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Incompressible Neo-Hookean hyperelasticity
Unstructured mesh, 1280 cells, Qd

p × DQp−2, p = 31, d = 2, 3

Want to solve Au = b.

Expression Assembly cost

A O(p2d+1)
b − Au O(pd+1)
diag(A) O(pd+1)
lu(Apatch) O(p3d) Need robust and fast relaxation methods!
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p-multigrid and Fast Diagonalization in Firedrake
PETSc solver options

from firedrake import *

pmg = {"ksp_type": "gmres",

"pc_type": "python",

"pc_python_type": "firedrake.PMGPC",

"pmg_mg_levels_pc_type": "python",

"pmg_mg_levels_pc_python_type": "firedrake.FDMPC", # not merged yet

"pmg_mg_coarse_pc_type": "lu"}

solve(a == L, u, bcs=bcs , solver_parameters=pmg)

Parameter continuation (p-coarse)

Grid sequencing: p-FAS

Nonlinear solver: line search Newton

Linear solver: CG or GMRES

Preconditioner: p-MG

Relaxation: FDM-Schwarz

Coarse grid: LU/GMG/AMG
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Space decomposition: additive Schwarz method

Solve small problems and combine the solutions Ã−1 =
∑J

j=1 R
>
j A−1

j Rj .

Vertex-centered patch Cell-centered patch

Cell-centered patches with fixed overlap layers have decreasing overlap
measure as p →∞, which deteriorates the convergence rate.
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Relaxation methods for high-order FEM

Matrix-free residual computed with O(pd+1) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (Vc = Q1).

For separable problems, the Fast Diagonalization Method (1964) is a
O(pd+1) direct solver. Cannot diagonalize arbitrary vertex patches.

First FDM preconditioner used for static condensation by Couzy (1995).

Hybrid FDM-Schwarz/p-MG with cell-centered patches and non-generous
overlap by Fischer (2000).

Fast solvers 2021 Sparse vertex-star relaxation for high-order FEM 5



Relaxation methods for high-order FEM

Matrix-free residual computed with O(pd+1) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (Vc = Q1).

For separable problems, the Fast Diagonalization Method (1964) is a
O(pd+1) direct solver. Cannot diagonalize arbitrary vertex patches.

First FDM preconditioner used for static condensation by Couzy (1995).

Hybrid FDM-Schwarz/p-MG with cell-centered patches and non-generous
overlap by Fischer (2000).

Fast solvers 2021 Sparse vertex-star relaxation for high-order FEM 5



Relaxation methods for high-order FEM

Matrix-free residual computed with O(pd+1) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (Vc = Q1).

For separable problems, the Fast Diagonalization Method (1964) is a
O(pd+1) direct solver. Cannot diagonalize arbitrary vertex patches.

First FDM preconditioner used for static condensation by Couzy (1995).

Hybrid FDM-Schwarz/p-MG with cell-centered patches and non-generous
overlap by Fischer (2000).

Fast solvers 2021 Sparse vertex-star relaxation for high-order FEM 5



Relaxation methods for high-order FEM

Matrix-free residual computed with O(pd+1) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (Vc = Q1).

For separable problems, the Fast Diagonalization Method (1964) is a
O(pd+1) direct solver. Cannot diagonalize arbitrary vertex patches.

First FDM preconditioner used for static condensation by Couzy (1995).

Hybrid FDM-Schwarz/p-MG with cell-centered patches and non-generous
overlap by Fischer (2000).

Fast solvers 2021 Sparse vertex-star relaxation for high-order FEM 5



Relaxation methods for high-order FEM

Matrix-free residual computed with O(pd+1) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (Vc = Q1).

For separable problems, the Fast Diagonalization Method (1964) is a
O(pd+1) direct solver. Cannot diagonalize arbitrary vertex patches.

First FDM preconditioner used for static condensation by Couzy (1995).

Hybrid FDM-Schwarz/p-MG with cell-centered patches and non-generous
overlap by Fischer (2000).

Fast solvers 2021 Sparse vertex-star relaxation for high-order FEM 5



Finite element discretization of the Poisson equation

Find u ∈ V = H1
0 (Ω) such that

ˆ
Ω
∇u · ∇v dx =

ˆ
Ω
vf dx ∀v ∈ V .

Expand uh =
∑

j ujφj and assemble the stiffness matrix and RHS

Aij =

ˆ
Ω
∇φi · ∇φj dx, bi =

ˆ
Ω
φi f dx.

For Cartesian domains, A has a special tensor product structure:

A =

{
By ⊗ Ax + Ay ⊗ Bx d = 2,

Bz ⊗ By ⊗ Ax + Bz ⊗ Ay ⊗ Bx + Az ⊗ By ⊗ Bx d = 3.

Here A∗ = µ∗Â, B∗ = B̂ for ∗ = x , y , z .
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Relaxation: The Fast Diagonalization Method (FDM)

FDM (Lynch, Rice & Thomas, 1964)

Structured matrix inversion analogous to separation of variables.

Breaks problems down into a sequence of 1D eigenvalue problems.

Direct O(pd+1) solver for Poisson in very simple geometries.

A∗S∗ = B∗S∗Λ∗ for ∗ = x , y , z

A−1 = (Sz ⊗ Sy ⊗ Sx) Λ−1 (Sz ⊗ Sy ⊗ Sx)>.

3 3 7
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The FDM relaxation may be applied only on structured patches.

Structured vertex patch 3 Unstructured vertex patch 7
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How can we extend the FDM to vertex patches?
Numerically construct shape functions that diagonalize the interior block of A.

We split the DOFs {I , Γ}. On the interior I , solve the 1D eigenproblems:

ÂII ŜII = B̂II ŜIIΛII .

We construct the FDM basis functions

Ŝ =

[
ŜII −B−1

II BIΓ

0 1

]
such that the 1D matrices

Ŝ>ÂŜ , Ŝ>B̂Ŝ are sparse.

For Cartesian cells, the basis Ŝ ⊗ Ŝ ⊗ Ŝ sparsifies A. The blocks for the
interior DOFs become diagonal.
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The 1D stiffness matrix connects interior nodes to the interface
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How sparse is A assembled in the new basis?
FDM basis gives rise to an interface stencil.

Vertex patch (p = 4), FDM basis
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Interface DOFs (Γ) are coupled
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the only vertex DOF.
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How sparse is A assembled in the new basis?
FDM basis gives rise to an interface stencil.

Vertex patch (p = 4), FDM basis
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The Cholesky factorization is also sparse.
Fill-in only on the interface block.

1 36 49

nz = 217

1

36

49

S>AS , d = 2

1 36 49

nz = 184

1

36

49

chol(S>AS), d = 2
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The solve phase has O(pd+1) cost.
Factorization needs O(p3(d−1)) operations.

1 216 343

nz = 2107

1

216

343

S>AS , d = 3

1 216 343

nz = 4708

1

216

343

chol(S>AS), d = 3
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Comparing the FDM-patch with a low-order h-FEM preconditioner

The Cholesky factor requires O(p2(d−1)) storage, but 4× less than h-FEM.
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Extending the sparse/FDM technique to non-Cartesian meshes

The new basis does not sparsify A, but we may build a preconditioner P by
replacing the geometry such that each individual cell is approximated by a
Cartesian one.

Cartesian approximation of a vertex patch with 5 cells (p = 4).
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We construct an auxiliary form that is separable and sparse.
The auxiliary problem is spectrally equivalent independent of p.

a(u, v) =
∑
K∈Th

ˆ
K̂
∇̂u ◦ FK · ĜK ∇̂v ◦ FK dx̂,

b(u, v) =
∑
K∈Th

ˆ
K̂
∇̂u ◦ FK · µ̂K ∇̂v ◦ FK dx̂.

Here, FK : K̂ → K is the coordinate mapping, ĜK is the Jacobian-weighted
metric, and µ̂K is a constant approximation to diag(ĜK ).

Spectrally equivalent separable form (B. & Farrell, 2021)

min
K

cK ≤
a(v , v)

b(v , v)
≤ max

K
CK ∀v ∈ V ,

where
σ(µ̂K

−1/2ĜK µ̂K
−1/2) ∈ [cK ,CK ].
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Results for the Poisson equation
Test for p-robustness on non-Cartesian meshes

Cartesian non-Cartesian
p κ(P−1A) Iter. κ(P−1A) Iter.

2D 3 1.58 7 2.13 10
7 1.59 7 3.07 13

15 1.59 6 3.81 14
31 1.58 6 3.53 14

3D 3 2.98 13 3.79 16
7 2.91 12 5.04 19

15 2.85 11 5.68 19
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Results for variable diffusitivy

−∇ · (a(x)∇u) = f → −∇2ũ + q(x)ũ = a−1/2f

where ũ = a1/2u and q(x) = a−1/2∇2(a1/2).

a(x) varying across 7 orders of magnitude, 32× 32 mesh, rel. tol. = 10−16

2D
p Iter. Err.

3 25 2.9E-00
7 25 1.1E-03

15 24 1.5E-10
31 24 3.5E-11
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Application to mixed formulations of linear elasticity

−∇ · µ(∇u +∇u>) +∇p = f ,

∇ · u− λ−1p = 0.

[
A B>

B −C

] [
u
p

]
=

[
f
0

]
.

The convergence of block-preconditioned MINRES is affected by the
discrete inf-sup parameter β0:

β2
0 ≤

(q,BA−1B>q)

(q,Mpq)
≤ β2

1 ∀q ∈ Rnp \ {0}.

For the standard [H1]d × L2-conforming space [Qp]d × DQp−2,

β0 ≤ Cp(1−d)/2.

For the H(div)× L2-conforming space RTp × DQp−1, β0 is
independent of p.
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Linear elasticity: block-preconditioned MINRES iterations
Ω = [0, 1]d , Dirchlet BCs, constant forcing, 8d cells.

Mixed FEM [Qp]d × DQp−2.

Lamé parameter, λ
p 100 101 102 103 ∞

2D 3 20 27 30 30 30
7 21 32 37 37 37

15 22 36 42 42 42
31 22 37 45 47 47

3D 3 30 48 57 58 58
7 32 57 73 76 76

15 33 59 85 89 89

Problem

This discretization is not p-robust.
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Extension to interior-penalty DG (IP-DG) methods
High-order Raviart–Thomas elements RTp

Functions in H(div) have continuity only on the normal component
along facets. IP-DG imposes weak continuity of the tangential
components.

The FDM basis can also sparsify the additional surface integral terms.

DG patch problems have more DOFs and are less sparse than CG.

Tricky implementation: orientation, anisotropic polynomial degrees.

1 5 6 10

nz = 36

1

5

6

10
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Linear elasticity: block-preconditioned MINRES iterations
Ω = [0, 1]d , Dirchlet BCs, constant forcing, 8d cells.

Mixed FEM RTp × DQp−1, symmetric interior-penalty DG.

Lamé parameter, λ
p 100 101 102 103 ∞

2D 3 19 28 31 32 32
7 20 31 35 35 35

15 21 33 38 38 38
31 23 35 40 41 41

3D 3 24 40 49 51 51
7 26 44 55 56 56

15 29 48 59 60 60

Solution

This discretization is (more) p-robust.
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Summary and ongoing work

Constructed a sparse preconditioner by partially diagonalizing the 1D
matrices.

Effective and fast relaxation method.

We can solve problems with very high p.

Ongoing work:

Extension to H(div) problems on unstructured meshes.
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