Divide and conquer methods for functions of matrices with banded or hierarchical low-rank structure

Alice Cortinovis Daniel Kressner Stefano Massei

23 October 2021 Conference on Fast Direct Solvers

<ロ> (四) (四) (三) (三) (三) (三)

Matrix functions

Matrix functions arise in many applications, e.g.:

• Solution of PDEs (exponential, square root, fractional powers, ...)

 $\begin{cases} \frac{d\mathbf{y}}{dt} = A\mathbf{y}, \ A \in \mathbb{R}^{n \times n} \\ \mathbf{y}(0) = \mathbf{c}, \ \mathbf{c} \in \mathbb{R}^n \end{cases} \text{ has solution } \mathbf{y}(t) = \exp(At) \cdot \mathbf{c}.$

- Electronic structure calculations (sign function)
- Network analysis (exponential for Estrada index)
- Statistical learning (logarithm, ...)
- Nonlinear matrix equations
- o ...

Definition

```
Given function f and A = V \cdot \operatorname{diag}(\lambda_1, \ldots, \lambda_n) \cdot V^{-1},
```

```
f(A) := V \cdot \operatorname{diag}(f(\lambda_1), \dots, f(\lambda_n)) \cdot V^{-1}.
```

(Generalization to non-diagonalizable matrices possible [Higham'2008])

(Approximate) preservation of structure

Example: Tridiagonal matrix A = tridiag(-1, 2, -1).

Figure: $f(z) = \exp(z)$. Log of entries of f(A): matrix function f(A) is *approximately* banded. Figure: $f(z) = z^{-1}$. Log of entries of f(A): matrix function f(A) is not (approximately) banded... Figure: ... but $f(A) = A^{-1}$ has all off-diagonal blocks of rank 1!

Connection to polynomial/rational approximation

For now, assume *A* banded.

If f is well approximated by a smalldegree polynomial p on spectrum of A then

 $f(A) \approx p(A) =$ banded.

If f is well approximated by a smalldegree rational function r on spectrum of A then

 $f(A) \approx r(A) =$ HSS matrix.

Generalizations to other formats such as hierarchically semiseparable (HSS) matrices are possible.

Existing methods for computing f(A)

- A priori polynomial approximation

[Benzi/Boito/Razouk'2013], [Goedecker'1999], [Benzi/Razouk'2008], ...

- Iterations + thresholding

[Németh/Scuseria'2000] (sign), [Bini et al.'2016] (Toeplitz matrices), ...

- A priori rational approximation

[Gavrilyuk et al.'2002] (exponential), [Kressner/Šušnjara'2017] (spectral projectors), [Beckermann/Bisch/Luce'2021] (Markov functions of Toeplitz matrices), ...

- Iterations in HSS arithmetics + truncation strategies [Grasedyck et al.'2003] (sign), $\sqrt{\cdot}$, ...

Goal: Compute f(A)for matrix $A \in \mathbb{R}^{n \times n}$ with some low-rank structure.

Divide-and-conquer

We consider matrices which can be decomposed (recursively) as

e.g. banded matrices, HODLR/HSS matrices, adjacency matrices of graphs with community structure.

Divide-and-conquer idea for computing f(A):

$$f(A) = \begin{bmatrix} f(D_1) & \\ & f(D_2) \end{bmatrix} +$$
correction.

Low-rank updates

Nice fact: In many cases f(D+R) - f(D) is approximately low-rank!

Example: Singular value decay of f(A) - f(D) for

- A = tridiag(-1, 2, -1) of size 256×256 ,
- $D_1 = D_2 = \text{tridiag}(-1, 2, -1)$ of size 128×128 ,
- R = A D has rank 2.

[Beckermann/Kressner/Schweitzer'2018], [Beckermann et al.'2021] , 👍 🛛 🚛 🖉 🚛 🖉 🤈 🖉

Alice Cortinovis (EPFL)

Low-rank updates: Algorithm

Let $R = BJC^T$, with $B, C \in \mathbb{R}^{n \times r}$ and $J \in \mathbb{R}^{r \times r}$.

Choose rank m and approximate $f(D+R) - f(D) \approx U_m X_m(f) V_m^T$, where:

- $U_m \in \mathbb{R}^{n \times mr}$ orthonormal basis of $\mathcal{K}_m(D, B)$ or $q_m(D)^{-1}\mathcal{K}_m(D, B)$;
- $V_m \in \mathbb{R}^{n \times mr}$ orthonormal basis of $\mathcal{K}_m(D^T, C)$ or $q_m(D^T)^{-1}\mathcal{K}_m(D^T, C)$;

Definition

- Polynomial Krylov subspace: $\mathcal{K}_m(D, B) := \operatorname{span} \left[B, DB, D^2B, \dots, D^{m-1}B \right].$
- Rational Krylov subspace associated with $q(z) = (z \xi_1) \cdots (z \xi_m)$ for prescribed poles $\xi = (\xi_1, \dots, \xi_m)^T \in \mathbb{C}^m$:

 $\mathcal{RK}_m(D,B,\xi) := \operatorname{span}\left[q_m(D)^{-1}B, q_m(D)^{-1}DB, q_m(D)^{-1}D^2B, \dots, q_m(D)^{-1}D^{m-1}B\right]$

$X_m(f) \in \mathbb{R}^{mr \times mr}$ chosen in suitable way according to

[Beckermann/Kressner/Schweitzer'2018], [Beckermann et al.'2021]

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● ● ● ● ● ●

Divide-and-conquer algorithm

Input: Matrix *A* with hierarchical low-rank structure, function f**Output:** Approximation of f(A), in HSS format

- 1: if A is small then
- 2: Compute f(A) in "dense" arithmetics, e.g. by Schur-Parlett's algorithm

3: **else**

- 4: Decompose A = D + R = block-diagonal + low-rank
- 5: Compute f(diagonal blocks) recursively
- 6: Add correction f(D+R) f(D) computed by low-rank updates algorithm

7: end if

[C./Kressner/Massei'2021]

Convergence of D&C algorithm

Theorem ([C./Kressner/Massei'2021])

Let *A* be symmetric and let *f* be a function analytic on an interval \mathbb{E} containing the eigenvalues of *A*. Suppose that we use rational Krylov subspaces with poles ξ_1, \ldots, ξ_m , closed under complex conjugation, for computing updates. Then the output F_A of the D&C algorithm satisfies

 $\|f(A) - F_A\|_2 \le 4 \cdot \text{recursion depth} \cdot \min_{r \in \Pi_m/q_m} \|f - r\|_{\mathbb{E}},$

where $q_m(z) = \prod_{i=1}^m (z - \xi_i)$.

Main ingredient of the proof: Each low-rank update is exact for rational functions $r \in \Pi_m/q_m$.

Nice fact: Convergence is related to best rational approximation, but does not need to *explicitly find* such rational function.

(ロ) (同) (目) (目) (日) (の)

Numerical experiments (1)

Example from [Ilić/Turner/Simpson'2010]: Sampling from a Gaussian random field requires $A^{-1/2}$ for A = covariance matrix; here A is banded.

- D&C algorithm (extended Krylov subspaces for low-rank updates)
- Denman and Beavers iteration with HSS arithmetic (hm-toolbox [Massei/Robol/Kressner'2020])
- Matlab's sqrtm

Α		D&C		sqrt	m (HSS)	Dense	$A^{-\frac{1}{2}}$
Size	Band	Time	Err	Time	Err	Time	HSS rank
512	22	0.05	$2.02\cdot 10^{-9}$	0.49	$3.44\cdot 10^{-9}$	0.02	14
1,024	20	0.16	$3.45 \cdot 10^{-9}$	1.41	$5.22 \cdot 10^{-9}$	0.13	17
2,048	19	0.37	$3.76 \cdot 10^{-9}$	3.99	$6.38 \cdot 10^{-9}$	0.95	19
4,096	21	0.8	$3.23\cdot 10^{-9}$	9.05	$5.61\cdot 10^{-9}$	9.03	19
8,192	22	2.46	$3.46\cdot10^{-9}$	21.27	$6.61\cdot 10^{-9}$	70.42	20
16,384	25	5.7		48.92			22
32,768	26	15.12		102.65			25
65,536	26	26.25		209.56			24
131,070	25	60.44		417.21			24
$262,\!140$	26	146.97		918.81			26

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Numerical experiments (2)

For A = adjacency matrix of undirected graph, diagonal entries of $\exp(A)$ are *subgraph centralities* and $\frac{1}{n} \operatorname{trace}(\exp(A))$ is the Estrada index.

- D&C algorithm (splitting vertices into 2 components using METIS algorithm, polynomial Krylov subspaces for the low-rank updates)
- mmq (Gauss quadrature to approximate each diagonal entry of $\exp(A)$, see [Golub/Meurant'2010])

-	Matlab's	expm an	d eig

A	D&C diagonal		mmq diagonal		expm	D&C trace		eig
Size	Time	Err	Time	Err	Time	Time	Err	Time
2,642	1.01	$6.24\cdot10^{-10}$	0.8	$1.82\cdot10^{-11}$	1.98	0.14	$7.71 \cdot 10^{-13}$	0.44
4,941	2.06	$1.29\cdot 10^{-8}$	5.15	$3.39 \cdot 10^{-11}$	16.11	0.47	$7.75 \cdot 10^{-11}$	3.61
7,716	8.01	$4.03 \cdot 10^{-9}$	24.19	$2.29 \cdot 10^{-10}$	56.59	3.91	$1.96 \cdot 10^{-12}$	8.73
10,774	15.87	$1.04\cdot 10^{-8}$	39.42	$3.54 \cdot 10^{-10}$	151.52	2.98	$2.69 \cdot 10^{-10}$	21.04
20,055	38.49	$2.59\cdot 10^{-9}$	97.53	$1.4 \cdot 10^{-11}$	929.25	6.99	$2.66 \cdot 10^{-13}$	124.34
$45,\!087$	182.19		603.57			27.99		

Test matrices from the SuiteSparse Matrix Collection.

Special case: Banded matrices (1)

Bases of polynomial Krylov subspaces inherit sparsity and have the form

$$U_m = V_m = \begin{bmatrix} 0\\I\\0\\0\\\vdots\\0\end{bmatrix}$$

Alice Cortinovis (EPFL)

.

Special case: Banded matrices (2)

D&C algorithm simplifies a lot! ~> "block-diagonal splitting algorithm"

Theorem ([C./Kressner/Massei'2021])

For a matrix A with bandwidth b, block size s, let $m := \lfloor s/2b \rfloor$, then $\|f(A) - \operatorname{approx}\|_2 \le 10 \min_{p \in \Pi_m} \|f - p\|_{\text{numerical range of } A}.$

Numerical example for banded matrices

The size of the blocks can be chosen adaptively.

Example: A is tridiagonal, linspace(2,3,n) on the diagonal, -1 on superand sub-diagonals; $f(A) = \sqrt{A}$.

Computational complexity

Simplified assumption: low-rank updates converge in a fixed number of steps.

- General D&C algorithm: $O(k^2 n \log n)$ for matrix of size n and HSS rank k
- Block diagonal splitting algorithm: $O(nb^2)$ for a matrix of bandwidth b

Figure: A = tridiag(-1, 2, -1), f = exp.

Trace & diagonal of matrix functions

Assume polynomial Krylov subspaces are used for the low-rank updates.

Figure: Convergence of low-rank updates algorithm f(A) - f(A - R), A and R symmetric, $f = \exp$.

Figure: Convergence of block-diagonal splitting algorithm for the exponential of normalized non-symmetric pentadiagonal matrix *A*.

Trace and/or diagonal converge faster! (And we proved it)

Alice Cortinovis (EPFL)

D&C methods for functions of matrices with banded or hierarchical low-rank structure 18 / 19

Summary & conclusions

Two new algorithms for approximating matrix functions:

- A general D&C algorithm for matrices with hierarchical low-rank structure;
- An algorithm that is specialized to banded matrices.
- Convergence analysis: Links to best polynomial/rational approximation of *f* on a suitable region containing eigenvalues of *A*.
- Numerical tests: Generally faster than existing methods (for large *n*), with comparable accuracy.
 - A. Cortinovis, D. Kressner, S. Massei. Divide and conquer methods for functions of matrices with banded or hierarchical low-rank structure. https://arxiv.org/abs/2107.04337