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The intrinsic complexity of a set in a metric space

Given a set S in a metric space W, its intrinsic complexity can be
characterized by

I The dimension Nε of the best linear space V ⊂ W that can
approximate S to an ε error.

I The Kolmogorov n-width: the distance between S and the best
linear space of dimension n in W .

I The Kolmogorov Nε-width of S is ε.
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Outline

Bounds and scaling laws for Nε.

I Approximation of random vectors and random fields (Jennifer
Bryson, Z., & Yimin Zhong, SIAM MMS ).

I Approximation of high frequency wave fields (Bjorn Engquist & Z.,
CPAM).



Approximation of Random Vectors



Approximate embedding of vectors
V = [v1, v2, . . . , vn] ∈ Rd×n, A = V TV ∈ Rn×n, aij =< vi , vj >.
λ1 ≥ . . . ≥ λn ≥ 0 e-values, ui e-vectors of A, S l = span{ui}li=1

tr(A) =
∑n

m=1 λm =
∑n

m=1 ‖vm‖2
2∑n

m=1 ‖vm − PS l
vm‖2

2 = minSl ,dim(Sl )=l

∑n
m=1 ‖vm − PSl

vm‖2
2 =

∑n
m=l+1 λm,

Def. Given 1 ≥ ε > 0, Nε = minM, s.t.
∑n

m=M+1 λm ≤ ε2
∑n

m=1 λm.

⇒
∑n

m=1 ‖vm−PSNε
vm‖2

2∑n
m=1 ‖vm‖2

2

≤ ε2

{v1, v2, . . . , vn} can be embedded into SNε = span{ui}N
ε

i=1 with a relative
r.m.s. error ε.



A general lower bound

Theorem 1
Given vi ∈ Rd , i = 1, 2, . . . , n,

Nε ≥
(
∑n

i=1 ||vi ||22)2(1− ε2)2∑n
i,j=1(vi · vj)2

Proof.
On one hand,

n∑
i,j=1

(vi · vj)2 = tr(ATA) =
n∑

i=1

λ2
i ≥

Nε∑
i=1

λ2
i ≥

1

Nε

( Nε∑
i=1

λi
)2
.

On the other hand,

Nε∑
i=1

λi ≥ (1− ε2)
n∑

i=1

λi = (1− ε2)
n∑

i=1

||vi ||22.



An asymptotic lower bound

Theorem 2 (N. Alon)
Given vi ∈ Rd , i = 1, 2, . . . , n, ‖vi‖ = 1, | < vi , vj > | ≤ δ, i 6= j ,

Nε ≥ n(1− ε2)2

1 + (n − 1)δ2
.

1. If δ ≤ O(n−
1
2 ), Nε = O(n),

2. If O(n−
1
2 ) ≤ δ < 1

2 , Nε ≥ O( 1
δ2 log( 1

δ )
log n).

Remark

The asymptotic lower bound is sharp. The Johnson-Lindenstraus Lemma

provides the upper bound.



Marčenko-Pastur law for random matrices

V : a d × n random matrix whose entries are i.i.d random variables with
mean 0 and variance σ2 <∞.
Let Â = 1

dV
TV and λ̂1 ≥ ... ≥ λ̂n be the eigenvalues of Â. Define

µn(I ) =
1

n
#{λ̂j ∈ I}, I ⊂ R.

Assume n, d →∞ and n/d → α ∈ (0,+∞), then µn → µ weakly, where

µ(I ) =

{
(1− 1

α )10∈I + ν(I ), if α > 1

ν(I ), if 0 ≤ α ≤ 1

and

dν(x) =
1

2πσ2

√
(λ̂+ − x)(x − λ̂−)

αx
1[λ̂−,λ̂+] dx

with
λ̂± = σ2(1±

√
α)2.



Marčenko-Pastur law for random matrices

Example: Let V be a d × n standard Gaussian matrix, and Â = 1
dV

TV .
Suppose n/d → 1. Then µn(I )→ µ, where

dµ(x) =
1

2π

√
(4− x)x

x
1[0,4] dx

The eigenvalue distribution of A looks like



Explicit formula for random vectors with i.i.d entries

Theorem 3
Given V = [v1, v2, ...vn] ∈ Rd x n where the entries of V are i.i.d with
mean zero and variance = σ2 <∞. Let µ(x) be the eigenvalue
distribution of Â = 1

dV
TV from Marčenko-Pastur law, then

Nε

n
n→∞−→

∫ λ̂+

y

dµ(x),

where y satisfies
∫ y

λ̂−
xdµ(x) = σ2ε2.

Proof.
Key observation:

1

n

n∑
i=Nε+1

λ̂i →
∫ λ̂Nε+1

λ̂−

xdµ(x)

Hence we need to find y such that
∫ y

λ̂−
xdµ(x) = σ2ε2.



Numerical test

V is a standard Gaussian matrix with n = d
4 .



A dual question

Question: what is the minimal relative r.m.s error if v1, v2, ...vn is
embedded into a k dimensional space?

Corollary 4
Given a set of vectors {vi}ni=1 and k, 0 < k < min d , n, the relative r.m.s.
error for the best k dimensional linear subspace is asymptotically given by√

1

σ2

∫ y

λ̂−

xdµ(x),

where y satisfies
∫ y

λ̂−
dµ(x) = n−k

n .



ε rank approximation
Let Rε be the the largest integer such that

√
λRε ≥ ε. Under the same

conditions in Marčenko-Pastur law

n − Rε + 1

n
→
∫ ε2

d

λ̂−

dµ(x) or
Rε

n
→ 1−

∫ ε2

d

λ̂−

dµ(x) as n→∞.



Random vectors with a given covariance structure
Let vi ∈ Rd be a sample of the random variable ξi , i = 1, 2, . . . , n with
mean zero and covariance Ci,j = cov(ξi , ξj) = limd→∞

1
d vT

i vj .

If the covariance matrix is of the form Ci,j = exp(− |i−j|σ ) and let
(λk , ek), k = 1, 1, 2, . . . n be the ordered eigen-pairs, it can be shown:

ekj = cos(jθk + ψk), λk =
sinh 1

σ

cosh 1
σ − cos(θk)

where tan(ψk) =
cos θk − exp( 1

σ )

sin θk
, 2ψk+(n+1)θk = kπ, θk ∈ (

k

n
π,

k + 1

n + 1
π).

Hence

n∑
k=1

λk →
∫ π

0

sinh 1
σ

cosh 1
σ − cos x

dx
n∑

k=Nε

λk →
∫ π

πNε

n

sinh 1
σ

cosh 1
σ − cos x

dx .

and

Nε

n
→ 2

π
arctan

(
tanh

(
1

2σ

)
tan
(π

2
(1− ε2)

))
as n→∞



Numerical test
We use the following simple iterative method to solve θk , with θ0

k = k
nπ.

(n + 1)θnk + 2 arctan

(
cos θn−1

k − exp τ

sin θn−1
k

)
= kπ.

Then eigenvalue λk is computed through

λk =
sinh τ

cosh τ − cos(θk)
.



Approximation of Random Fields



Separable representation of a random field

Denote a(x , ω) a random field, where ω ∈ (Ω,Σ,P) and x ∈ D ⊂ Rd .
One can view a(x , ω)

I a(·, ω) : Ω→ L∞(D), a set of functions on D parametrized by
random variable ω ∈ Ω,

I a(x , ·) : Ω→ L2(Ω, dP), a set of random variables parametrized by
the spatial position x ∈ D.

Separable approximation of a(x , ω)

aN(x , ω) ≈
N∑

n=1

φn(x)Yn(ω),
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Intrinsic complexity of a(x , ω)

aN(x , ω) ≈
N∑

n=1

φn(x)Yn(ω),

I what is the minimum number of terms needed in the expansion (by
choosing the proper φn,Yn) for a given tolerance?

I a(x , ω) as a set of random variables (functions) parametrized by
x ∈ D (ω ∈ Ω), what is the least dimension of a linear space that
can approximate this set of random variables (functions) to a given
tolerance.



Karhumen-Loéve (KL) expansion
Assume a(x , ω) ∈ L2(D × Ω), i .e., ‖a‖2 <∞.
The mean field, Ea(x), and covariance, Ca(x , y):

Ea(x) =

∫
Ω

a(x , ω)dP(ω), Ca(x , y) =

∫
Ω

[a(x , ω)−Ea(x)][a(y , ω)−Ea(y)]dP(ω)

Ca(x , y) defines a compact, self-adjoint and non-negative operator Ca:

(Cau)(x) =

∫
D

Ca(x , y)u(y)dy , ∀u ∈ L2(D)

Let (λn, en(x)), n = 1, 2, . . . be the eigen-pairs associated with Ca, with
λ1 ≥ λ2 ≥ . . . ≥ λn · · · → 0. en(x) form an orthonormal basis of L2(D).
KL expansion of the random field a(x ,w) is

a(x ,w) = Ea(x) +
∞∑
n=1

√
λnen(x)Yn(ω),

and Yn(ω) satisfy

Yn(ω) =
1√
λn

∫
D

(a(x , ω)−Ea(x))en(x)dx , E [Yn] = 0, E [YmYn] = δmn.



KL approximation

For simplicity, assume a(x , ω) is centered, i.e., Ea(x) = 0.

I Truncated KL expansion is the best separable approximation of
a(x , ω) in L2(D × Ω),

‖a−
N∑

n=1

√
λnen(x)Yn(ω)‖2

2 = inf
V⊂H,dim V=N

‖a−PV⊗Sa‖2
2 =

∞∑
n=N+1

λn,

where H = L2(D),S = L2(Ω, dP) and PV⊗Sa denotes the L2

projection of a in V ⊗ S .

I
∞∑
n=1

λn = ‖a‖2
2 =

∫
D

Ca(x , x)dx .

I Analogous to SVD of a matrix.



Lower bound and a scaling law for random fields

Definition Given ε > 0, Nε = min n, s.t.
∑∞

m=n+1 λm ≤ ε2
∑∞

m=1 λm.

I Nε is the minimum number of terms needed in a separable
approximation to achieve a relative r.m.s error ε in L2(D × Ω).

I If V ⊂ L2(D) is a linear space and ‖a−PV⊗Sa‖2

‖a‖2
≤ ε then dimV ≥ Nε.

Theorem 5

Nε ≥ (1− ε2)2

(∫
D
Ca(x , x)dx

)2∫∫
D×D C 2

a (x , y)dxdy
= (1− ε2)2 ‖a‖4

2∫∫
D×D C 2

a (x , y)dxdy

Theorem 6
For a stationary random field a(x , ω), x ∈ D ⊂ Rd , D compact, with
Ca(x , y) = f ( x−y

σ ) and
∫
Rd f

2(x)dx <∞, then ∃c(D, f , ε) > 0

Nε ≥ c(D, f , ε)σ−d , as σ → 0. (1)



Asymptotic bound as ε→ 0

I Another interesting question: given a random field a(x , ω), the
number of terms needed in a separable approximation as the
tolerance ε→ 0.

I A typical constructive approach to show high separability as ε→ 0 is
based on smoothness assumption: use polynomial basis for separable
approximation and show an upper bound of polylog of ε−1 type.
⇒ low rank strucutes can be exploited in the discretized linear
system.

I For example, by assuming certain smoothness (or regularity) of the
covariance matrix, Ca(x , y), a decay rate of the eigenvalues of KL
expansion was shown by C. Schwab and R. A. Todor (2006) and
generalized multipole methods were developed.



Approximation theory

Lemma Let H be a Hilbert space and C be a symmetric, non-negative
and compact operator whose eigenpair sequence is (λm, φm)m≥1. if Cm is
an operator of rank at most m, then

λm+1 ≤ ‖C − Cm‖

Approximation theory. Let Sp
h denote the space of piecewise polynomial

functions of degree p on a quasi-uniform triangulation Th of mesh size h
for D. Denote by n = dimSp

h = O(h−d) its dimension. Let
Ph : L2(D)→ Sp

h (D) be the L2(D) projection.

I If f ∈ Hp(D)

‖f − Phf ‖L2(D) ≤ Cn−
p
d as h→ 0,

I if f is analytic, there are c ,C > 0 on a fixed triangulation Th of D,

‖f − Phf ‖L2(D) ≤ C exp(−cn 1
d ), as p →∞.



Decay rate for the eigenvalues of KL expansion based on
the smoothness of the covariance function

Approximate (Cau)(x) =

∫
D

Ca(x , y)u(y)dy ∀u ∈ L2(D)

by (PhCa)u : L2(D)→ Sp
h (D)

⇒ the rank of PhCa is the dimension of Sp
h (D),

I if Ca(x , y) is analytic, 0 ≤ λn ≤ C1 exp(−c1n
1
d ).

I if Ca(x , y) is Hp, 0 ≤ λn ≤ C3n
− p

d .

cf: Schwab & Todor 06



Upper bound and its scaling law

Theorem 7
For a stationary random field a(x , ω), x ∈ D ⊂ Rd , D compact, with
Ca(x , y) = f ( x−y

σ ), we have upper bounds for Nε, as σ → 0,

1. if f ∈ Hp(Rd), p > d: Nε ≤ C (D, f , d , ε)σ−(1+ d
2(p−d) )d .

2. if f is analytic in Rd : Nε ≤ C (D, f , d , ε)σ−d | log σ|d .

Remarks

I For f analytic in Rd ⇒ 0 ≤ λn ≤ C1 exp(−c1n
1
d ), the key is to show

c1 = O(σ), which needs the fact that f is a positive function
⇒ f (t) =

∫
Rd e

iξ·tdµ(ξ) for some µ(ξ) > 0 with exponential decay.

I For f analytic, both upper and lower bounds for Nε are sharp.



Upper bound in terms of approximation error

Theorem 8
For a stationary random field a(x , ω), x ∈ D ⊂ Rd , D compact, with
Ca(x , y) = f (x − y), we have upper bounds for Nε, as ε→ 0,

1. if f is Hp and p > d: Nε ≤ C (D, f , d)ε
2d

d−p .

2. if f is analytic: Nε ≤ C (D, f , d)| log ε|d .



Numerical tests

We study the eigenvalue behavior for the two often-used covariance
function for random fields:

C̃σ = exp(−|x − y |2

σ2
), Ĉσ = exp(−|x − y |

σ
)

The covariance matrix is discretized on regular grids with a grid size
h = σ

r , i.e., r grid points per σ.

Def. Nε = min n, s.t.
∑∞

m=n+1 λm ≤ ε2
∑∞

m=1 λm.

We show Nε for (1) different r with a fixed σ, and (2) different σ with
fixed r , with D= unit interval, unit square, and unit sphere.



1D example: x , y ∈ [0, 1]
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2D example: x , y ∈ [0, 1]× [0, 1]
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2D example: x , y ∈ S2
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Intrinsic Complexity for High Frequency Wave Fields



Approximate separability of the Green’s function
Let G (x, y) be the Green’s function of a linear PDE

LxG (x, y) = δ(x− y) + boundary condition, x, y ∈ Ω ⊆ Rd

Approximate separability of G (x, y): given two disjoint domains
X ,Y ⊆ Ω ⊂ Rd , ∀ε > 0, there is a smallest Nε and
fl(x), gl(y), l = 1, 2, . . . ,Nε, s.t.∥∥∥∥∥∥G (x, y)−

Nε∑
l=1

fl(x)gl(y)

∥∥∥∥∥∥
X×Y

≤ ε, (x, y) ∈ X × Y .

I V = span{fl(·)} is a linear space of the least dimension Nε that
approximates the family of functions G (·, y) on X ∀y ∈ Y to ε error.

I Nε manifests the intrinsic complexity of the PDE.

Lxu=h ⇒ u(x)=

∫
Ω

G (x, y)h(y)dy =

Nε∑
l=1

fl(x)

∫
Ω

gl(y)h(y)dy + O(ε)
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Ω
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Nε∑
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fl(x)

∫
Ω

gl(y)h(y)dy + O(ε)



Implication to developing fast algorithms

High separability ⇒ existence of low rank approximation for the
discretized linear system.

I Dense matrix vector multiplications, e.g., fast multipole methods,
convolution, boundary integral methods, Fourier integral operators,
...

I

PDE Lu = f
after discretization

=⇒ Ax = b

I Each columns of A−1 is ≈ a Green’s function.
I Low rank structure for off-diagonal blocks of A−1 can be

explored to develop fast algorithms for solving the linear
system such as hierarchical matrix method and structured
inverse method.



Previous work on approximate separability

Show upper bounds for high separability Nε ≤ O(| log ε|q).

I Construct separable approximation using explicit expression of
G (x, y) and asymptotic expansions with fast convergence, e.g. fast
multipole method, butterfly algorithm, ...

I M. Bebendorf and W. Hackbusch’03 proved approximate
separability in L2 norm for Green’s function of strict elliptic operator

Lu =
d∑

i,j=1

∂j(aij∂iu)

with L∞ coefficients on two disjoint compact sets X ,Y

Nε . | log ε|d+1

Key point: Caccioppoli inequality for ‖∇u‖2 in term of ‖u‖2.



Helmholtz equation in high frequency limit

Helmholtz equation (HE):

∆xG (x, y) + k2n2(x)G (x, y) = δ(x− y) + b.c.

3D free space (n(x) ≡ 1) Green’s function,

G0(x, y) =
1

4π

e ik|x−y|

|x− y|

In high frequency regime (k�1), we show

I the Green’s function is far from highly separable ⇒ the intrinsic
degree of freedom is large!



Approximate separability of the Green’s function for HE in
the high frequency limit

Main results

I An explicit characterization of the relation between two Green’s
functions.∣∣∣< Ĝ (·, y1), Ĝ (·, y2) >X

∣∣∣ . (k |y1−y2|)−α, α =
d ± 1

2
, d = dim(X )

as k |y1 − y2| → ∞, where Ĝ (x, y) = G(x,y)
‖G(·,y)‖2

.

I Lower and upper bound estimates.
For two compact manifolds X and Y with dim(X ) ≥ dim(Y ) = d

kd+δ & Nε
k &

 k2α, α < d
2 ,

kd−δ, α ≥ d
2 , ∀δ > 0

k →∞

I Explicit estimates and their sharpness for setups that are commonly
used in practice.



Relation between two Green’s functions

Due to fast oscillations, two Green’s functions with sources separated
more than one wavelength are almost orthogonal/decorrelated.

Theorem 9
Assume X ⊂ Rd , d = 2, 3 is a compact domain. Depending on the
positions of y1, y2 relative to X and its boundary, there is some α > 0
such that∣∣∣< Ĝ0(·, y1), Ĝ0(·, y2) >

∣∣∣ . (k|y1 − y2|)−α,
d − 1

2
≤ α ≤ d + 1

2
(2)

as k|y1 − y2| → ∞. The constant in . depends on X and the distances
from y1, y2 to X .

X

y
1

y
2 ry

1
y
2

X

case 1: ray through y1, y2 not intersecting X case 2: ray through y1, y2 intersecting X
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Remarks

I Two Green’s functions in heterogeneous media behave similarly
based on geometric optics ansatz.

I X can be a compact embedded manifold. Generically,∣∣∣< Ĝ (·, y1), Ĝ (·, y2) >X

∣∣∣ . (k |y1 − y2|)−α, α ≥ dim(X )

2
,

if the ray through y1, y2 intersects X a finite number of times.

ray

X y
1

y
2 2

ray

X y
1

y

I Scaling argument: if ρ = |y1−y2|
dist(X ,yi )

� 1, k is rescaled to ρk (or ρ2k).

I Implication for imaging resolution from the decorrelation rate of two
Green’s functions: in plane resolution is better than range resolution.



Approximate embedding of a set of vectors

Denote V = [v1, v2, . . . , vN ] and A = V TV , amn =< vm, vn >.
Let λ1 ≥ . . . ≥ λN ≥ 0 be the eigenvalues of A and ui be the
corresponding eigenvectors, then

tr(A) =
∑N

m=1 λm =
∑N

m=1 ‖vm‖2
2∑N

m=1 ‖vm − PS l
vm‖2

2 = minSl ,dim(Sl )=l

∑N
m=1 ‖vm − PSl

vm‖2
2 =

∑N
m=l+1 λm,

where PS l
v denotes projection of v in S l = span{ui}li=1.

Def. Given 1 ≥ ε > 0, Nε = minM, s.t.
∑N

m=M+1 λm ≤ ε2
∑N

m=1 λm.

Assume 0 < c < ‖vm‖2 < C <∞,∀m, if a linear subspace Sε satisfies√∑N
m=1 ‖vm−PSεvm‖2

2

N
≤ cε ⇒

∑N
m=M+1 λm∑N
m=1 λm

≤
∑N

m=1 ‖vm−PSεvm‖2
2∑N

m=1 ‖vm‖2
2

≤ ε2

then dim(Sε) ≥ Nε.



Approximation of Green’s functions sampled on a grid

Lemma 10 (key lemma)
Let X ,Y be two disjoint compact embedded manifolds.
dim(X ) ≥ dim(Y ) = d. For any two points y1, y2 ∈ Y assume

| < Ĝ (·, y1), Ĝ (·, y2) > | . (k |y1 − y2|)−α as k |y1 − y2| → ∞

for some α > 0, then there are points ym ∈ Y ,m = 1, 2, . . . ,Ns
δ ∼ kd−δ

such that for the set of Green’s functions {G (x, ym)}N
s
δ

m=1 ⊂ L2(X ) and

matrix A =< Ĝ (·, ym), Ĝ (·, yn) >

Nε
k &

 (1− ε2)2k2α, α < d
2 ,

(1− ε2)2kd−δ, α ≥ d
2 ,

(3)

for any 0 < δ < 1 and arbitrary close to 0, as k →∞, where the
constants in . and & only depend on X , Y .



Key idea of the proof

I Take ym to be the grid points on a grid with grid size ∼ k−1+ δ
d .

I For a given point ym, divide all other points into groups according
to their distances to ym.

Y

y
m

S1

S2



Lower bound for approximate separability

Theorem 11 (main theorem)
Let X ,Y be two compact embedded manifolds. dim(X ) ≥ dim(Y ) = d.
For any two points y1, y2 ∈ Y , assume

| < Ĝ (·, y1), Ĝ (·, y2) > | . (k |y1 − y2|)−α, as k |y1 − y2| → ∞.

If there are fl(x) ∈ L2(X ), gl(y) ∈ L2(Y ), l = 1, 2, . . . ,Nε
k such that∥∥∥∥∥∥G (x, y)−

Nε
k∑

l=1

fl(x)gl(y)

∥∥∥∥∥∥
L2(X×Y )

≤ ε,

then

Nε
k ≥

 cεk
2α, α < d

2 ,

cεk
d−δ, α ≥ d

2 ,
as k →∞

for any δ arbitrary close to 0 as k →∞, where cε ≥ c(1− (Cε)2)2 for
some positive constants c and C that only depend on X , Y and n(x).



Proof based on a two grid approach

m,n

Ω

Ω
Y

mΩ
Y

Y
m,n

y



Upper bound for approximate separability

Theorem 12
Let X ,Y be two compact embedded manifolds. dim(X ) ≥ dim(Y ) = d.
For any ε > 0, ∃ fl(x) ∈ L2(X ), gl(y) ∈ L2(Y ), l = 1, 2, . . . ,Nε

k . kd+δ

such that ∥∥∥∥∥∥G (x, y)−
Nε

k∑
l=1

fl(x)gl(y)

∥∥∥∥∥∥
L2(X×Y )

≤ ε

for any δ > 0 and arbitrary close to 0 as k →∞.

Proof: Use interpolation of Green’s functions sampled on a grid with a
grid size h = k−1−δ.

j

Y X

y G(x,y )
x

y



Upper bound using Weyl’s formula

Let um(x), ‖um‖L2(Ω) = 1,m = 1, 2, . . . be the eigenfunctions for

∆um(x) = λum(x), x ∈ Ω, um(x) = 0, x ∈ ∂Ω

with eigenvalues 0 > λ1 ≥ λ2 ≥ . . .. The Weyl’s asymptotic formula

|λm| ≈
4π2m2/d

(Cd |Ω|)2/d

um is also the eigenfunction for the homogeneous Helmholtz operator
with eigenvalue λm + k2. Assuming Ω is not resonant

G (x, y) =
∞∑

m=1

(λm + k2)−1um(y)um(x).



Lower and upper bounds in L∞ for approximate separability

if X ,Y are two disjoint compact embedded manifolds, the same lower
and upper bounds in L∞ for approximate separability hold.



Examples

I X and Y are two disjoint compact 3D domains, d = 3. In general

|< Ĝ (·, y1), Ĝ (·, y2)> |.(k |y1 − y2|)−1 ⇒ k2 . Nε
k . k3+δ.

I X and Y are two disjoint compact surfaces in 3D, d = 2, e.g.,
boundary integral method, multi-frontal method. In general

|< Ĝ (·, y1), Ĝ (·, y2)>|.(k |y1−y2|)−1 ⇒ k2−δ . Nε
k . k2+δ (sharp!).

Three examples for homogenous free space Green’s functions:

X Y

X
Y X Y

(a) k . Nε
k . k2+δ (b) k2−δ . Nε

k . k2+δ (c) k2−δ . Nε
k . k2+δ



k dependent special setups for high separability

Key: k dependent setup so fast osscilation in the phase is not felt.

Assume G (x, y) = A(x, y)e ikφ(x,y) ⇒ Find φ1(x) and φ2(y) s.t.
k(φ(x, y)−φ1(x)−φ2(y)) is uniformly bounded with respect to
x ∈ X , y ∈ Y and k .

So the phase difference

k(φ(x, y1)− φ(x, y2))

=k(φ2(y1)−φ2(y2))+k[(φ(x, y1)−φ1(x)−φ2(y1))−(φ(x, y2)−φ1(x)−φ2(y2))]

is a constant phase + bounded variation.



Special setups for high separability: two thin cylinders

X and Y are two collinear separated narrow tubes (similar to a 2D case
by Martinsson-Rokhlin’07).

Let ρ = infx∈X ,y∈Y (rx − ry ) and τ = supx∈X ,y∈Y
√
ξ2 + η2. Assume

kτ < 1
2 , µ = τ

ρ <
1
2 . Take φ1(x) = −rx, φ2(y) = ry

k|φ(x, y)− φ1(x)− φ2(y)| = k(|x− y| − (ry − rx)) < 2kτ = 1

⇒ Nε
k . | log ε|12

Y

rρ

η ξ
τX



Special setups for high separability: butterfly algorithm
Butterfly algorithm setup is sharp! Butterfly algorithm for computing
highly oscillatory Fourier integral operators (Candes, Demanet and Ying’
09) and boundary integrals for HE (Michielssen-Boag’96,Luo-Qian’14). A
dyadic decomposition of X ,Y and pairing of their subdomains,
A ⊆ X ,B ⊆ Y such that |A||B| . 1/k .

Key observations
1: k |φ(x, y)− φ(x0, y)− φ(x, y0) + φ(x0, y0)| is uniformly bounded for all
k, x ∈ X , y ∈ Y , where x0, y0 are the centers of X ,Y respectively. ⇒
low rank approximation O(| log ε|4)
2: scaling argument⇒ sharpness of the condition
|A||B|.1/k⇒ r=min(|A|, |B|).k−

1
2

dist(X ,Y ) = O(1)

}
⇒k is scaled to kr2

dist(X ,Y ) =O(1).



Numerical test

Let λ1 ≥ λ2, . . . ,≥ λN be the singular values of matrix AN×N with
Aij = G k

0 (xi , yj), where xi ∈ X , yi ∈ Y are two discrete grids of X ,Y
respectively with a grid size h resolving the wavelength.

Def. Given 1 ≥ ε > 0, Nε = minM, s.t.
∑N

m=M+1 λ
2
m ≤ ε2

∑N
m=1 λ

2
m.
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Numerical test

Nε
k vs. wave number k
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What is the take so far?

I Green’s functions of the Helmoholtz equation decorrelate fast when
their sources are separated more than a wavelength in the high
frequency limit.

I Lower bounds of the approximate separability of the Green’s function
⇔ the dimension of the best linear subspace to approximate a
family of Green’s function increases as some power of k as k →∞.

I Sharpness of the bounds: Let X ,Y be two disjoint compact
domains with dim(X ) ≥ dim(Y ) = d . If two Green’s functions
decorrelate fast,

| < Ĝ (·, y1), Ĝ (·, y2) > | . (k |y1 − y2|)−α, α ≥ d

2
,

then
kd−δ . Nε

k . kd+δ, ∀δ > 0.



Thank you!


