Distributed-memory parallel algorithms based on rank-structured matrices

Chao Chen, University of Texas at Austin

Conference on Fast Direct Solvers October 23, 2021

Collaborators: G. Biros, E. Boman, L. Cambier, E. Darve, T. Liang, H. Pouransari, S. Rajamanickam, and R. Tuminaro

Sparse linear solver

- Sea level could rise up to ~58 meters*
- Ice sheet modeling of Antarctica
 - numerous linear solves
 - up to 1 billion unknowns
 - thousands of cores

Sparse linear solver

Sparse linear solver

What's needed?

- Fast and robust algorithms
 - $O(N (\log N)^k)$ computation and memory
 - elliptic PDEs (not highly indefinite)
- Highly parallel softwares
 - distributed memory
 - CPUs + GPUs

Supercomputer with ~10,000 nodes

Existing approaches

- Sparse direct solvers
 - use efficient elimination ordering to minimize fill-in
 - UMFPACK ('\' in Matlab), SuperLU, Pardiso
 - fill-in in 3D -> computation: $O(N^2)$, memory: $O(N^{4/3})$

This talk/conference

- Iterative solvers
 - CG, multigrid, ...
 - Hypre, Trilinos, PETSc, ...
 - computation: O(N) x #iter, memory: O(N)
- Fast direct solvers
 - tunable accuracy

- fast and robust

- high arithmetic intensity (# flops/byte)
- reduced communication and synchronization

Fast direct solvers

- Hierarchical matrices [Bebendorf, Borm, Darve, Gu, Hackbusch, Martinsson, Xia, etc.]
 - elliptic boundary value problems lead to low-rank off-diagonal blocks.

Aminfar et al., 2015

```
A paradigm of fast direct solvers
```

$$\mathcal{W}_{m-1} \dots \mathcal{W}_1 \mathcal{W}_0 A \mathcal{W}_0^T \mathcal{W}_1^T \dots \mathcal{W}_{m-1}^T \approx I$$

```
Form a block matrix with "near" and "far" matrix blocks
For every level {
    For every block rows/columns {
        compress "far" matrix blocks
        eliminate "fine" rows/columns
    }
    merge "coarse" rows/columns to form next level
}
```

Sparse solvers: Pouransari et al., 2017, Sushnikova et al., 2018 Dense solvers: Ambikasaran et al., arXiv, Coulier et al., 2017, Minden et al.,2017

A block sparse matrix

Sushnikova et al., 2018

"near" matrix blocks: original nonzero blocks. "far" matrix blocks: other blocks (initially zero).

Compress "far"/fill-in matrix blocks

$$F = U \begin{pmatrix} \tilde{V}^T \\ \epsilon \end{pmatrix}$$

$$\mathcal{E}_s A_1 \mathcal{E}_s^T$$

$$\mathcal{E}_s = egin{pmatrix} U^T & & \ & I & \ & & I \end{pmatrix}$$

$$PF = \begin{pmatrix} \hat{F} \\ T\hat{F} + \epsilon \end{pmatrix}$$

 A_1

Compress "far"/fill-in matrix blocks

- "coarse" rows/columns -> keep to next level

- "fine" rows/columns -> eliminate (existing fill-in not touched)

 $\mathcal{G}_s \mathcal{E}_s A_1 \mathcal{E}_s^T \mathcal{G}_s^T$

After one level

$$\mathcal{W}_{m-1} \dots \mathcal{W}_1 \mathcal{W}_0 A \mathcal{W}_0^T \mathcal{W}_1^T \dots \mathcal{W}_{m-1}^T \approx \begin{pmatrix} I & \\ & A_c \end{pmatrix}$$

```
A paradigm of fast direct solvers
```

```
\mathcal{W}_{m-1} \dots \mathcal{W}_1 \mathcal{W}_0 A \mathcal{W}_0^T \mathcal{W}_1^T \dots \mathcal{W}_{m-1}^T \approx I
```

```
Form a block matrix with "near" and "far" matrix blocks
For every level {
    For every block rows/columns {
        compress "far" matrix blocks
        eliminate "fine" rows/columns
    }
    merge "coarse" rows/columns to form next level
}
```

Sparse solvers: Pouransari et al., 2017, Sushnikova et al., 2018 Dense solvers: Ambikasaran et al., arXive, Coulier et al., 2017, Minden et al., 2017

Parallelism

Theorem [Chen et al., 2018]:

fill-in exists only between two nodes of distance 2 (i.e., neighbor's neighbor) in the underlying graph.

Data decomposition

Communication & Computation in 3D

Matrix size: N, # processors: p, rank: r Define $M = (Nr^2/p)^{\frac{1}{3}}$

- Communication
 - local communication
 - exchange O(M²) boundary data
 - # messages: O(log(N/rp)+log(p))
- Computation
 - computation: $O(M^3) = O(Nr^2/p)$
 - local dense linear algebra
- Memory
 - memory: O(Nr/p)

Ice sheets simulation

- Parallel asynchronous implementation using MPI
- Deferred compression scheme [Gu 2010, Xia 2010&2017, Chen et al., 2019, Feliu-Fabà and Ying, 2020, Cambier et al., 2020]

weak scalability (12-digits' accuracy)

Ice sheets simulation

Table 8: 11 vertical mesh layer	s: hierarchical solver	$(\epsilon = 10^{-2})$ vs. IL	U.
---------------------------------	------------------------	-------------------------------	----

			ILU		hierarchical solver		
h	N	P	iter $\#$	total time	iter $\#$	factor	solve
16km	1.1M	4	90	7	18	147	22
$8 \mathrm{km}$	4.6M	16	183	21	23	186	38
$4 \mathrm{km}$	$18.5 \mathrm{M}$	64	468	66	24	213	53
$2 \mathrm{km}$	74M	256	1000^{a}		27	214	65
$1 \mathrm{km}$	296M	1024	1000^{b}		27	243	71

time (s) for 12-digits' accuracy

Same framework for FMM-matrices

Form a block matrix with "near" and "far" matrix blocks For every level {

```
For every block rows/columns {
compress "far" matrix blocks
eliminate "fine" rows/columns
```

merge "coarse" rows/columns to form next level

compression:

- ID + proxy surface [Minden et al., 2017]
- Chebyshev interpolation + SVD
 [Ambikasaran and Darve, arXiv, Coulier et al., 2017]

Problem size(N)

Problem size(N)

Problem size(N)

Factorization Timing