
Distributed-memory parallel algorithms
based on rank-structured matrices

Chao Chen, University of Texas at Austin

Conference on Fast Direct Solvers
October 23, 2021

Collaborators: G. Biros, E. Boman, L. Cambier, E. Darve, T. Liang,
H. Pouransari, S. Rajamanickam, and R. Tuminaro

Sparse linear solver

• Sea level could rise up to ~58 meters*

• Ice sheet modeling of Antarctica
- numerous linear solves

- up to 1 billion unknowns

- thousands of cores

2Tuminaro et al., 2016
*Estimates given by Prof. Richard Alley of Penn State,
who testified in 1999 about climate change to Al Gore.

Sparse linear solver

3
Tezaur et al., 2015

Sparse linear solver

4
Tezaur et al., 2015

ILU-preconditioned GMRES:
4h on 8,192 cores

What’s needed?

• Fast and robust algorithms
- O(N (log N)k) computation and memory
- elliptic PDEs (not highly indefinite)

• Highly parallel softwares
- distributed memory
- CPUs + GPUs

5
Supercomputer with ~10,000 nodes

Existing approaches

• Sparse direct solvers
- use efficient elimination ordering to minimize fill-in
- UMFPACK (‘\’ in Matlab), SuperLU, Pardiso ….
- fill-in in 3D –> computation: O(N2), memory: O(N4/3)

• Iterative solvers
- CG, multigrid, ...
- Hypre, Trilinos, PETSc, …
- computation: O(N) x #iter, memory: O(N)

• Fast direct solvers
- tunable accuracy
- fast and robust
- high arithmetic intensity (# flops/byte)
- reduced communication and synchronization

This talk/conference

Fast direct solvers

• Hierarchical matrices [Bebendorf, Borm, Darve, Gu,
Hackbusch, Martinsson, Xia, etc.]

- elliptic boundary value problems lead to low-rank
off-diagonal blocks.

7Aminfar et al., 2015

A paradigm of fast direct solvers

Form a block matrix with “near” and “far” matrix blocks
For every level {

For every block rows/columns {
 compress “far” matrix blocks
 eliminate “fine” rows/columns

}
merge ‘‘coarse’’ rows/columns to form next level

}

8

Sparse solvers: Pouransari et al., 2017, Sushnikova et al., 2018
Dense solvers: Ambikasaran et al., arXiv, Coulier et al., 2017, Minden et al.,2017

A block sparse matrix

9

Sushnikova et al., 2018

“near” matrix blocks: original nonzero blocks.
“far” matrix blocks: other blocks (initially zero).

Compress “far”/fill-in matrix blocks

10

Compress “far”/fill-in matrix blocks

- “coarse” rows/columns -> keep to next level
- “fine” rows/columns -> eliminate (existing fill-in not touched)

11

Coarse

Fine

Coarse Fine

After one level

12

A paradigm of fast direct solvers

Form a block matrix with “near” and “far” matrix blocks
For every level {

For every block rows/columns {
 compress “far” matrix blocks
 eliminate “fine” rows/columns

}
merge ‘‘coarse’’ rows/columns to form next level

}

13

Sparse solvers: Pouransari et al., 2017, Sushnikova et al., 2018
Dense solvers: Ambikasaran et al., arXive, Coulier et al., 2017, Minden et al.,2017

Parallelism

Theorem [Chen et al., 2018]:
fill-in exists only between two nodes of distance 2 (i.e.,
neighbor’s neighbor) in the underlying graph.

14

Data decomposition

15

P0 P1

d1d1

• d1
- coupled among neighbors

• d2
- processed in parallel

- requires communication

• d3
- processed in parallel

- no communication

d2 d2d3 d3

Communication & Computation in 3D

Matrix size: N, # processors: p, rank: r

Define M = (Nr2/p)⅓

• Communication
- local communication
- exchange O(M2) boundary data
- # messages: O(log(N/rp)+log(p))

• Computation
- computation: O(M3) = O(Nr2/p)
- local dense linear algebra

• Memory
- memory: O(Nr/p) 16

Ice sheets simulation

• Parallel asynchronous
implementation using MPI

• Deferred compression
scheme [Gu 2010, Xia 2010&2017,
Chen et al., 2019, Feliu-Fabà and
Ying, 2020, Cambier et al., 2020]

17

weak scalability (12-digits’ accuracy)

Ice sheets simulation

18

time (s) for 12-digits’ accuracy

Same framework for FMM-matrices
Form a block matrix with “near” and “far” matrix blocks
For every level {

For every block rows/columns {
 compress “far” matrix blocks
 eliminate “fine” rows/columns

}
merge ‘‘coarse’’ rows/columns to form next level

}

compression:
- ID + proxy surface [Minden et al., 2017]
- Chebyshev interpolation + SVD

[Ambikasaran and Darve, arXiv, Coulier et al., 2017] 19

Factorization Time

Factorization Time

