CHERN CLASSES

HARRISON WONG

CONTENTS
1. Chern Class 1
2. Future Directions 3
References 3

We mostly follow [EH16] and [Tei].

1. CHERN CLASS

Given a locally free sheaf (vector bundle) E of rank e on a smooth projective variety, is E trivial or not? If not, how twisted is E?

In the case of E a line bundle, we have a complete answer. Over a smooth variety, isomorphism classes of line bundles are in bijection with divisors modulo linear equivalence. The backward map sends $D \mapsto \mathcal{O}(D)$ and the forward map sends $\mathcal{L} \mapsto \text{div}(s)$.

What about higher dimensions? A rank e vector bundle E is trivial iff there exists e everywhere linearly independent global sections s_1, \ldots, s_e. This means for each $p \in X$, the vectors $\overline{s_{i,p}}$ in the fiber $E_p / \mathfrak{m}_p E_p$ are linearly independent. Proof: Map $\oplus f_i \mapsto \oplus f_i s_i$. Check (using Nakayama) this is an isomorphism across stalks. So we can ask, given $0 \leq i \leq e$ general global sections s_1, \ldots, s_i, where does these sections fail to be independent? This is equivalent to asking where the global section

$$u = s_1 \wedge \cdots \wedge s_i \in \bigwedge^i \mathcal{E}$$

vanishes (because $u_p = \bigwedge_j s_{j,p}$). The vanishing of u is called the degeneracy locus and denoted $D(u)$.

1
Let’s try to understand the codimension of $D(u)$. Locally u can be thought of as a i column by e row matrix M, so the dependence of the matrix occurs when some i by i minor vanishes. So locally $D(u)$ is cut out by all the i by i minors.

Let’s focus on the case when $i = 1$. Then locally $\tau = \tau_1$ is given by e regular functions f_1, \ldots, f_e, so locally the codimension is at most e. Recall that $\operatorname{codim} X = \inf_i \operatorname{codim} U_i$ where $\{U_i\}$ covers X so $\operatorname{codim} D(\tau) \leq e$. If τ is “general”, then f_{i+1} will not vanish identically on the irreducible components of where f_1, \ldots, f_i vanish so it follows the codimension of $D(\tau)$ will be exactly e.

Now consider $i = e$. Then locally $\tau_1 \wedge \ldots \tau_e$ can be thought of as a $e \times e$ matrix, and the vanishing locus is cut out by the determinant. So $D(\tau_1 \wedge \ldots \tau_e)$ is codimension at most 1.

This happens more generally (but I don’t think the same proof works):

Lemma 1.1 (3264, Lemma 5.2). Suppose that E is a vector bundle of rank e on a variety X. Let τ_1, \ldots, τ_i be global sections of E, and let $D = D(\tau_1 \wedge \cdots \wedge \tau_i)$ be the degeneracy locus on which they are independent.

1. Components of D have codimension $\leq e + 1 - i$.
2. If τ_j are a general choice of global sections generating E, then the locus on which they have rank at most s has codimension $(e - s)(i - s)$. In particular, since D is where the rank is at most $i - 1$, then D is codimension $e + 1 - i$.

The proof will be given next time.

Accepting the lemma, $D(\tau_1 \wedge \cdots \wedge \tau_i)$ is supposed to define a $\operatorname{codim}(e + 1 - i)$ cycle in $A^{e+1-i}(X)$. Here is something I don’t understand. How do we determine multiplicities to the subvarieties of codimension $e + 1 - i$? In fancier language, what is the scheme structure?

Theorem 1.2 (3264, Theorem 5.3). There is a unique way of assigning to each vector bundle E on a smooth quasi-projective variety X a class $c(E) = 1 + c_1(E) + c_2(E) + \cdots \in A(X)$ in such a way that:

1. (Line Bundles) If L is a line bundle on X, then the Chern class of L is $1 + c_1(L)$, where $c_1(L) \in A^1(X)$ is the class of the divisor of zeros minus the divisor of poles of any rational section of L.
(2) (Bundles with enough sections) If \(\tau_0, \ldots, \tau_{r-i} \) are global sections of \(\mathcal{E} \), and the degeneracy locus \(D \) where they are dependent has codimension \(i \), then \(c_i(\mathcal{E}) = [D] \in A^i(X) \).

(3) (Whitney’s Formula) If

\[
0 \to \mathcal{E} \to \mathcal{F} \to \mathcal{G} \to 0
\]

is an exact sequence of vector bundles on \(X \) then

\[
c(\mathcal{F}) = c(\mathcal{E})c(\mathcal{G}) \in A(X).
\]

(4) (Functoriality) If \(\phi : Y \to X \) is a morphism of smooth varieties, then

\[
\phi^*(c(\mathcal{E})) = c(\phi^*(\mathcal{E})).
\]

2. Future Directions

- Some discussion of the Chow ring, including computations of \(A(\mathbb{P}^n) \).
- Splitting Principle
- 27 lines on a smooth cubic surface in \(\mathbb{P}^3 \)

References
