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Incompressible Neo-Hookean hyperelasticity

Unstructured mesh, 1280 cells, Qg X DQp—2,p=31,d =2,3

Want to solve Au = b.
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Incompressible Neo-Hookean hyperelasticity

Unstructured mesh, 1280 cells, Qg x DQp—2,p=31,d =2,3

Expression

A O(p2d+1)

Assembly cost
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Incompressible Neo-Hookean hyperelasticity
Unstructured mesh, 1280 cells, Qg x DQp—2,p=31,d =2,3

I EmEEr- 'l‘g;
Want to solve Au=b.

Expression  Assembly cost

A O(p2d+1)
b— Au O(pa+1)
diag(A)  O(p*)
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Incompressible Neo-Hookean hyperelasticity

Unstructured mesh, 1280 cells, Qg x DQp—2,p=31,d =2,3

Expression  Assembly cost

A O(p2d+1)
b— Au (pd+1)
diag(A)  O(p™)
IIJ(Apatch) (p3d)
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Incompressible Neo-Hookean hyperelasticity

Unstructured mesh, 1280 cells, Qg x DQp—2,p=31,d =2,3

il

] L
Want to solve Au = b.

Expression  Assembly cost

A O(p2d+1)

b— Au (pd+1)

diag(A)  O(p**1)

lu(Apatch)  O(p39) Need robust and fast relaxation methods!
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p-multigrid and Fast Diagonalization in Firedrake

PETSc solver options

from firedrake import *

pmg = {"ksp_type": "gmres",
"pc_type": "python",
"pc_python_type": "firedrake.PMGPC",
"pmg_mg_levels_pc_type": "python",
"pmg_mg_levels_pc_python_type": "firedrake.FDMPC", # not merged yet
"pmg_mg_coarse_pc_type": "lu"}
solve(a == L, u, bcs=bcs, solver_parameters=pmg)
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p-multigrid and Fast Diagonalization in Firedrake

PETSc solver options

from firedrake import *

pmg = {"ksp_type": "gmres",
"pc_type": "python",
"pc_python_type": "firedrake.PMGPC",
"pmg_mg_levels_pc_type": "python",
"pmg_mg_levels_pc_python_type": "firedrake.FDMPC", # not merged yet
"pmg_mg_coarse_pc_type": "lu"}
solve(a == L, u, bcs=bcs, solver_parameters=pmg)

Parameter continuation (p-coarse) |
\—| Grid sequencing: p-FAS |
Nonlinear solver: line search Newton |
Linear solver: CG or GMRES |
\—{ Preconditioner: p-MG |
Relaxation: FDM—Schwarz|
Coarse grid: LU/GMG/AMG |
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Space decomposition: additive Schwarz method

UNIVERSITY

Solve small problems and combine the solutions A~! = Ejlz1 RJ-TAj’le.

Vertex-centered patch Cell-centered patch

Cell-centered patches with fixed overlap layers have decreasing overlap
measure as p — oo, which deteriorates the convergence rate.
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Relaxation methods for high-order FEM

UNIVERSITY

d+1)

Matrix-free residual computed with O(p cost via sum-factorization,

Orszag (1980).
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Relaxation methods for high-order FEM

Matrix-free residual computed with O(p*!) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (V. = Q).
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Relaxation methods for high-order FEM

Matrix-free residual computed with O(p*!) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (V. = Q).

For separable problems, the Fast Diagonalization Method (1964) is a
O(p9t1) direct solver. Cannot diagonalize arbitrary vertex patches.
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Relaxation methods for high-order FEM

Matrix-free residual computed with O(p*!) cost via sum-factorization,
Orszag (1980).

Pavarino (1994) proved that the additive Schwarz method with
vertex-centered patches (generous overlap) gives p-independent
convergence when the coarse space is of the lowest order (V. = Q).

For separable problems, the Fast Diagonalization Method (1964) is a
O(p9t1) direct solver. Cannot diagonalize arbitrary vertex patches.

First FDM preconditioner used for static condensation by Couzy (1995).

Hybrid FDM-Schwarz/p-MG with cell-centered patches and non-generous
overlap by Fischer (2000).
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Finite element discretization of the Poisson equation

Find u € V = H}(Q) such that

/Vu-Vvdx:/vfdx Vv e V.
Q Q
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Finite element discretization of the Poisson equation

Find u € V = H}(Q) such that
/Vu-Vvdx:/ vfdx VveV.
Q Q

Expand u, = ZJ- uj¢; and assemble the stiffness matrix and RHS

A;j = / qu), . V(ﬁl dX, b,' = / (b,'f dx.
Q Q
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Finite element discretization of the Poisson equation

Find u € V = H}(Q) such that

/Vu-Vvdx:/vfdx Vv e V.
Q Q

Expand u, = ZJ- uj¢; and assemble the stiffness matrix and RHS

A;j = / qu), . V(ﬁl dX, b,' = / (b,'f dx.
Q Q
For Cartesian domains, A has a special tensor product structure:

LB eA+A®B, d=2,
| B:®B, @A+ B, 9A B+ A, ®B,8B d=3

Here A, = M*A, B, = B for x = X, ¥, Z.
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Relaxation: The Fast Diagonalization Method (FDM)

FDM (Lynch, Rice & Thomas, 1964)
Structured matrix inversion analogous to separation of variables.
Breaks problems down into a sequence of 1D eigenvalue problems.

Direct O(p9*1) solver for Poisson in very simple geometries.

AS. = B.SiN, forx=x,y,z

A= (5,9S5,0S5)A (595,05
X
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The FDM relaxation may be applied only on structured patches.

UNIVERSITY

Structured vertex patch Ve Unstructured vertex patch X
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How can we extend the FDM to vertex patches?

Numerically construct shape functions that diagonalize the interior block of A.
We split the DOFs {/,T'}. On the interior /, solve the 1D eigenproblems:

AuSi = BySihy.
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How can we extend the FDM to vertex patches?

Numerically construct shape functions that diagonalize the interior block of A.
We split the DOFs {/,T'}. On the interior /, solve the 1D eigenproblems:
AySy = BySyhy.
We construct the FDM basis functions

&[Sy —B,;'Birr
= [0 1

such that the 1D matrices

§TAA.§, §Té§ are sparse.
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How can we extend the FDM to vertex patches?

Numerically construct shape functions that diagonalize the interior block of A.
We split the DOFs {/,T'}. On the interior /, solve the 1D eigenproblems:
AySy = BySyhy.
We construct the FDM basis functions
& [ﬁ,, —BﬁlB/r]
0 1
such that the 1D matrices

gTAAg, gTé are sparse.

S
For Cartesian cells, the basis SeS5®§
interior DOFs become diagonal.

sparsifies A. The blocks for the
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The 1D stiffness matrix connects

interior nodes to the

interface

e o o 0o 0 0 0 o e o o 0o 0 0 o o
e o o 0o 0 0 0o o e o o 0 0 0 o o
e o 0o 0o 0 0 0 o e o o 0o 0 0 0 o
e o 0o 0o 0 0 0 o e o o 0 0 0 0 o
e o o 0 0 0 0 o e o o 0 0 0 o o
e o 0o 0 0 0 0 o e o o 0o 0 0 o o
e o o 0 0 0 0 o e o o 0o 0 0 0 o
e o o 0 0 0 0 o e o 0o 0 0 0 o o

-1 -0.5 0 0.5 1 nz =64 nz =64

Lagrange basis

Lagrange, A

Lagrange, B

e o o o 0 0 o o . .

o o . .

. . . .

. . . .

. . . .

. . . .

. o e .

e o o 0o 0 0 0 o . .
-1 0.5 0 0.5 1 nz=34 nz=10

FDM basis, $

FDM, §TAS

FDM, §T 8BS
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How sparse is A assembled in the new basis?

UNIVERSITY

FDM basis gives rise to an interface stencil.

Vertex patch (p = 4), FDM basis

s (e o o ¢ o o o)
| e o o ¢ o o oo
| e o o ¢ o o oo
L e 4 ¢
| e o o ¢ o o oo
| e o o @ o o oo
tle o ¢ & o o o)
e o o o ¢ o o o o
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How sparse is A assembled in the new basis?

FDM basis gives rise to an interface stencil.

Vertex patch (p = 4), FDM basis
Interior DOFs (/) are coupled

— — with their projections onto the
( )
[ . . ] ¢ ] . . .
interface.

. . . ] ¢ . . . .
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How sparse is A assembled in the new basis?

FDM basis gives rise to an interface stencil.

Vertex patch (p = 4), FDM basis
Interior DOFs (/) are coupled

with their projections onto the
interface.

Interface DOFs (') are coupled
to a line of interior DOFs and to

23
X X X @® X X X
.

¢ the only vertex DOF.
[ ] k. L] .J [ ]
ll—.—.—.—l—.—.—.—ll
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How sparse is A assembled in the new basis?

UNIVERSITY

FDM basis gives rise to an interface stencil.

Vertex patch (p = 4), FDM basis
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The Cholesky factorization is also sparse.

Fill-in only on the interface block.
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The solve phase has O(p*!) cost.
3(d-1)y

Factorization needs O(p

operations.

N
N
N
216 N
N
\\\\\\\\\\‘“\\\\\\\ N
NI N
N
243 U T
1 216 343
nz =2107
T
S'AS,d=3
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nz = 4708

chol(STAS), d =3

343
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Comparing the FDM-patch with a low-order h-FEM preconditioner

UNIVERSITY

The Cholesky factor requires O(pz(d_l)) storage, but 4x less than h-FEM.
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Extending the sparse/FDM technique to non-Cartesian meshes

The new basis does not sparsify A, but we may build a preconditioner P by
replacing the geometry such that each individual cell is approximated by a
Cartesian one.
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We construct an auxiliary form that is separable and sparse.

The auxiliary problem is spectrally equivalent independent of p.

a(u,v) = Z / Vuo Fi - GkVvo Fi dg,
KeTy ' K

blu,v) = [ﬁquK.gK@voFK dx.
KeTy 7 K

Here, Fx : K — K is the coordinate mapping, Gk is the Jacobian-weighted
metric, and [ix is a constant approximation to diag(Gg).
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We construct an auxiliary form that is separable and sparse.

The auxiliary problem is spectrally equivalent independent of p.

a(u,v) = / Vuo Fi - GkVvo Fi dg,
KeTh

b(u,v) = / Vuo Fk - [LKVV o Fx dX.
KeTh

Here, Fx : K — K is the coordinate mapping, Gk is the Jacobian- weighted
metric, and ik is a constant approximation to dlag(GK).

a(v,v)
b(v, v)

m|n ck < < max Ck Vvev,

where
o(fik Y26k pik~Y?) € [e, Ck].
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Results for the Poisson equation

Test for p-robustness on non-Cartesian meshes

Cartesian non-Cartesian

p | k(P71A) Iter. | K(P7A) Iter.

2D 3 1.58 7 2.13 10
7 1.59 7 3.07 13

15 1.59 6 3.81 14

31 1.58 6 3.53 14

3D 3 2.98 13 3.79 16
7 2.01 12 5.04 19

15 2.85 11 5.68 19
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Results for variable diffusitivy

—V-(a(x)Vu) =f — —V2i+q(x)i=a'/?f

where i = a'/2u and g(x) = a~1/2V?(a'/?).

a(x) varying across 7 orders of magnitude, 32 x 32 mesh, rel. tol. = 1016

2D
Iter. Err.
3 25 2.9E-00
7 25 1.1E-03
15 24 1.5E-10
31 24 35E-11
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Application to mixed formulations of linear elasticity

V- u(Vu+Vu')+Vp = f, A BT][u] _Jf
V-u-X1lp=o. [ ]&]_[]
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Application to mixed formulations of linear elasticity

V- u(Vu+Vu')+Vp = f, A BT][u] _Jf
B e R

The convergence of block-preconditioned MINRES is affected by the
discrete inf-sup parameter §p:

(g, BA_lBTg)

2 YgeR™\{0}.
(@, Mpq) <pBi Vqe \ {0}

2
By <
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Application to mixed formulations of linear elasticity

V- u(Vu+Vu')+Vp = f, A BT][u] _Jf
B e R

The convergence of block-preconditioned MINRES is affected by the
discrete inf-sup parameter §p:

(g, BA_lBTg)

2 YgeR™\{0}.
(@, Mpq) <pBi Vqe \ {0}

2
By <

e For the standard [H*]¢ x L?-conforming space [Q,]¢ x DQ, »,
Bo < Cp=)/2,
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Application to mixed formulations of linear elasticity

V- u(Vu+Vu')+Vp = f, A BT][u] _Jf
B e R

The convergence of block-preconditioned MINRES is affected by the
discrete inf-sup parameter §p:

(g, BA_lBTg)

2 YgeR™\{0}.
(@, Mpq) <pBi Vqe \ {0}

B <
e For the standard [H*]¢ x L?-conforming space [Q,]¢ x DQ, »,
Bo < Cp=)/2,

e For the H(div) x L2-conforming space RT, x DQ,_;, fo is
independent of p.
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Linear elasticity: block-preconditioned MINRES iterations

Q =0, l]d, Dirchlet BCs, constant forcing, 87 cells.

Mixed FEM [Q,]¢ x DQ,_,.

Lamé parameter, A
p| 100 10' 10°2 10° oo
2D 3| 20 27 30 30 30
71 21 32 37 37 37

15| 22 36 42 42 42
31| 22 37 45 47 47

3D 3| 30 48 57 58 58
7| 32 57 73 76 76
15| 33 59 8 89 89

Problem
This discretization is not p-robust.

|
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Extension to interior-penalty DG (IP-DG) methods

UNIVERSITY

High-order Raviart—Thomas elements RT,

e Functions in H(div) have continuity only on the normal component
along facets. IP-DG imposes weak continuity of the tangential
components.

A A A
Yy v v
<> <
< B S S
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Extension to interior-penalty DG (IP-DG) methods

UNIVERSITY

High-order Raviart—Thomas elements RT,

e Functions in H(div) have continuity only on the normal component
along facets. IP-DG imposes weak continuity of the tangential
components.

@ The FDM basis can also sparsify the additional surface integral terms.

A A A
Yy v v
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< B S S
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Extension to interior-penalty DG (IP-DG) methods

High-order Raviart—Thomas elements RT,

e Functions in H(div) have continuity only on the normal component
along facets. IP-DG imposes weak continuity of the tangential
components.

@ The FDM basis can also sparsify the additional surface integral terms.

@ DG patch problems have more DOFs and are less sparse than CG.

A A A
Yy v v
<> <
< B S S
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Extension to interior-penalty DG (IP-DG) methods

High-order Raviart—Thomas elements RT,

e Functions in H(div) have continuity only on the normal component
along facets. IP-DG imposes weak continuity of the tangential
components.

@ The FDM basis can also sparsify the additional surface integral terms.
@ DG patch problems have more DOFs and are less sparse than CG.

@ Tricky implementation: orientation, anisotropic polynomial degrees.

A

A A A
Yy v v

<> <

<> <O T EEE

<4p b

-
_A_A_AJ !
4 :

A\
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Linear elasticity: block-preconditioned MINRES iterations

Q =0, l]d, Dirchlet BCs, constant forcing, 87 cells.

Mixed FEM RT, x DQ,_;, symmetric interior-penalty DG.

Lamé parameter, A
100 10 102 10° o~
2D 3| 19 28 31 32 32

71 20 31 35 35 35

15 21 33 38 38 38
31 23 35 40 41 41

3D 3| 24 40 49 51 51
7| 26 44 55 56 56
15| 29 48 59 60 60

This discretization is (more) p-robust.

Fast solvers 2021 Sparse vertex-star relaxation for high-order FEM 22




Summary and ongoing work

@ Constructed a sparse preconditioner by partially diagonalizing the 1D
matrices.

@ Effective and fast relaxation method.

@ We can solve problems with very high p.

Ongoing work:

e Extension to H(div) problems on unstructured meshes.
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