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Cluster analysis of high-dimensional data

Premise: intrinsic heterogeneous group/cluster structures in
real-word data of research interest
Cluster analysis: uncover cluster structures in data, with noise and
uncertainty, with quantified features, governed by certain
differentiation criteria

- massive data of many attributes/features
- supervised vs. un-supervised

Fundamental to various research studies

Domain-specific analysis Feature description
Molecular dynamics trajectory patterns [1] kinetic, spectral measurements
Classification of astronomical events [2] Gamma ray measurements
Community detection in complex system [3, 4, 5] link features
Image segmentation/denoising [6, 7] intensity, patch texture
Content-based image retrieval [8] semantic content descriptor
Image object recognition [9, 10] SIFT [11], HOG [12] descriptors
Gene expression pattern analysis [13, 14, 15, 16, 17] gene-expression matrix
Thematic categorization of documents [18, 19] word frequency vector
Statistical semantic or sentiment analysis GloVe [20] word vector
Statistical categorization of musical genres [21] musical surface features
Consumer profiling/market segmentation [22] purchase history

Abell 901/902 supercluster [23]

\[-1.5em]
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DP, other influential algorithms & SD-DP

Desirable properties1

Algorithms
K-MEANS [27]

(1982)
DBSCAN [28]

(1996)
OPTICS [29]

(1999)

MEAN
SHIFT [30]

(2002)

GN [3]
(2002)

COMBO [5]
(2014)

DP [31]
(2014)

SD-DP [32]
(2018)

No prescription of # clusters X X X X X X X

No restriction in cluster shape X X X X X X X

Free choice of metrics X X X X X X

Agnostic to distribution X X X X X

Easy or no tuning X X X X

Robust in high-dim. space X

Accurate in high-dim. space X

Low computation cost X

Checkmarks are based on limited benchmarking experiments

1 Additional properties include low program complexity, stability and more
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DP vs SD-DP: classification accuracy
60,000 images of handwritten digits (MNIST dataset) [33]

DP (2018) [34]
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DP vs SD-DP: classification accuracy

Digit DP(2018)
semi-supervised

SD-DP
un-supervised

0 0.99 0.98
1 0.83 0.98
2 0.77 0.95
3 0.94 0.95
4 0.87 0.96
5 0.95 0.97
6 0.98 0.98
7 0.88 0.96
8 0.95 0.94
9 0.84 0.93

Comparison in Dice similarity coefficients (DSC)
a.k.a. F1 scores and Sørensen-Dice coefficients
60,000 images of handwritten digits (MNIST dataset)

All misclassified digit-0 images by SD-DP

Subset of misclassified digit-2 images by SD-DP

DSC =
2TP

2TP + FP + FN
=

2|T ∩ P|
|T | + |P|

P

TT ∩ P
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1. Cluster analysis of high-dimensional data

2. The Density Peaks (DP) and other influential algorithms

3. SD-DP: Sparse Dual of the DP algorithm

4. Experimental evidence
Benchmarks
Exploratory results



The Density Peaks principle

[Rodriguez and Laio, Science, 2014]

Principle

“Cluster centers are characterized by a higher
density than their neighbors and by a
relatively large distance from points with
higher densities”.

Local density description
population in neighborhood of specified radius r

𝜌i =

{︂
|𝒩r (xi )|, hard cutoff∑︀

j exp
(︀

−d2
ij /r2

)︀
, soft cutoff

Probability distribution from which point
distributions are drawn. The regions with
lowest intensity correspond to a back-
ground uniform probability of 20%.

Point distribution for samples of 4000
points. Points are colored according to
the cluster to which they are assigned.
Black points belong to the cluster halos.
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Fundamental facts about deep feature space

Deep feature space1: D > 100
fact 1:

2D >> N

Data are sparsely, non-uniformly
scattered

fact 2: With D fixed, the hyper-ball volume is
highly sensitive to radius change

volℬ(r(1 + 𝜖))/volℬ(r) = (1 + 𝜖)D

fact 3: With radius r fixed, the hyper-ball
volume is vanishing

volℬ(r) → 0 as D → ∞

0.001 0.01 0.1

10
0

10
5

10
10

10
15

Fact 2 on specific feature dimensions for 4 particular datasets

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

0

2

4

6

8

10

Fact 3 on 3 radious values at the low end of dimensions
Each hyper-ball ℬ is depicted by the disk of area volℬ(r)

1 Largest database (as of 2018): World Data Center for Climate (WDCC) – 6 petabytes (250 bytes) of data
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Limitations of DP in deep feature space

By the fundamental facts about data
in a deep feature space
∘ small radius → many empty neighborhoods
∘ large radius → many equally crowded neighborhoods
∘ adequately discriminative radius values are elusive

Rodriguez and Laio suggested a heuristic ap-
proach: let radius

r = min
d

{︀
d |

∑︀
i |𝒩d(xi)| ≥ p N2}︀

with p = 1%, 2% so that avg(𝜌) = p N

See the histograms to the right

pN
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Histograms of neighborhood population, over 50
equispaced bins, with dataset PBMCs-8k of N = 8,000
cells, D = 21,321 genes [35]. The neighor radius values
are determined by the heurstic described on the left with
p = 1%, 2% for the top and bottom histograms,
respectively. In each case, the local density at a large
portion of data points is close to zero
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Duality in local density description: neighborhood radius vs population

DP 𝜌(r)
#neighbors within distance r

𝜌i(r) =
{︂

|𝒩r (xi )|, hard cutoff∑︀
j exp

(︀
−d2

ij /r2
)︀

, soft cutoff

Local density 𝜌 with r = 3.1

Free parameter r : real-valued
elusive, volatile in deep space

Labeled Data
Compound[36]

399 points
6 classes

SD-DP 𝜌*(k)
reciprocal distance to the k-th nearest neighbor

𝜌*
i (k) = 1/ max

j
{dij | xj ∈ 𝒩k(xi)}

Dual local density 𝜌* with k = 15

Free parameter k: discrete
within grasp, tunable in deep space

Floros Liu Pitsianis Sun (AUTh|Duke) SD-DP: Sparse Dual of Density Peaks November 5, 2018 10 / 29



Duality in local density description: neighborhood size vs population

DP
#neighbors within distance r

𝜌i =

{︂
|𝒩r (xi )|, hard cutoff∑︀

j exp
(︀

−d2
ij /r2

)︀
, soft cutoff

Gr : rNN matrix (Boolean values)
rows/columns ordered by true classes

Labeled Data
Compound

399 points
6 classes

SD-DP
reciprocal distance to the k-th nearest neighbor

𝜌*
i = 1/ max

j
{dij | xj ∈ 𝒩k(xi)}

Gk : kNN matrix (Boolean values)
rows/columns ordered by true classes
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Density peak location
DP
Density peaks are located on 𝜌-𝛿 decision graph
– chosen heuristically or manually
– O(N2) for 𝜌-𝛿 graph construction

SD-DP
Density peaks are local maxima in density
– determined simultaneously, automatically
– O(N), each point makes comparisons with k neighbors

Compound density peaks (color-coded) with r = 3.1 Compound dual density peaks (color-coded) with k = 15

Each peak holds a unique label
The rest get labels by ascending to the peaks
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Ascending rule & 𝜌-𝛿 graph
Ascending rule

Every non-peak point i connects to its nearest point of higher density
xi = arg minj {dij | 𝜌j > 𝜌i }, parental node
𝛿i = minj {dij | 𝜌j > 𝜌i }, ascending distance

O(N2) for 𝜌-𝛿 graph construction
DP decision graph in the 𝜌-𝛿 plane
Mandatory for peak selection by the heuristic:
“only points of high 𝛿 and high 𝜌 are the cluster centers”

DP decision graph with dataset Compound for peak selection
Red circles annotate density peaks

O(N), parents located locally on the kNN graph
SD-DP (𝜌*-𝛿*) graph
Visualizing the proven properties of autonomous,
linear-cost separation of local maxima from the rest

SD-DP visualization graph with dataset Compound
Red circles annotate local maxima
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Label propagation by ascending rule

DP SD-DP

Animation of label propagation with dataset Compound

Each peak holds a unique label
The rest get labels by ascending to the peaks
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Label propagation by ascending rule

DP SD-DP

Animation of label propagation with dataset Compound

Each peak holds a unique label
The rest get labels by ascending to the peaks
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Autonomous revision of cluster configuration
Rationale: multi-source uncertainty
– noise in data
– numerical sensitivity in density calculation
– random tie-breaking in parental node selection

DP

Forward process of peak selection and label propagation
without revision

Configuration with 10 clusters Configuration with #clusters set to 6

The bottom-left mixture of Compound clustered incorrectly

SD-DP

Initial configuration of ascending trees at local maxima
autonomous revision of cluster configuration

Initial configuration After revision

The bottom-left mixture of Compound clustered correctly
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Autonomous cluster revision: governing criteria
The weighted kNN matrix

Gk(i , j) = Bk(i , j)
kNN adjacency

exp
(︀

− ( dij 𝜌*
i

relative
distance

/𝜎)2
)︀

is sparse and encodes density-distance information

Initial configuration: L clusters {𝒞p}, 1 ≤ p ≤ L
Gk({𝒞p}) is Gk with columns/rows ordered according to the
configuration {𝒞p}

Optimization Objective:
{𝒞ℓ} = arg min

{𝒞p}
f ({𝒞p}), f ({𝒞p}) =

∑︀
p |𝒞p |2

subject to
h(Gk(𝒞p , {𝒞q} − 𝒞p)) < 𝜏 · h(Gk(𝒞p , 𝒞p))

where
h(Gk(𝒞p , 𝒞q)): aggregated interaction strength of (sub)matrix
𝜏 : a small threshold

Gk : kNN matrix with rows/columns ordered
by initial configuration on Compound
Total area of diagonal blocks: f ({𝒞p})
Aggregated interaction strength: h(Gk (𝒞p , 𝒞q))
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Autonomous cluster revision: split-and-merge
Gk is sparse, encodes density-distance information
Gk({𝒞p}) encodes inter-/intra-cluster interaction strength in addition

A sub-cluster with weak intra-cluster interaction and stronger interaction
with another cluster is split from its parent and merged to the other
=⇒ Inter-cluster interaction strength h decreases

Subtrees of digit-1 images, initially attached to the parental tree of digit-2 images by
local density and the ascending rule, are automatically differentiated from the rest and
split from the parental tree

Before split-and-merge

After split-and-merge

Matrix view of split and merge (synthetic construction)

Floros Liu Pitsianis Sun (AUTh|Duke) SD-DP: Sparse Dual of Density Peaks November 5, 2018 17 / 29



Autonomous cluster revision

Animation of autonomous cluster revision with dataset Compound
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DP vs SD-DP: clustering process & results
DP

The bottom-left mixture clustered incorrectly

Compound

399 points
6 classes

SD-DP

The bottom-left mixture clustered correctly
The right mixture was not separated;
it does not adhere to the DP principle
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1. Cluster analysis of high-dimensional data

2. The Density Peaks (DP) and other influential algorithms

3. SD-DP: Sparse Dual of the DP algorithm

4. Experimental evidence
Benchmarks
Exploratory results



Benchmark experiments: synthetic benchmarking datasets

Aggregation
788 points; 7 classes

Spiral
312 points; 3 classes

S3
5,000 points; 15 classes

Flame
240 points; 2 classes

SD-DP correctly recovers the numbers and the shapes of the true classes [37]

http://cs.uef.fi/sipu/datasets/
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Benchmark experiments: handwritten digit recognition
Peaks

(local maxima)

Ascending trees rooted at 53 local maxima; unique color for each tree Gk : kNN matrix with rows/columns ordered by clusters.
Clusters are arranged in order of size, k = 48

60,000 images of handwritten digits (MNIST dataset)
HOG descriptor (144 dimensions) for each digit image
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Benchmark experiments: unsupervised revision

Unsupervised cluster merging, unique color for each merged cluster
Splits took place at a finer level (not shown)

Gk : rows/columns ordered according to two cluster
levels – the initial one and the merged one
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DP vs SD-DP: classification accuracy
60,000 images of handwritten digits (MNIST dataset) [33]

DP (2018) [34]
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1. Cluster analysis of high-dimensional data

2. The Density Peaks (DP) and other influential algorithms

3. SD-DP: Sparse Dual of the DP algorithm

4. Experimental evidence
Benchmarks
Exploratory results
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DP vs SD-DP: clustering of high-dimensional data

DP

Gr : rNN matrix with rows/columns
ordered by rendered clusters

Data matrix
cells (rows) vs genes (columns)

DP with r = 97.75 (p = 2%)
Rendered 2 small and 1 large cluster

SD-DP

Gk : kNN matrix with rows/columns
ordered by rendered clusters

Data matrix
cells (rows) vs genes (columns)

SD-DP with k = 35
Rendered 2 small and 4 large clusters

Dataset PBMCs-8k [35]: N = 8,000 cells, D = 21,321 genes
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Exploratory experiments: fast image segmentation

Parthenon image [38] (481 × 321, N = 154,401) Segmentation result (3 segments)
5 × 5 patch feature per color; D = 5 × 5 × 3 = 75

Segmentation time: 3 seconds in MATLAB (excluding kNN construction)
SD-DP outpaces DP by two orders of magnitude
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Exploratory experiments: fast high-definition image segmentation

Santorini image1 (1280 × 800, N = 1,024,000) Illustrative segmentation result (30 segments)
9 × 9 patch feature per color; D = 9 × 9 × 3 = 243

Segmentation time: 15 seconds in MATLAB (excluding kNN construction)
SD-DP outpaces DP by at least two orders of magnitude

1https://blog.ryanair.com/wp-content/uploads/2015/08/santorini123.jpg
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Exploratory experiments: statistical hierarchy of word semantics
N = 400,000 GloVe [20] word vectors2 (D = 300)
Semantically related words, based on word co-occurrence
from text content, are closer in the GloVe space

SD-DP (k = 5) produces a statistical hierarchy of word semantics
A word with higher density has more general meaning
A word with lower density has more specific meaning

Can be used for search in depth and breadth simultaneously
The local density is annotated on each word
Query words are highlighted

2Pre-trained word vectors (Wikipedia 2014 + Gigaword 5)
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Recap: Sparse Dual of Density Peaks
Contributions

Dual local density description
ground for robustness, by recognizing, respecting
the fundamental facts of high dimensional data

Initial cluster formation
clusters by ascending trees rooted at local maxima
proven local, parallel, of linear complexity

Autonomous cluster revision
coherent revision criteria at multiple cluster levels

Sparse matrix/graph operations

Experimental findings

Unsupervised classification of handwritten digits
96% overall accuracy reached

Gene clustering
4 large clusters found in 8,000 cells in expression of
21,321 genes

Statistical hierarchy of word semantics
among 400, 000 words in the GloVe space (D = 300)

HD image segmentation
faster than DP by two orders of magnitude or more

Desirable properties

Algorithms
K-MEANS

(1982)
DBSCAN

(1996)
OPTICS
(1999)

MEAN
SHIFT
(2002)

GN
(2002)

COMBO
(2014)

DP
(2014)

SD-DP
(2018)

No prescription of # clusters X X X X X X X

No restriction in cluster shape X X X X X X X

Free choice of metrics X X X X X X

Agnostic to distribution X X X X X

Easy or no tuning X X X X

Robust in high-dim. space X

Accurate in high-dim. space X

Low computation cost X

Additional information available at http://sddp.cs.duke.edu
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