Divide and conquer methods for functions of matrices with banded or hierarchical low-rank structure

Alice Cortinovis Daniel Kressner Stefano Massei

23 October 2021
Conference on Fast Direct Solvers

EPFL
Matrix functions

Matrix functions arise in many applications, e.g.:

- Solution of PDEs (exponential, square root, fractional powers, ...)
 \[
 \begin{cases}
 \frac{dy}{dt} = Ay, \quad A \in \mathbb{R}^{n \times n} \\
 y(0) = c, \quad c \in \mathbb{R}^n
 \end{cases}
 \text{ has solution } y(t) = \exp(At) \cdot c.
 \]
- Electronic structure calculations (sign function)
- Network analysis (exponential for Estrada index)
- Statistical learning (logarithm, ...)
- Nonlinear matrix equations
- ...

Definition

Given function \(f \) and \(A = V \cdot \text{diag}(\lambda_1, \ldots, \lambda_n) \cdot V^{-1} \),

\[
f(A) := V \cdot \text{diag}(f(\lambda_1), \ldots, f(\lambda_n)) \cdot V^{-1}.
\]

(Generalization to non-diagonalizable matrices possible [Higham’2008])
(Approximate) preservation of structure

Example: Tridiagonal matrix $A = \text{tridiag}(-1, 2, -1)$.

Figure: $f(z) = \exp(z)$. Log of entries of $f(A)$: matrix function $f(A)$ is approximately banded.

Figure: $f(z) = z^{-1}$. Log of entries of $f(A)$: matrix function $f(A)$ is not (approximately) banded...

Figure: ... but $f(A) = A^{-1}$ has all off-diagonal blocks of rank 1!
Connection to polynomial/rational approximation

For now, assume A banded.

If f is well approximated by a small-degree polynomial p on spectrum of A then

$$f(A) \approx p(A) = \text{banded.}$$

If f is well approximated by a small-degree rational function r on spectrum of A then

$$f(A) \approx r(A) = \text{HSS matrix.}$$

Generalizations to other formats such as hierarchically semiseparable (HSS) matrices are possible.
Existing methods for computing $f(A)$

- A priori polynomial approximation
 [Benzi/Boito/Razouk’2013], [Goedecker’1999], [Benzi/Razouk’2008], ...

- Iterations + thresholding
 [Németh/Scuseria’2000] (sign), [Bini et al.’2016] (Toeplitz matrices), ...

- A priori rational approximation
 [Gavrilyuk et al.’2002] (exponential), [Kressner/Šušnjara’2017] (spectral projectors), [Beckermann/Bisch/Luce’2021] (Markov functions of Toeplitz matrices), ...

- Iterations in HSS arithmetics + truncation strategies
 [Grasedyck et al.’2003] (sign), $\sqrt{\cdot}$, ...
Goal:
Compute \(f(A) \)
for matrix \(A \in \mathbb{R}^{n \times n} \)
with some low-rank structure.
We consider matrices which can be decomposed (recursively) as

\[A = D_1 + D_2 + \text{low-rank} = D + R \]

e.g. banded matrices, HODLR/HSS matrices, adjacency matrices of graphs with community structure.

Divide-and-conquer idea for computing \(f(A) \):

\[f(A) = \begin{bmatrix} f(D_1) \\ f(D_2) \end{bmatrix} + \text{correction}. \]
Low-rank updates

Nice fact: In many cases \(f(D + R) - f(D) \) is approximately low-rank!

Example: Singular value decay of \(f(A) - f(D) \) for
- \(A = \text{tridiag}(-1, 2, -1) \) of size \(256 \times 256 \),
- \(D_1 = D_2 = \text{tridiag}(-1, 2, -1) \) of size \(128 \times 128 \),
- \(R = A - D \) has rank 2.

\[f(z) = \exp(z). \]

\[f(z) = \sqrt{z}. \]

[Beckermann/Kressner/Schweitzer'2018], [Beckermann et al.'2021]
Low-rank updates: Algorithm

Let \(R = BJC^T \), with \(B, C \in \mathbb{R}^{n \times r} \) and \(J \in \mathbb{R}^{r \times r} \).

Choose rank \(m \) and approximate \(f(D + R) - f(D) \approx U_mX_m(f)V_m^T \), where:

- \(U_m \in \mathbb{R}^{n \times mr} \) orthonormal basis of \(\mathcal{K}_m(D, B) \) or \(q_m(D)^{-1}\mathcal{K}_m(D, B) \);
- \(V_m \in \mathbb{R}^{n \times mr} \) orthonormal basis of \(\mathcal{K}_m(D^T, C) \) or \(q_m(D^T)^{-1}\mathcal{K}_m(D^T, C) \);

Definition

- Polynomial Krylov subspace: \(\mathcal{K}_m(D, B) := \text{span} \begin{bmatrix} B, DB, D^2B, \ldots, D^{m-1}B \end{bmatrix} \).
- Rational Krylov subspace associated with \(q(z) = (z - \xi_1) \cdots (z - \xi_m) \) for prescribed poles \(\xi = (\xi_1, \ldots, \xi_m)^T \in \mathbb{C}^m \):
 \[
 \mathcal{RK}_m(D, B, \xi) := \text{span} \begin{bmatrix} q_m(D)^{-1}B, q_m(D)^{-1}DB, q_m(D)^{-1}D^2B, \ldots, q_m(D)^{-1}D^{m-1}B \end{bmatrix}.
 \]

\(X_m(f) \in \mathbb{R}^{mr \times mr} \) chosen in suitable way according to [Beckermann/Kressner/Schweitzer’2018], [Beckermann et al.’2021]
Divide-and-conquer algorithm

Input: Matrix A with hierarchical low-rank structure, function f

Output: Approximation of $f(A)$, in HSS format

1. if A is small then
2. Compute $f(A)$ in “dense” arithmetics, e.g. by Schur-Parlett’s algorithm
3. else
4. Decompose $A = D + R = \text{block-diagonal} + \text{low-rank}$
5. Compute $f(\text{diagonal blocks})$ recursively
6. Add correction $f(D + R) - f(D)$ computed by low-rank updates algorithm
7. end if

[C./Kressner/Massei’2021]
Convergence of D&C algorithm

Theorem ([C./Kressner/Massei’2021])

Let A be symmetric and let f be a function analytic on an interval \mathbb{E} containing the eigenvalues of A. Suppose that we use rational Krylov subspaces with poles ξ_1, \ldots, ξ_m, closed under complex conjugation, for computing updates. Then the output F_A of the D&C algorithm satisfies

$$\|f(A) - F_A\|_2 \leq 4 \cdot \text{recursion depth} \cdot \min_{r \in \Pi_m/q_m} \|f - r\|_E,$$

where $q_m(z) = \prod_{i=1}^m (z - \xi_i)$.

Main ingredient of the proof:
Each low-rank update is exact for rational functions $r \in \Pi_m/q_m$.

Nice fact: Convergence is related to best rational approximation, but does not need to explicitly find such rational function.
Numerical experiments (1)

Example from [Ilić/Turner/Simpson’2010]: Sampling from a Gaussian random field requires $A^{-1/2}$ for $A =$ covariance matrix; here A is banded.

- D&C algorithm (extended Krylov subspaces for low-rank updates)
- Denman and Beavers iteration with HSS arithmetic (hm-toolbox [Massei/Robol/Kressner’2020])
- Matlab’s sqrtm

<table>
<thead>
<tr>
<th>A Size</th>
<th>Band</th>
<th>D&C Time</th>
<th>D&C Err</th>
<th>sqrtm (HSS) Time</th>
<th>sqrtm (HSS) Err</th>
<th>Dense Time</th>
<th>$A^{-\frac{1}{2}}$ HSS rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>512</td>
<td>22</td>
<td>0.05</td>
<td>2.02 $\cdot 10^{-9}$</td>
<td>0.49</td>
<td>3.44 $\cdot 10^{-9}$</td>
<td>0.02</td>
<td>14</td>
</tr>
<tr>
<td>1,024</td>
<td>20</td>
<td>0.16</td>
<td>3.45 $\cdot 10^{-9}$</td>
<td>1.41</td>
<td>5.22 $\cdot 10^{-9}$</td>
<td>0.13</td>
<td>17</td>
</tr>
<tr>
<td>2,048</td>
<td>19</td>
<td>0.37</td>
<td>3.76 $\cdot 10^{-9}$</td>
<td>3.99</td>
<td>6.38 $\cdot 10^{-9}$</td>
<td>0.95</td>
<td>19</td>
</tr>
<tr>
<td>4,096</td>
<td>21</td>
<td>0.8</td>
<td>3.23 $\cdot 10^{-9}$</td>
<td>9.05</td>
<td>5.61 $\cdot 10^{-9}$</td>
<td>9.03</td>
<td>19</td>
</tr>
<tr>
<td>8,192</td>
<td>22</td>
<td>2.46</td>
<td>3.46 $\cdot 10^{-9}$</td>
<td>21.27</td>
<td>6.61 $\cdot 10^{-9}$</td>
<td>70.42</td>
<td>20</td>
</tr>
<tr>
<td>16,384</td>
<td>25</td>
<td>5.7</td>
<td></td>
<td>48.92</td>
<td></td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>32,768</td>
<td>26</td>
<td>15.12</td>
<td></td>
<td>102.65</td>
<td></td>
<td></td>
<td>25</td>
</tr>
<tr>
<td>65,536</td>
<td>26</td>
<td>26.25</td>
<td></td>
<td>209.56</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>131,070</td>
<td>25</td>
<td>60.44</td>
<td></td>
<td>417.21</td>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td>262,140</td>
<td>26</td>
<td>146.97</td>
<td></td>
<td>918.81</td>
<td></td>
<td></td>
<td>26</td>
</tr>
</tbody>
</table>
Numerical experiments (2)

For $A = \text{adjacency matrix of undirected graph}$, diagonal entries of $\exp(A)$ are subgraph centralities and $\frac{1}{n} \text{trace}(\exp(A))$ is the Estrada index.

- D&C algorithm (splitting vertices into 2 components using METIS algorithm, polynomial Krylov subspaces for the low-rank updates)
- mmq (Gauss quadrature to approximate each diagonal entry of $\exp(A)$, see [Golub/Meurant'2010])
- Matlab’s expm and eig

<table>
<thead>
<tr>
<th>A Size</th>
<th>D&C diagonal Time</th>
<th>D&C diagonal Err</th>
<th>mmq diagonal Time</th>
<th>mmq diagonal Err</th>
<th>expm Time</th>
<th>expm Err</th>
<th>D&C trace Time</th>
<th>D&C trace Err</th>
<th>eig Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,642</td>
<td>1.01</td>
<td>$6.24 \cdot 10^{-10}$</td>
<td>0.8</td>
<td>$1.82 \cdot 10^{-11}$</td>
<td>1.98</td>
<td></td>
<td>0.14</td>
<td>$7.71 \cdot 10^{-13}$</td>
<td>0.44</td>
</tr>
<tr>
<td>4,941</td>
<td>2.06</td>
<td>$1.29 \cdot 10^{-8}$</td>
<td>5.15</td>
<td>$3.39 \cdot 10^{-11}$</td>
<td>16.11</td>
<td></td>
<td>0.47</td>
<td>$7.75 \cdot 10^{-11}$</td>
<td>3.61</td>
</tr>
<tr>
<td>7,716</td>
<td>8.01</td>
<td>$4.03 \cdot 10^{-9}$</td>
<td>24.19</td>
<td>$2.29 \cdot 10^{-10}$</td>
<td>56.59</td>
<td></td>
<td>3.91</td>
<td>$1.96 \cdot 10^{-12}$</td>
<td>8.73</td>
</tr>
<tr>
<td>10,774</td>
<td>15.87</td>
<td>$1.04 \cdot 10^{-8}$</td>
<td>39.42</td>
<td>$3.54 \cdot 10^{-10}$</td>
<td>151.52</td>
<td></td>
<td>2.98</td>
<td>$2.69 \cdot 10^{-10}$</td>
<td>21.04</td>
</tr>
<tr>
<td>20,055</td>
<td>38.49</td>
<td>$2.59 \cdot 10^{-9}$</td>
<td>97.53</td>
<td>$1.4 \cdot 10^{-11}$</td>
<td>929.25</td>
<td></td>
<td>6.99</td>
<td>$2.66 \cdot 10^{-13}$</td>
<td>124.34</td>
</tr>
<tr>
<td>45,087</td>
<td>182.19</td>
<td>$2.59 \cdot 10^{-9}$</td>
<td>603.57</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Test matrices from the SuiteSparse Matrix Collection.
Special case: Banded matrices (1)

Bases of polynomial Krylov subspaces inherit sparsity and have the form

\[U_m = V_m = \begin{bmatrix} 0 \\ I \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}. \]
Special case: Banded matrices (2)

D&C algorithm simplifies a lot! \(\rightsquigarrow \) “block-diagonal splitting algorithm”

\[
A = \begin{bmatrix}
\end{bmatrix}
\]

Then,

\[
f(A) \approx f \begin{bmatrix}
\end{bmatrix} + f \begin{bmatrix}
\end{bmatrix} - f \begin{bmatrix}
\end{bmatrix}.
\]

Theorem ([C./Kressner/Massei’2021])

For a matrix \(A \) with bandwidth \(b \), block size \(s \), let \(m := \lfloor s/2b \rfloor \), then

\[
\| f(A) - \text{approx} \|_2 \leq 10 \min_{p \in \Pi_m} \| f - p \| \text{numerical range of } A.
\]
Numerical example for banded matrices

The size of the blocks can be chosen adaptively.

Example: \(A \) is tridiagonal, \(\text{linspace}(2, 3, n) \) on the diagonal, \(-1\) on super- and sub-diagonals; \(f(A) = \sqrt{A} \).

Figure: \(\log |f(A)| \)

Figure: Sparsity pattern of the output
Computational complexity

Simplified assumption: low-rank updates converge in a fixed number of steps.

- General D&C algorithm: $O(k^2n \log n)$ for matrix of size n and HSS rank k
- Block diagonal splitting algorithm: $O(nb^2)$ for a matrix of bandwidth b

Figure: $A = \text{tridiag}(-1, 2, -1)$, $f = \exp$.
Trace & diagonal of matrix functions

Assume polynomial Krylov subspaces are used for the low-rank updates.

Figure: Convergence of low-rank updates algorithm \(f(A) - f(A - R) \), \(A \) and \(R \) symmetric, \(f = \exp \).

Figure: Convergence of block-diagonal splitting algorithm for the exponential of normalized non-symmetric pentadiagonal matrix \(A \).

Trace and/or diagonal converge faster! (And we proved it)
Summary & conclusions

1. Two new algorithms for approximating matrix functions:
 - A general D&C algorithm for matrices with hierarchical low-rank structure;
 - An algorithm that is specialized to banded matrices.

2. Convergence analysis: Links to best polynomial/rational approximation of \(f \) on a suitable region containing eigenvalues of \(A \).

3. Numerical tests: Generally faster than existing methods (for large \(n \)), with comparable accuracy.