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Introduction

Inhomogeneous elliptic BVP

Fluid-structure interaction

Many applications involve solving an innomogeneous elliptic BVP. [Rycroft et al., 2020]

Active droplets [Stein, 2021]

Lu — f in Q (e.g. Poisson, Helmholtz, Stokes, ...)

Bu = g on [ (e.g. Dirichlet, Neumann, Robin, ...)

(Today’s focus: L = /A, interior Dirichlet)

Bubble collision [Saye, 2017]
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Introduction

Many approaches for inhomogeneous BVP

Traditional
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Conforming Cut-cell

* Mesh generation (or cut-cell generation)

* Directly discretize with FEM, FDM, SEM, ...
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Introduction

Many approaches for inhomogeneous BVP

Traditional Analysis-based
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Computing a particular solution

Suppose we only know f(x) inside (1. We have a few options...

» Build accurate quadrature scheme over () (e.g. adaptive boxes with cut cells
near boundary) and compute

uP(x) = /Q G (>y<,\y)f (y)dy ( Poisson: G(x.y) = 5 log [~ )
free space fundamental solution I_

. Extend f to f outside ) (“function extension™). Adaptively resolve f and compute

P (x) = / G(x, y)F(y)dy

Quadrature tables for boxes can be precomputed (FMM “box code”)

* Or, sample f on a uniform grid and use an FFT-based solver on J5.

Want f as smooth as f for fast convergence. How?




Function extension

Prior work

* Finite difference extension, second-order accurate [Mayo, 1984]
* Fourier continuation [Bruno & Lyon, 2010], [Bruno & Paul, 2020]
 Immersed boundary smooth extension [Stein, Guy, & Thomases, 2015]

e C Kbolyharmonic extension + box code, fourth-order accurate [Askham & Cerfon, 2017]
POly

* Partition of unity extension [Fryklund, Lehto, & Tornberg, 2018]
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* Finite difference extension, second-order accurate [Mayo, 1984]
* Fourier continuation [Bruno & Lyon, 2010], [Bruno & Paul, 2020]
 Immersed boundary smooth extension [Stein, Guy, & Thomases, 2015]

e C Kbolyharmonic extension + box code, fourth-order accurate [Askham & Cerfon, 2017]
POly

* Partition of unity extension [Fryklund, Lehto, & Tornberg, 2018]

~ In general, smoothly extending f in a robust way is challenging. |
(Especially for multiscale geometry, multiscale f, close-to-touching regions, ...) |
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ntension”

Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside €2.

Define an annular strip S inside (2.

Roll off f to zero smoothly in S. This is .
Compute a particular solution for f in B.
Compute a particular solution for f in S.

Patch solutions together.

How to define the strip?
How to solve in the strip?
How to patch the solutions?
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Wish list

Task: Given a panelized curve [, compute another panelized curve [ that is:
e inside [ .
» as smooth as [ .
» not too close to | (or the roll off will be sharp).
» not too far from [ (or the strip will be large — extra work).
* not self intersecting.

 What about a uniform perturbation in the normal direction?
 When all panels are roughly the same size, works well.

e But when panels span many length scales...

e can over-resolve the largest length scales.

e can self-intersect.

[" should adapt to local panel size




Defining the strip

Adapting to local panel size

Task: Given a panelized curve [, compute another panelized curve [ that is:

e inside .

« as smoothas I .

» not too close to | (or the roll off will be sharp).

» not too far from [ (or the strip will be large — extra work).

* not self intersecting.

Solution:

Define piecewise linear width function based on average local panel size
Approximate each junction by smoothed abs(x)
Blend together using matched asymptotics

Perturb in the normal direction




Solving the strip problem

Spectral element discretization

We use a spectral element method in S, with spectral collocation at tensor-product Chebyshev nodes
on each element.
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Jacobian is numerically computed at each
point to form differentiation matrices.
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A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

[Gillman & Martinsson, 2015], [Martinsson, 2015]
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@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

@ Recursively apply S , starting from known boundary conditions at the top level.

Cost: C’)(pﬁnpand) + O(psnpanel) + C’)(p2npane|) = O(npane|) Takeaway: 1D HPS is fast out of the box.

0, @ €)

We typically use p = 16 on each panel and upsample the SEM grid to 2p = 32.

[Gillman & Martinsson, 2015], [Martinsson, 2015]
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Solving the bulk problem

Evaluating the roll off function

 Goal: Approximate f by quad-tree of tensor product Chebyshev nodes.

* Problem: To evaluate the roll off function at a point,
we need to know where that point falls in the strip.

* Solution: Compute local coordinates via 1D interpolation
through normal vectors [Bruno & Paul, 2020]

Use a box code to obtain a particular solution:

~

Aubu|k — f N B O(N) — C’)(pznboxes)

Far
Then, Aupy = finside [ F(B)

Near

N (B)




Patching the solutions

Using the value of Ubulk as the inner boundary condition in the SEM, the solutions will match along .
However, their normal derivatives may not.

The “single-layer potentia

v(x) = (So)(x) = / G(x,y)o(y)dt,

/

satisfies Av = 0 and the jump relation
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Patching the solutions

Using the value of Ubulk as the inner boundary condition in the SEM, the solutions will match along .
However, their normal derivatives may not.

The “single-layer potentia

/(%) = (50)(x) = / G(x, y)o(y)dt,

/

satisfies Av = 0 and the jump relation

@jL ov
on |-,  On |

O Ustrip O Ubulk
on |, on |,

Apply SLP:  Ugiue = S (

Then, A(upuik + Uglue) = FiN Q\ S




Correcting the boundary conditions

Finally, the boundary conditions may not be satisfied.

Standard BIE solve using double-layer potential:

Aubc =0 in €2
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Correcting the boundary conditions

Finally, the boundary conditions may not be satisfied.

Standard BIE solve using double-layer potential:

Aubc =0 in €2

Upc — 8 — (Ustrip|r + Uglue|r) on [

Ubulk + Uglye + Upe 1N 2\ S
Then U :{ - S - \ satisfies:

Ustrip =+ Uglue + Upc IN S

Au=1f inQ
u=g onl
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Thank you

» Still ongoing work
* Adaptivity can be performed on boundary (via panelization) and in volume (box code)

* Function “intension” can avoid pitfalls of function extension
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