Communication-avoiding factorization algorithms

Edgar Solomonik

Department of Computer Science, University of Illinois at Urbana-Champaign

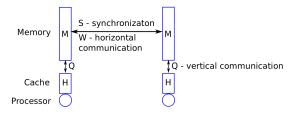
Conference on Fast Direct Solvers, Purdue University

November 10, 2018

Beyond computational complexity

Algorithms should minimize communication, not just computation

- communication and synchronization cost more energy than flops
- two types of communication (data movement):



- vertical (intranode memory–cache)
- horizontal (internode network transfers)
- parallel algorithm design involves tradeoffs: computation vs communication vs synchronization
- parameterized algorithms provide optimality and flexibility

Cost model for parallel algorithms

We use the Bulk Synchronous Parallel (BSP) model (L.G. Valiant 1990)

- ullet execution is subdivided into S supersteps, each associated with a global synchronization (cost lpha)
- at the start of each superstep, processors interchange messages, then they perform local computation
- if the maximum amount of data sent or received by any process is w_i (work done is f_i and amount of memory traffic is q_i) at superstep i then the BSP time is

$$T = \sum_{i=1}^{S} \alpha + w_i \cdot \beta + q_i \cdot \nu + f_i \cdot \gamma = O(S \cdot \alpha + W \cdot \beta + Q \cdot \nu + F \cdot \gamma)$$

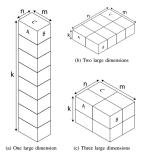
where typically $\alpha \gg \beta \gg \nu \gg \gamma$

• we mention vertical communication cost only when it exceeds $Q = O(F/\sqrt{H} + W)$ where H is cache size

Communication complexity of matrix multiplication

Multiplication of $A \in \mathbb{R}^{m \times k}$ and $B \in \mathbb{R}^{k \times n}$ can be done in O(1) supersteps with communication cost $W = O\left(\left(\frac{mnk}{p}\right)^{2/3}\right)$ provided sufficient memory and sufficiently large p

- when m=n=k, 3D blocking gets $O(p^{1/6})$ improvement over 2D¹
- when m, n, k are unequal, need appropriate processor grid²



J. Berntsen, Par. Comp., 1989; A. Aggarwal, A. Chandra, M. Snir, TCS, 1990; R.C. Agarwal, S.M. Balle, F.G. Gustavson, M. Joshi, P. Palkar, IBM, 1995; F.W. McColl, A. Tiskin, Algorithmica, 1999; ...

² J. Demmel, D. Eliahu, A. Fox, S. Kamil, B. Lipshitz, O. Schwartz, O. Spillinger 2013

Communication complexity of dense matrix kernels

For $n \times n$ Cholesky with p processors

$$F = O(n^3/p), \quad W = O(n^2/p^{\delta}), \quad S = O(p^{\delta})$$

given memory to store $p^{2\delta-1}$ copies of the matrix for any $\delta=[1/2,2/3].$

Can achieve similar costs for LU, QR, and the symmetric eigenvalue problem (modulo logarithmic factors on synchronization), but algorithmic changes (as opposed to parallel schedules) are necessary.

triangular solve	square TRSM $\sqrt{3}$	rectangular TRSM √4
LU with pivoting	pairwise pivoting $\sqrt{5}$	tournament pivoting √ ⁶
QR factorization	Givens on square \checkmark^3	Householder on rect. $\sqrt{7}$
SVD (sym. eig.)	singular values only $\sqrt{8}$	singular vectors X

³B. Lipshitz, MS thesis 2013

⁴T. Wicky, E.S., T. Hoefler, IPDPS 2017

⁵A. Tiskin, FGCS 2007

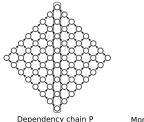
⁶E.S., J. Demmel, EuroPar 2011

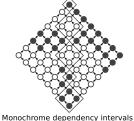
⁷E.S., G. Ballard, T. Hoefler, J. Demmel, SPAA 2017

Tradeoffs between costs based on dependency graphs

Definition $((\epsilon, \sigma)$ -path-expander)

Graph G = (V, E) is a (ϵ, σ) -path-expander if there exists a path $(u_1, \ldots u_n) \subset V$, such that the dependency interval $[u_i, u_{i+b}]_G$ for each i, b has size $\Theta(\sigma(b))$ and a minimum cut of size $\Omega(\epsilon(b))$.





Multicolored dependency intervals

- computation-synchronizaton tradeoff in diamond DAG8: $F \cdot S = \Omega(n^2)$
- extends to triangular solve, matrix factorization, and iterative methods⁹

Conference on Fast Direct Solvers, Purdue University

⁸C.H. Papadimitriou, J.D. Ullman, SIAM JC, 1987

⁹E.S., E. Carson, N. Knight, J. Demmel, JPDC 2017

Tradeoffs between costs

Definition $((\epsilon, \sigma)$ -path-expander)

Graph G=(V,E) is a (ϵ,σ) -path-expander if there exists a path $(u_1,\ldots u_n)\subset V$, such that the dependency interval $[u_i,u_{i+b}]_G$ for each i,b has size $\Theta(\sigma(b))$ and a minimum cut of size $\Omega(\epsilon(b))$.

Theorem (Path-expander communication lower bound)

Any parallel schedule of an algorithm with a (ϵ, σ) -path-expander dependency graph about a path of length n and some $b \in [1, n]$ incurs computation (F), communication (W), and synchronization (S) costs:

$$F = \Omega(\sigma(b) \cdot n/b), \quad W = \Omega(\epsilon(b) \cdot n/b), \quad S = \Omega(n/b).$$

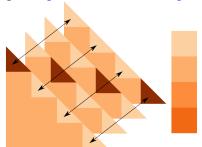
Corollary (Computation-sync. and bandwidth-sync. tradeoffs)

If $\sigma(b) = b^d$ and $\epsilon(b) = b^{d-1}$, the above theorem yields,

$$F \cdot S^{d-1} = \Omega(n^d), \ W \cdot S^{d-2} = \Omega(n^{d-1}).$$

New algorithms can circumvent lower bounds

For TRSM, we can achieve a lower synchronization/communication cost by performing triangular inversion on diagonal blocks



- MS thesis work by Tobias Wicky¹⁰
- \bullet decreases synchronization cost by ${\cal O}(p^{2/3})$ on p processors with respect to known algorithms
- optimal communication for any number of right-hand sides

¹⁰T. Wicky, E.S., T. Hoefler, IPDPS 2017

QR factorization of tall-and-skinny matrices

Consider the reduced factorization A=QR with $A,Q\in\mathbb{R}^{m\times n}$ and $R\in\mathbb{R}^{n\times n}$ when $m\gg n$ (in particular $m\geq np$)

- ullet A is tall-and-skinny, each processor owns a block of rows
- Householder-QR requires $S = \Theta(n)$ supersteps, $W = O(n^2)$ comm.
- TSQR¹¹ row-wise divide-and-conquer, $W = O(n^2 \log p)$, $S = O(\log p)$

$$\begin{bmatrix} Q_1 R_1 \\ Q_2 R_2 \end{bmatrix} = \begin{bmatrix} \mathsf{TSQR}(A_1) \\ \mathsf{TSQR}(A_2) \end{bmatrix}, Q_{12} R = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix}, Q = \begin{bmatrix} Q_1 & \\ & Q_2 \end{bmatrix} Q_{12}$$

- TSQR-HR¹² Householder rep. I-YTY, $W=O(n^2\log p)$, $S=O(\log p)$
- Cholesky-QR2¹³ stable so long as $\kappa(A) \leq 1/\sqrt{\epsilon}$, achieves $W = O(n^2)$, S = O(1), Cholesky-QR3¹⁴ gets same and is unconditionally stable

¹¹ J. Demmel, L. Grigori, M. Hoemmen, J. Langou 2012

¹²G. Ballard, J. Demmel, L. Grigori, M. Jacquelin, H.-D. Nguyen, E.S. 2014

¹³Y. Yamamoto, Y. Nakatsukasa, Y. Yanagisawa, T. Fukaya 2015

¹⁴ T. Fukaya, R. Kannan, Y. Nakatsukasa, Y. Yamamoto, Y. Yanagisawa 2018

QR factorization of square matrices

Square matrix QR algorithms generally use 1D QR for panel factorization

- algorithms in ScaLAPACK, Elemental, DPLASMA use 2D layout, generally achieve $W=O(n^2/\sqrt{p})$ cost
- \bullet Tiskin's 3D QR algorithm 15 achieves $W=O(n^2/p^{2/3})$ communication

$$T \cdot \begin{bmatrix} A & B \\ A & B \end{bmatrix}_{?} = \begin{bmatrix} A & A \\ P & P \\ P & P \end{bmatrix}_{?}$$

however, requires slanted-panel matrix embedding

which is highly inefficient for rectangular (tall-and-skinny) matrices

¹⁵A. Tiskin 2007, "Communication-efficient generic pairwise elimination"

Communication-avoiding rectangular QR

For $A \in \mathbb{R}^{m \times n}$ existing algorithms are optimal when m = n and $m \gg n$

- ullet cases with n < m < np underdetermined equations are important
- new algorithm¹⁶
 - \bullet subdivide p processors into m/n groups of pn/m processors
 - ullet perform row-recursive QR (TSQR) with tree of height $\log_2(m/n)$
 - ullet compute each tree-node elimination $m{Q_{12}R}=egin{bmatrix} m{R_1} \\ m{R_2} \end{bmatrix}$ using Tiskin's QR with pn/m or more processors
- ullet note: interleaving rows of R_1 and R_2 gives a slanted panel
- ullet obtains ideal communication cost for any m, n, generally

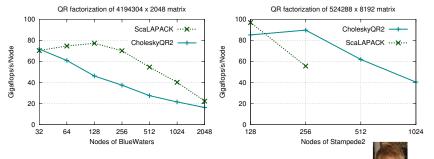
$$W = O\left(\left(\frac{mn^2}{p}\right)^{2/3}\right)$$

¹⁶E.S., G. Ballard, J. Demmel, and T. Hoefler, SPAA 2017

Cholesky-QR2 for rectangular matrices

Cholesky-QR2¹⁷ with 3D Cholesky gives a practical 3D QR algorithm¹⁸

- ullet Compute $m{A}=m{\hat{Q}}m{\hat{R}}$ using Cholesky-QR $m{A}^Tm{A}=m{\hat{R}}^Tm{\hat{R}}, \quad m{\hat{Q}}=m{A}m{\hat{R}}^{-1}$
- ullet Correct approximate factorization by Cholesky-QR $Qar{R}=\hat{Q}$, $R=ar{R}\hat{R}$
- \bullet Simple algorithm to achieve minimize comm. and sync. for any m,n,p



Analysis and implementation by PhD student Edward Hutter

¹⁷ T. Fukaya, Y. Nakatsukasa, Y. Yanagisawa, Y. Yamamoto 2014

¹⁸E. Hutter, E.S. 2018

Tridiagonalization

Reducing the symmetric matrix $oldsymbol{A} \in \mathbb{R}^{n imes n}$ to a tridiagonal matrix

$$T = Q^T A Q$$

via a two-sided orthogonal transformation is most costly in diagonalization (eigenvalue computation, SVD similar)

• can be done by successive subcolumn QR factorizations

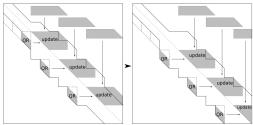
$$T = \underbrace{Q_1^T \cdots Q_{n-2}^T}_{Q^T} A \underbrace{Q_1 \cdots Q_{n-2}}_{Q}$$

- two-sided updates harder to parallelize than one-sided
- ullet each update requires a BSP superstep and reading A from memory
- ullet can use n/b QRs on panels of b subcolumns to go to band-width b+1
- b=1 gives direct tridiagonalization

Successive band reduction (SBR)

After reducing to a banded matrix, we need to transform the banded matrix to a tridiagonal one

- fewer nonzeros lead to lower computational cost, $F = O(n^2b/p)$
- however, transformations introduce fill/bulges
- bulges must be chased down the band¹⁹



 communication- and synchronization-efficient 1D SBR algorithm known for small band-width²⁰

¹⁹Lang 1993; Bischof, Lang, Sun 2000

²⁰ Ballard, Demmel, Knight 2012

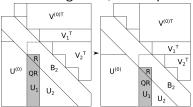
Communication-efficient eigenvalue computation

Previous work (start-of-the-art): two-stage tridiagonalization

- implemented in ELPA, can outperform ScaLAPACK²¹
- with $n=n/\sqrt{p}$, 1D SBR gives $W=O(n^2/\sqrt{p})$, $S=O(\sqrt{p}\log^2(p))^{22}$

New results²³: many-stage tridiagonalization

- ullet $\Theta(\log(p))$ intermediate band-widths to achieve $W=O(n^2/p^{2/3})$
- communication-efficient rectangular QR with processor groups



• 3D SBR (each QR and matrix multiplication update parallelized)

²¹ Auckenthaler, Bungartz, Huckle, Krämer, Lang, Willems 2011

²²Ballard, Demmel, Knight 2012

E.S., G. Ballard, J. Demmel, T. Hoefler, SPAA 2017

Symmetric eigensolver results summary

Algorithm	W	Q	S
ScaLAPACK	n^2/\sqrt{p}	n^3/p	$n\log(p)$
ELPA	n^2/\sqrt{p}	_	$n\log(p)$
two-stage $+$ 1D-SBR	n^2/\sqrt{p}	$n^2 \log(n) / \sqrt{p}$	$\sqrt{p}(\log^2(p) + \log(n))$
many-stage	$n^2/p^{2/3}$	$n^2 \log(p) / p^{2/3}$	$p^{2/3}\log^2 p$

- ullet costs are asymptotic (same computational cost F for eigenvalues)
- ullet W horizontal (interprocessor) communication
- \bullet Q vertical (memory–cache) communication excluding $W+F/\sqrt{H}$ where H is cache size
- ullet S synchronization cost (number of supersteps)

Conclusion

Summary of new communication avoiding algorithms

- communication-efficient QR factorization algorithm
 - optimal communication cost for any matrix dimensions
 - variants that trade-off some accuracy guarantees for performance
- communication-efficient symmetric eigensolver algorithm
 - reduce matrix to successively smaller band-width
 - uses concurrent executions of 3D matrix multiplication and 3D QR

Practical implications

- ELPA demonstrated efficacy of two-stage approach, our work motivates 3+ stages
- partial parallel implementation is competitive but no speed-up

Future work

- back-transformations to compute eigenvectors in less computational complexity than $F = O(n^3 \log(p)/p)$
- QR with column pivoting / low-rank SVD / sparse factorization

Acknowledgements

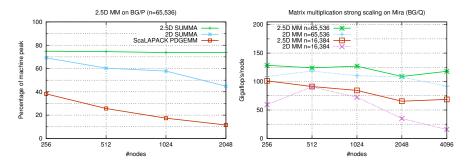
Collaborators on this work

- Edward Hutter (Department of Computer Science, University of Illinois at Urbana-Champaign)
- Grey Ballard (Department of Computer Science, Wake Forest University)
- James Demmel (Department of Computer Science and Department of Mathematics, University of California, Berkeley)
- Tobias Wicky (Department of Computer Science, ETH Zurich)
- Torsten Hoefler (Department of Computer Science, ETH Zurich)
- Erin Carson (Courant Institute of Mathematical Sciences, NYU)
- Nicholas Knight (Courant Institute of Mathematical Sciences, NYU)

Computational resources and funding

- DOE Computational Science Graduate Fellowship
- ETH Zurich Postdoctoral Fellowship
- XSEDE/TACC (Stampede2) and NCSA (BlueWaters)

Communication-efficient matrix multiplication

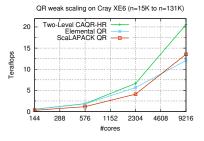


 $12\mathrm{X}$ speed-up, 95% reduction in comm. for $n=8\mathrm{K}$ on $16\mathrm{K}$ nodes of BG/P

Communication-efficient QR factorization

• Householder form can be reconstructed quickly from TSQR²⁴ $Q = I - YTY^T \Rightarrow LU(I - Q) \rightarrow (Y, TY^T)$

Householder aggregation yields performance improvements

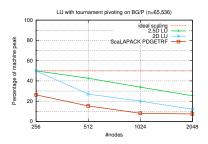


²⁴ Ballard, Demmel, Grigori, Jacquelin, Nguyen, S., IPDPS, 2014

Communication-efficient LU factorization

For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{\mathsf{L}\mathsf{U}} = O(n^2/\sqrt{cp}), \qquad S_{\mathsf{L}\mathsf{U}} = O(\sqrt{cp})$$



- LU with pairwise pivoting²⁵ extended to tournament pivoting²⁶
- first implementation of a communication-optimal LU algorithm 11

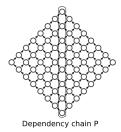
²⁵Tiskin, FGCS, 2007

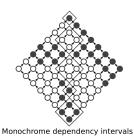
²⁶S., Demmel, Euro-Par, 2011

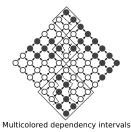
Tradeoffs in the diamond DAG

Computation vs synchronization tradeoff for the $n \times n$ diamond DAG,²⁷

$$F \cdot S = \Omega(n^2)$$







We generalize this idea²⁸

- additionally consider horizontal communication
- allow arbitrary (polynomial or exponential) interval expansion

²⁷ Papadimitriou, Ullman, SIAM JC, 1987

²⁸S., Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Tradeoffs involving synchronization

We apply tradeoff lower bounds to dense linear algebra algorithms, represented via dependency hypergraphs:²⁹ For triangular solve with an $n \times n$ matrix,

$$F_{\mathsf{TRSV}} \cdot S_{\mathsf{TRSV}} = \Omega\left(n^2\right)$$

For Cholesky of an $n \times n$ matrix,

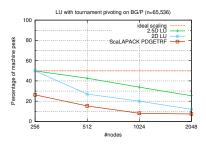
$$F_{\mathsf{CHOL}} \cdot S_{\mathsf{CHOL}}^2 = \Omega\left(n^3\right) \qquad W_{\mathsf{CHOL}} \cdot S_{\mathsf{CHOL}} = \Omega\left(n^2\right)$$

²⁹S. Carson, Knight, Demmel, SPAA 2014 (extended version, JPDC 2016)

Communication-efficient LU factorization

For any $c \in [1, p^{1/3}]$, use cn^2/p memory per processor and obtain

$$W_{\mathsf{L}\mathsf{U}} = O(n^2/\sqrt{cp}), \qquad S_{\mathsf{L}\mathsf{U}} = O(\sqrt{cp})$$



- LU with pairwise pivoting³⁰ extended to tournament pivoting³¹
- ullet first implementation of a communication-optimal LU algorithm 10

³⁰ Tiskin, FGCS, 2007

³¹ S., Demmel, Euro-Par, 2011