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Sparse linear solver

• Sea level could rise up to ~58 meters*

• Ice sheet modeling of Antarctica
- numerous linear solves

- up to 1 billion unknowns

- thousands of cores

2Tuminaro et al., 2016
*Estimates given by Prof. Richard Alley of Penn State, 
who testified in 1999 about climate change to Al Gore.



Sparse linear solver

3
Tezaur et al., 2015



Sparse linear solver

4
Tezaur et al., 2015

ILU-preconditioned GMRES: 
4h on 8,192 cores



What’s needed?

• Fast and robust algorithms
- O(N (log N)k) computation and memory
- elliptic PDEs (not highly indefinite)

• Highly parallel softwares
- distributed memory 
- CPUs + GPUs

5
Supercomputer with ~10,000 nodes



Existing approaches

• Sparse direct solvers 
- use efficient elimination ordering to minimize fill-in 
- UMFPACK (‘\’ in Matlab), SuperLU, Pardiso …. 
- fill-in in 3D –> computation: O(N2), memory: O(N4/3)

• Iterative solvers
- CG, multigrid, ...
- Hypre, Trilinos, PETSc, …
- computation: O(N) x #iter, memory: O(N)

• Fast direct solvers
- tunable accuracy
- fast and robust
- high arithmetic intensity (# flops/byte)
- reduced communication and synchronization

This talk/conference



Fast direct solvers

• Hierarchical matrices [Bebendorf, Borm, Darve, Gu, 
Hackbusch, Martinsson, Xia, etc.]

- elliptic boundary value problems lead to low-rank 
off-diagonal blocks.

7Aminfar et al., 2015



A paradigm of fast direct solvers 

Form a block matrix with “near” and “far” matrix blocks
For every level {

For every block rows/columns {
      compress “far” matrix blocks
      eliminate “fine” rows/columns

}
merge ‘‘coarse’’ rows/columns to form next level

}

8

Sparse solvers: Pouransari et al., 2017, Sushnikova et al., 2018
Dense solvers: Ambikasaran et al., arXiv, Coulier et al., 2017, Minden et al.,2017 



A block sparse matrix
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Sushnikova et al., 2018

“near” matrix blocks: original nonzero blocks.
“far” matrix blocks: other blocks (initially zero).



Compress “far”/fill-in matrix blocks
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Compress “far”/fill-in matrix blocks

- “coarse” rows/columns -> keep to next level
- “fine” rows/columns -> eliminate (existing fill-in not touched)
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Coarse

Fine

Coarse Fine



After one level
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A paradigm of fast direct solvers 

Form a block matrix with “near” and “far” matrix blocks
For every level {

For every block rows/columns {
      compress “far” matrix blocks
      eliminate “fine” rows/columns

}
merge ‘‘coarse’’ rows/columns to form next level

}
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Sparse solvers: Pouransari et al., 2017, Sushnikova et al., 2018
Dense solvers: Ambikasaran et al., arXive, Coulier et al., 2017, Minden et al.,2017 



Parallelism

Theorem [Chen et al., 2018]: 
fill-in exists only between two nodes of distance 2 (i.e., 
neighbor’s neighbor) in the underlying graph.
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Data decomposition
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P0 P1

d1d1

• d1
- coupled among neighbors

• d2
- processed in parallel

- requires communication

• d3
- processed in parallel

- no communication

d2 d2d3 d3



Communication & Computation in 3D

Matrix size: N, # processors: p, rank: r 

Define M = (Nr2/p)⅓

• Communication
- local communication
- exchange O(M2) boundary data
- # messages: O( log(N/rp)+log(p) ) 

• Computation
- computation: O(M3) = O(Nr2/p)
- local dense linear algebra

• Memory
- memory: O(Nr/p) 16



Ice sheets simulation

• Parallel asynchronous 
implementation using MPI

• Deferred compression 
scheme [Gu 2010, Xia 2010&2017, 
Chen et al., 2019, Feliu-Fabà and 
Ying, 2020, Cambier et al., 2020]

17

weak scalability (12-digits’ accuracy)



Ice sheets simulation
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time (s) for 12-digits’ accuracy



Same framework for FMM-matrices
Form a block matrix with “near” and “far” matrix blocks
For every level {

For every block rows/columns {
      compress “far” matrix blocks
      eliminate “fine” rows/columns

}
merge ‘‘coarse’’ rows/columns to form next level

}

compression: 
- ID + proxy surface [Minden et al., 2017]
- Chebyshev interpolation + SVD

[Ambikasaran and Darve, arXiv, Coulier et al., 2017] 19









Factorization Time



Factorization Time


