
Dr. Ryan

Chilton

Direct Algorithms

for Sparse Schur

Complements

and Inverses

myracore.com

MyraMath

Outline

Examine some less common sparse direct algorithms:

Apply them as “frontends” for low-rank skeletonization:

Partial linear solution.

Schur complements.

Sampling the inverse operator.

Cross approximation.

Range estimation.

Ritz projection.

Motivations: fast direct solvers for FE-BI’s and FE-DDM’s.

myracore.com

e pluribus rapidum

Refresher: Factor A=LLT

Reorder: Left(0), Right(1), Separator(2). A01 = A10 = all zero!

Right looking. Factor A00/A11, schur downdate A22, factor.

Leads to a tree of operations, eliminating from bottom up.

FEM mesh:

Note A00 and A11 also sparse, apply idea recursively.

Separator (2) Left (0)

Reordered matrix:

A00

A11

A22
A20 A21

A12

A02
 0

0

Separator induces these

zeroes. They can’t fill-in!

Algorithm steps:

Factor A00
Factor A11

Solve A20 Solve A21

Factor A22

Schur Downdate A22

… …
Right (1)

myracore.com

e pluribus rapidum

Example problem under study: I x J x K brick (N = IJK)

Selected profiling data.

Discrete graph laplacian (7-point): well understood spectrum.

Structured grid: easy to reorder using nested dissection.

3D=O(n1.87)

2D=O(n1.53)

1D=O(n1.08)

483

N= 803 = 512K

N=1003 = 1M

N=1283 = 2.1M

GEMM

105sec

367s

1559s

405s

12sec

42s

161s

35s

Intel E5-2630

2x8=16 Xeon at

2.4GHz, MKL

myracore.com

e pluribus rapidum

Partial solution x=Ri
TA-1Rjb

Many engineering QoI’s use only boundary-valued b and x.

In plain english: only b(j) nonzero, only x(i) is needed.

O(n4/3) time, like x=A-1b. Only O(n2/3) space per RHS, not O(n).

i j i j

Lx=b

LTx=b

Solve
Partial

Solve

=

myracore.com

e pluribus rapidum

Schur complement S=BTA-1B

Arise from FE-BI hybrids, eg scattering from apertures.

Concept: form “saddle system” of A and B, then “quit” early.

myracore.com

e pluribus rapidum

Sampling the inverse Z(i,j), Z=A-1

Arise in FETI/DDM, iterate/exchange fields at boundaries.

Closely related to Schur complement, Z(i,j) = Ri
T∙A-1∙Rj

Tabulating Z(i,j) opens up reuse/preconditioning options.

Scatter, solve, gather. Scatter, solve, gather.

myracore.com

e pluribus rapidum

Cross Approximating Z(i,j) [1/2]

Key idea: partialsolve() can efficiently extract rows/columns:

c = Z([i],j) = solver.partialsolve([i],j,x=1.0,'Left')

r = Z(i,[j]) = solver.partialsolve(i,[j],x=1.0,'Right')

Alternately sample row/column with largest error modulus.

Estimated Error

Actual Error

SVD(Z)

log10(Z-UVT)

myracore.com

e pluribus rapidum

Cross Approximating Z(i,j) [2/2]

Beats solver.inverse() at large N, especially at low rank/tol.

But in parallel the gap narrows, BLAS3 vs BLAS1 effects.

8 digits

6 digits

4 digits

myracore.com

e pluribus rapidum

Range estimation of Z(i,j) [1/2]

Key idea: partialsolve() can efficiently apply Y=Z(i,j)∙X:

Apply action of Z to random vectors X, form image Y=ZX.

If Z has rapidly decaying σ’s, Y probably spans range(Z).

Y = Z([i],[j])*X = solver.partialsolve([i],[j],X,'Left')

// Find Q = span(Z)

X = rand(Z.cols,k)

Y = Z.apply(X)

[Q,R,π] = QR(Y,0)

// Build k-SVD from Q

W = Z’.apply(Q)

[U,Ʃ,V] = svd(W,0)

Z≈(Q∙U)∙Ʃ∙(V)

k=4

k=8

k=16

k=32

SVD(Z)

SVD(UVT)

Pass 1, Pass 2 .. x

(e
rr

o
r)

myracore.com

e pluribus rapidum

Range estimation of Z(i,j) [2/2]

All the same problem instances as before (sizes,shapes).

8 digits

6 digits

4 digits

Can be faster than parallel solver.inverse(), even at modest N.

Availability of all forcing data up front leads to speedup.

myracore.com

e pluribus rapidum

Ritz Projection of Z(i,j) [1/3]

What about approximating more than just one block?

Optimization(BLR)/amortization(H) opportunities do exist.

(B)lock (L)ow (R)ank (H)eirarchical Matrix

myracore.com

e pluribus rapidum

R = Y(3,0)T ∙ Z(3,0) ∙ Y(0,3)

T

=

k

k
[schur]

R = solver.schur(Y30,Y03)

[U,Ʃ,V] = svd(R03)

Z30≈(Y30∙U)∙Ʃ∙(V∙Y03)

Y

Y
(3

,0
)

=
 c

o
ls

p
a

n
 Z

(3
,0

)

Y
(0

,3
)

=
 c

o
ls

p
a

n
 Z

(0
,3

)
=

 r
o

w
s
p

a
n

 Z
(3

,0
)

First pass: find row/column spans using “fat” partialsolve()

Second pass: Ritz projection using solver.schur(), k-SVD

k k k k

A
ll

 o
f

e
x

te
ri

o
r,

 p
a

rt
it

io
n

e
d

 i
n

to
 (

le
a

f)
 g

ro
u

p
s

.

X

G
0

G

1

G
2

G

3

Ritz Projection of Z(i,j) [2/3]

myracore.com

e pluribus rapidum

Ritz Projection of Z(i,j) [3/3]

Fill an H-matrix representation of Z restricted to boundary.

Factor

Form Y [partialsolve]

Form B [schur,QR,SVD]

Form Z [inverse]

Algorithm quickly furnishes all (admissible) blocks.

1385sec

Can form H-matrix of S=BTA-1B with a few minor changes.

myracore.com

e pluribus rapidum

Wrapping Up

Examined several uncommon sparse direct algorithms:

Used them as “frontends” for low-rank/skeletonization:

Essential tools for FEBI/DDM methods (sparsity+lowrank).

Partial linear solution: x=Ri
TA-1Rjb (sparse b, sifted x)

Schur complements: BTA-1B, BTA-1C, all sparse

Sampling the inverse operator: Z(i,j) = Ri
 A-1Rj

Cross approximation: partialsolve() can extract row/column

Range estimation: partialsolve() can apply Z(i,j) quickly

Ritz projection: schur()+partialsolve(), amortization over blocks

myracore.com

e pluribus rapidum

Contact: myracore.com

MyraMath: sparse factor/solve/schur/inverse/partialsolve.

MyraKL: BLAS/LAPACK API for MyraMath, or use MKL.

Free software (GPL), or dual license (info@myracore.com)

myracore.com

e pluribus rapidum

