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Outline

I Coefficient update problem

I Factorization of interior and exterior sub-problems

I Solution update

I Performance tests
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Coefficient update problem

Given the direct factorization of a reference elliptic problem

Lu = f, L = ∇ · p2(x)∇+ p1(x) · ∇+ p0(x)

Goal: solve the coefficient update problem

L̃ũ = f, L̃ = ∇ · p̃2(x)∇+ p̃1(x) · ∇+ p̃0(x)

Applications: inverse problems, computational biology

Types of update:

- small magnitude, L as a preconditioner

- low-rank update, SMW formula

I local support, factorization update
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Existing methods

Matrix computation

- Bennett’s method [Bennett; Chan, Brandwajn et al.]

- CHOLMOD [Chen, Davis et al.]

Geophysics

- volume integral equation [Jakobsen, Ursin et al.]

- boundary integral equation [Willemsen, Malcolm et al.]

Typical restrictions

- small problem/update size

- prior knowledge about the location

- selected blocks of the inverse
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Updates in a fixed subdomain

Ω – interior subdomain where L 6= L̃

Ωc – exterior subdomain where L = L̃

L̃ũ−L̃u = Lu−L̃u
L̃ (ũ− u)︸ ︷︷ ︸

solution update

= (L− L̃)︸ ︷︷ ︸
operator update

u

No update and zero right hand side in Ωc
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Separation of interior and exterior unknowns
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Separation of interior and exterior unknowns
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Nested domain partitioning

Binary tree of interior subdomains

- each node depends on its children

- updates propagate to ancestors

updating the root ∼ factorizing the new problem
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Nested domain partitioning

Exterior subdomains

- each node depends on its parent and sibling

- isolated updates because of exterior factors
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Factorization

For each node i with children c1 and c2

- interior factors

Ii ⇐ Ic1 , Ic2 because Ωi ⇐ Ωc1 ,Ωc2

- exterior factors

Ec1 ⇐ Ei, Ic2 because Ωc
c1 ⇐ Ωc

i ,Ωc2

Ec2 ⇐ Ei, Ic1 because Ωc
c2 ⇐ Ωc

i ,Ωc1

Ωi

Ωc1

Ωc2

Ωc
i

Ωc1 Ωc
c2
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Solution update with localized right-hand side

For coefficient update in Ωi

- re-factorize and forward sweep in Ωi

- backward sweep in Ωi and Ωc
i

Partitioning of Ωi unchanged

Partitioning of Ωc
i extracted from the data dependency graph

Efficiency: minimum update cost, almost half the solution cost

Flexibility: change of support
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Modified domain partitioning

Theorem (L., Xia, and de Hoop, 2018)

For a level-l subdomain, the domain partitioning T can be
modified with O(l) operations to exclude its supersets
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Non-overlapping Schur-complement
domain decomposition [Hackbusch; Martinsson et al.]

Dirchlet-to-Neumann maps for two siblings
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u0 on the shared interface
For their parent F00 + G00 F01 G02

F10 F11

G20 G22


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 0
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
Benefits

- no permutation or index matching issue

- fewer fill-ins for high-order discretization
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Complexity

the problem size n � the update size m

2D 3D

time space time space

Factorization O(n1.5) O(n log n) O(n2) O(n4/3)

New update O(m1.5) O(m logm) O(m2) O(m4/3)

Partial LU O(n1.5) O(n) O(n2) O(n4/3)

assuming balanced domain partitioning
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Performance test: m = 1602, n increases

Helmholtz equation, FEM with 4th-order basis

Matrix size n

321 2 641 2 1281 2 2561 2

F
lo

p
s

10 6

10 8

10 10

10 12

10 14

FACINT+FACEXT

O(n
1.5

) (reference)

SOLINT

SOLEXT

O(n logn) (reference)

n 3212 6412 12812 25612

FACINT 1.8s 7.7s 33.1s 156.3s

FACEXT 0.5s 3.8s 25.0s 170.3s

SOLINT 0.46s 0.56s 0.58s 0.67s

SOLEXT 0.03s 0.14s 0.63s 2.89s
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Performance test: n = 25612, m increases

Update size m 

40 2 80 2 160 2 320 2

F
lo

p
s

10 7

10 8

10 9

10 10

10 11

SOLINT

O(m
1.5

) (reference)

SOLEXT

m 402 802 1602 3202

SOLINT 0.12s 0.14s 0.47s 1.86s

SOLEXT 2.93s 2.52s 2.50s 2.47s

Reuse of existing factorization as a preconditioner:
32, 180, 717, 2585 GMRES iterations for 10−5 residual
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Conclusions

Direct solution algorithm for localized coefficient update

- top-down factorization of exterior problems

- fast solution update with localized right-hand side

- flexibility w.r.t. locations
efficiency w.r.t. size and magnitude

Future work: approximate update, purely-algebraic version
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