SuppE in s steps.
The triple (X0, I0, E0) satisfies the assumptions of step 1.

89.1 Step j. Assume that we already constructed a blow up sequence of order m
starting with (X0, I0, E0)

Πr(j−1) : Xr(j−1) → X0 with Ir(j−1) :=
(
Πr(j−1)

)−1

∗
I, Er(j−1) :=

(
Πr(j−1)

)−1

tot
(E),

such that the birational transforms
(
Πr(j−1)

)−1

∗
(Ei) are disjoint from cosupp Ir(j−1)

for i < j and that Hr(j−1) :=
(
Πr(j−1)

)−1

∗
H is a smooth hypersurface of maximal

contact.
If cosupp(Ir(j−1),m) contains some irreducible components of

(
Πr(j−1)

)−1

∗
(Ei),

we blow these up. The blow up is an isomorphism but the order of Ir(j−1) along
these components is reduced by m and we get the new ideals sheaf I ′r(j−1). Since

max-ord Ir(j−1) ≤ m to start with, after this blow up cosupp I ′r(j−1) does not contain

any irreducible component of
(
Πr(j−1)

)−1

∗
(Ei).

Next set

S :=
(
Πr(j−1)

)−1

∗
(Ej), ES :=

(
Er(j−1) −

(
Πr(j−1)

)−1

∗
(Ej)

)
|S
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and consider the triple (S, I ′r(j−1)|S , ES). By the Going up theorem (72), every

order reduction sequence for (S, I ′r(j−1)|S ,m,ES) corresponds to an order reduction

sequence for

(Xr(j−1), I
′
r(j−1), Er(j−1) −

(
Πr(j−1)

)−1

∗
(Ej)).

Since S =
(
Πr(j−1)

)−1

∗
(Ej), every blow up center is a smooth subvariety of the

birational transform of Ej , thus we in fact get an order reduction sequence for
(Xr(j−1), I

′
r(j−1), Er(j−1)). Hence we obtain

Πr(j) : Xr(j) → X0 with Ir(j) :=
(
Πr(j)

)−1

∗
I, Er(j) :=

(
Πr(j)

)−1

tot
(E),

such that the birational transforms
(
Πr(j)

)−1

∗
(Ei) are disjoint from cosupp Ir(j) for

i < j + 1.
Note that the center of every blow up is contained in every hypersurface of

maximal contact, thus Hr(j) :=
(
Πr(j)

)−1

∗
H is a smooth hypersurface of maximal

contact and every new divisor in
(
Πr(j)

)−1

tot
E is transversal to Hr(j).

After Step s, we have achieved that
(
Πr(s)

)−1

∗
H +

(
Πr(s)

)−1

tot
E

is a divisor with normal crossing and cosupp(Ir(s),m) is disjoint from Supp
(
Πr(s)

)−1

∗
E.

Note that we perform all these steps even if H + E is a normal crossing divisor
to start with, though in this case these do not seem to be necessary. We could,
however, run into patching problems otherwise.

89.2 (Restricting to H .) After dropping the subscript r(s), we have a triple
(X, I,E) and a smooth hypersurface of maximal contact H ⊂ X such that E + H
is also a normal crossing divisor.

If cosupp(I,m) contains some irreducible components of H , we blow these up.
The blow up is an isomorphism but the order of I along these components is reduced
to 0 and the components are also removed from H .

Once codim cosupp(I,m) ≥ 2, we use Going up and down (73) to construct an
order reduction for (X, I,E) from an order reduction for (H, I|H ,m,E|H).

89.3 (Functoriality.) Assuming that the functoriality package (25) is satisfied
in dimension ≤ n − 1, we have functoriality in the first part (89.1) since we did
not make any auxiliary choices. (While it is not important for getting the final
variety Xr(s) right, the intermadiate stages are correctly indexed only if we allow
the divisors Ej to be empty. This ensures that our numbering does not change by
restrictions to open subsets.)

In the second part (89.2) we rely on the choice of a hypersurface of maximal
contact H which is not unique. Here we have to use that I is MC-invariant. By
(80) this implies that if H ′ is another hypersurface of maximal contact, then at
each step the blow up dictated by H and the blow up dictated by H ′ have the same
center after completion. Two subvarieties coincide formally iff they coincide (42),
and so the blow ups do not depend on the choice of H .

If j : Y →֒ X is a closed embedding as in (25.3), then IX contains the local
equations of Y thus it has order 1. In particular, we can choose any of these local
equations as a hypersurface of maximal contact Y ⊂ H ⊂ X , and the blow ups we
perform are precisely the blow ups for order reduction for (Y, IY , E|Y ).
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As we noted in (25), the functoriality package is local, so we do not have to
consider it separately in the next 2 steps.

90 (Quasi projective case). Let (X, I,E) be a triple with dimX = n and let
ord I = m. Assume that X is quasi projective, so that the following elementary
lemma applies to B = MC(I).

90.1 Lemma. Let X be a smooth, quasi projective scheme and B ⊂ OX an ideal
sheaf such that for every x ∈ X there is a local section bx ∈ Bx with ordx bx ≤ 1.

Then, for any integer a, there is a line bundle L := La such that for any
x1, . . . , xa ∈ X there is a global section b := b(x1, . . . , xa) ∈ H0(X,L ⊗ B) such
that (b = 0) is smooth at x1, . . . , xa. �

By (89), every x ∈ X has an open neighborhood x ∈ Ux ⊂ X and an order
reducion

Πx : Rm(Ux, I|Ux
, E|Ux

)→ Ux.

Finitely many of the open sets {Ux : x ∈ Z} cover X . Let Fx,i be all the irreducible
exceptional divisors of Πx, and let {Yt : t ∈ T } be the closures of Πx(Fx,i) ⊂ X for
x ∈ Z.

Note that {Yt : t ∈ T } is a finite collection of subvarieties of X and by the
functoriality of order reduction for open embeddings (25.1) it has the following
universality property:

90.2 Claim. Let U ⊂ X be any open set where the local case (89) applies and

ΠU : Rm(U, I|U , E|U )→ U

the order reduction constructed there. Then for any ΠU -exceptional divisor F , the
closure of ΠU (F ) is among the {Yt : t ∈ T }. �

Apply (90.1) with B = MC(I) and a = |T |. We get a line bundle L such that
for any collection of closed points {yt ∈ Yt : t ∈ T } there is a section

h := h({yt : t ∈ T }) ∈ H0(X,L⊗MC(I))

such that its zero divisor is smooth at all the points yt.
Let X(h) := X \ Sing(h = 0) be the largest open set where (h = 0) is smooth.

By varying the points yt, the open sets of the form X(h) cover X . Taking finitely
many of these sets, we get the following:

90.3 Claim. X is covered by open sets {X(j) : j ∈ J} such that

(1) Yt ∩X(j) is dense in Yt for every t ∈ T, j ∈ J ,
(2) forevery j there is a smooth hypersurface of maximal contact H(j) ⊂ X(j).

�

By (89) there are order reductions starting with (X
(j)
0 , I

(j)
0 , E

(j)
0 ) := (X(j), I|X(j) , E|X(j))

Π(j) : Rm(X(j), I(j), E(j)) = (X
(j)
r , I

(j)
r , E

(j)
r )

πr−1
−→ · · ·

π1−→ (X
(j)
1 , I

(j)
1 , E

(j)
1 )

π0−→ (X
(j)
0 , I

(j)
0 , E

(j)
0 ),

(90.4.j)

and by functoriality (25.1), these agree over the intersectionsX(j)∩X(j′). Moreover,
by (90.2), each of the blow up sequences (90.4.j) involve the same exceptional

divisors and have the same length. In particular, the centers Z
(j)
0 ⊂ X(j)

0 of the first

blow ups π
(j)
0 glue together to Z0 ⊂ X0 and π0 : X1 := BZ0X0 → X0 is the first blow

up of the order reduction sequence for (X, I,E). In general, if πi : Xi+1 → Xi is
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already defined, then the centers Z
(j)
i+1 ⊂ X

(j)
i+1 ⊂ Xi+1 glue together to Zi+1 ⊂ Xi+1

and eventually we get order reduction for (X, I,E):

Π : Rm(X, I,E) = (Xr, Ir, Er)
πr−1
−→ (Xr−1, Ir−1, Er−1)

πr−2
−→ · · ·

π1−→ (X1, I1, E1)
π0−→ (X0, I0, E0) = (X, I,E).

91 (Algebraic space case). Let (X, I,E) be a triple with X an algebraic space of
dimension n and set m = ord I.

All we need to know about algebraic spaces is that étale locally they are like
schemes. That is, there is a (usually nonconnected) scheme of finite type U and an
étale surjection σ : U → X .

The fiber product V := U ×X U is again a scheme of finite type with two
étale projection morphisms ρi : V → U , and for all purposes one can identify the
algebraic space with the diagram of schemes

X =
[
ρ1, ρ2 : V ⇉ U

]
. (91.1)

Consider the order reduction

Π : Rm(U, IU , EU ) = (Ur, I
U
r , E

U
r )

πU
r−1
−→ (Ur−1, I

U
r−1, E

U
r−1)

πU
r−2
−→ · · ·

πU
1−→ (U1, I

U
1 , E

U
1 )

πU
0−→ (U0, I

U
0 , E

U
0 ) = (U, σ∗I, σ−1E),

(91.2)

By functoriality in the scheme case, the pull backs of the whole blow up sequence
(91.2) by ρ1 and by ρ2 are the same. Thus the blow up sequence (91.2) descends to
a blow up sequence over X , which proves order reduction for algebraic spaces. �

The same argument also shows that a resolution functor which commutes with
étale morphisms and satisfies (30) for schemes, extends to algebraic spaces, proving
(32). �

Note: In (91.1) we could have assumed that U,W are quasi affine and small
enough to go from the maximal contact case (89) to algebraic spaces directly. Thus
the quasi projective case (90) was strictly speaking superfluous.

Aside 92. In (89.1) I have used the ordering of the index set of E. This was
avoided traditionally by restricting (X, I,E) successively to the multiplicity n− j
locus of (the birational transform of) E, starting with the case j = 0.

The use of the ordering cannot be avoided in (95.3), so I did not see much reason
to go around it here.

13. Order reduction for marked ideals

In this section we prove the second main implication (58.2) of the inductive
proof, that is, we show that

Order reduction for ideals in dimension n
⇓

Order reduction for marked ideals in dimension n

93 (Plan of the proof). Assume that (55) holds in dimensions≤ n and let (X, I,m,E)
be a marked triple with dimX = n. We prove (56) for (X, I,m,E) in 3 steps.

Step 1. We start with the unmarked triple (X, I,E) and using (55) in dimension
n we reduce its order belowm. That is, we get a composite of blow ups Π1 : X1 → X
such that (Π1)−1

∗ I has order < m. The problem is that (Π1)−1
∗ (I,m) can have very
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high order along the exceptional divisors of Π1. We decide not to worry about it
for now.

Step 2. Continuing with (X1, (Π1)−1
∗ (I,m), (Π1)−1

totE), we blow up subvarieties
where

(i) the birational transform of (I,m) has order ≥ m and
(ii) the birational transform of I has order ≥ 1.

Eventually we achieve Π2 : X2 → X such that cosupp(Π2)−1
∗ I is disjoint from the

locus where (Π2)−1
∗ (I,m) has order ≥ m. We can now completely ignore (Π2)−1

∗ I,
and note that the rest of (Π2)−1

∗ (I,m) is the ideal sheaf of a divisor with normal
crossing.

Step 3. Order reduction for the marked ideal sheaf of a divisor with normal
crossing is rather easy.

Instead of strictly following this plan, we divide the ideal into a “normal crossing
part” and the “rest” using all of E, instead of exceptional divisors only.. This is
solely a notational convenience.

Definition–Lemma 94. Given (X, I,E), we can write I uniquely as I = M(I) ·
N(I) where M(I) = OX(−

∑
ciEi) for some ci and cosuppN(I) does not contain

any of the Ei.
M(I) is called the monomial part of I and N(I) the nonmonomial part of I.
Note that since the Ei are not assumed irreducible, it can happen that cosuppN(I)

contains irreducible components of some of the Ei.

95 (Proof of (58.2)). We write I = M(I) ·N(I) and try to deal with the two parts
separately.

95.1 Step 1. Reduction to ordN(I) < m.
If ordN(I) ≥ m, we can apply order reduction (55) to N(I), until its order

drops below m. This happens at some Π1 : X1 → X . Note that the two birational
transforms

(Π1)−1
∗ N(I) and (Π1)−1

∗ (I,m)

differ only by an ideal involving the exceptional divisors of Π1, thus only in their
monomial part. Therefore

N((Π1)−1
∗ (I,m)) = (Π1)−1

∗ N(I),

and so we have reduced to the case where the maximal order of the nonmonomial
part is < m. �

For notational simplicity we write (X, I,m,E) for (X1, (Π1)−1
∗ (I,m), (Π1)−1

tot(R)).

95.2 Step 2. Reduction to cosupp(I,m) ∩ cosuppN(I) = ∅.
It would be nice to continue with order reduction further, and get rid of N(I)

completely. The propblem is that we are allowed to blow up only subvarieties along
which (I,m) has order at least m. Thus we can blow up Z ⊂ X with ordZ N(I) < m
only if ordZM(I) ≥ m− ordZ N(I). We will be able to guarantee this interplay by
a simple trick.

Let s be the maximum order of N(I) along cosupp(I,m). We reduce this order
step by step, eventually ending up with s = 0, which is the same as cosupp(I,m)∩
cosuppN(I) = ∅.
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It would not have been difficult to develop order reduction theory for several
marked ideals, and apply it to the ideals (N(I), s) and (I,m), but the following
simple observation reduces the general case to a single ideal:

ordZ J1 ≥ s and ordZ J2 ≥ m⇔ ordZ(Jm1 + Js2 ) ≥ ms.

Thus we apply order reduction to the ideal N(I)m+Is which has order exactly ms.
Every blow up sequence of order ms starting with N(I)m + Is is also a blow up
sequence of order s starting with N(I) and a blow up sequence of order m starting
with I. Thus we stop after r steps when cosupp(Ir ,m)∩ cosupp(N(Ir), s) = ∅. We
can continue with s− 1, and so on.

Eventually we achieve a situation where cosuppN(I) is disjoint from cosupp(I,m).
Since any further order reduction step concerns only cosupp(I,m), we can replace
X by X \ cosuppN(I) and thus assume that I = M(I). The final step is now to
deal with monomial ideals.

95.3 Step 3. Order reduction for M(I).
Let X be a smooth variety, ∪j∈JEj a normal crossing divisor with ordered index

set J and aj natural numbers giving the monomial ideal I := OX(−
∑
ajEj).

The usual method of resolution would be to look for the highest multiplicity
locus and blow it up. This, however, does not work, not even for surfaces.

Example. Consider the case when we have only 2 curves E1, E2 on a surface S
intersecting at a point p = E1 ∩ E2 and a1 = a2 = m + 1. Let π : S3 → S be the
blow up of p with exceptional curve E3. Then

π−1
∗

(
OS(−(m+1)E1−(m+1)E2),m

)
=
(
OS3(−(m+1)E1−(m+1)E2−(m+2)E3),m

)
.

Next we blow up the intersection point E2 ∩E3 and so on. After r− 2 steps we get
a birational transform

(
OSr

(−
∑r
i=1(m+ pi)Ei),m

)
,

where pi is the ith Fibonacci number. Thus instead of improving, we get higher
and higher multiplicity ideals.

The way out is to start at the low multiplicity end. In the above example, we
would blow up first E1 and then E2 to reduce our ideal to OS(−E1− 2E2) (and we
are done if m ≥ 4).

Note that we also could have reached this by first blowing up E2 and then
E1. This seems a rather silly distinction at first, but we should remember that in
the inductive process a typical situation is when S sits in a smooth 3-fold X and
the blow ups on S dictate the blow ups on X . The two 3–folds BE1(BE2X) and
BE2(BE1X) are not isomorphic. So the order really matters.

The only thing that saves us at this point is that the divisors Ei come with an
ordered index set. This allows us to specify in which order to blow up. There are
may possible choices. As far as I can tell, there is no natural or best variant.

Step 3.1. Find the smallest j such that aj ≥ m is maximal and blow up Ej .
Repeating this, we eventually get to the point where aj < m for every j.

Step 3.2. Find the lexicographically smallest (j1 < j2) such that Ej1 ∩ Ej2 6= ∅
and aj1 +aj2 ≥ m is maximal. Blow up Ej1 ∩Ej2 . We get a new divisor, put it last
as Ejℓ . Its coefficient is ajℓ = aj1 + aj2 −m < m. The new pairwise intersections
are Ei ∩Ejℓ for certain values of i. Note that

ai + ajℓ = a1 + aj1 + aj2 −m < aj1 + aj2 ,
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since ai < m for every i by Step 3.1.
At each repetition, the pair (m2(E), n2(E)) decreases lexicogaphically where

m2(E) := max{aj1 + aj2 : Ej1 ∩ Ej2 6= ∅},
n2(E) := number of (j1 < j2) achieving the maximum.

Eventually we reach the stage when aj1 + aj2 < m whenever Ej1 ∩ Ej2 6= ∅.
Step 3.r. Assume that for every s < r we already have the property:

aj1 + · · ·+ ajs < m if j1 < · · · < js and Ej1 ∩ · · · ∩ Ejs 6= ∅. (∗s)

Find the the lexicographically smallest (j1 < · · · < jr) such that Ej1 ∩· · ·∩Ejr 6= ∅.
and aj1 + · · · + ajr is maximal. Blow up Ej1 ∩ · · · ∩ Ejr and put the new divisor
last with coefficient aj1 + · · ·+ ajr −m. As before, the new r-fold intersections are
of the form Ej1 ∩ · · · ∩ Ejr−1 ∩ Ejℓ where Ej1 ∩ · · · ∩ Ejr−1 6= ∅. Moreover,

aj1 + · · ·+ ajr−1 + ajℓ =
(
aj1 + · · ·+ ajr−1 −m

)
+ aj1 + · · ·+ ajr

which is less than aj1 + · · ·+ ajr since aj1 + · · ·+ ajr−1 < m by Step 3.r− 1. Thus
the pair (mr(E), nr(E)) decreases lexicographically where

mr(E) := max{aj1 + · · ·+ ajr : Ej1 ∩ · · · ∩ Ejr 6= ∅},
nr(E) := number of (j1 < · · · < jr) achieving the maximum.

Eventually we reach the stage when the property (∗r) also holds. We can now move
to the next step.

Step 3.n. At the end of Step n we are done. �

14. Open problems

Question 96 (Iterative resolution, one blow up at a time). As we saw in (6.3),
there is no iterative resolution algorithm for varieties which works one blow up at
a time.

It is, however, possible that there is an iterative order reduction algorithm for
triples (X, I,E) which works one blow up at a time.

The ordering of the index set of E keeps track of the order in which the ex-
ceptional divisors appear. Typically, there is only one way to contract a blown up
variety, but there are many examples (for instance with exceptional divisor P1×P1

in a 3–fold) where different contractions are possible.
It may be especially useful if the process of blow ups could be guided by a simple

a priori defined invariant.

Question 97 (Equisingularity I.). Individual members of flat families of smooth
varieties have many properties in common, but for flat families of singular varieties
dramatic changes are possible. The study of equisingularity tries to pin down
conditions that ensure that the singularities of different fibers Xt are “very similar”
to each other.

Let f : X → T be a flat family of proper varieties. A simultaneous resolution is
a proper morphism r : X ′ → X such that f ◦ r : X ′ → T is smooth and for every
t ∈ T the induced morphism rt : X ′

t → Xt is a resolution of singularities.
It is reasonable to believe that a flat family with simultaneous resolution is

equisingular in a very strong sense.
Simultaneous resolvability is understood for curves [Tei82] and for surfaces [Lau83,

KSB88] but very little is known in higher dimensions.
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For instance, can one characterize families for which the current resolution pro-
cess creates a simultaneous resolution?

At various places during the proof choices are made, and it is not clear that they
do not affect simultaneous resolvability.

Even the following much simpler problem is open.

Question 98 (Equisingularity II.). Assume that we have two marked ideals (I,m)
and (J,m) on X such that the set of all blow up sequences of order ≥ m for I and
for J are the same. Does our order reduction method choose the same blow up
sequence for I and for J?

This is not even clear when I and J are integral over each other (102) when the
two ideals behave the same even for lower order blow ups, see [Hir77, p.54].

The problem is that the derivative of the integral closure of I may be bigger
than the integral closure of D(I). For instance, this happens for I = (x2, y4).

We could go around this problem by replacing I with its integral closure at the
very beginning, but understanding this point would probably further clarify the
proof.

Question 99 (Computability). As we already noticed, switching from an ideal I
of order m to Wm!(I) or to Wlcm(2,...,m)(I) results in an exponential increase of
the order and number of generators. One can avoid this by working with the ideals
W1(I), . . . ,Wm(I) simultaneously. It is not hard to state and prove order reduction
theorems for several ideals. I have not tried to see if this reduces the computational
complexity substantially or not.

Question 100 (Resolution and the study of singularities). As Kleiman explained
to me, a large part of the original interest in resolutions came from the hope that
a good resolution method would help us understand the structure of singularities.

The inductive nature of the Hironaka method makes it very difficult to connect
geometric properties of the singularity with the resolution process.

Question 101 (Improved tuning). While I feel that the notion of MC-invariant
ideals is likely to be final, the condition of D-balanced ideals should be revisited
and at the same time alternate variants of the ideals Ws(I) explored.

The theory of idealistic exponents [Hir77] relies on the obeservation that an ideal
and its integral closure (102) have the same birational transform on any principal-
ization. It is thus very reasonable to expect that a well tuned ideal should be
integrally closed, but the ideals Wm!(I) are usually not.

Instead of trying to offer a solution, in the rest of the section I explore a gener-
alization of the notion of D-balanced ideals using integral dependence.

It seems to me that the resulting concept of weakly D-balanced ideals is more
natural, and it shows that instead of using the ideals Ws(I) we have many other
choices. The new definition also shows the connection with the traditional notion
of coefficient ideals, which I call minimal coefficient ideal below. First we need a
few proprties of integral dependence over ideals.

102 (Integral dependence and birational transforms). Let X be a variety and I ⊂
OX an ideal sheaf. Recall (cf. [Tei82, Ch.1]) that an element r ∈ OX is called
integral over I if it satisfies an equation

rd + a1r
d−1 + · · ·+ ad = 0 where aj ∈ I

j (102.1)
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for some d. An ideal sheaf J is called integral over I if every local section of J is
integral over I. All elements integral over I form an ideal sheaf Ī, called the integral
closure of I.

If S ⊂ X is a subvariety then Ī|S is integral over I|S , but in general I|S ) Ī|S .

102.2 Lemma. If J is integral over I then cosupp(J,m) ⊃ cosupp(I,m).

Proof. We need to show that if r is integral over I then ordx r ≥ ordx I for every
x ∈ X . Assume the contrary. Then

ordx(a1r
d−1 + · · ·+ ad) ≥ min

j
{ordx(air

i)} ≥ (d− 1) ordx r + ordx I > d · ordx r,

which contradicts (102.1). �

The equation (102.1) lifts under a smooth blow up as long as all markings kept
the same, hence we conclude:

102.3 Lemma. Let f : X ′ → X be a composite of a smooth blow up sequence of
order ≥ m starting with (I,m). If J is integral over I then f−1

∗ (J,m) is integral
over f−1

∗ (I,m). �

Combining these two observations we obtain the following:

102.4 Corollary. Let I, J ⊂ OX be ideal sheaves such that J is integral over
I. Let f : X ′ → X be a composite of a smooth blow up sequence of order ≥ m
starting with (I,m). Then

cosupp f−1
∗ (J,m) ⊃ cosupp f−1

∗ (I,m). �

Another direct consequence, which we do not use in the sequel, is the following.

Proposition 103. Let X be a smooth variety, I ⊂ J ⊂ OX ideal sheaves such that
J is integral over I, m = max-ord I. Then there is an equivalence between blow up
sequences of order m starting with (X, I) and blow up sequences of order m starting
with (X, J). �

Definition 104. The ideal I is called weakly D-balanced if
(
Di(I)

)m
is integral

over Im−i (102). That is, if
(
Di(I)

)m
⊂ Im−i ∀ i < m.

If I is weakly D-balanced then for any S ⊂ X ,
(
Di(I)|S

)m
is integral over Im−i|S .

Thus if f : X ′ → X is a composite of smooth blow up sequence of order ≥ m
starting with (I,m), then using (102.4) we conclude that

cosupp f−1
∗ (Di(I)|S ,m− i) ⊃ cosupp f−1

∗ (I|S ,m). (104.1)

Remark 105. Note that (104.1) coincides with the key property of D-balanced
ideals (71.1) which was used in the proof of (72). Thus the Going down theorem
(72) also holds for weakly D-balanced ideals.

Definition 106 (Minimal coefficient ideals). Let X be a smooth variety, I ⊂ OX
an ideal sheaf and m = max-ord I. Let s be any multiple of lcm(2, · · · ,m). The
minimal coefficient ideal of order s of I is

Cs(I) :=
(
Is/m,

(
D(I)

)s/(m−1)
, . . . ,

(
Dm−1(I)

)s)
⊂ OX .

Lemma 107. Notation as above. Then Wst(I) ⊂ Cs(I)t.
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Proof. By definition, Wst(I) is generated by elements of the form

h =
∏

j

hj where hj ∈ D
ij (I) and

∑

j

(m− ij) ≥ st.

Thus

hs =
(∏

j

hj
)s

=
∏

j

(
h
s/(m−ij)
j

)m−ij ∈ Cs(I)st.

Thus h is integral over Cs(I)t and so is Wst(I). �

Corollary 108. Let X be a smooth variety, I ⊂ OX an ideal sheaf and m =
max-ord I. Let s be any multiple of lcm(2, · · · ,m) and J any ideal such that Cs(I) ⊂
J ⊂Ws(I). Then J is weakly D-balanced.

Proof. For any i,
(
Di(J)

)s
⊂
(
Di(Ws(I))

)s
⊂
(
Ws−i(I)

)s
⊂Ws(s−i)(I) ⊂ (Cs(I))s−i,

the last inclusion by (107). �

Acknowledgments . I thank A. Hogadi, D. Kim, K. Matsuki, J. W lodarczyk and
C. Xu for useful comments and suggestions. Partial financial support was provided
by the NSF under grant numbers DMS02-00883 and DMS-0500198

References

[Abh66] Shreeram Shankar Abhyankar, Resolution of singularities of embedded algebraic sur-
faces, Pure and Applied Mathematics, Vol. 24, Academic Press, New York, 1966. MR
MR0217069 (36 #164)

[AdJ97] D. Abramovich and A. J. de Jong, Smoothness, semistability, and toroidal geometry,
J. Algebraic Geom. 6 (1997), no. 4, 789–801. MR MR1487237 (99b:14016)
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[Gir74] Jean Giraud, Sur la théorie du contact maximal, Math. Z. 137 (1974), 285–310. MR
MR0460712 (57 #705)

[Gir95] , Résolution des singularités (d’après Heisuke Hironaka), Séminaire Bourbaki,
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no. 6, 629–677. MR MR1198092 (93m:14012)

[Vil96] , Introduction to the algorithm of resolution, Algebraic geometry and singular-
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