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The intrinsic complexity of a set in a metric space

Given a set S in a metric space W, its intrinsic complexity can be
characterized by

» The dimension N° of the best linear space V C W that can
approximate S to an € error.

» The Kolmogorov n-width: the distance between S and the best
linear space of dimension nin W.

» The Kolmogorov N°-width of S is €.



Outline

Bounds and scaling laws for N°.

» Approximation of random vectors and random fields (Jennifer
Bryson, Z., & Yimin Zhong, SIAM MMS ).

> Approximation of high frequency wave fields (Bjorn Engquist & Z.,
CPAM).



Approximation of Random Vectors



Approximate embedding of vectors
V =[vi,vo,...,v)] ER" A= VTV € RM™", aj =< vj, v >.
AL > ... >\, >0 e-values, u; e-vectors of A, S; = span{u;}!_;

tr(A) =X m1 Am = 2y VmI3

an:1 [V — P?,VmH% = Ming, dim(s,)=/ anzl v — PSerH% = an:/ﬂ Am,
Def. Given 1> €>0, N°=minM, s.t. >0 1 An < €30 1 Am.

> ome1 H"m_'DéNe"m”% 9
n T2 <e
> m=1 IVmll3

L= NE .
{v1,V2,...,v,} can be embedded into Syc = span{u;};_; with a relative
r.m.s. error e.




A general lower bound

Theorem 1

Givenv; € RY,i=1,2,...,n,
e o (S viBP(L - @y
o E?,j:l("i -vj)?

Proof.

On one hand,

n n NE NE

S wwP = r(ATA =3 R =N (DA

ij=1 i=1 i=1 = =1

On the other hand,

NE
Sxz-d) ZA— 1-e) ZHV:Hz



An asymptotic lower bound

Theorem 2 (N. Alon)
Givenv; € R4 i=1,2,....n, ||vi| =1, | <vi,v; > | < 68,0 #J,

€ n(1_62)2
>
N= 1+ (n—1)62
1. If6 < O(n~2), N° = O(n),

)
2. IfO(n2) <6 < I, N> O(m log n).
5
Remark

The asymptotic lower bound is sharp. The Johnson-Lindenstraus Lemma
provides the upper bound.



Mar&enko-Pastur law for random matrices

V: a d x n random matrix whose entries are i.i.d random variables with

mean 0 and variance g2 <oo. R
Let A= %VTV and \; > ... > A\, be the eigenvalues of A. Define

1 =«
pn(l) = E#{)\j ely, ICR
Assume n,d — oo and n/d = a € (0,+400), then p, — p weakly, where

w(l) = {(1;)10€/+V(/), if a>1

v(l), fo<a<l1
and
1 M= x)(x— A
dv(x) = \/( i i )13\ 5.1 dx
2mo? ox [A—.A+]
with

Ai = 0?1+ V)



Mar&enko-Pastur law for random matrices

Example: Let V be a d x n standard Gaussian matrix, and A= %VTV.
Suppose n/d — 1. Then p,(1) — p, where

1 (4—x)

X
d/J(X) = 1[0’4] dx

T x

The eigenvalue distribution of A looks like




Explicit formula for random vectors with i.i.d entries

Theorem 3

Given V = [v,Vy,...v,] € RIX" where the entries of V are i.i.d with
mean zero and variance = 0 < co. Let p(x) be the eigenvalue
distribution of A = %VTV from Maréenko-Pastur law, then

n
where y satisfies [{ xdu(x) = o€
Proof.
Key observation:
Svet
Z i —>/ xdp(x)

i=N°+1

Hence we need to find y such that f{, xdu(x) = o2



Numerical test

V is a standard Gaussian matrix with n = %’.

Actual Neps vs. our Calculated Neps shown for a variety of epsilons (variance = 1)

© eps=0.1 actual Neps
——eps=0.1 calculated Neps|
eps=0.2 actual Neps
——eps=0.2 calculated Neps|
eps=0.3 actual Neps
20 | eps=0.3 calculated Neps
© eps=0.4 actual Neps
——eps=0.4 calculated Neps,
eps=0.5 actual Neps
eps=0.5 calculated Neps
© eps=0.6 actual Neps
——eps=0.6 calculated Neps|
eps=0.7 actual Neps
eps=0.7 calculated Neps
© eps=0.8 actual Neps
——eps=0.8 calculated Neps|
eps=0.9 actual Neps
——eps=0.9 calculated Neps|




A dual question

Question: what is the minimal relative r.m.s error if vq,vs,...v, is
embedded into a k dimensional space?

Corollary 4

Given a set of vectors {v;}"_; and k, 0 < k < mind, n, the relative r.m.s.
error for the best k dimensional linear subspace is asymptotically given by

1 y
? 5 XdM(X)’

where y satisfies [{ dpu(x) = 22X,




€ rank approximation

Let R* be the the largest integer such that \/Age > €. Under the same
conditions in Maréenko-Pastur law

€
€

— R +1 7 R 7
i e AN dp(x) or — —1-— dp(x) as n— oo.
n S n pu

Standard Epsilon Rank: Actual Seps vs. our Calculated Seps shown for a variety of epsilons (variance = 1)

© eps=2.5 actual Seps
as0 eps=2.5 calculated Seps )
eps=5 actual Seps

eps=5 calculated Seps
eps=7.5 actual Seps

ETD eps=7.5 calculated Seps
eps=10 actual Seps
eps=10 calculated Seps
250 |- ¢ eps=12.5 actual Seps
eps=12.5 calculated Seps
eps=15 actual Seps "
eps=15 calculated Seps
eps=17.5 actual Seps
eps=17.5 calculated Seps @

°

°




Random vectors with a given covariance structure

Let v; € RY be a sample of the random variable &,i = 1,2, ..., n with
mean zero and covariance C;; = cov(&;, &) = limg_yo0 2v/] v}

If the covariance matrix is of the form C;; = exp(—1 J‘) and let
(Ak,ex), k =1,1,2,...n be the ordered eigen-pairs, it can be shown:

: 1
X . sinh =
ef =cos(jOx + k), Ik =——7F"2"——
] i+ ) g cosh 2 — cos(Hk)

0, — 1 k k+1
where tan(yy) = C()S;;inoekxp(g), 2+ (n+1)0x = km, Oy € (;7‘(’, nilﬂ)'
Hence

n ™ inh L inh 1
Z)‘k_)/ s;niadx Z e — / ) Sllniadx_
pt 0 cosh 2 —cosx Pyt =N° cosh - — cos x

and

€

N 2 1
— — —arctan | tanh [ — | tan (E(l - 62)) as n — o0
n m 20 2



Numerical test
We use the following simple iterative method to solve 8y, with 8¢ = %w.

an—l o
(n+1)8; + 2arctan (M) = k.
sinf,
Then eigenvalue A\ is computed through

sinh T

Ak =

cosh T — cos(fx)”

" d from eigenvalues
+ computed from the limiting distribution

0.1
1]

0.2 0.4 0.6 0.8 1
l/o



Approximation of Random Fields



Separable representation of a random field

Denote a(x,w) a random field, where w € (,%,P) and x € D C R.
One can view a(x,w)

> a(-,w): Q — L>(D), a set of functions on D parametrized by
random variable w € Q,
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Separable representation of a random field

Denote a(x,w) a random field, where w € (,%,P) and x € D C R.
One can view a(x,w)

> a(-,w): Q — L>(D), a set of functions on D parametrized by
random variable w € Q,

> a(x,-): Q— L?(Q,dP), a set of random variables parametrized by
the spatial position x € D.

Separable approximation of a(x,w)

an(x.w) & 3 6n(x) Yalw).



Intrinsic complexity of a(x, w)

> what is the minimum number of terms needed in the expansion (by
choosing the proper ¢,, Y,) for a given tolerance?

> a(x,w) as a set of random variables (functions) parametrized by
x € D (w € Q), what is the least dimension of a linear space that
can approximate this set of random variables (functions) to a given
tolerance.



Karhumen-Loéve (KL) expansion
Assume a(x,w) € L?(D x Q),i.e.,| a2 < cc.
The mean field, E;(x), and covariance, C,(x, y):

E() = [ alx)dP(e). Cix.y) / o3 )~ Ex(l[aly )~ Ex( ) dP()
C,(x,y) defines a compact, self-adjoint and non-negative operator C,:

(Cau)(x / Ca(x,y)u(y)dy, Yue L*(D)
Let (An, en(x)),n=1,2,... be the eigen-pairs associated with C,, with

A1 > A2 > ... >N, — 0. ey(x) form an orthonormal basis of L?(D).
KL expansion of the random field a(x, w) is

a(x,w) = E;(x) + Z vV Anen(x) Yn(w
n=1
and Y,(w) satisfy

Yo(w) = — /D(a(x,w)—Ea(x))en(x)dx, E[Y,)] =0, E[YnYs] = mn



KL approximation

For simplicity, assume a(x,w) is centered, i.e., E;(x) = 0.

» Truncated KL expansion is the best separable approximation of
a(x,w) in L(D x Q),

N
la=> " VAnen(x) Ya(w)l5 = la—Pvgsalls = Z An,
n=1

VCH, d|m V=N
n=N+1

where H = [%(D), S = L?(Q, dP) and Pygsa denotes the L2
projection of ain V ® S.

> A= Haugz/ Ca(x, x)dx.
n=1 b

> Analogous to SVD of a matrix.



Lower bound and a scaling law for random fields
Definition Given € >0, N* =minn, s.t. 3.~ . A\p < 3% Am

» N°is the minimum number of terms needed in a separable
approximation to achieve a relative r.m.s error € in L2(D x Q).

» If V C L?(D) is a linear space and % < e then dim V > N°.

Theorem 5
¢ (fD G (X x)dx) 2 2 ||3||2
NE > (1 — 1-—
M=t ffDxD (x, y)dxdy = ffDxD (x, y)dxdy
Theorem 6

For a stationary random field a(x,w), x € D C RY, D compact, with
Ca(x,y) = F(*3%) and [, F(x)dx < oo, then Ic(D, f,€) >0

N> ¢(D,f,e)079¢ aso—0. (1)



Asymptotic bound as ¢ — 0

> Another interesting question: given a random field a(x,w), the
number of terms needed in a separable approximation as the
tolerance € — 0.

> A typical constructive approach to show high separability as € — 0 is
based on smoothness assumption: use polynomial basis for separable
approximation and show an upper bound of polylog of € ! type.
= low rank strucutes can be exploited in the discretized linear
system.

> For example, by assuming certain smoothness (or regularity) of the
covariance matrix, Ca(x, y), a decay rate of the eigenvalues of KL
expansion was shown by C. Schwab and R. A. Todor (2006) and
generalized multipole methods were developed.



Approximation theory

Lemma Let H be a Hilbert space and C be a symmetric, non-negative
and compact operator whose eigenpair sequence is (Am, @m)m>1. if Cm is
an operator of rank at most m, then

Amt1 < [IC = Crll

Approximation theory. Let S/’ denote the space of piecewise polynomial
functions of degree p on a quasi-uniform triangulation 7}, of mesh size h
for D. Denote by n = dimSf = O(h~?) its dimension. Let

Py : L2(D) — SE(D) be the L2(D) projection.

> If f € HP(D)
|f — Pufllizpy < Cn~ 4 as h— 0,
» if f is analytic, there are ¢, C > 0 on a fixed triangulation 7T, of D,

|f — Pufll 20y < Cexp(—cnd), as p — oo.



Decay rate for the eigenvalues of KL expansion based on
the smoothness of the covariance function

Approximate (C,u)(x) = /D C.(x,y)u(y)dy Yue L*(D)
by (PwCs)u: L*(D) — SP(D)
= the rank of P,C, is the dimension of S”(D),
> if Cy(x,y) is analytic, 0 < A\, < G exp(—cln%).
> if Ci(x,y)is HP, 0 < A, < Gn~a.
cf: Schwab & Todor 06



Upper bound and its scaling law

Theorem 7
For a stationary random field a(x,w), x € D C RY, D compact, with
Ca(x,y) = f(*3%), we have upper bounds for N, as o — 0,

1. if f € HP(RY), p > d: N° < C(D, f,d,e)o Mz,
2. if f is analytic in RY: N° < C(D, f,d,e)o"9|logol9.

Remarks

» For f analyticin R =0< )\, < G exp(fclni), the key is to show
a = O(0), which needs the fact that f is a positive function
= f(t) = [pa € dp(€) for some p(€) > 0 with exponential decay.

> For f analytic, both upper and lower bounds for N¢ are sharp.



Upper bound in terms of approximation error

Theorem 8
For a stationary random field a(x,w), x € D C RY, D compact, with
Ca(x,y) = f(x — y), we have upper bounds for N, as ¢ — 0,

1. iff is HP and p > d: N° < C(D, f,d)e? .
2. if f is analytic: N < C(D, f,d)|loge|9.



Numerical tests

We study the eigenvalue behavior for the two often-used covariance
function for random fields:

Ix —yl?
—)

o2

6{7 = exp(— 6{7 = exp(

The covariance matrix is discretized on regular grids with a grid size

h=2,i.e., r grid points per o.

Def. N =minn, s.t. Y7 Am <X 071 Am.

We show N° for (1) different r with a fixed o, and (2) different o with
fixed r, with D= unit interval, unit square, and unit sphere.



1D example: x,y € [0, 1]

ular value threshalding for kernel K (r, ) = ¢ 50 = 0,022,y € [0,1]

00000000

% 3 i3
number of ponts per o

£ value throshalding for keruel K

002,y e 0,1]

* 5600000000000000000000000000000000000
o

&

5 0 i 20 % E] E3
number of points per o

N€ vs r with fixed o

e throsholding for kernel K (. )

veal

S R
el
S
incar
2000
1500
B
1000
oo
W% % % 0 b w0 i %
€
N€ vs o




2D example: x,y € [0,1] x [0, 1]

singular value thresholding for kernel K (z.) = e 575 o
o|
o)
y 7
&) e,
o
50|
o
o o
o 0o 0 o o , o o o
5
number of ponts per o
singular value throsholding for kernel K (r,y) = ¢ =0 = 0.1,y € [0.1] % [0,1]
3
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A T e e s
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| T I TP P
° o
° © 0 0 o o o o
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number of points per o
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e kornel K (z,y) = e 57,y € [0,1) (0.1

o =03
+ 02
+ 01

auadratic 1t

)

singular value thresholding for kernel K (+, 3]

2y e 10,1 % (0,1




2D example: x,y € S,

throsholding for kernol K (r.y) = ¢ [RCENTS
a00) e e P
350 *
300
2y 250 N
o o o o o
200 . o o ©° °
o
o
150 o
100
number of ponts per o

singular value thresholding for kernel & (r. ) 015,50
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as0) e,
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N€ vs r with fixed o
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4000]
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Intrinsic Complexity for High Frequency Wave Fields



Approximate separability of the Green's function
Let G(x,y) be the Green's function of a linear PDE

L,G(x,y) =d6(x—y) + boundary condition, x,y € QC R?

Approximate separability of G(x,y): given two disjoint domains
X,Y CQcC RY Ve >0, there is a smallest N¢ and
f(x), g(y), I =1,2,..., N st.

NE
G(x,y) — Z fi(x)gi(y) <e (xy)eXxY.
=1 XxY



Approximate separability of the Green's function
Let G(x,y) be the Green's function of a linear PDE

L,G(x,y) =d6(x—y) + boundary condition, x,y € QC R?

Approximate separability of G(x,y): given two disjoint domains
X,Y CQcC RY Ve >0, there is a smallest N¢ and
f(x), g(y), I =1,2,..., N st.

Ne
G(x,y) — Z fi(x)gi(y) <e (xy)eXxY.
=1 XxY

> V = span{fi(-)} is a linear space of the least dimension N° that

approximates the family of functions G(-,y) on X Vy € Y to € error.

> N¢ manifests the intrinsic complexity of the PDE.

Lu—h = u(x>=/ Gix,y)h(y)dy=3" f/(X)/ &(y)h(y)dy + 0(e)
Q e} Q



Implication to developing fast algorithms

High separability = existence of low rank approximation for the
discretized linear system.

> Dense matrix vector multiplications, e.g., fast multipole methods,
convolution, boundary integral methods, Fourier integral operators,

after discretization

PDE Lu=f = Ax=b

» Each columns of A~! is ~ a Green’s function.

» Low rank structure for off-diagonal blocks of A~! can be
explored to develop fast algorithms for solving the linear
system such as hierarchical matrix method and structured

inverse method.



Previous work on approximate separability

Show upper bounds for high separability N < O(| log€|?).

» Construct separable approximation using explicit expression of
G(x,y) and asymptotic expansions with fast convergence, e.g. fast
multipole method, butterfly algorithm, ...

» M. Bebendorf and W. Hackbusch'03 proved approximate
separability in Ly norm for Green's function of strict elliptic operator

d
Lu= Z @(aij&u)
ij=1
with L., coefficients on two disjoint compact sets X, Y

N, < |logeldt?

—€ v

Key point: Caccioppoli inequality for ||V ul|2 in term of ||u]|2.



Helmholtz equation in high frequency limit

Helmholtz equation (HE):
AG(x,y) + K2n?(x)G(x,y) =6(x —y) + b.c.
3D free space (n(x) = 1) Green’s function,

1 eklx—yl

G =——

0(x7y) A |X—y|
In high frequency regime (k>>1), we show

» the Green's function is far from highly separable = the intrinsic
degree of freedom is large!



Approximate separability of the Green's function for HE in
the high frequency limit
Main results

> An explicit characterization of the relation between two Green's
functions.

A A dil
<G(y1), G y2) >x| S (klyi—y2l) ™, o= ——,d =dim(X)

as k|y; — y2| = 00, where  G(x,y) = Hg((')f;’);)HZ'

» Lower and upper bound estimates.
For two compact manifolds X and Y with dim(X) > dim(Y) =d

x
N
. Q
Q
A
l\j\m

kIt > N > k — 0o
k4=, a>9,V¥5§>0

» Explicit estimates and their sharpness for setups that are commonly
used in practice.



Relation between two Green's functions

Due to fast oscillations, two Green's functions with sources separated
more than one wavelength are almost orthogonal /decorrelated.



Relation between two Green's functions

Due to fast oscillations, two Green's functions with sources separated
more than one wavelength are almost orthogonal/decorrelated.

Theorem 9
Assume X C RY,d = 2,3 is a compact domain. Depending on the
positions of y1,y» relative to X and its boundary, there is some a > 0

such that
~ ~ B d-—1 d+1
< Go(+,¥1); Go(+, y2) >| S (klyr — y2|) ™, —5 <a< —— (2)

as k|y1 — y2| = oco. The constant in < depends on X and the distances
from y1,y, to X.

N : :
Y M Y r

case 1: ray through y1, yo not intersecting X case 2: ray through yj, yp intersecting X



Remarks

» Two Green's functions in heterogeneous media behave similarly
based on geometric optics ansatz.

» X can be a compact embedded manifold. Generically,

dim(X)
5

< 6(y1), 6(y2) >x| S (Klys = y2l) ™, a2

if the ray through yi,y> intersects X a finite number of times.

N

ray

» Scaling argument: if p = dlg;&yil_) < 1, k is rescaled to pk (or p?k).

» Implication for imaging resolution from the decorrelation rate of two
Green's functions: in plane resolution is better than range resolution.



Approximate embedding of a set of vectors

Denote V = [vi,v2,...,vy] and A= VTV, apn, =< vy, v, >.
Let Ay > ... > Ay > 0 be the eigenvalues of A and u; be the
corresponding eigenvectors, then

tr(A) = Zrl:lq:1 Am = Zﬁ,\i:l ||Vm||%

N

N . N
D omet IVm — P§,Vm||§ = MINg, dim(S))=! Y omet IVm — 'DS/Vm”% = Zm:l+1 Ams

where Pg v denotes projection of v in S) = span{u;}_;.

Def. Given 1 > ¢ >0, N =minM, s.t. S A, <N _ A,

Assume 0 < ¢ < |[vp|l2 < € < 00,Vm, if a linear subspace 5¢ satisfies

N N N
\/Zm_l ”VmN_'DSEVm”% <ce = Zm:/\/H—l Am < Zm:l HVm_PSEVm”% <

N — N
Zm:l )\m Zm:l H"m”%

then dim(S5¢) > N°.

62



Approximation of Green's functions sampled on a grid

Lemma 10 (key lemma)

Let X, Y be two disjoint compact embedded manifolds.
dim(X) > dim(Y) = d. For any two points y1,y» € Y assume

| < G(oy1), G(y2) > | S (Klyn —yal) ™ as klys —ya| = o0

for some o > 0, then there are pointsy, € Y, m=1,2,...,N§ ~ kd—o
such that for the set of Green's functions { G(x, ym)},I:If:1 C Ly(X) and
matrix A=< G(-,Ym), G(-,¥n) >

(1- 22K, a<
Ni Z 2)\2 . d—6 d (3)
(1—6 ) ke y 062 bR

for any 0 < § < 1 and arbitrary close to 0, as k — oo, where the
constants in < and 2, only depend on X, Y.



Key idea of the proof

> Take y,, to be the grid points on a grid with grid size ~ k=145,

> For a given point y,,, divide all other points into groups according

to their distances to yp,.
Sy

A\

S
2 N

/Y




Lower bound for approximate separability

Theorem 11 (main theorem)

Let X, Y be two compact embedded manifolds. dim(X) > dim(Y) = d.
For any two points y1,y> € Y, assume

| < G(oy1), G(oy2) > [ S (klyr —y2|) ™, as klys — ya| — oo

If there are fi(x) € La(X), gi(y) € Lo(Y), I =1,2,..., Ni such that

Goxy)— S A(ai(y) <e

Ly(XXY)

then
ck®, a<4,
N > as k — oo
ckd ™, >4,

[SISN

for any ¢ arbitrary close to 0 as k — oo, where c. > c(1 — (Ce)?)? for
some positive constants ¢ and C that only depend on X, Y and n(x).



Proof based on a two grid approach

Ym,n

Y

[ 3820 |

:T:F:Fi X

f##i ’




Upper bound for approximate separability

Theorem 12

Let X, Y be two compact embedded manifolds. dim(X) > dim(Y) = d.
For any e >0, 3 fi(x) € La(X),gi(y) € Lo(Y),/ =1,2,..., Nf < kd+°
such that

Nk
G(x,y) = Y _fi(x)aly) <e
=1 Ly(XXY)
for any § > 0 and arbitrary close to 0 as k — oo.

Proof: Use interpolation of Green's functions sampled on a grid with a
grid size h = k=179,
Y X

. G(x.y)
\




Upper bound using Weyl's formula

Let um(x), [[tumll,(@) =1, m =1,2,... be the eigenfunctions for
Auy(x) = Aup(x), x€Q, up(x)=0,x¢€9Q

with eigenvalues 0 > Ay > Ay > .... The Weyl's asymptotic formula

42 m?/d

Am| & ————
Anl > (¢ a7

U is also the eigenfunction for the homogeneous Helmholtz operator
with eigenvalue \,, + k?. Assuming Q is not resonant

= 3" O+ k) um(y)m(x)



Lower and upper bounds in L., for approximate separability

if X, Y are two disjoint compact embedded manifolds, the same lower
and upper bounds in L., for approximate separability hold.



Examples

» X and Y are two disjoint compact 3D domains, d = 3. In general
<G(y1), G(y2)> [ S(klyr — o)t = K2 SN S K

» X and Y are two disjoint compact surfaces in 3D, d =2, e.g.,
boundary integral method, multi-frontal method. In general

[<G(iy1), Gloy2) >[Sklyi—yo)H = K70 S N S K (sharp!).

Three examples for homogenous free space Green's functions:

- ) [f

(a)ksﬂi§k2+5 (b) k2 ‘5<N€ <k2+6 k2 6<N€<k2+5




k dependent special setups for high separability

Key: k dependent setup so fast osscilation in the phase is not felt.

Assume G(x,y) = A(x,y)e*?¥) = Find ¢;(x) and ¢ (y) s.t.
k(p(x,y)—@1(x)—2(y)) is uniformly bounded with respect to
x € X,y € Y and k.

So the phase difference

k(o(x,y1) — ¢(x,y2))
= k(2(y1) —p2(y2)) +k[(A(x, y1) = d1(x) = d2(y1)) — (A(%, y2) — d1(x) — 2(y2))]

is a constant phase + bounded variation.



Special setups for high separability: two thin cylinders

X and Y are two collinear separated narrow tubes (similar to a 2D case
by Martinsson-Rokhlin'07).

Let p = infxexyey(rx — ry) and T = supyex yey V&2 + 12, Assume
kT < %,u = % < % Take ¢1(x) = —rx, p2(y) = 1y

klp(x,y) — ¢1(x) — da(y)| = k(jx —y| — (ry — 1)) < 2k7 =1

= Ni < |loge|™
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Special setups for high separability: butterfly algorithm

Butterfly algorithm setup is sharp! Butterfly algorithm for computing
highly oscillatory Fourier integral operators (Candes, Demanet and Ying'
09) and boundary integrals for HE (Michielssen-Boag'96,Luo-Qian’'14). A
dyadic decomposition of X, Y and pairing of their subdomains,

A C X,B C Y such that |A||B| S 1/k.

— '..\ Pl T

%*/ \_ W

Fop dawn Tx T Bottom up

Key observations
1 k|o(x,y) — ¢(x0,Y) — &(x, ¥o) + ¢(Xo, Yo)]| is uniformly bounded for all
k, x € X,y € Y, where xp,yq are the centers of X, Y respectively. =
low rank approximation O(] log€|*)
2: scaling argument=> sharpness of thle condition
< —mi <k 2 .
Z?JL(B)LT\E{/;ﬁOr(leUAL Bl) <k }:>k is scaled to 7dlst(X vy = O(1).



Numerical test

Let Ay > Mo, ..

., > Ay be the singular values of matrix Ayxy with

Aij = G¥(xi,y;), where x; € X,y; € Y are two discrete grids of X, Y
respectively with a grid size h resolving the wavelength.

Def. Given 1 > ¢ >0, N =minM, s.t. S0 A2 <3N A2

N{ vs. wave number k

two coplanar squares two squares two parallel squares
o =10 ° £=107° o =10
500
| *oe=107 * e=107 + e=107
+ 102 wo| + ggg? wnl + em102
1of - linear fit — quadratic fit — quadratic fit
— quadratic fit
o) 150 ol
B o0
ol
) o0
«l o
° @ 200
| / ) .

wave number k

(a) 2 coplanar squares

wave number k

(b) 2 perpendicular squares

wave number k

(C) 2 parallel squares



Numerical test

NS, vs. wave number k

Ed 00 50 D E3 E3 I TR E— Eg W w0
wave number k vave number k wave number k

(a) 1 line & 1 sphere (b) 2 shperes (c) 2 thin cylinders




What is the take so far?

» Green's functions of the Helmoholtz equation decorrelate fast when
their sources are separated more than a wavelength in the high
frequency limit.

> Lower bounds of the approximate separability of the Green's function
<> the dimension of the best linear subspace to approximate a
family of Green's function increases as some power of k as k — oc.

» Sharpness of the bounds: Let X, Y be two disjoint compact
domains with dim(X) > dim(Y) = d. If two Green's functions
decorrelate fast,

N

. . d
| < G('vyl)’ G('7Y2) > | N (k‘)ﬁ - Y2|) , aZ> 5

then
k9= < NS < k90 e > 0.



Thank you!



