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Outline 

Examine some less common sparse direct algorithms: 

Apply them as “frontends” for low-rank skeletonization: 

Partial linear solution. 

Schur complements. 

Sampling the inverse operator. 

Cross approximation. 

Range estimation. 

Ritz projection. 

Motivations: fast direct solvers for FE-BI’s and FE-DDM’s. 
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Refresher: Factor A=LLT 

Reorder: Left(0), Right(1), Separator(2). A01 = A10 = all zero! 

Right looking. Factor A00/A11, schur downdate A22, factor. 

Leads to a tree of operations, eliminating from bottom up. 

FEM mesh: 

Note A00 and A11 also sparse, apply idea recursively. 

Separator (2) Left (0)  

Reordered matrix: 

A00 

A11 

A22 
A20 A21 

A12
 

A02
 0 

0 

Separator induces these 

zeroes. They can’t fill-in! 

Algorithm steps: 

Factor A00 
Factor A11 

Solve A20 Solve A21 

Factor A22 

Schur Downdate A22 

… … 
Right (1)  
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Example problem under study: I x J x K brick (N = IJK) 

Selected profiling data. 

Discrete graph laplacian (7-point): well understood spectrum. 

Structured grid: easy to reorder using nested dissection. 

3D=O(n1.87) 

2D=O(n1.53) 

1D=O(n1.08) 

483 

N= 803 = 512K 

N=1003 = 1M 

N=1283 = 2.1M 

GEMM 

105sec 

367s 

1559s 

405s 

12sec 

42s 

161s 

35s 

Intel E5-2630 

2x8=16 Xeon at 

2.4GHz, MKL 
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Partial solution x=Ri
TA-1Rjb 

Many engineering QoI’s use only boundary-valued b and x. 

In plain english: only b(j) nonzero, only x(i) is needed. 

O(n4/3) time, like x=A-1b. Only O(n2/3) space per RHS, not O(n). 

i j i j 

Lx=b 

LTx=b 

Solve 
Partial 

Solve 

= 
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Schur complement S=BTA-1B 

Arise from FE-BI hybrids, eg scattering from apertures. 

Concept: form “saddle system” of A and B, then “quit” early. 

myracore.com 

e pluribus rapidum 



Sampling the inverse Z(i,j), Z=A-1 

Arise in FETI/DDM, iterate/exchange fields at boundaries. 

Closely related to Schur complement, Z(i,j) = Ri
T∙A-1∙Rj 

Tabulating Z(i,j) opens up reuse/preconditioning options. 

Scatter, solve, gather. Scatter, solve, gather. 
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Cross Approximating Z(i,j) [1/2] 

Key idea: partialsolve() can efficiently extract rows/columns: 

c = Z([i],j) = solver.partialsolve([i],j,x=1.0,'Left') 

r = Z(i,[j]) = solver.partialsolve(i,[j],x=1.0,'Right') 

Alternately sample row/column with largest error modulus. 

Estimated Error 

Actual Error 

SVD(Z) 

log10(Z-UVT) 
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Cross Approximating Z(i,j) [2/2] 

Beats solver.inverse() at large N, especially at low rank/tol. 

But in parallel the gap narrows, BLAS3 vs BLAS1 effects. 

8 digits 

6 digits 

4 digits 
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Range estimation of Z(i,j) [1/2] 

Key idea: partialsolve() can efficiently apply Y=Z(i,j)∙X: 

Apply action of Z to random vectors X, form image Y=ZX. 

If Z has rapidly decaying σ’s, Y probably spans range(Z). 

Y = Z([i],[j])*X = solver.partialsolve([i],[j],X,'Left') 

// Find Q = span(Z) 

X = rand(Z.cols,k) 

Y = Z.apply(X) 

[Q,R,π] = QR(Y,0) 

 

// Build k-SVD from Q 

W = Z’.apply(Q) 

[U,Ʃ,V] = svd(W,0) 

Z≈(Q∙U)∙Ʃ∙(V) 

k=4 

k=8 

k=16 

k=32 

SVD(Z) 

SVD(UVT) 

Pass 1, Pass 2 .. x 

(e
rr

o
r)
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Range estimation of Z(i,j) [2/2] 

All the same problem instances as before (sizes,shapes). 

8 digits 

6 digits 

4 digits 

Can be faster than parallel solver.inverse(), even at modest N. 

Availability of all forcing data up front leads to speedup. 
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Ritz Projection of Z(i,j) [1/3] 

What about approximating more than just one block? 

Optimization(BLR)/amortization(H) opportunities do exist. 

(B)lock (L)ow (R)ank (H)eirarchical Matrix 
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R  =  Y(3,0)T ∙ Z(3,0) ∙ Y(0,3) 

T 

= 

k 

k 
[schur] 

R = solver.schur(Y30,Y03) 

[U,Ʃ,V] = svd(R03) 

Z30≈(Y30∙U)∙Ʃ∙(V∙Y03) 

Y 

Y
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First pass: find row/column spans using “fat” partialsolve() 

Second pass: Ritz projection using solver.schur(), k-SVD 
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Ritz Projection of Z(i,j) [2/3] 
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Ritz Projection of Z(i,j) [3/3] 

Fill an H-matrix representation of Z restricted to boundary. 

Factor 

Form Y [partialsolve] 

Form B [schur,QR,SVD] 

Form Z [inverse] 

Algorithm quickly furnishes all (admissible) blocks. 

1385sec 

Can form H-matrix of S=BTA-1B with a few minor changes. 
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Wrapping Up 

Examined several uncommon sparse direct algorithms: 

Used them as “frontends” for low-rank/skeletonization: 

Essential tools for FEBI/DDM methods (sparsity+lowrank). 

Partial linear solution: x=Ri
TA-1Rjb (sparse b, sifted x) 

Schur complements: BTA-1B,  BTA-1C,  all sparse 

Sampling the inverse operator: Z(i,j) = Ri
 A-1Rj 

Cross approximation: partialsolve() can extract row/column 

Range estimation: partialsolve() can apply Z(i,j) quickly 

Ritz projection: schur()+partialsolve(), amortization over blocks 

myracore.com 

e pluribus rapidum 



Contact: myracore.com 

MyraMath: sparse factor/solve/schur/inverse/partialsolve. 

MyraKL: BLAS/LAPACK API for MyraMath, or use MKL. 

Free software (GPL), or dual license (info@myracore.com) 
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