
Fast Numerical Methods for Fractional Diffusion
Equations

Zhao-Peng Hao

Department of Mathematics, Worcester Polytechnic Institute

Nov 9-11, 2018, Fast Direct Solver, Purdue University

Hao Fast Numerical methods for time and fractional differential equations



Fractional diffusion equation

Standard diffusion equation

∂tu(x , t) = ∂2
xu(x). (1)

Time fractional

∂αt u(x , t) = ∂2
xu(x), 0 < α ≤ 2. (2)

Space fractional

∂tu(x , t) = ∂βx u(x), 1 < β ≤ 2. (3)

Time-Space fractional

∂αt u(x , t) = ∂βx u(x). (4)

Generalization of integer order differential equations, which can be
seen from the Fourier and Laplace transform

sαLû(s, k) = −|k |β û(s, k). (5)

stochastic interpretation, anomalous diffusion, random walk

E |X (t)|β ∝ tα
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We are interested α < 2 and 1 < β < 2. When β = 2, if
0 < α < 1 we call it slow or sub-diffusion and if 1 < α < 2,
fast or super-diffusion.

nonlocal operators, memory, long range interaction, heavy tail

fractal geometry, highly heterogeneous aquifer and
underground environmental problem, wave propagation in
viscoelastic media, turbulence, finance etc.

monograph: Oldham and Spanier,1974, Samko et al. 1993,
Podlubny 1999, Kilbas et al. 2006, M. M. Meerschaert and
Sikorskii 2010 or 2012 etc.

Journal, Fractional Calculus and Applied Analysis,
1998-present
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Definition

The left- and right-sided Riemann-Liouville fractional integrals are
defined as

aD−α
x f (x) =

1

Γ(α)

∫ x

a

f (ξ)

(x − ξ)1−α dξ, x > a, α > 0,

and

xD−α
b f (x) =

1

Γ(α)

∫ b

x

f (ξ)

(ξ − x)1−α dξ, x < b, α > 0.

respectively. Let g(x) = 1
Γ(α) xα−1,

aD−αx f (x) =

∫ x

a
f (ξ)g(x − ξ)dξ.

Denote

D−αθ = θ aD−αx + (1− θ) xD−αb , θ ∈ [0, 1].

In particular, θ = 1/2, Reisz potential

D−α1/2 =
1

Γ(α)

∫ b

a

f (ξ)

|ξ − x |1−α
dξ, a < x < b, α > 0.
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Definition

For 0 < α < 1,

aDα
x f (x) =

1

Γ(1− α)

d

dx

∫ x

a

f (ξ)

(x − ξ)α
dξ,

xDα
b f (x) =

−1

Γ(1− α)

d

dx

∫ b

x

f (ξ)

(ξ − x)α
dξ.

Left side and right side Riemann-Liouville (RL) derivative are
defined as

aDα
x f (x) = aDn

x aDα−n
x f (x), x > a,

xDα
b f (x) = xDn

b xDα−n
b f (x), x < b

for n − 1 < α < n. If α = n, then

aDα
x f (x) =

dn

dxn
f (x), and xDα

b f (x) = (−1)n
dn

dxn
f (x).
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Definition for fractional Laplacian operator for space

Reisz derivative:

∂αx f (x) = − 1

2 cos(απ/2)
(aDα

x f (x) + xDα
b f (x))

Hyper-singular integral form

(−∆)α/2f (x) = cd ,α

∫
Rd

f (x)− f (y)

|x − y |d+α
dy , cd ,α =

2αΓ(α+d
2 )

πd/2|Γ(−α/2)|

In one dimensional, under suitable conditions, they are
equivalent; but high dimensional, isotropic vs anisotropic

d∑
i=1

∂αxi 6= (−∆)α/2

Fourier symbol −|k1|α − |k2|α 6= −‖k‖α with
‖k‖2 = |k1|2 + |k2|2 in 2D.
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Caputo derivative for time

Consider the initial value problem

0Dα
t u(t) + Au(t) = f (t), t > 0,

Here, A is standard second order differential operator. The
initial condition is taken as 0Dα−k

t u(t) for k = 0, 1, · · · , n− 1.

Left side Caputo derivative (1967) is defined as

C
0 Dα

t u(t) = 0Dα−n
t

dn

dtn
u(t), t > 0,

for n − 1 < α < n.

0Dα−n
t

dn

dtn 6=
dn

dxn 0Dα−n
t = 0Dα

t
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Motivation

Computational issues

nonlocal and thus high storage cost

weakly singular solutions; boundary singularity, low-order
convergence

dense matrix

Goals

long time simulation, high accuracy and efficient methods
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Model equation

Consider two-term time fractional diffusion equation 1

K1
C
0 Dα

t u(x , t) + K2
C
0 Dβ

t u(x , t) = ∂2
xu(x , t) + f (x , t)

where x ∈ Ω = (0, L), 0 < t ≤ T , K1,K2 > 0, and
0 < α < 1 < β ≤ 2.

The single term version by Ford and Yan (2017) FCAA

Special case is Bagley-Torvik equation (1984)

utt + 0Dα
t u + Au = f .

Kai Diethlm and Ford, Luchko (2002) (2004) (2005), Esmaeili
(2017).

fractional telegraph equation, β = 2α with α or β = 1 + α

Finite difference method: L1, L2 approximation in time,
compact finite difference in space

1Z Hao, G Lin, Finite difference schemes for multi-term time-fractional
mixed diffusion-wave equations arXiv:1607.07104, 2016
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Fast direct solver

The difference scheme can be equivalently reformulated as

(K1τ
β−αMα

t + K2M
β
t )uMx +

τβ

h2
uSx = bMx (6)

Partial diagonalization with O(M log M) in space leads to



c0 0 0 · · · 0 0
c1 d1 0 · · · 0 0
c2 d2 d1 · · · 0 0
...

...
...

. . .
...

...
cN−2 dN−2 dN−3 · · · d1 0
cN−1 dN−1 dN−2 · · · d2 d1





e0

e1

e2
...
eN−2

eN−1


=



g0

g1

g2
...
gN−2

gN−1


. (7)

The divide and conquer strategy (Commenges1984) and
(Ke2015) in time direction as ΘN = O(N log2 N), which has
great advantage than the forward substitution method with
operations O(N2).
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Fast direct solver

A, x and b can be partitioned as follows:(
A(1) 0

C (1) A(1)

)(
x (1)

x (2)

)
=

(
b(1)

b(2)

)
. (8)

Thus the original linear system can be equivalently transformed
into two half size linear systems{

A(1)x (1) = b(1)

A(1)x (2) = b(2) − C (1)x (1) . (9)

The computation cost can be estimated below

ΘN = 2ΘN/2 +
N

2
log(

N

2
).

By this formula, we can derive the total operations in space and
time is O(MN log M log2 N), which enjoys linearithmic complexity.
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Numerical examples

Table: Temporal convergence orders, errors and CPU time of the scheme
with fixed stepsize h = 1/16

α1 = 0.2, α2 = 1.2 α1 = 0.5, α2 = 1.5
N E (h, τ) Order CPU(s) E (h, τ) Order CPU(s)
16 4.4722e-2 – 0.0411 5.7604e-2 – 0.0216
32 2.2796e-2 0.9722 0.0694 2.8439e-2 1.0183 0.0402
64 1.1489e-2 0.9885 0.0802 1.3953e-2 1.0273 0.0810

128 5.7626e-3 0.9955 0.1596 6.8480e-3 1.0268 0.1555

Table: Spatial convergence orders, errors and CPU time the scheme with
fixed stepsize τ = 1/220

α1 = 0.2, α2 = 1.2 α1 = 0.5, α2 = 1.5
M E (h, τ) Order CPU(s) E (h, τ) Order CPU(s)
4 1.0743e-3 – 378.44 1.0073e-3 – 365.83
6 2.1008e-4 4.0248 564.18 1.9709e-4 4.0234 544.93
8 6.6644e-5 3.9910 701.06 6.2494e-5 3.9927 714.85

10 2.7652e-5 3.9421 872.26 2.5945e-5 3.9396 905.42Hao Fast Numerical methods for time and fractional differential equations



Standard diffusion equation

The mass balance equation

∂tu(x , t) + ∂xF = f (x , t),

and the Fick’s first law

F = −k(x)∂xu(x , t).

leads to classical diffusion equation

∂tu(x , t)− ∂x [k(x)∂xu(x , t)] = f (x , t),

Figure: Eulerian picture for standard diffusion, Schumer et al. 2001
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Fractional diffusion equation

Figure: Eulerian picture for fractional diffusion, Schumer et al. 2001

A fractional Fick’s law

F = −k(x) ∂α−1
x u(x , t).

Space fractional diffusion equation

∂tu(x , t) = ∂x(k(x)∂α−1
x u(x , t)) + f (x , t)

When k(x) = 1,

∂tu(x , t) = ∂αx u(x , t)
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Finite difference method

Model equation

∂tu(x , t) = ∂αx,θu(x , t) + f (x , t) α ∈ (1, 2), θ ∈ (0, 1)

with ∂αx,θ = θaDα
x u(x , t) + (1− θ) xDα

b u(x , t)

Finite difference method for two-sided fractional differential
equations

Shifted Grunwald-Letinkov formula, Meerschaert and Tadjeran
(2004),

Aαh,r f (x) =
1

hα

[x−a]/h∑
k=0

g
(α)
k f (x − (k − r)h)

Lemma

(Tuan and Gorenflo 1995) Let 1 < α < 2, f (x) is smooth enough. For
any integer r ≥ 0, we can obtain

aDα
x f (x) = Aαh,r f (x)−

n−1∑
l=1

cα,rl aDα+l
x f (x)hl + O(hn)

uniformly in x ∈ R, where cα,rl are the coefficients of the power series

expansion of function Wr (z) = ( 1−e−z

z )αerz .
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Structure of the matrix

For finite difference method, we can have Toeplitz matrices. (
Hong Wang (2010), Hai-wei Sun (2012))

A =



a0 a1 a2 · · · aM−1

a−1 a0 a1
. . .

...

a−2 a−1
. . .

. . . a2
...

. . .
. . . a0 a1

a1−M · · · a−2 a−1 a0


.

♦ computational cost Mlog(M) and storage O(M)
What we do 2

high accuracy finite difference scheme

stability and convergence analysis

2Z. Hao, Z. Sun, W. Cao, A fourth-order approximation of fractional
derivatives with its applications, Journal of Computational Physics 281,
787-805, 2015
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Where does the singularity come from?

After time discretization, we get

αu − θ aDα
x u − (1− θ) xDα

b u = f (x), x ∈ (a, b),

u(a) = u(b) = 0,

When θ = 1, the equation reduces to

− aDα
x u = f − αu.

Let f̃ = f − αu. Then integrating on both sides twice reads

− aDα−2
x u = aD−2

x f̃ + C1(x − a) + C2,

where C1 and C2 are coefficients to be determined. Taking x → a+

leads to C2 = 0 in above identity. Since u(a) = 0, performing the
fractional derivative operator 0D2−α

x on both sides gives

u = − aD−αx f̃ − C1

Γ(α)
(x − a)α−1.
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Improved algorithm based on finite difference scheme

The kernel of the fractional differential operator is (x − a)α−1

aDα
x [(x − a)α−1] = 0.

It is reasonable to assume

u(x) = ur (x) + ξsus(x),

where us(x) = (x − a)α−1(b − x) and fs = αus − aDα
x us .

traditional approach: adapative nonuniform step-size, enriched
basis like enriched finite element method, singularity
reconstruction

improved algorithm 3: extrapolation and error correction

3Z. Hao and W. Cao, An improved algorithm based on finite difference
schemes for fractional boundary value problems with nonsmooth solution,
Journal of Scientific Computing 73 (1), 395-415, 2017
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Variable coefficient

Recall the steady space fractional diffusion equation 4

−D(k(x)Dα−1
x u(x)) = f (x)

The corresponding weak formulation

a(u, v) = (kDα−1
x u,Dv) = (f , v) (10)

To develop well-posed weak formulation, Mao and Shen (2016)
consider variant problem

∂tu(x , t) = a∂
α
x [k1(x) b∂

α
x u(x , t)] + x∂

α
b [k2(x) a∂

α
x u(x , t)]

where 1/2 ≤ α ≤ 1.

Mathematical theory

wellposedness, V. J. Ervin and J. P. Roop (2006)

rigorous regularity analysis for two side case is still missing
4Z. Hao, M. Park, G. Lin, Z. Cai, Finite element method for two-sided

fractional differential equations with variable coefficients: Galerkin approach,
Journal of Scientific Computing, 2018 (accepted)
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Reformulation of problem

Consider

−D(k(x)D−βθ Du) = f (x), x ∈ (0, 1),

where D−βθ := θ 0D−βx + (1− θ) xD−β1 .

By using the product rule and dividing by k(x), the above
equation can be transformed into the following equivalent
form

−D(D−βθ Du) + K (x)D−βθ Du = g , x ∈ (0, 1),

u(0) = u(1) = 0,

where K = −k ′/k ∈ L∞(0, 1), g = f /k .

Define the bilinear form

a(u, v) := (D−βθ Du,Dv) + (KD−βθ Du, v).
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Finite element method

Then the variational formulation is given by: find u ∈ H
1−β

2
0 (0, 1)

such that

a(u, v) = (g , v), ∀v ∈ H
1−β

2
0 (0, 1).

We show the well-posedness of continuous problem

We use piecewise linear finite element method.

The coefficient matrix of the derived linear system, AU = b, is

A = θSD + (1− θ)ST
D + K̄ [θSC − (1− θ)ST

C ],

where U = (ui ), K̄ = diag(K (x1),K (x2), · · · ,K (xN−1)),
b = (bi ), bi = (g , φi ), and T means the transpose.
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Regularity

Consider the model equation with α ∈ (1, 2)

(−∆)α/2u + µ1Du + µ2u = f (x), x ∈ Ω, (11)

u(x) = 0, x ∈ Ωc . (12)

Grubb (2016) showed standard Sobolev spaces u ∈ Hs with
s = α + min(1/2− α/2− ε, r)

When µ1 = µ2 = 0 Acosta et al (2018), Zhang (2018) show
ũ = u/(1− x2)α/2 ∈ Bs

ωα/2 weighted Sobolev space with
s = α + r

When µ1 = 0 Zhang (2018) show ũ ∈ Bs
ωα/2 weighted Sobolev

space with s = α + min(α + 1− ε, r)

When µ1 6= 0 Hao and Zhang (2018) show ũ ∈ Bs
ωα/2

weighted Sobolev space with α + min(3α/2− 1− ε, r)

When µ1 = 0 Hao and Zhang (2018) show ũ ∈ Bs
ωα/2

weighted Sobolev space with α + min(3α/2 + 1− ε, r)
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Spectral Galerkin method

The following pseudo-eigenfunctions for fractional diffusion
operator are essential to carry out the analysis and implement the
spectral Galerkin method.

Lemma

(Acosta 2018, Zhang 2018) For the n-th order Jacobi polynomial

P
α/2
n (x), it holds that

(−∆)α/2[ωα/2P
α/2
n (x)] = λαnP

α/2
n (x), (13)

where λαn = Γ(α+n+1)
n! .

A = Λ + M, the diagonal matrix λ is dominating and the
condition number is |α− 1|
show sharp regularity estimate.

prove optimal error estimates for the spectral Galerkin method
both in Hα/2 norm and negative weighted L2 norm.
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Pseudo eigenfunction relation

Denote Lαθ = −[θ aDα
x + (1− θ) xDα

b ]

Lemma (Ervin et al. 2016, Mao and Karniadakis 2018)

For the n-th order Jacobi Polynomial {Pσ, σ∗
n (x)}, it holds that

Lαθ [ωσ,σ
∗
(x)Pσ,σ∗

n (x)] = λαθ,nPσ∗, σ
n (x) (14)

where

λαθ,n = − sin(πα)

sin(πσ) + sin(πσ∗)

Γ(α + n + 1)

n!
,

σ∗ = α− σ ∈ (0, 1] and σ ∈ (0, 1] is determined by the following
equation:

θ =
sin(πσ∗)

sin(πσ∗) + sin(πσ)
. (15)

In particular, we can see that σ = 1 and σ∗ = α− 1 for θ = 1;
σ = σ∗ = α

2 for θ = 1/2.
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Spectral Petrov-Galerkin method

Define the finite dimensional space

VN := ωσ
∗,σPN = Span{ϕ0, ϕ1, . . . , ϕN}, ϕk(x) := ωσ

∗,σPσ∗,σ
k (x)

The spectral Petrov-Galerkin method is to find uN ∈ UN = ωσ,σ
∗PN

such that

(Lαθ uN , vN) + µ(uN , vN) = (f , vN), ∀vN ∈ VN . (16)

Denote φn(x) = ωσ,σ
∗
Pσ,σ∗

n (x). For implementation, plugging

uN =
∑N

n=0 ûnφn(x) in (16) and taking vN = ϕk(x), we obtain from
Lemma 3 and the orthogonality of Jacobi polynomials that

λαθ,khσ
∗,σ

k ûk + µ

N∑
n=0

Mk,nûn = (f , ϕk), k = 0, 1, 2, · · · ,N, (17)

where λαθ,k is defined in Lemma 3 and

Mk,n =

∫ 1

−1

(1− x2)αPσ, σ∗

n (x)Pσ∗, σ
k (x) dx . (18)

Here Mk,n and fk = (f , φk) can be found as Galerkin version.
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Figure: The convergence order of the spectral Galerkin methods is 2α+ 1
in Hα/2.

Two-sided case 5 and fractional Laplace (2018) 6

5Z. Hao, G. Lin and Z. Zhang, Regularity in weighted Sobolev spaces and
spectral methods for two-sided fractional reaction-diffusion equations (2017)
submitted to FCAA.

6Z. Hao and Z. Zhang, Optimal regularity and error estimate for a spectral
Galerkin method for (1D) fractional advection-diffusion-reaction equations,
(2018) preprint. Hao Fast Numerical methods for time and fractional differential equations



Summary

Two-term time fractional diffusion equations

Space fractional diffusion equations

Finite difference method

Finite element method

Spectral method
Regularity

Ongoing work: high dimensional problems, irregular domain.
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