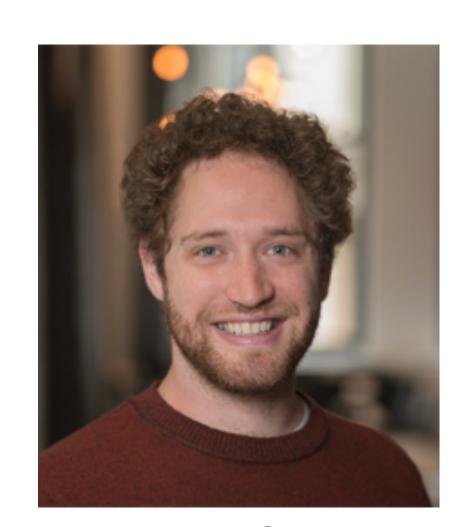
A fully adaptive Poisson solver for smooth two-dimensional domains

Alex Barnett

Daniel Fortunato

Flatiron Institute



David Stein

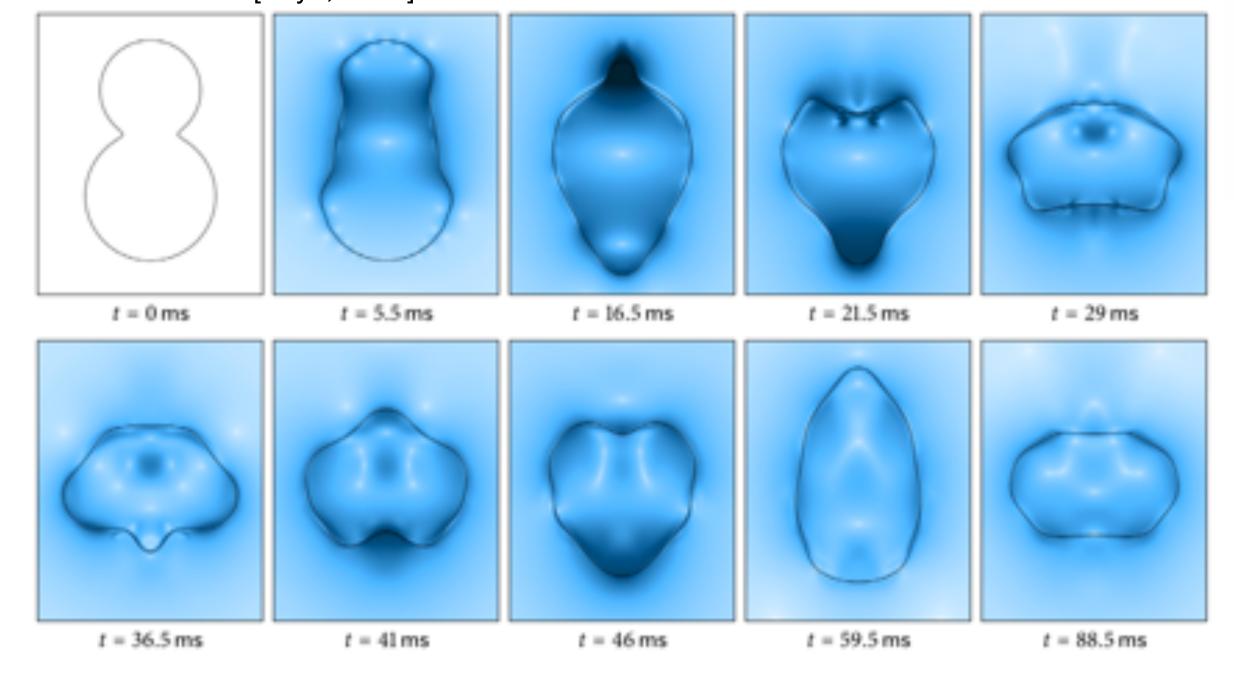
Inhomogeneous elliptic BVP

Many applications involve solving an inhomogeneous elliptic BVP.

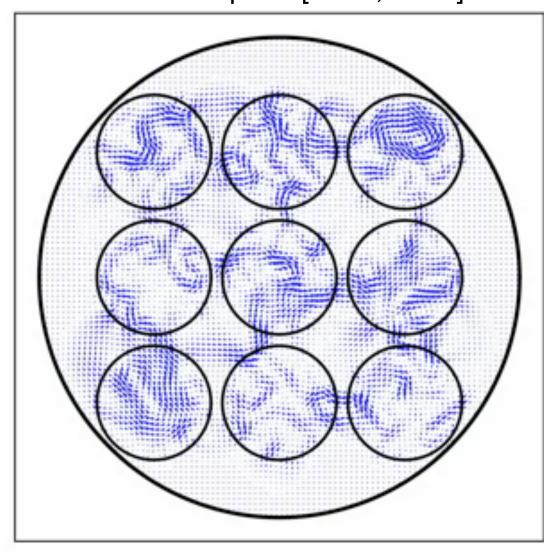
$$Bu=g$$
 on Γ (e.g. Dirichlet, Neumann, Robin, ...)

(Today's focus: $L=\Delta$, interior Dirichlet)

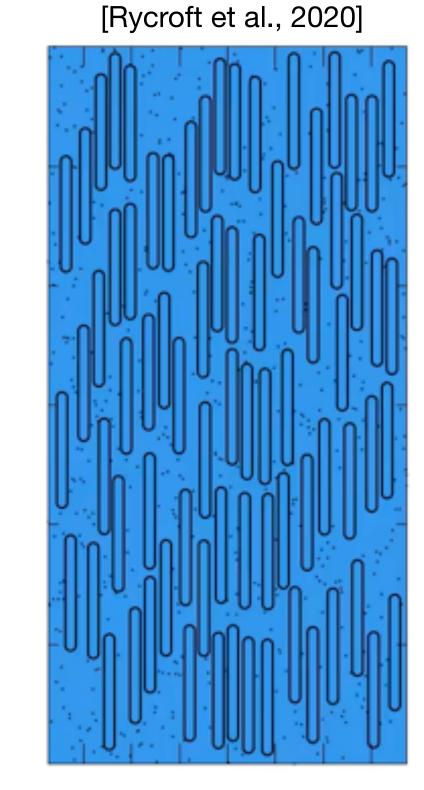
Bubble collision [Saye, 2017]



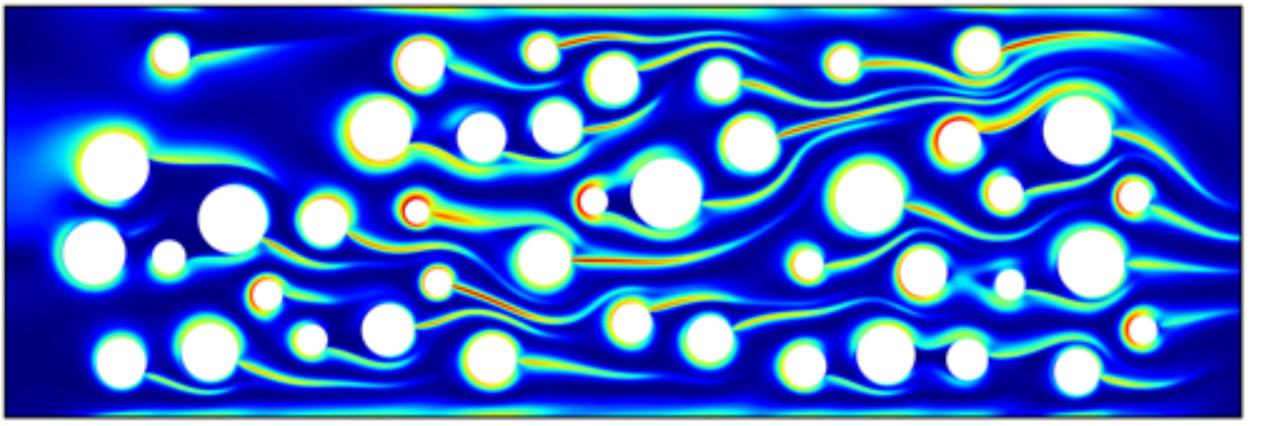
Active droplets [Stein, 2021]



Non-Newtonian fluids [Stein et al., 2019]



Fluid-structure interaction



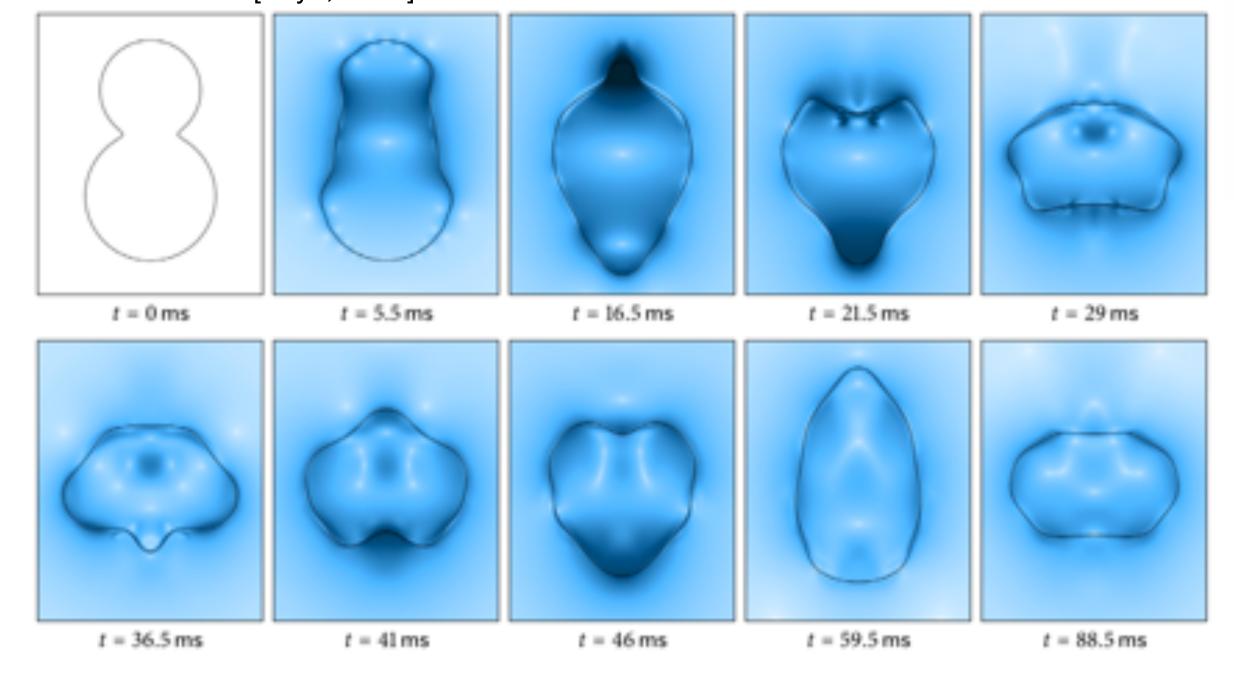
Inhomogeneous elliptic BVP

Many applications involve solving an inhomogeneous elliptic BVP.

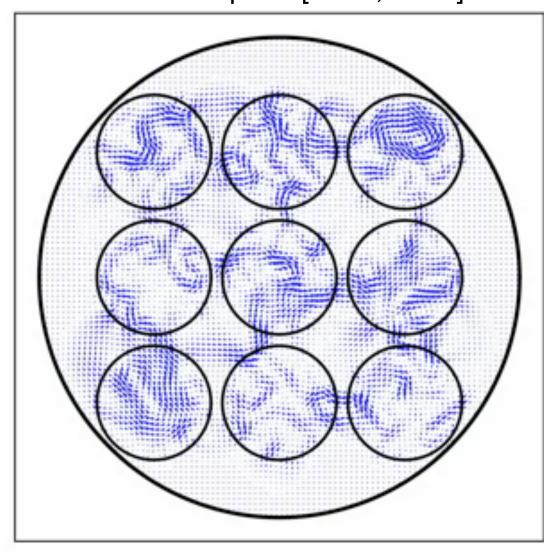
$$Bu=g$$
 on Γ (e.g. Dirichlet, Neumann, Robin, ...)

(Today's focus: $L=\Delta$, interior Dirichlet)

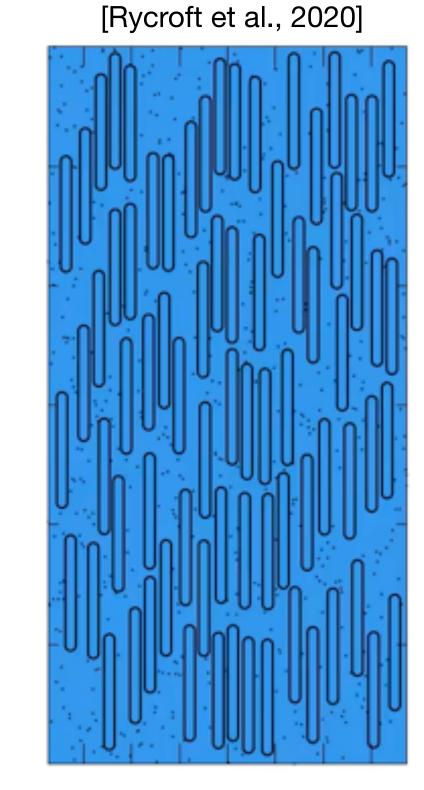
Bubble collision [Saye, 2017]



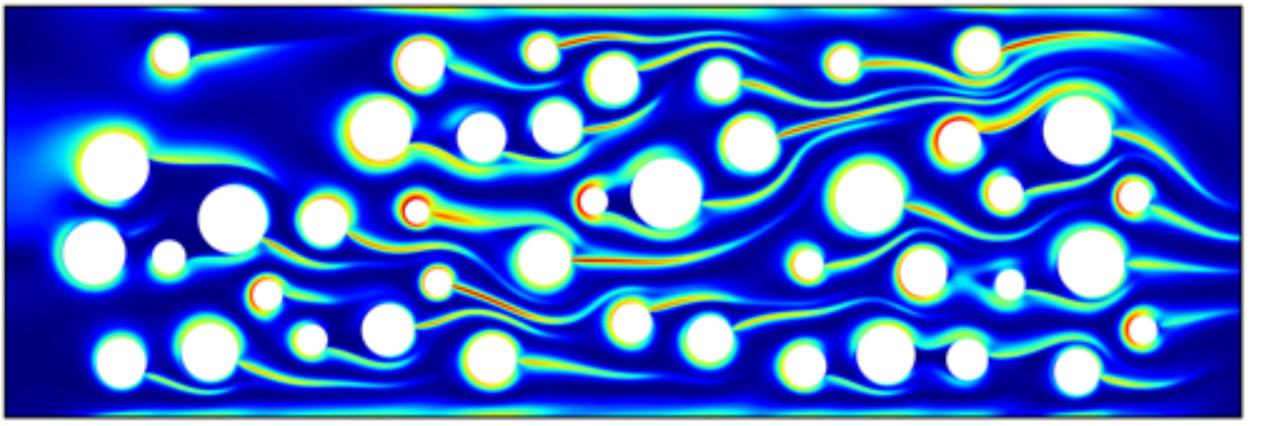
Active droplets [Stein, 2021]



Non-Newtonian fluids [Stein et al., 2019]

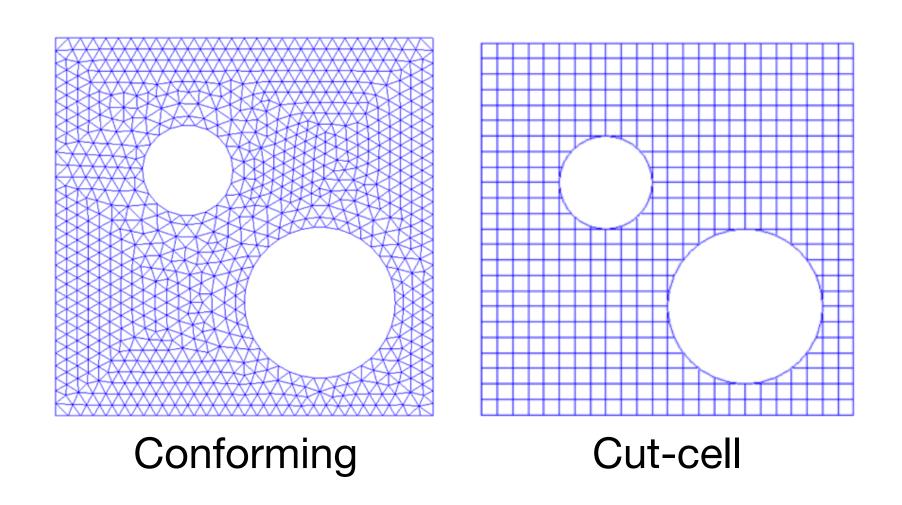


Fluid-structure interaction



Many approaches for inhomogeneous BVP

Traditional



- Mesh generation (or cut-cell generation)
- Directly discretize with FEM, FDM, SEM, ...

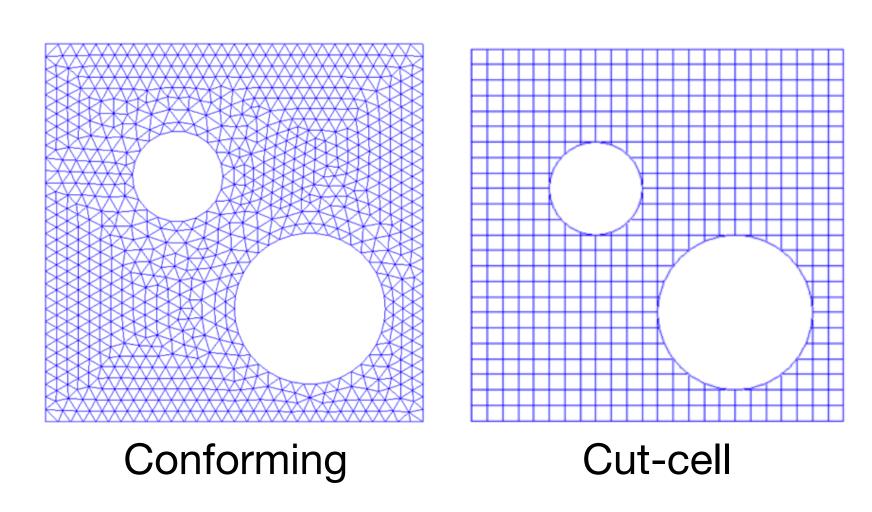
$$Ax = b$$

Solve linear system for volume DoFs.

Sparse but preconditioning needed.

Many approaches for inhomogeneous BVP

Traditional

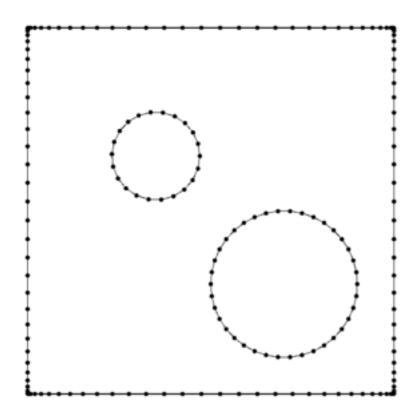


- Mesh generation (or cut-cell generation)
- Directly discretize with FEM, FDM, SEM, ...

$$Ax = b$$

Solve linear system for volume DoFs. Sparse but preconditioning needed.

Analysis-based



- Write solution as $u = u^h + u^p$ homogeneous solution particular solution
- Find **some** (any!) function u^p such that

$$Lu^p = f$$
 in Ω

No solve required. Convolve with Green's function.

• Compute u^h to satisfy boundary conditions:

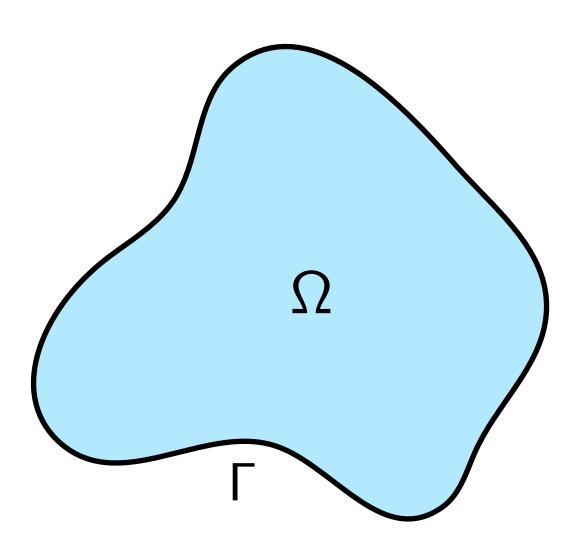
$$Lu^{h} = 0$$
 in Ω
 $Bu^{h} = g - Bu^{p}$ on Γ

$$Bu^{h} = g - Bu^{p}$$
 on Γ

Solve linear system for boundary DoFs using BIE.

Computing a particular solution

Suppose we only know f(x) inside Ω . We have a few options...



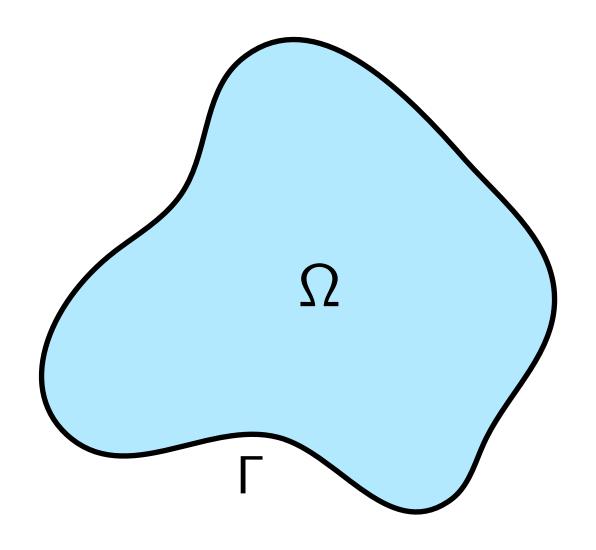
Computing a particular solution

Suppose we only know f(x) inside Ω . We have a few options...

• Build accurate quadrature scheme over Ω (e.g. adaptive boxes with cut cells near boundary) and compute

$$u^{p}(x) = \int_{\Omega} G(x, y) f(y) dy$$
free space fundamental solution

$$\left(\text{ Poisson: } G(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|} \right)$$



Computing a particular solution

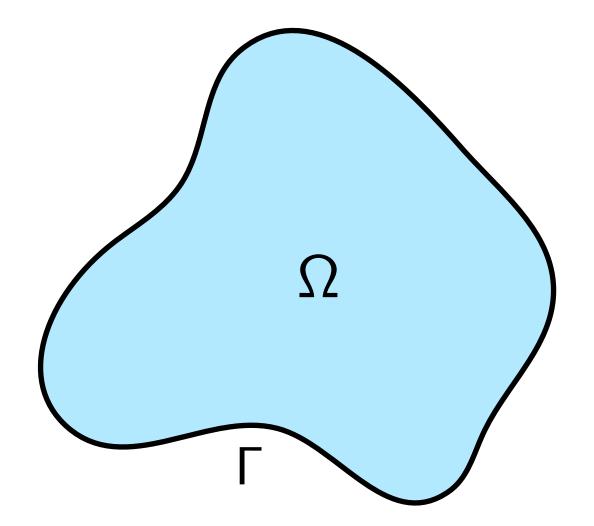
Suppose we only know f(x) inside Ω . We have a few options...

• Build accurate quadrature scheme over Ω (e.g. adaptive boxes with cut cells near boundary) and compute

$$u^{p}(x) = \int_{\Omega} G(x, y) f(y) dy$$

free space fundamental solution

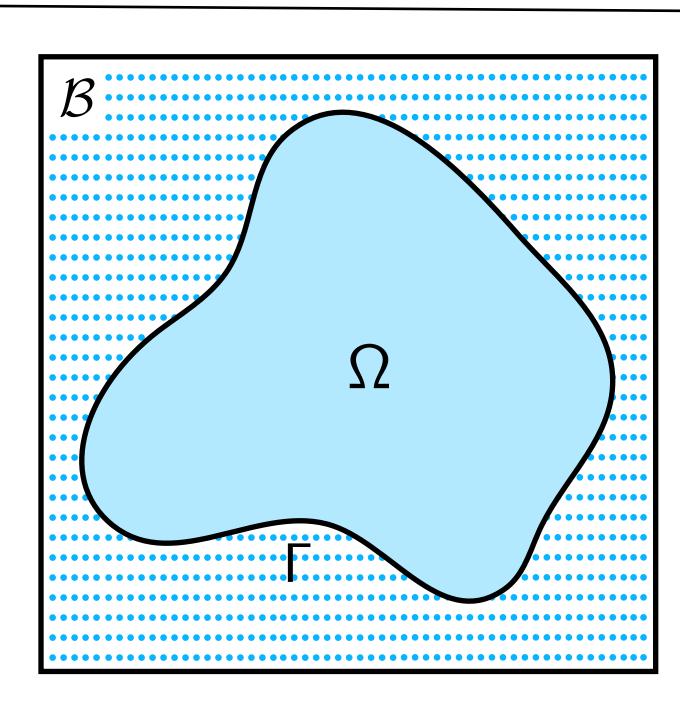
Poisson:
$$G(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|}$$



• Extend f to \tilde{f} outside Ω ("function extension"). Adaptively resolve \tilde{f} and compute

$$u^{p}(x) = \int_{\mathcal{B}} G(x, y) \tilde{f}(y) dy$$

Quadrature tables for boxes can be precomputed (FMM "box code")



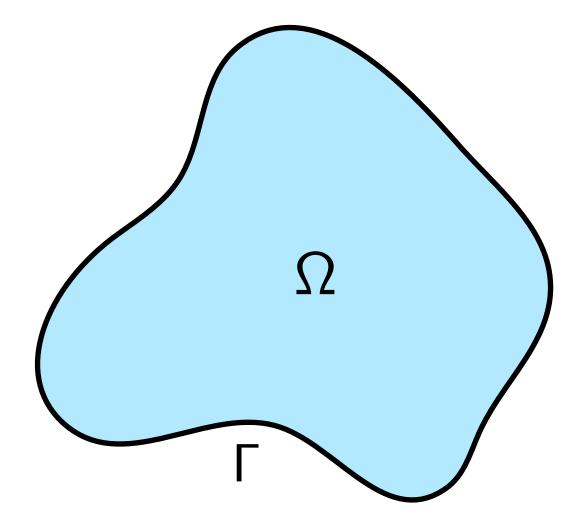
Computing a particular solution

Suppose we only know f(x) inside Ω . We have a few options...

• Build accurate quadrature scheme over Ω (e.g. adaptive boxes with cut cells near boundary) and compute

$$u^{p}(x) = \int_{\Omega} G(x, y) f(y) dy$$
free space fundamental solution

Poisson:
$$G(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|}$$

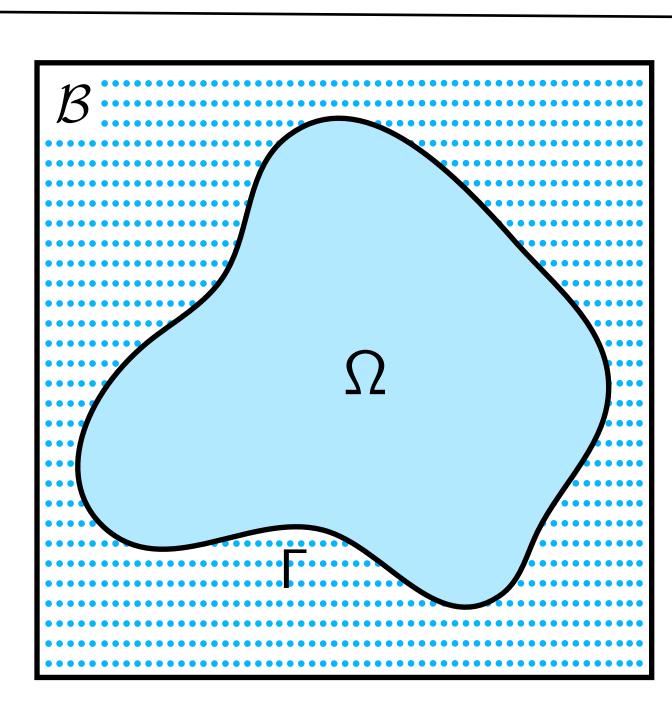


• Extend f to \tilde{f} outside Ω ("function extension"). Adaptively resolve \tilde{f} and compute

$$u^{p}(x) = \int_{\mathcal{B}} G(x, y) \tilde{f}(y) dy$$

Quadrature tables for boxes can be precomputed (FMM "box code")

• Or, sample $ilde{f}$ on a uniform grid and use an FFT-based solver on \mathcal{B} .

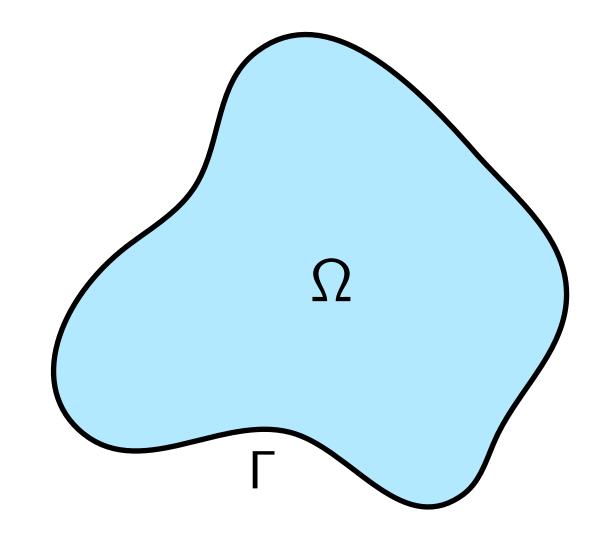


Computing a particular solution

Suppose we only know f(x) inside Ω . We have a few options...

• Build accurate quadrature scheme over Ω (e.g. adaptive boxes with cut cells near boundary) and compute

$$u^{\mathrm{p}}(x) = \int_{\Omega} G(x,y) f(y) dy$$
 (Poisson: $G(x,y) = \frac{1}{2\pi} \log \frac{1}{|x-y|}$)



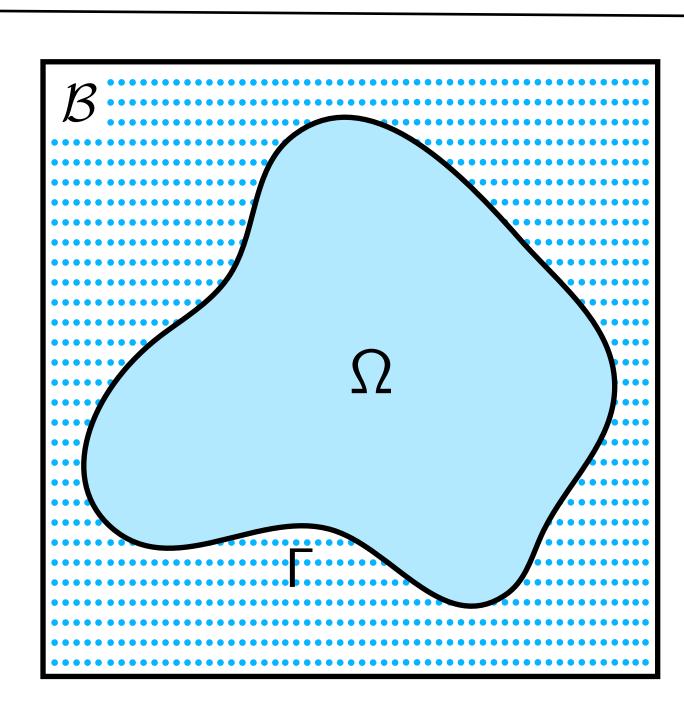
• Extend f to \tilde{f} outside Ω ("function extension"). Adaptively resolve \tilde{f} and compute

$$u^{p}(x) = \int_{\mathcal{B}} G(x, y) \tilde{f}(y) dy$$

Quadrature tables for boxes can be precomputed (FMM "box code")

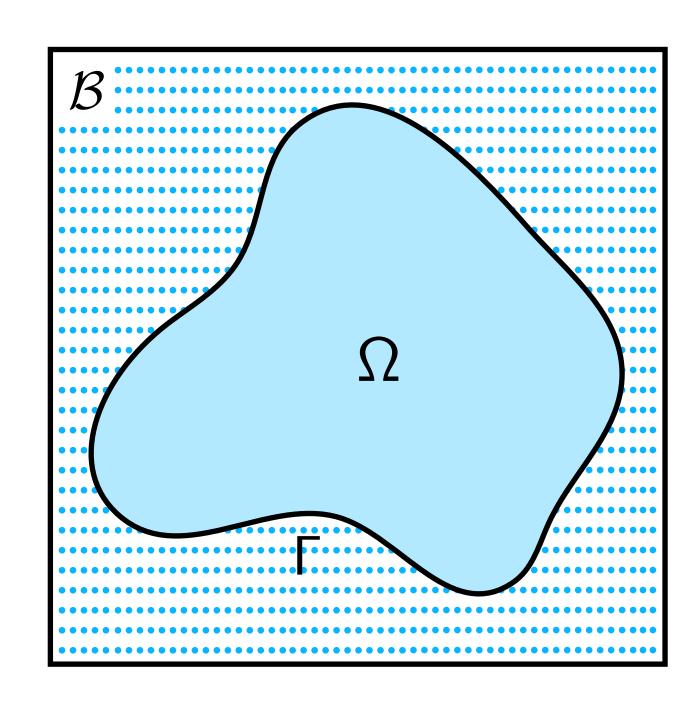
• Or, sample \tilde{f} on a uniform grid and use an FFT-based solver on \mathcal{B} .

Want \tilde{f} as smooth as f for fast convergence. How?



Function extension Prior work

- Finite difference extension, second-order accurate [Mayo, 1984]
- Fourier continuation [Bruno & Lyon, 2010], [Bruno & Paul, 2020]
- Immersed boundary smooth extension [Stein, Guy, & Thomases, 2015]
- C^k polyharmonic extension + box code, fourth-order accurate [Askham & Cerfon, 2017]
- Partition of unity extension [Fryklund, Lehto, & Tornberg, 2018]

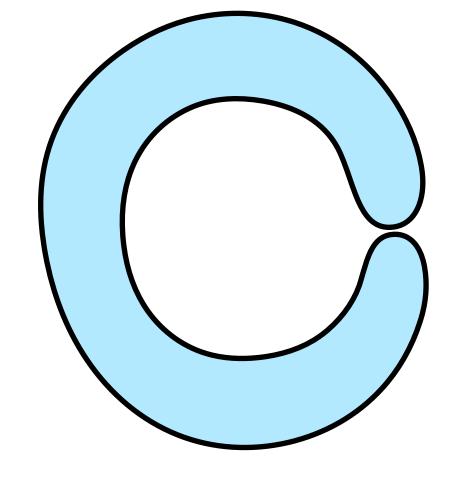


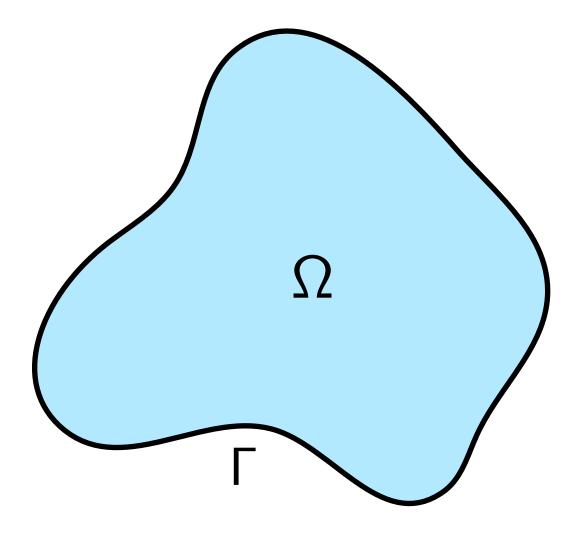
Function extension Prior work

- Finite difference extension, second-order accurate [Mayo, 1984]
- Fourier continuation [Bruno & Lyon, 2010], [Bruno & Paul, 2020]
- Immersed boundary smooth extension [Stein, Guy, & Thomases, 2015]
- C^k polyharmonic extension + box code, fourth-order accurate [Askham & Cerfon, 2017]
- Partition of unity extension [Fryklund, Lehto, & Tornberg, 2018]

Ω

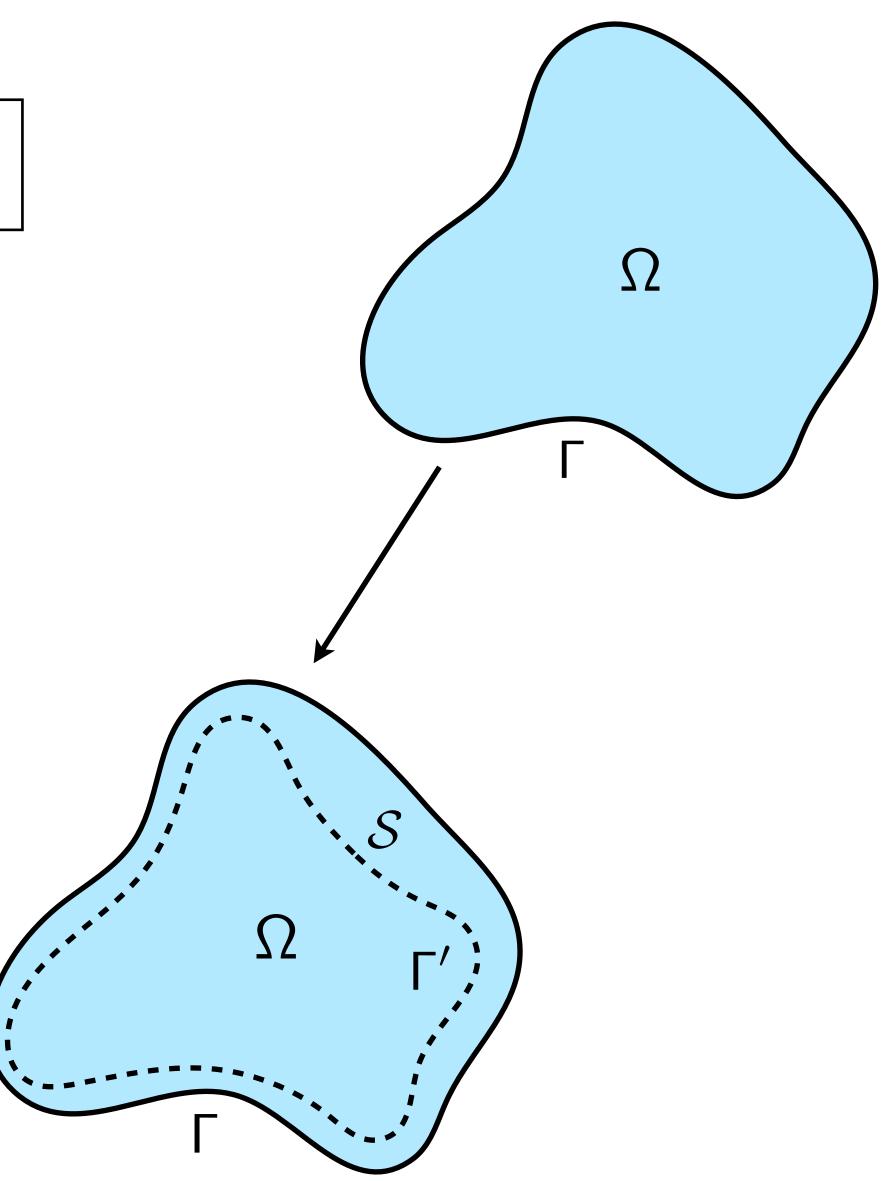
In general, smoothly extending f in a robust way is challenging. (Especially for multiscale geometry, multiscale f, close-to-touching regions, ...)



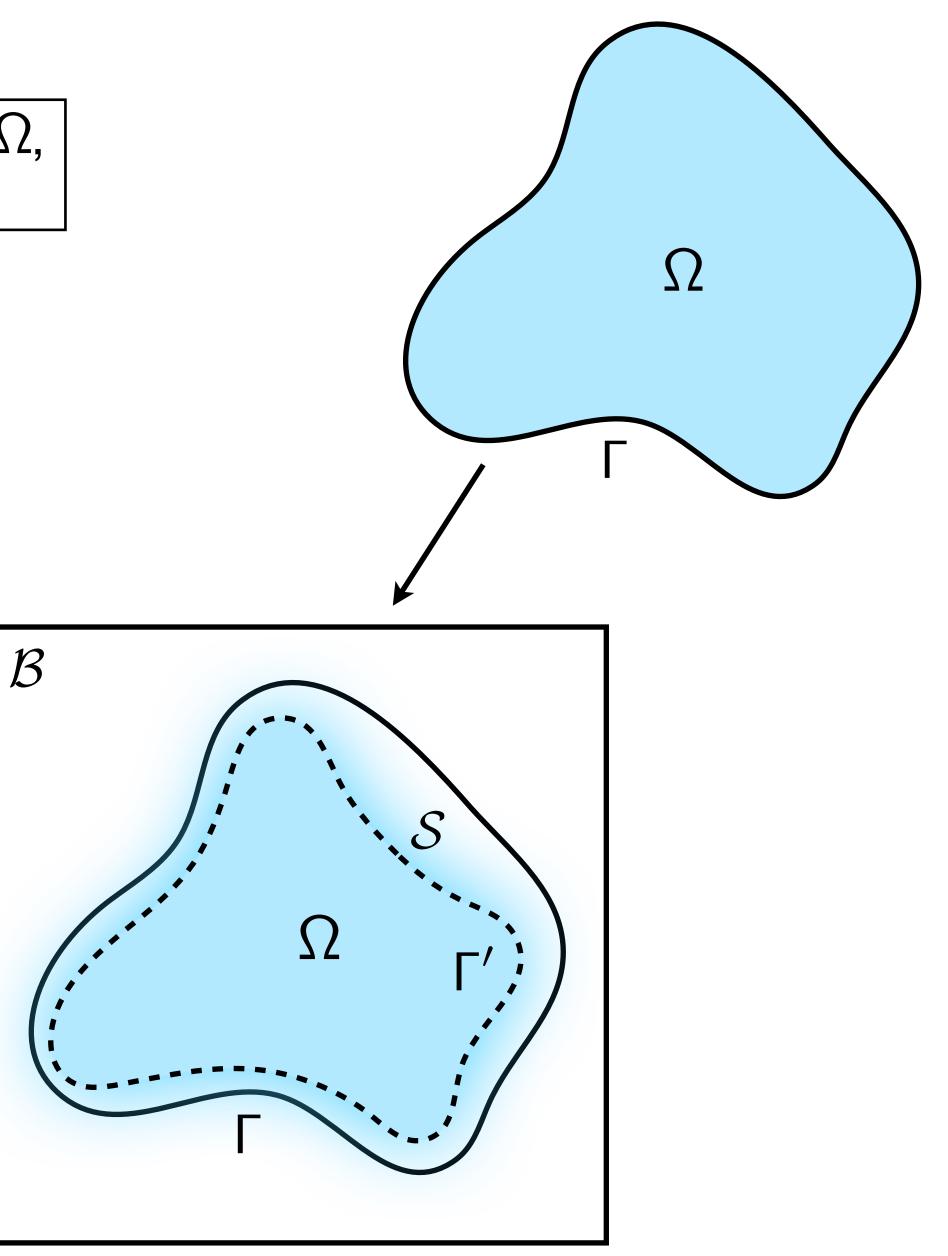


Instead of trying to make \tilde{f} smooth outside Ω , let's make it smooth inside Ω .

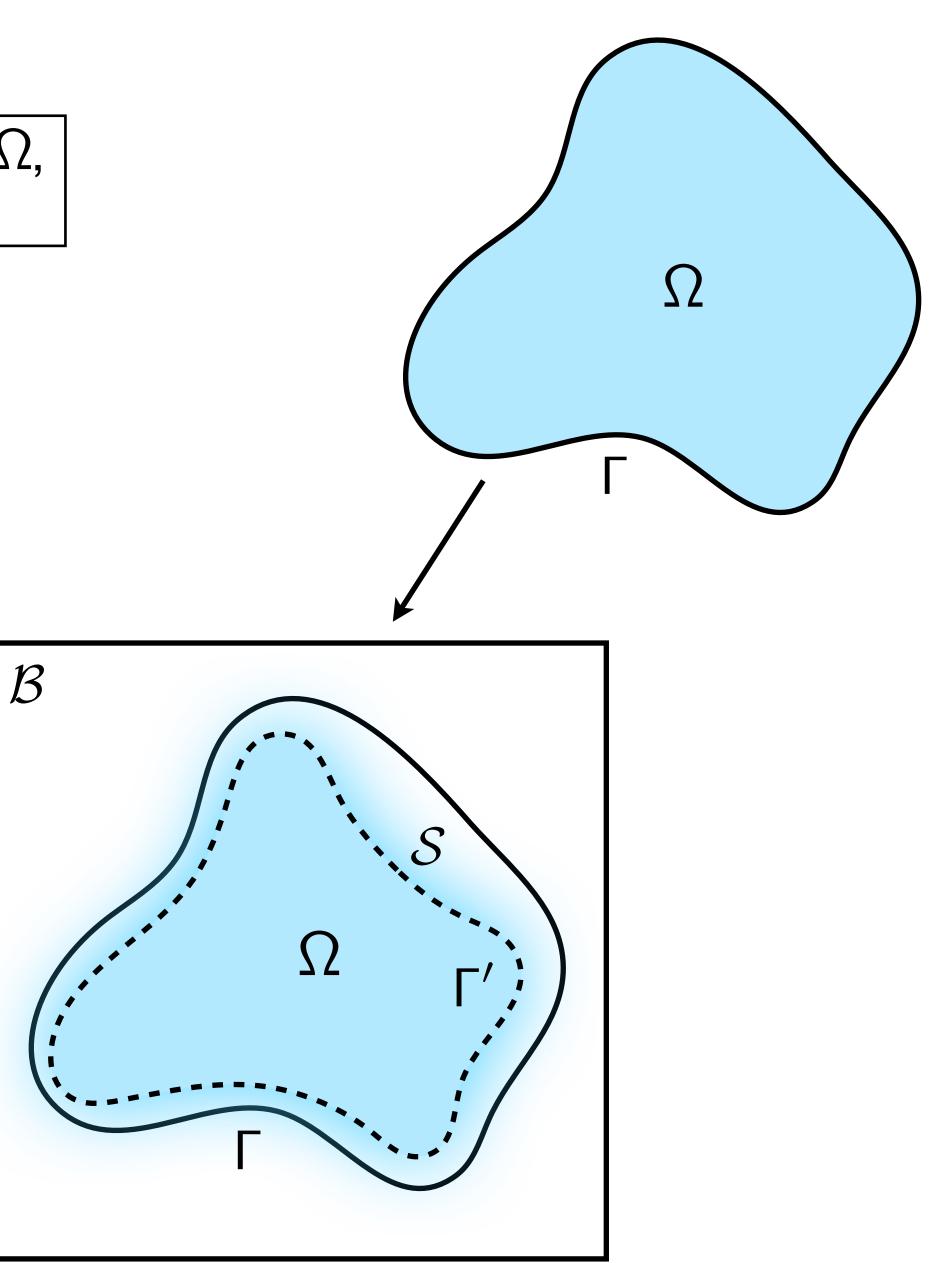
- Define an annular strip ${\mathcal S}$ inside Ω .



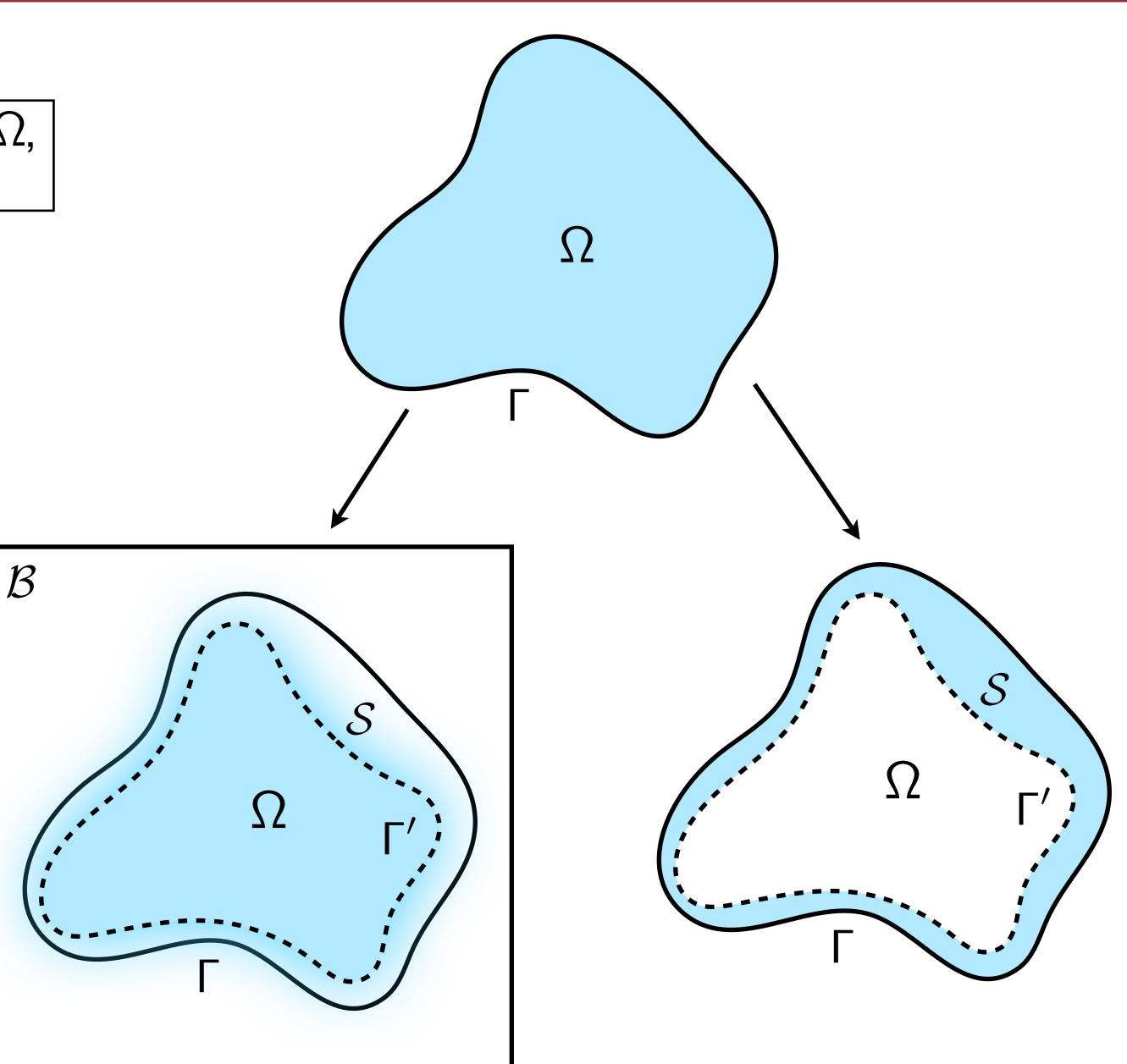
- Define an annular strip ${\mathcal S}$ inside Ω .
- Roll off f to zero smoothly in \mathcal{S} . This is \tilde{f} .



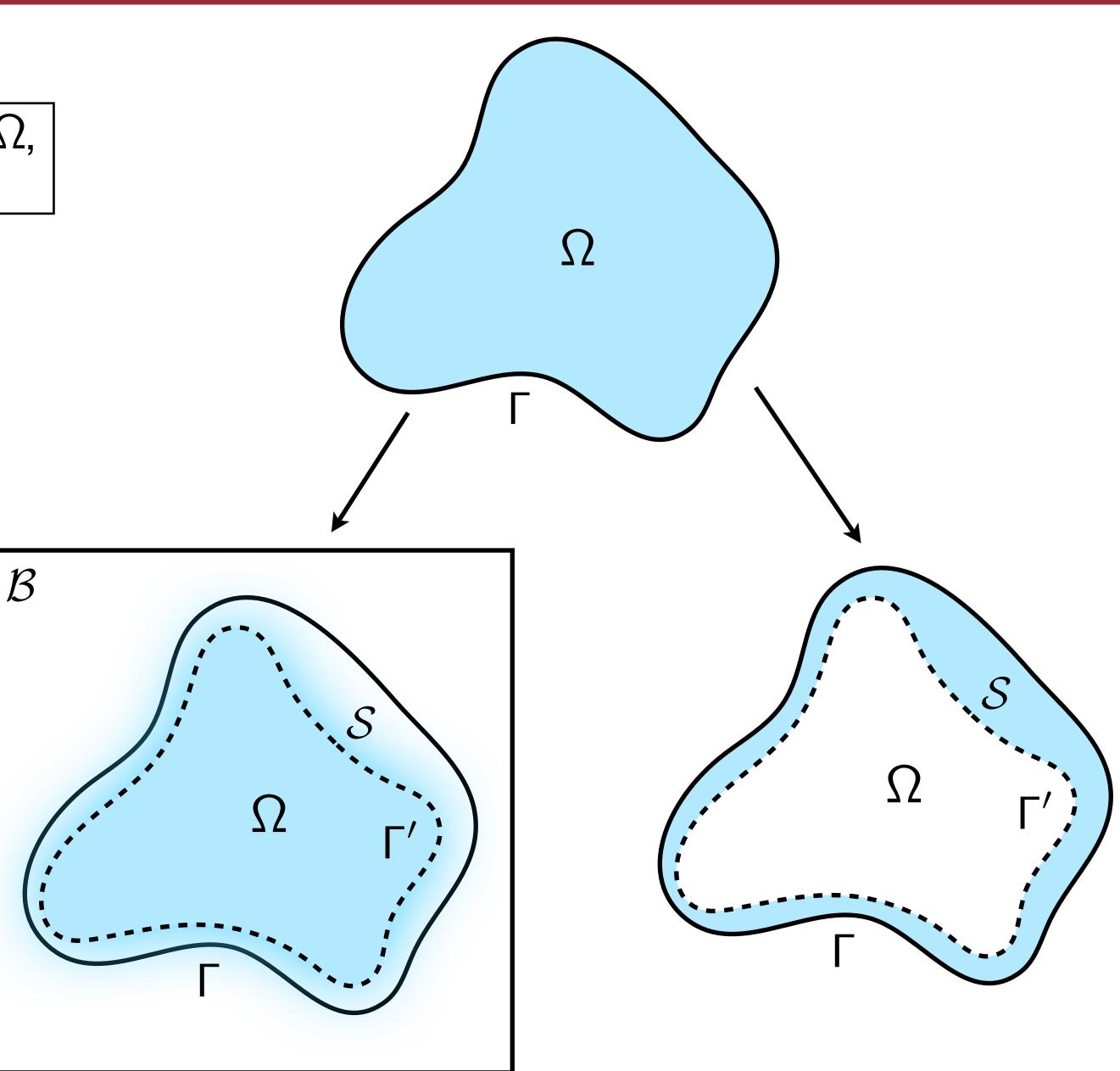
- Define an annular strip ${\mathcal S}$ inside Ω .
- Roll off f to zero smoothly in \mathcal{S} . This is \tilde{f} .
- Compute a particular solution for \tilde{f} in \mathcal{B} .



- Define an annular strip ${\mathcal S}$ inside Ω .
- Roll off f to zero smoothly in \mathcal{S} . This is \tilde{f} .
- Compute a particular solution for \tilde{f} in \mathcal{B} .
- Compute a particular solution for f in S.



- Define an annular strip ${\mathcal S}$ inside Ω .
- Roll off f to zero smoothly in \mathcal{S} . This is \tilde{f} .
- Compute a particular solution for \tilde{f} in \mathcal{B} .
- Compute a particular solution for f in S.
- Patch solutions together.



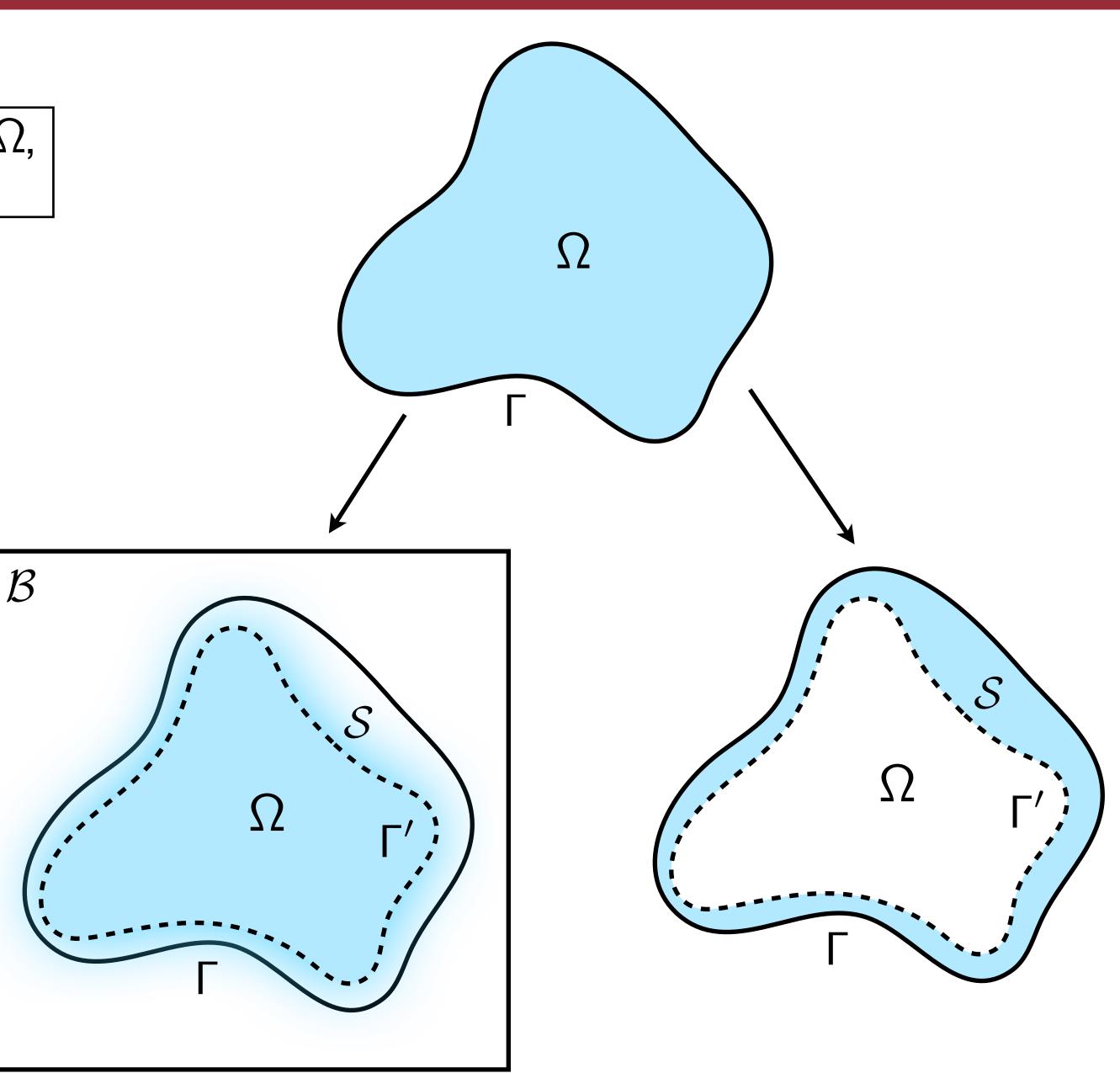
Instead of trying to make \tilde{f} smooth outside Ω , let's make it smooth **inside** Ω .

- Define an annular strip ${\mathcal S}$ inside Ω .
- Roll off f to zero smoothly in S. This is \tilde{f} .
- Compute a particular solution for \tilde{f} in \mathcal{B} .
- Compute a particular solution for f in S.
- Patch solutions together.

How to define the strip?

How to solve in the strip?

How to patch the solutions?



Task: Given a panelized curve Γ , compute another panelized curve Γ' that is:

inside Γ.

- inside Γ.
- as smooth as Γ.

- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).

- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).

- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

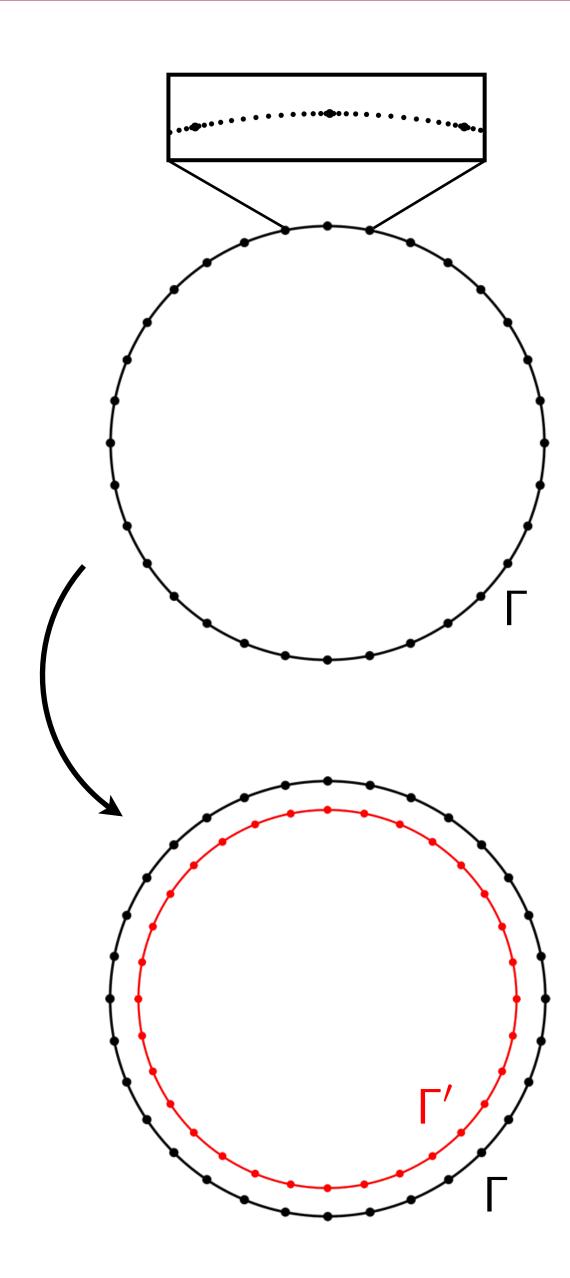
<u>Task</u>: Given a panelized curve Γ , compute another panelized curve Γ' that is:

- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

What about a uniform perturbation in the normal direction?

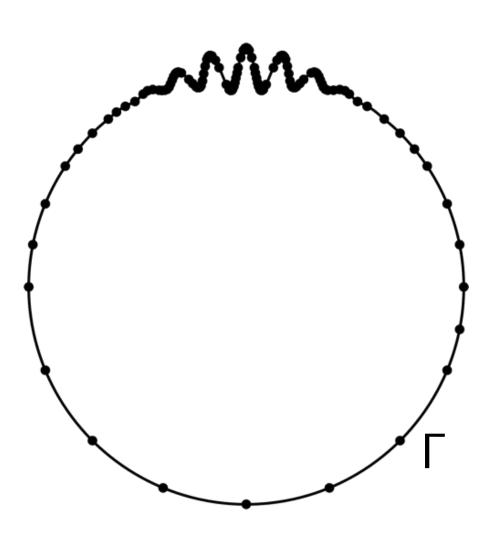
- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

- What about a uniform perturbation in the normal direction?
 - When all panels are roughly the same size, works well.



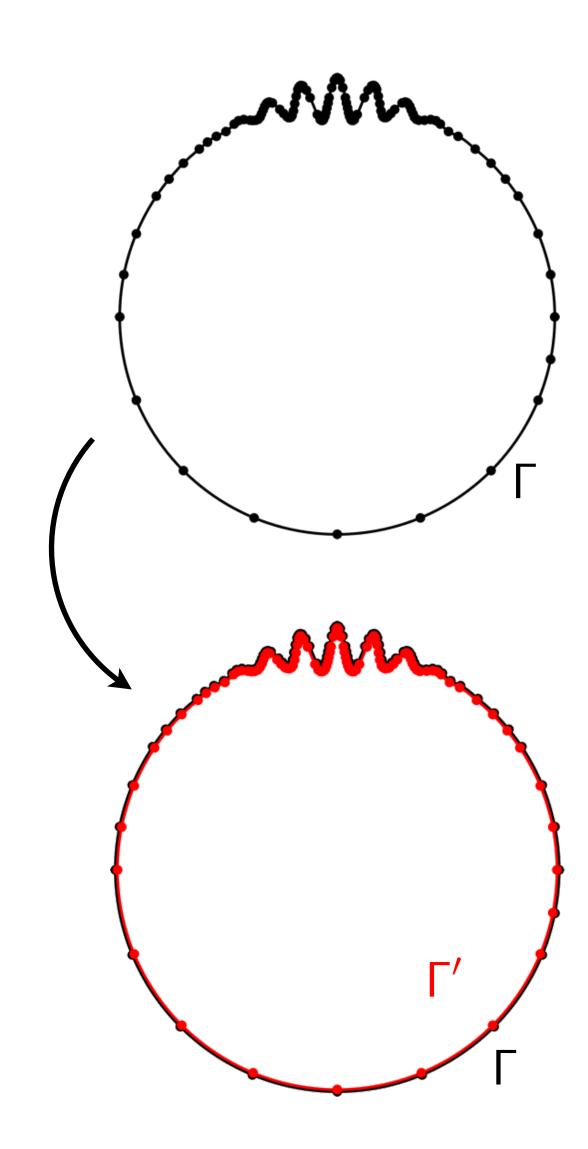
- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

- What about a uniform perturbation in the normal direction?
 - When all panels are roughly the same size, works well.
 - But when panels span many length scales...



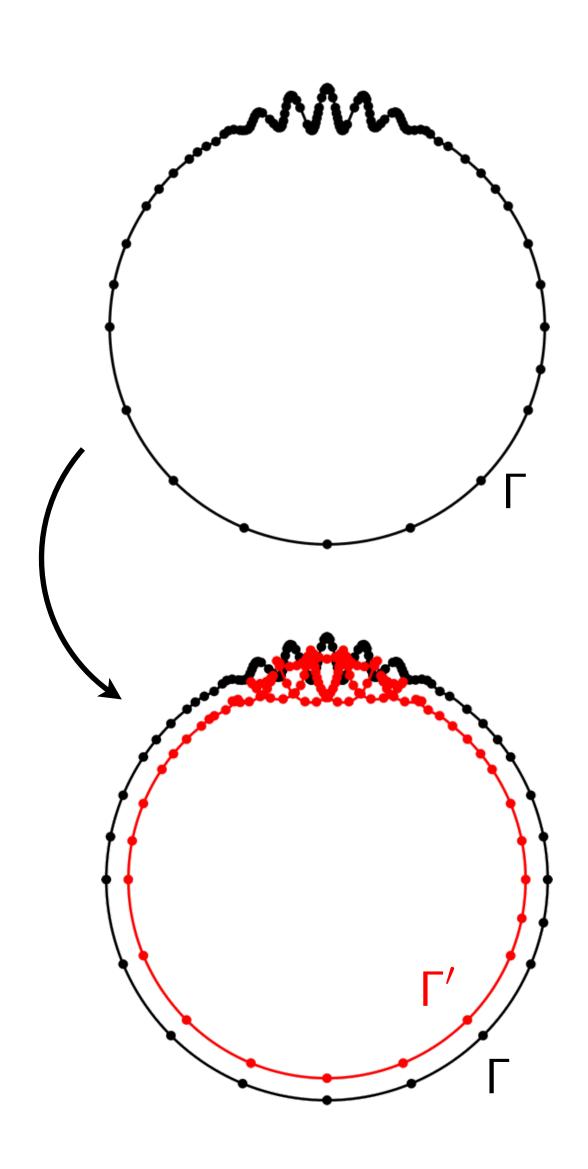
- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

- What about a uniform perturbation in the normal direction?
 - When all panels are roughly the same size, works well.
 - But when panels span many length scales...
 - can over-resolve the largest length scales.



- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

- What about a uniform perturbation in the normal direction?
 - When all panels are roughly the same size, works well.
 - But when panels span many length scales...
 - can over-resolve the largest length scales.
 - can self-intersect.

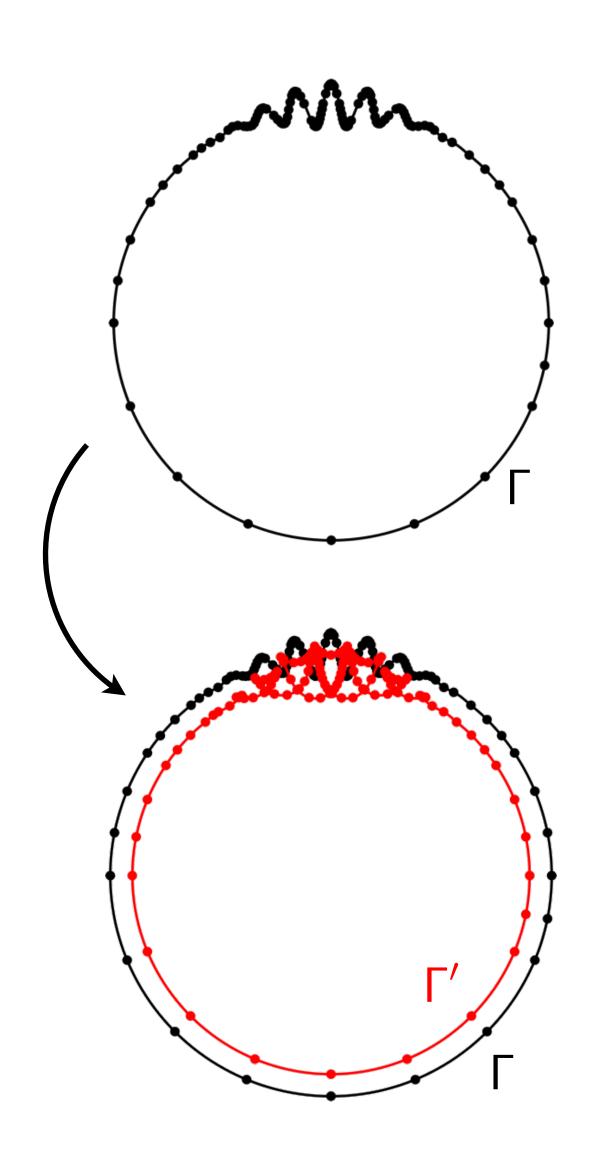


Task: Given a panelized curve Γ , compute another panelized curve Γ' that is:

- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

- What about a uniform perturbation in the normal direction?
 - When all panels are roughly the same size, works well.
 - But when panels span many length scales...
 - can over-resolve the largest length scales.
 - can self-intersect.

 Γ' should adapt to local panel size



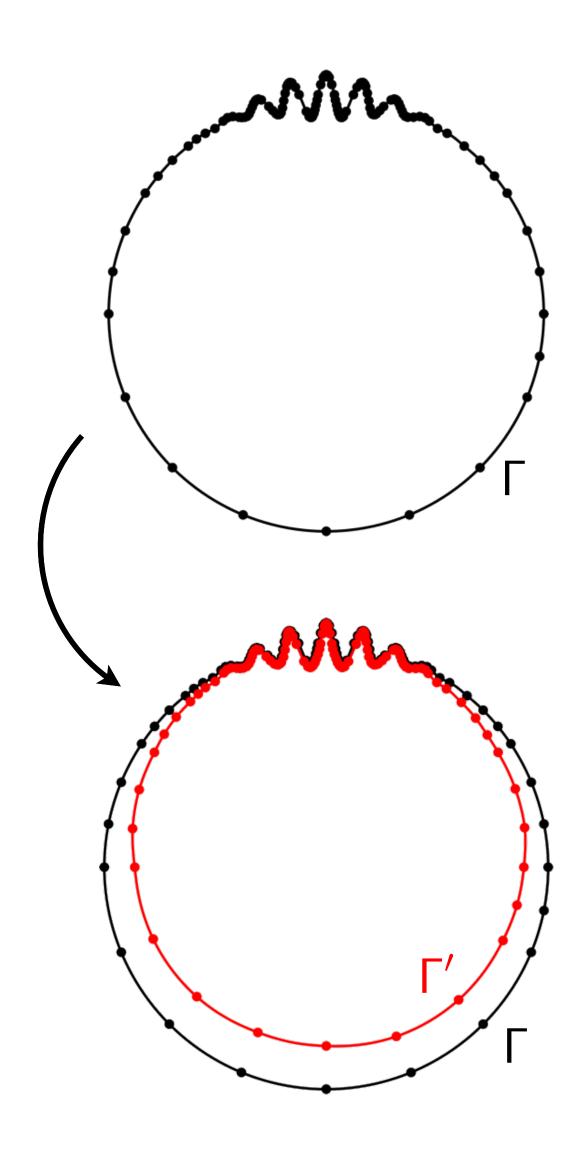
Defining the strip Adapting to local panel size

<u>Task</u>: Given a panelized curve Γ , compute another panelized curve Γ' that is:

- inside Γ.
- as smooth as Γ.
- not too close to Γ (or the roll off will be sharp).
- not too far from Γ (or the strip will be large \rightarrow extra work).
- not self intersecting.

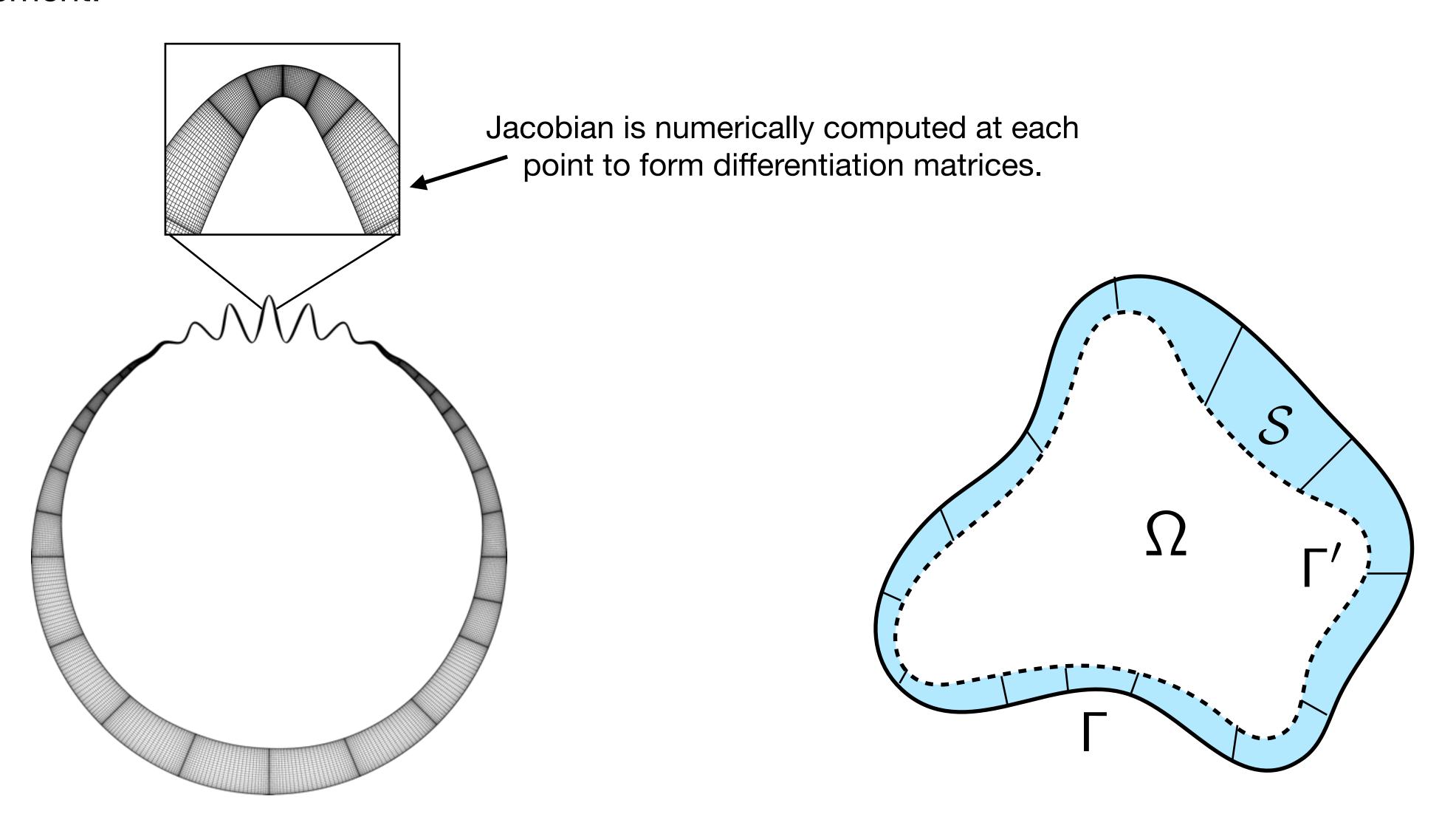
Solution:

- Define piecewise linear width function based on average local panel size
- Approximate each junction by smoothed abs(x)
- Blend together using matched asymptotics
- Perturb in the normal direction



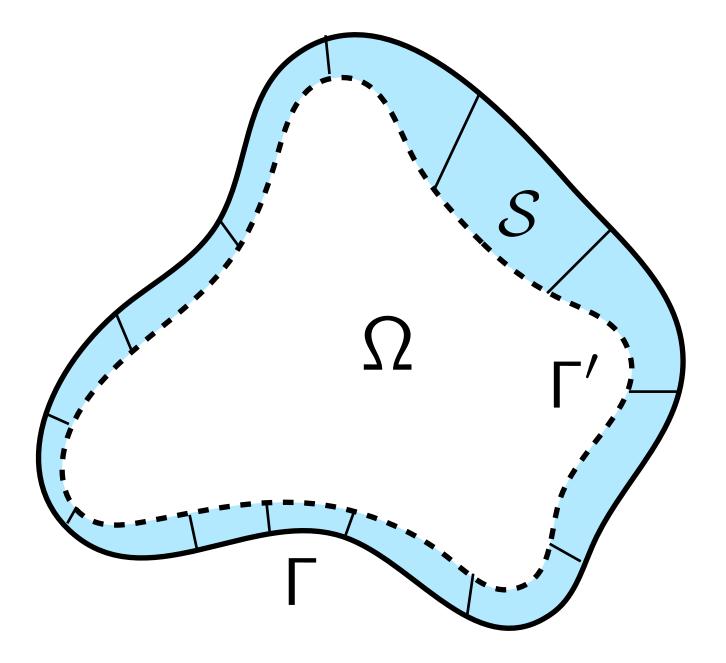
Spectral element discretization

We use a spectral element method in S, with spectral collocation at tensor-product Chebyshev nodes on each element.



A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .



A fast direct solver for the strip

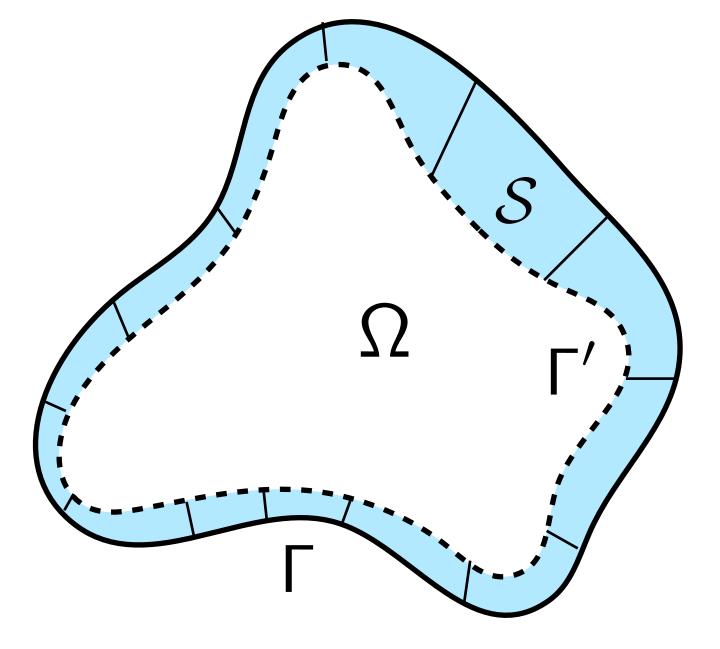
We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

Given an inhomogeneity f:

1 On each element, compute:

• Solution operator: $S \in \mathbb{R}^{n^2 \times 4n}$

• Dirchlet-to-Neumann map: $DtN \in \mathbb{R}^{4n \times 4n}$

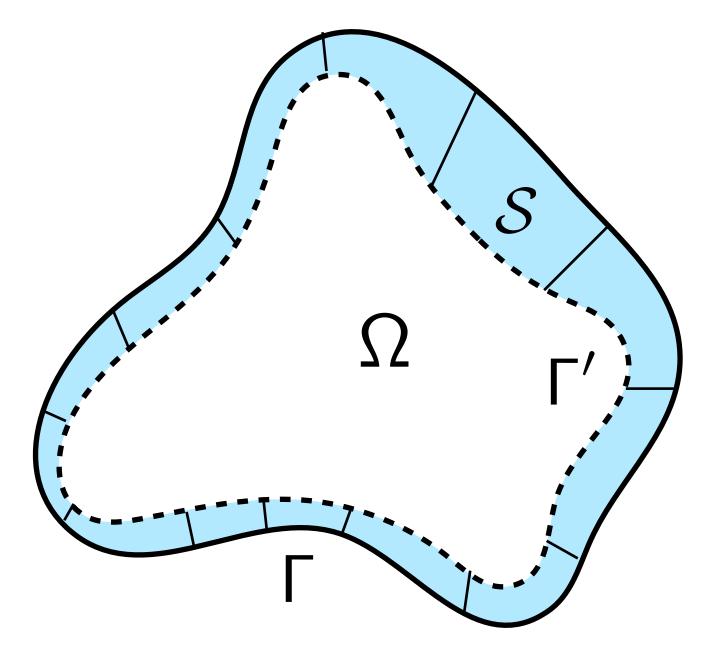


A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

Given an inhomogeneity f:

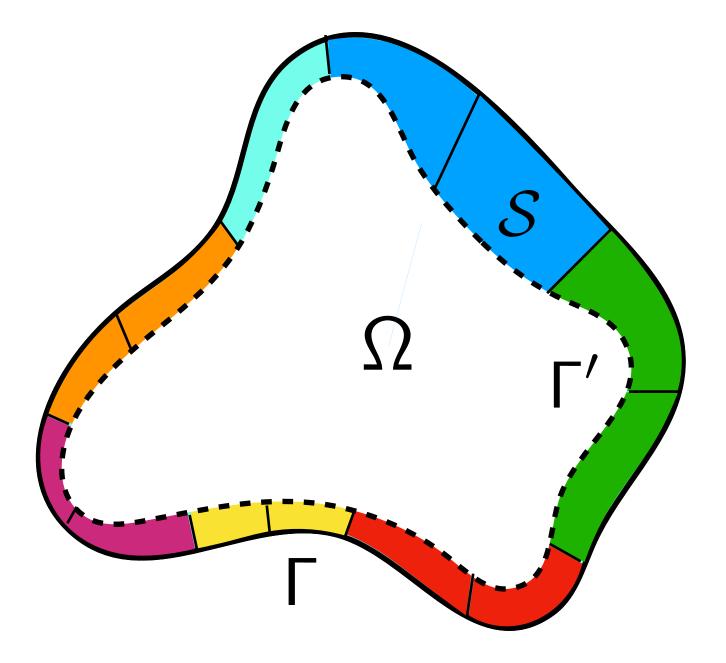
- 1 On each element, compute:
 - Solution operator: $S \in \mathbb{R}^{n^2 \times 4r}$
 - Dirchlet-to-Neumann map: $DtN \in \mathbb{R}^{4n \times 4n}$
- 2 Merge adjacent elements pairwise
 - Compute S and DtN on parent via Schur complement



A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

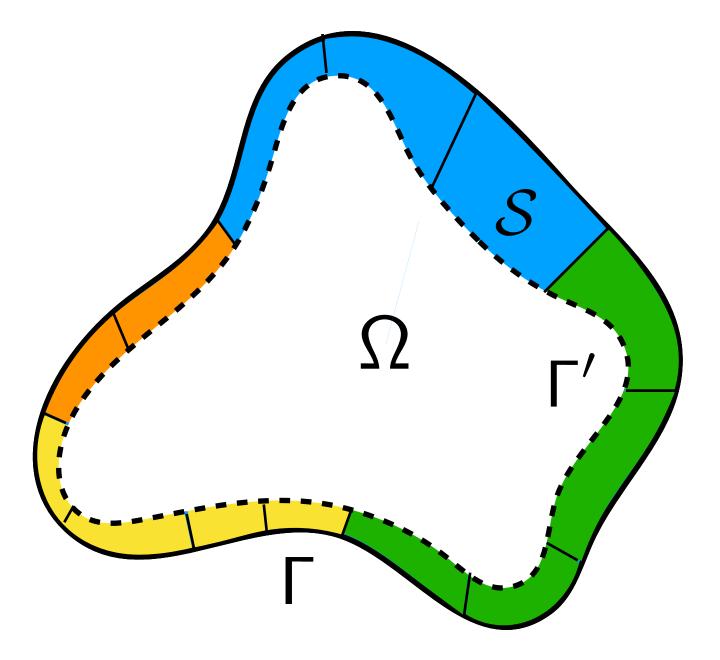
- On each element, compute:
 - Solution operator:
 - $S \in \mathbb{R}^{n^2 imes 4n}$ $DtN \in \mathbb{R}^{4n imes 4n}$ • Dirchlet-to-Neumann map:
- (2) Merge adjacent elements pairwise
 - Compute S and DtN on parent via Schur complement



A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

- On each element, compute:
 - Solution operator:
 - $S \in \mathbb{R}^{n^2 imes 4n}$ $DtN \in \mathbb{R}^{4n imes 4n}$ • Dirchlet-to-Neumann map:
- (2) Merge adjacent elements pairwise
 - Compute S and DtN on parent via Schur complement



A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

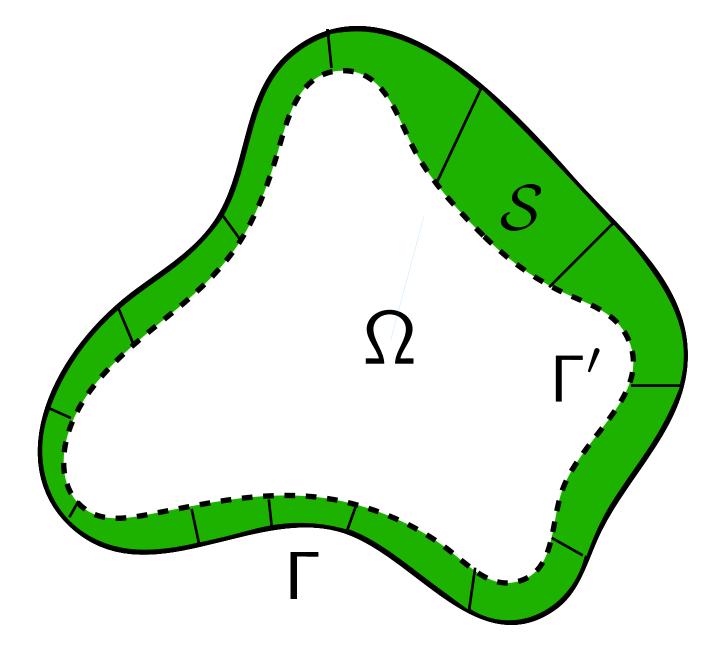
- On each element, compute:
 - Solution operator:
 - $S \in \mathbb{R}^{n^2 imes 4n}$ $DtN \in \mathbb{R}^{4n imes 4n}$ • Dirchlet-to-Neumann map:
- (2) Merge adjacent elements pairwise
 - Compute S and DtN on parent via Schur complement



A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

- On each element, compute:
 - Solution operator:
 - $S \in \mathbb{R}^{n^2 imes 4n}$ $DtN \in \mathbb{R}^{4n imes 4n}$ • Dirchlet-to-Neumann map:
- (2) Merge adjacent elements pairwise
 - Compute S and DtN on parent via Schur complement

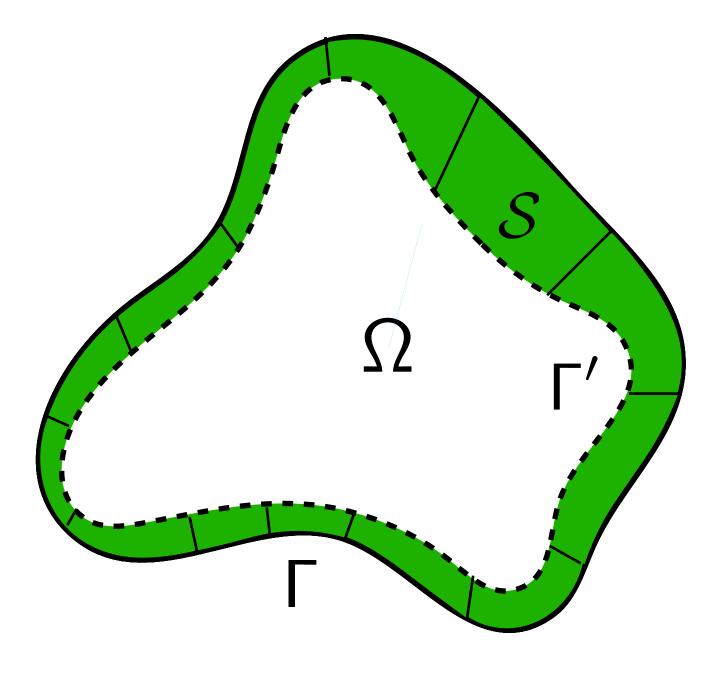


A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

- On each element, compute:
 - Solution operator:
 - $S \in \mathbb{R}^{n^2 imes 4n}$ $DtN \in \mathbb{R}^{4n imes 4n}$ • Dirchlet-to-Neumann map:

- Compute S and DtN on parent via Schur complement
- (3) Recursively apply S, starting from known boundary conditions at the top level.



A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

Given an inhomogeneity f:

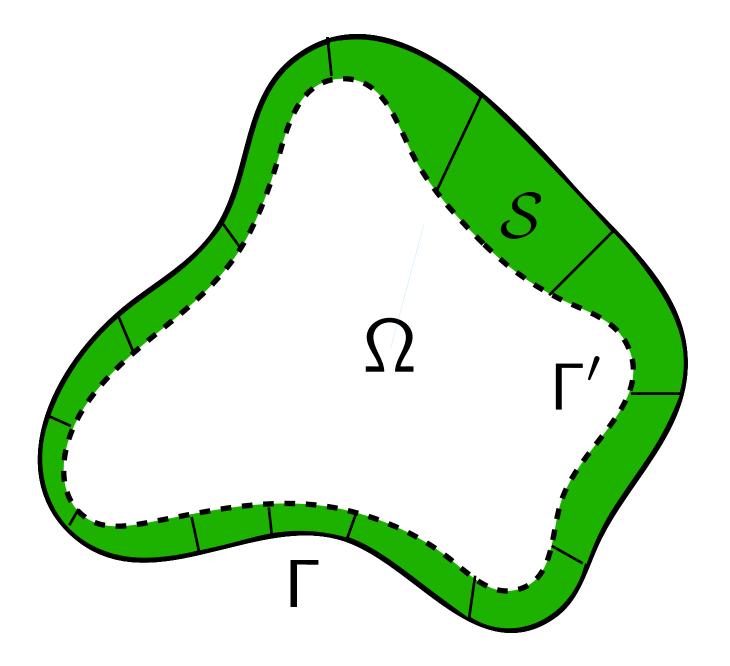
- On each element, compute:
 - Solution operator:
 - $S \in \mathbb{R}^{n^2 \times 4n}$ $DtN \in \mathbb{R}^{4n \times 4n}$ • Dirchlet-to-Neumann map:

- Compute S and DtN on parent via Schur complement
- (3) Recursively apply S, starting from known boundary conditions at the top level.

Cost:
$$\mathcal{O}(p^6 n_{\text{panel}}) + \mathcal{O}(p^3 n_{\text{panel}}) + \mathcal{O}(p^2 n_{\text{panel}}) = \mathcal{O}(n_{\text{panel}})$$

(1)
(2)
(3)

We typically use p = 16 on each panel and upsample the SEM grid to 2p = 32.



A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in \mathcal{S} .

Given an inhomogeneity f:

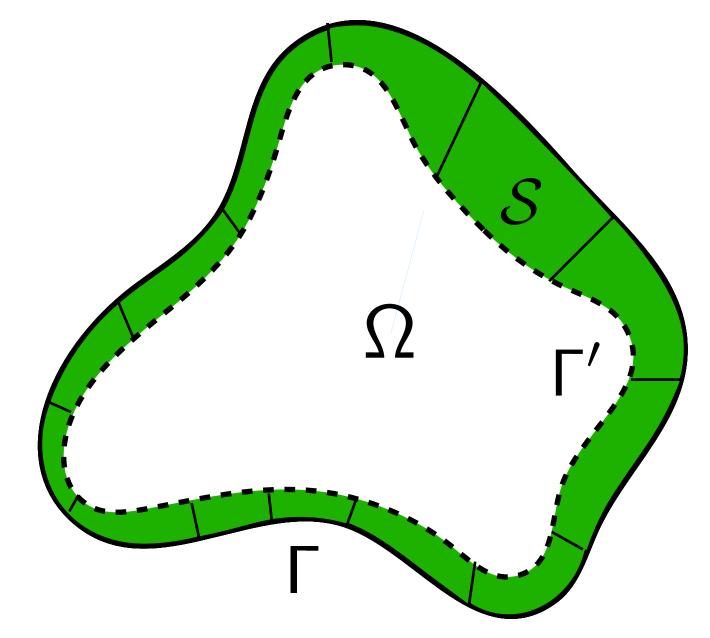
- On each element, compute:
 - Solution operator:
 - $S \in \mathbb{R}^{n^2 \times 4n}$ $DtN \in \mathbb{R}^{4n \times 4n}$ • Dirchlet-to-Neumann map:

• Compute S and DtN on parent via Schur complement

Cost:
$$\mathcal{O}(p^6 n_{\text{panel}}) + \mathcal{O}(p^3 n_{\text{panel}}) + \mathcal{O}(p^2 n_{\text{panel}}) = \mathcal{O}(n_{\text{panel}})$$

(1)
(2)
(3)

We typically use p = 16 on each panel and upsample the SEM grid to 2p = 32.



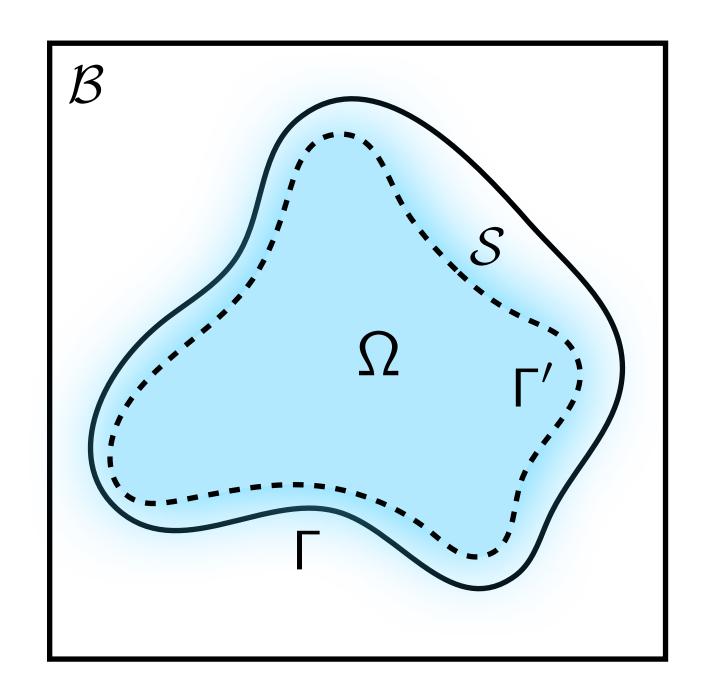
Takeaway: 1D HPS is fast out of the box.

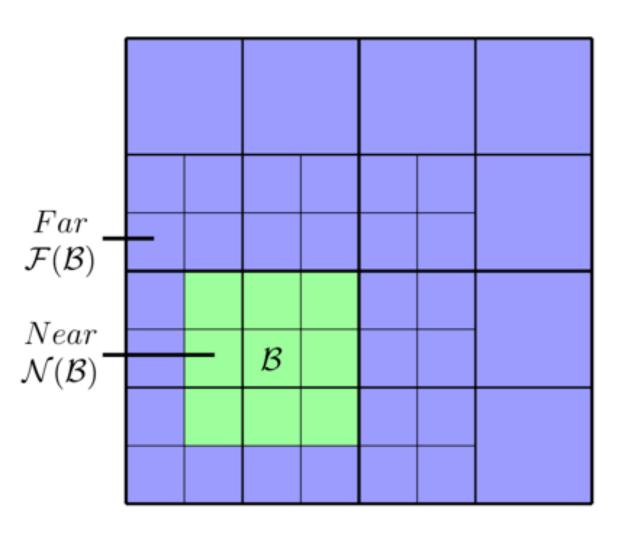
[Gillman & Martinsson, 2015], [Martinsson, 2015]

Solving the bulk problem

Evaluating the roll off function

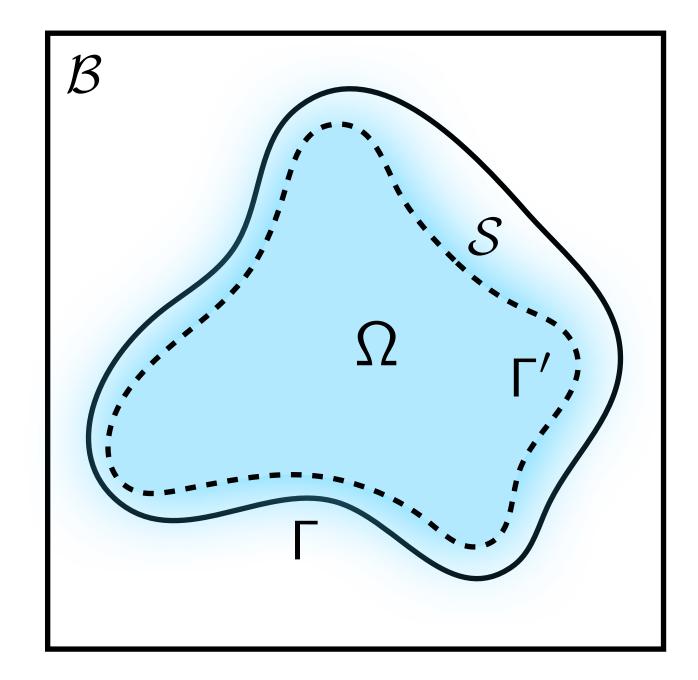
• Goal: Approximate \tilde{f} by quad-tree of tensor product Chebyshev nodes.

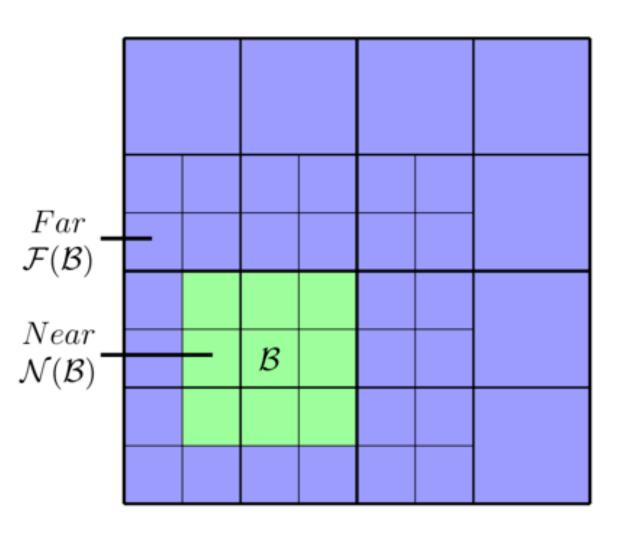




Solving the bulk problem Evaluating the roll off function

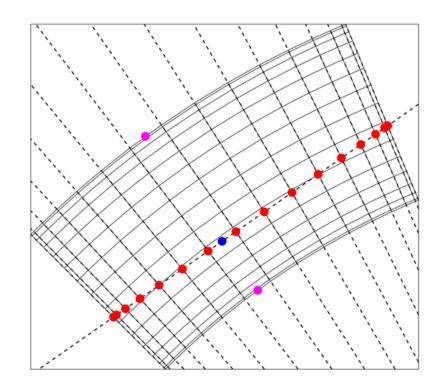
- Goal: Approximate \tilde{f} by quad-tree of tensor product Chebyshev nodes.
- **Problem**: To evaluate the roll off function at a point, we need to know where that point falls in the strip.

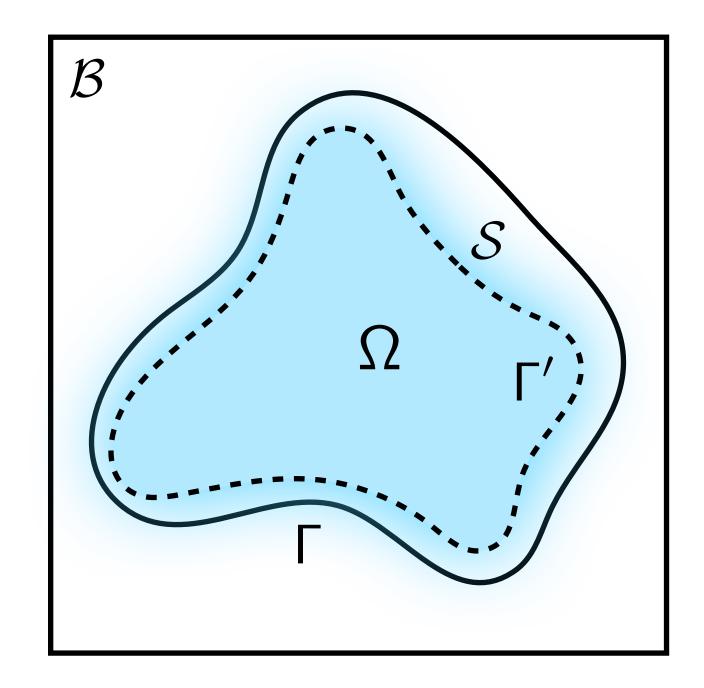


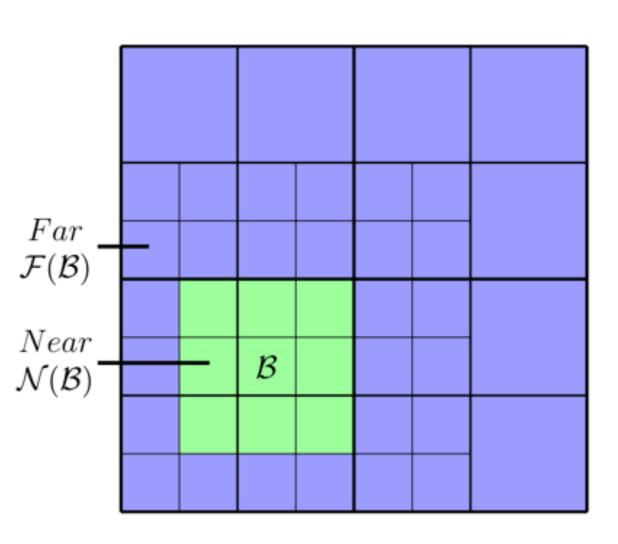


Solving the bulk problem Evaluating the roll off function

- Goal: Approximate \tilde{f} by quad-tree of tensor product Chebyshev nodes.
- **Problem**: To evaluate the roll off function at a point, we need to know where that point falls in the strip.
- **Solution**: Compute local coordinates via 1D interpolation through normal vectors [Bruno & Paul, 2020]

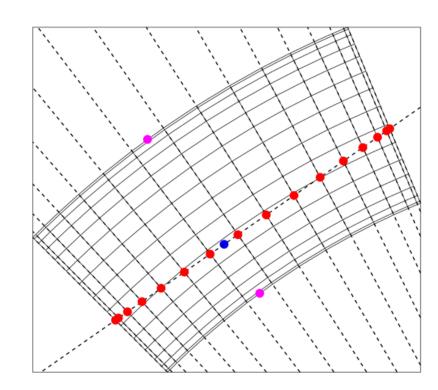


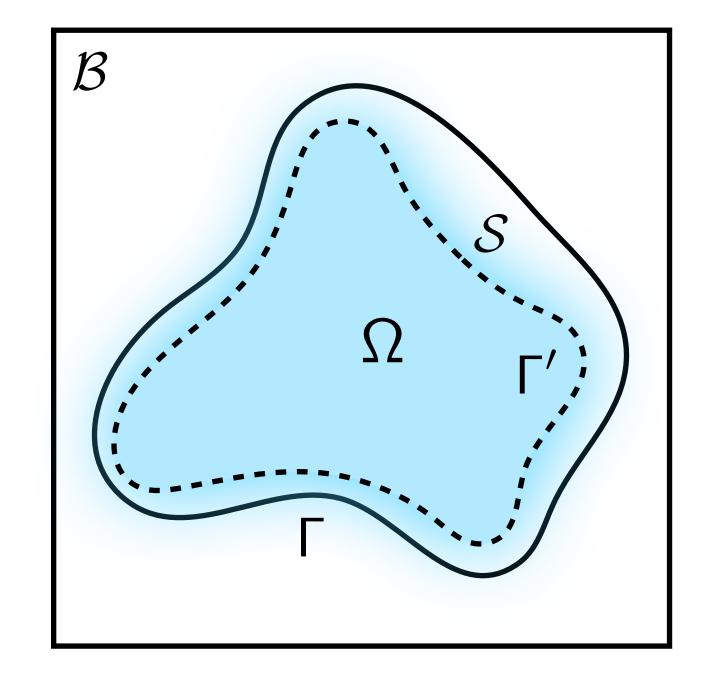




Solving the bulk problem Evaluating the roll off function

- Goal: Approximate \tilde{f} by quad-tree of tensor product Chebyshev nodes.
- **Problem**: To evaluate the roll off function at a point, we need to know where that point falls in the strip.
- **Solution**: Compute local coordinates via 1D interpolation through normal vectors [Bruno & Paul, 2020]

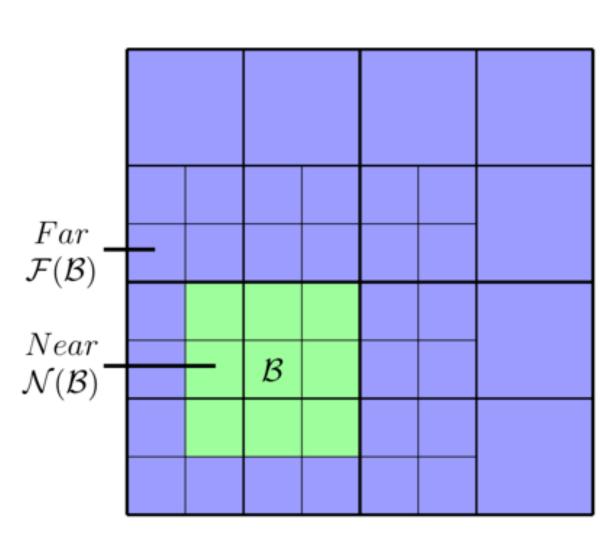




Use a box code to obtain a particular solution:

$$\Delta u_{\text{bulk}} = \tilde{f} \text{ in } \mathcal{B}$$
 $\mathcal{O}(N) = \mathcal{O}(p^2 n_{\text{boxes}})$

Then, $\Delta u_{\text{bulk}} = f$ inside Γ' .



Patching the solutions

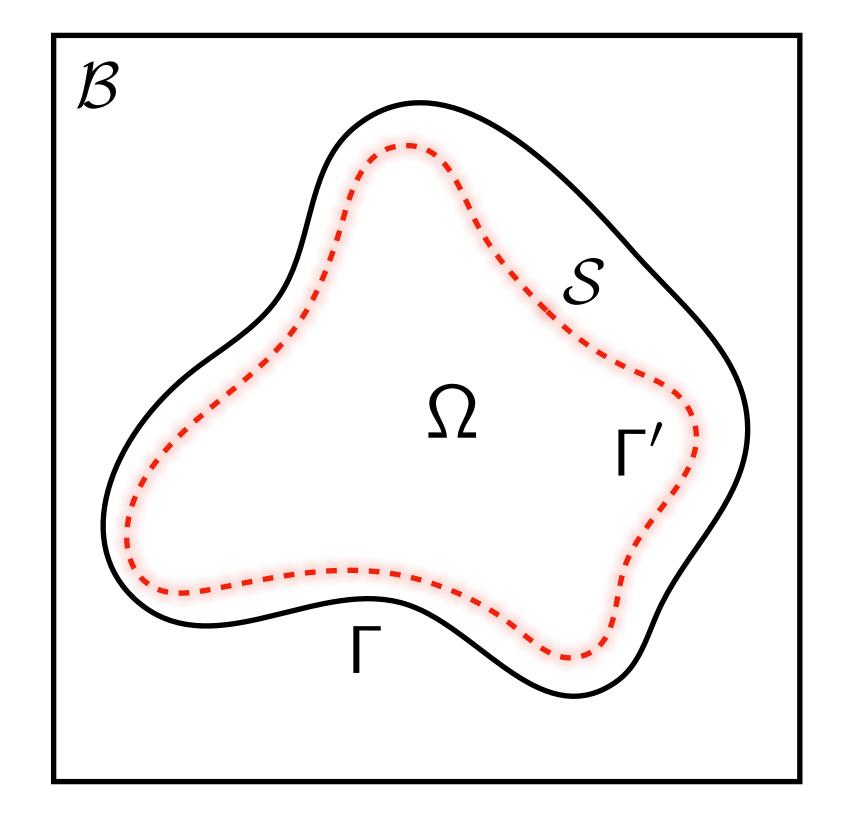
Using the value of u_{bulk} as the inner boundary condition in the SEM, the solutions will match along Γ' . However, their normal derivatives may not.

The "single-layer potential"

$$v(x) = (S\sigma)(x) = \int_{\Gamma'} G(x, y)\sigma(y)dt_y$$

satisfies $\Delta v = 0$ and the jump relation

$$\left. \frac{\partial v}{\partial n} \right|_{\Gamma'} - \left. \frac{\partial v}{\partial n} \right|_{\Gamma'} = -\sigma$$



Patching the solutions

Using the value of u_{bulk} as the inner boundary condition in the SEM, the solutions will match along Γ' . However, their normal derivatives may not.

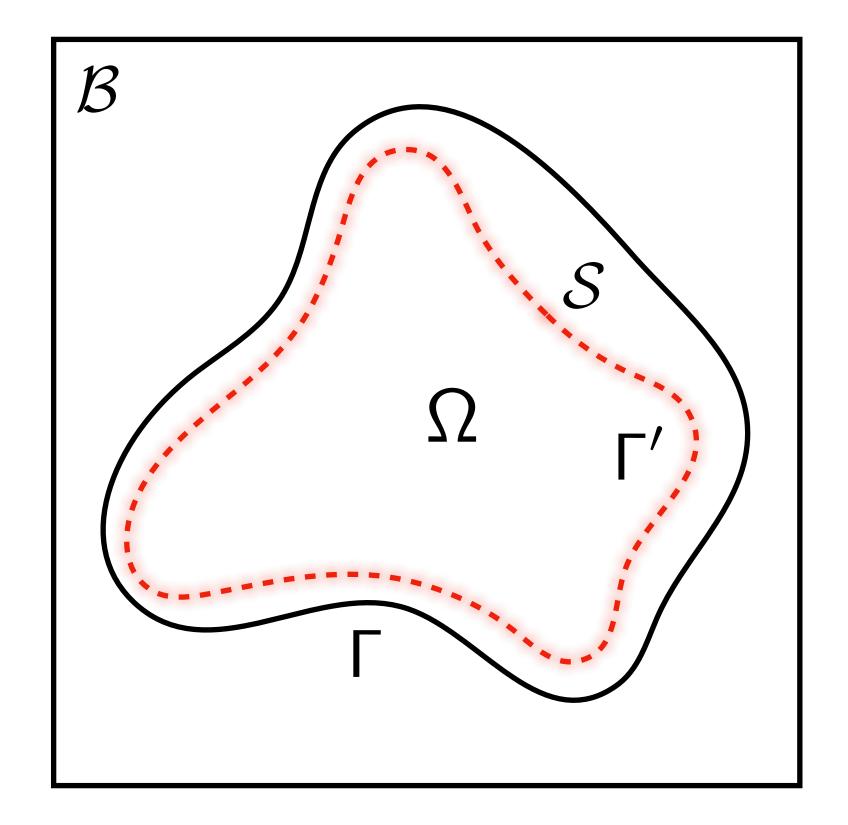
The "single-layer potential"

$$v(x) = (S\sigma)(x) = \int_{\Gamma'} G(x, y)\sigma(y)dt_y$$

satisfies $\Delta v = 0$ and the jump relation

$$\left. \frac{\partial v}{\partial n} \right|_{\Gamma'} - \left. \frac{\partial v}{\partial n} \right|_{\Gamma'} = -\sigma$$

Apply SLP:
$$u_{\text{glue}} = S\left(\frac{\partial u_{\text{strip}}}{\partial n}\bigg|_{\Gamma'} - \frac{\partial u_{\text{bulk}}}{\partial n}\bigg|_{\Gamma'}\right)$$



Patching the solutions

Using the value of u_{bulk} as the inner boundary condition in the SEM, the solutions will match along Γ' . However, their normal derivatives may not.

The "single-layer potential"

$$v(x) = (S\sigma)(x) = \int_{\Gamma'} G(x, y)\sigma(y)dt_y$$

satisfies $\Delta v = 0$ and the jump relation

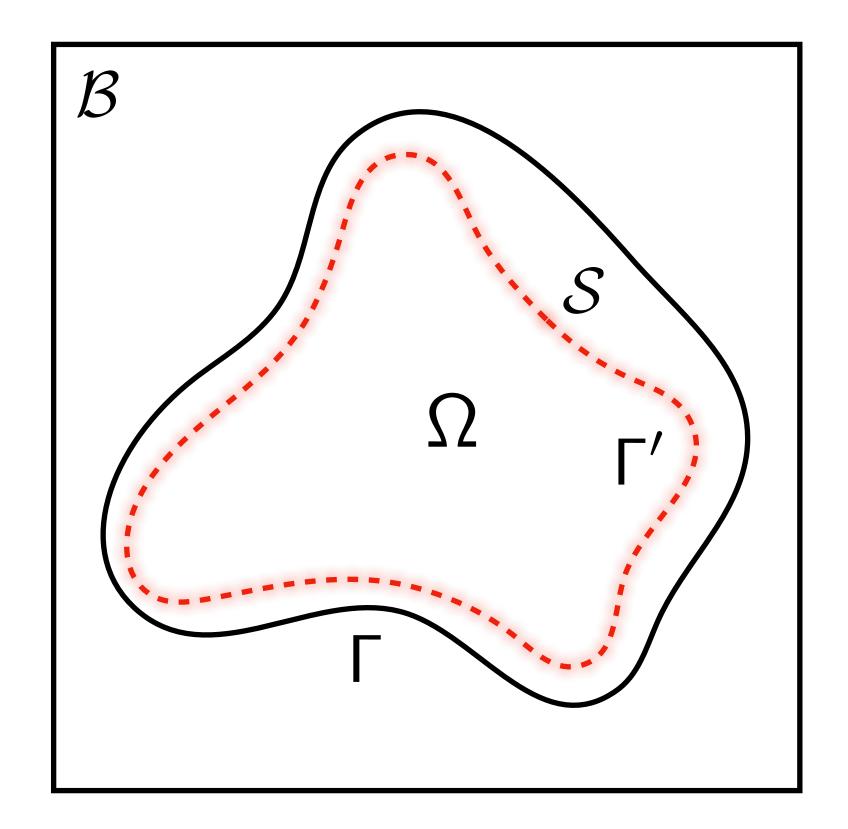
$$\left. \frac{\partial v}{\partial n} \right|_{\Gamma'} - \left. \frac{\partial v}{\partial n} \right|_{\Gamma'} = -\sigma$$

Apply SLP:
$$u_{\text{glue}} = S\left(\frac{\partial u_{\text{strip}}}{\partial n}\bigg|_{\Gamma'} - \frac{\partial u_{\text{bulk}}}{\partial n}\bigg|_{\Gamma'}\right)$$

Then,
$$\Delta(u_{\text{bulk}} + u_{\text{glue}}) = f \text{ in } \Omega \setminus \mathcal{S}$$

$$\Delta(u_{\text{strip}} + u_{\text{glue}}) = f \text{ in } \mathcal{S}$$

$$u_{\text{strip}} = u_{\text{bulk}}, \ \frac{\partial u_{\text{strip}}}{\partial n} = \frac{\partial u_{\text{bulk}}}{\partial n} \text{ on } \Gamma'$$

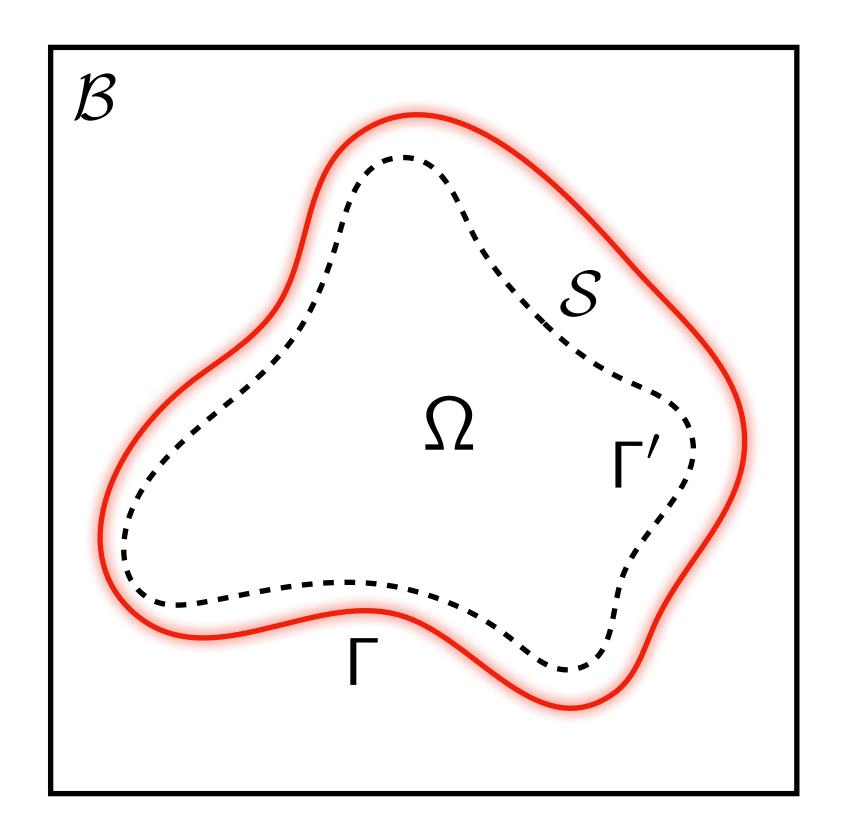


Correcting the boundary conditions

Finally, the boundary conditions may not be satisfied.

Standard BIE solve using double-layer potential:

$$\Delta u_{
m bc} = 0$$
 in Ω $u_{
m bc} = g - (u_{
m strip}|_{\Gamma} + u_{
m glue}|_{\Gamma})$ on Γ



Correcting the boundary conditions

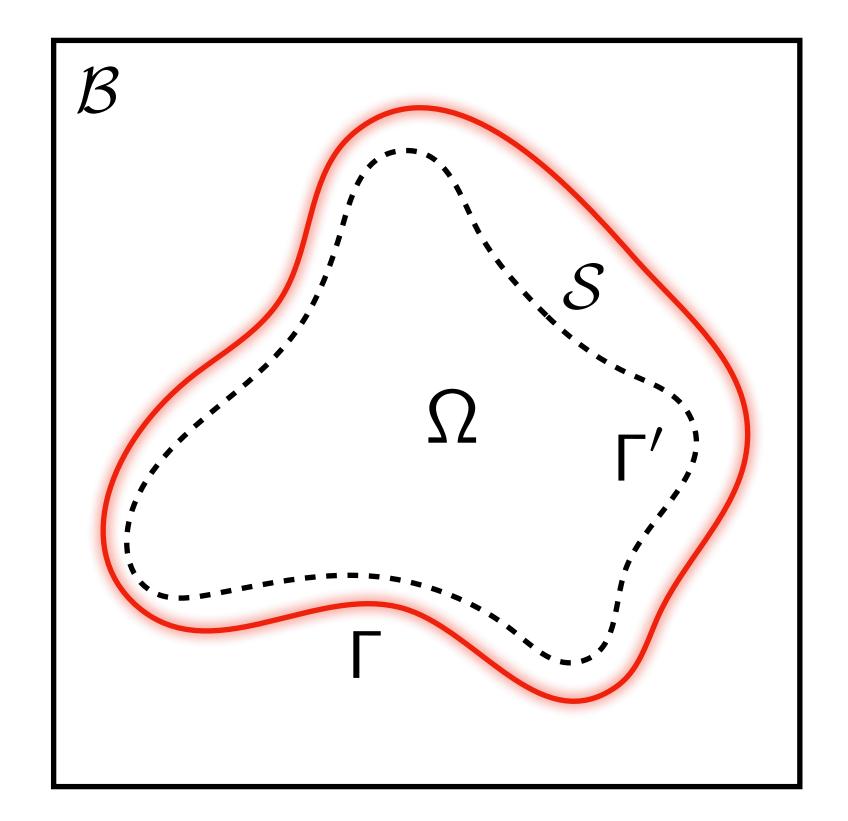
Finally, the boundary conditions may not be satisfied.

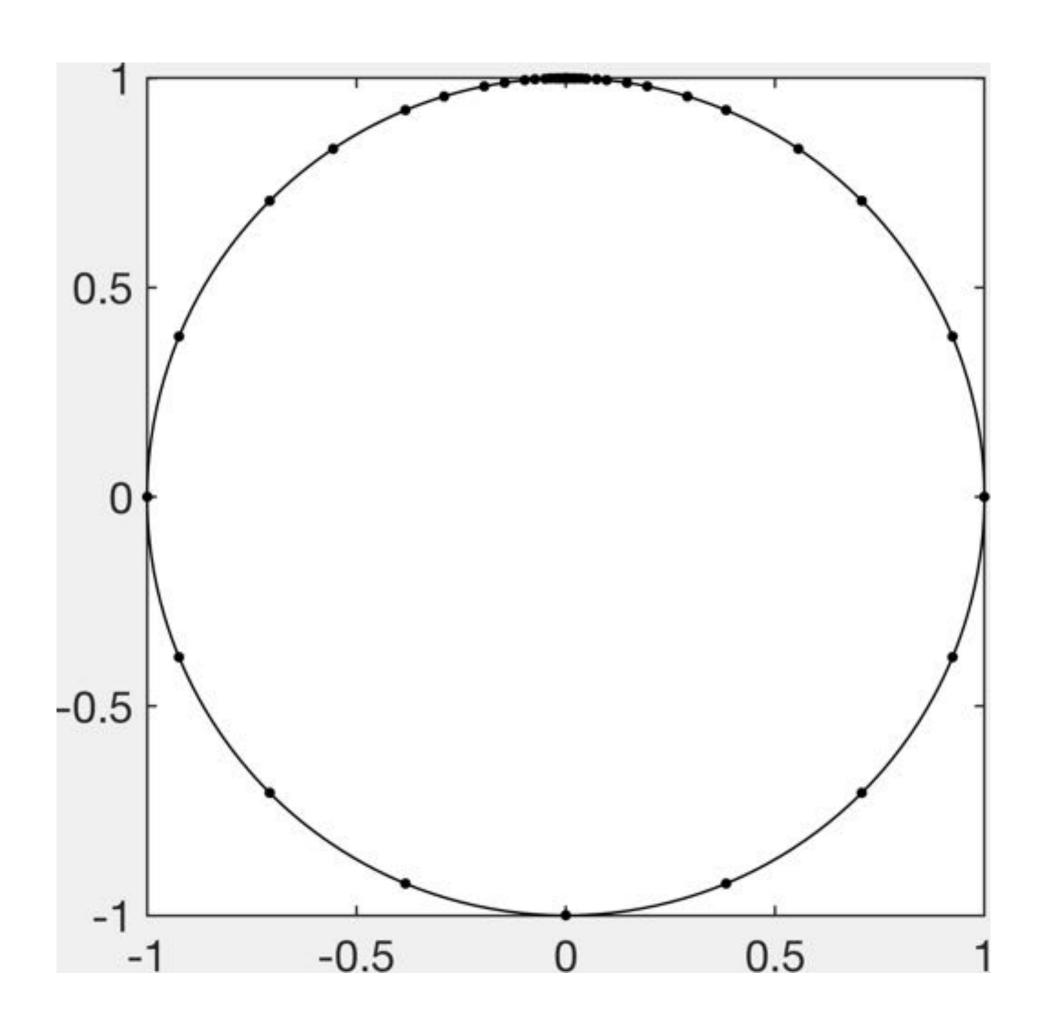
Standard BIE solve using double-layer potential:

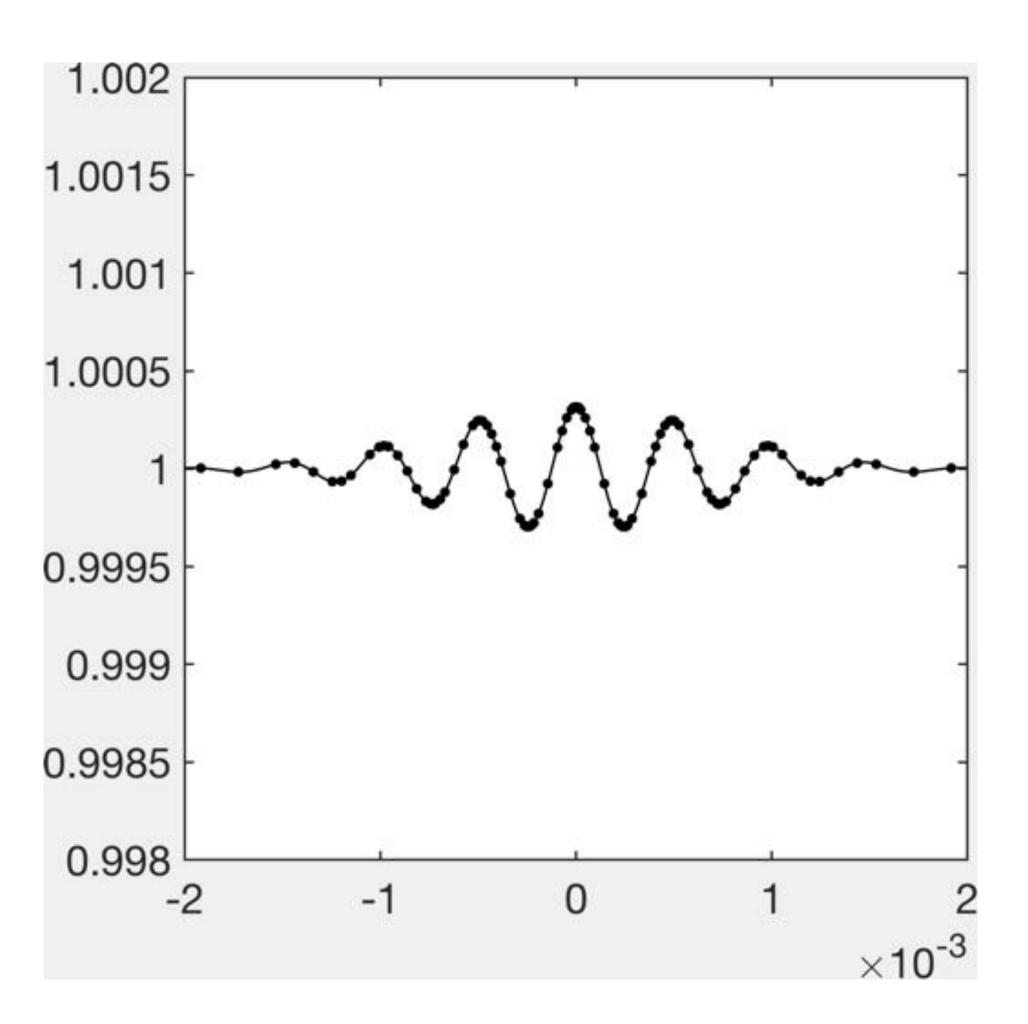
$$\Delta u_{
m bc} = 0$$
 in Ω $u_{
m bc} = g - (u_{
m strip}|_{\Gamma} + u_{
m glue}|_{\Gamma})$ on Γ

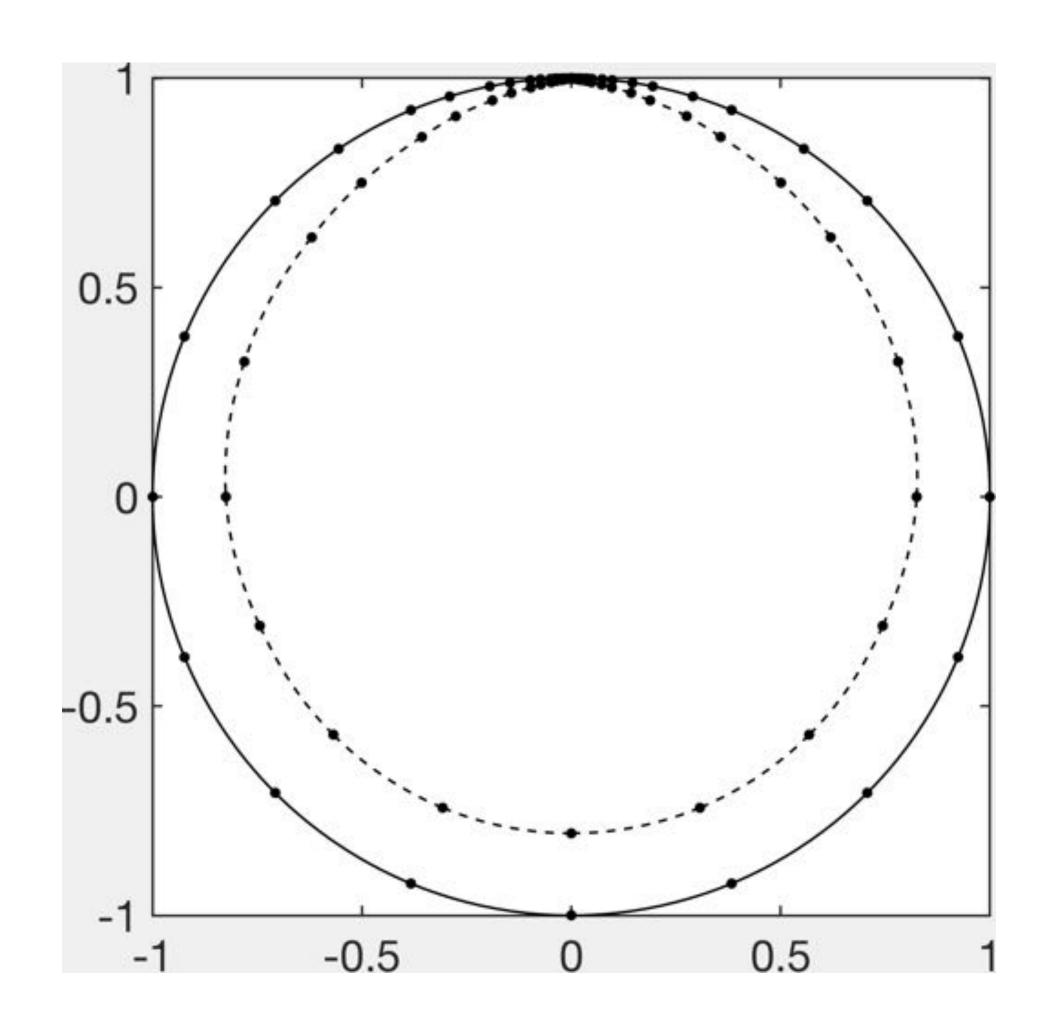
Then
$$u = \begin{cases} u_{\text{bulk}} + u_{\text{glue}} + u_{\text{bc}} \text{ in } \Omega \setminus \mathcal{S} \\ u_{\text{strip}} + u_{\text{glue}} + u_{\text{bc}} \text{ in } \mathcal{S} \end{cases}$$
 satisfies:

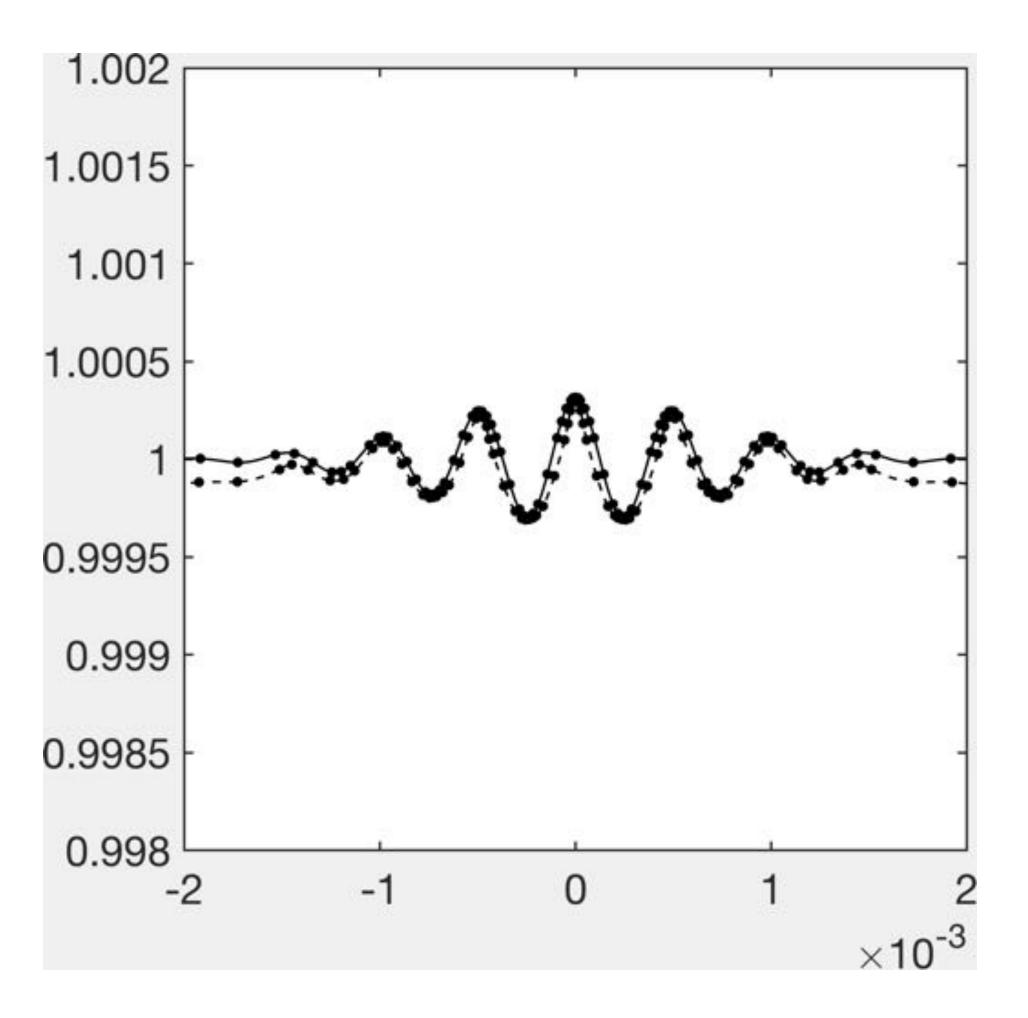
$$\Delta u = f$$
 in Ω
 $u = g$ on Γ

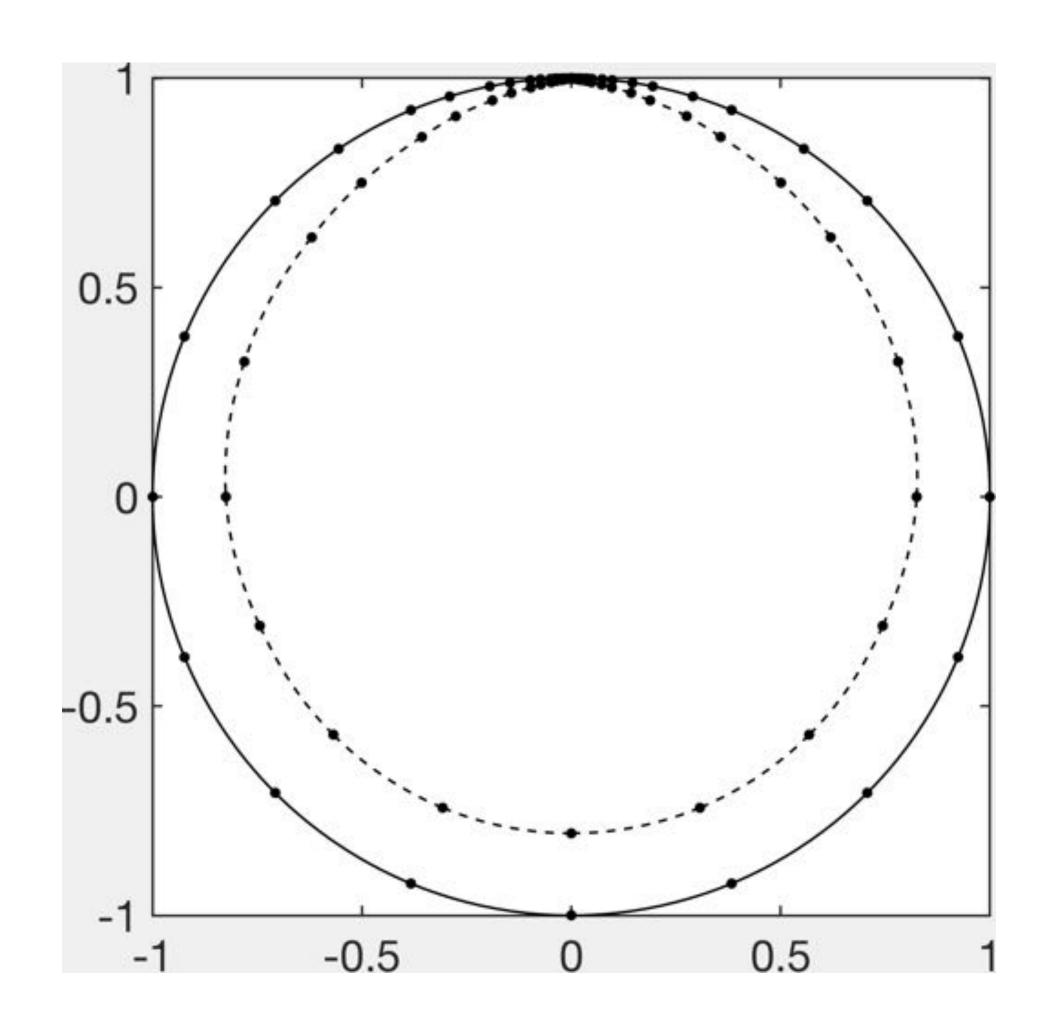


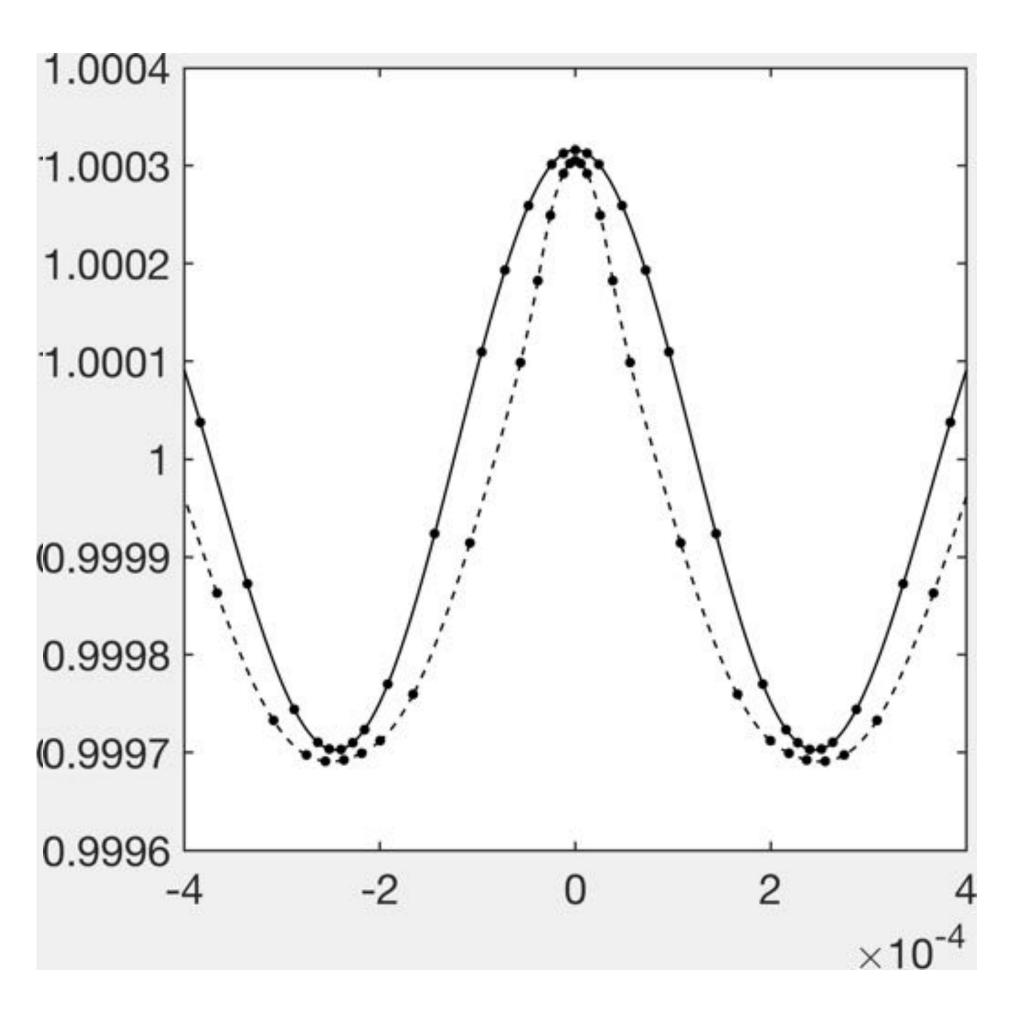


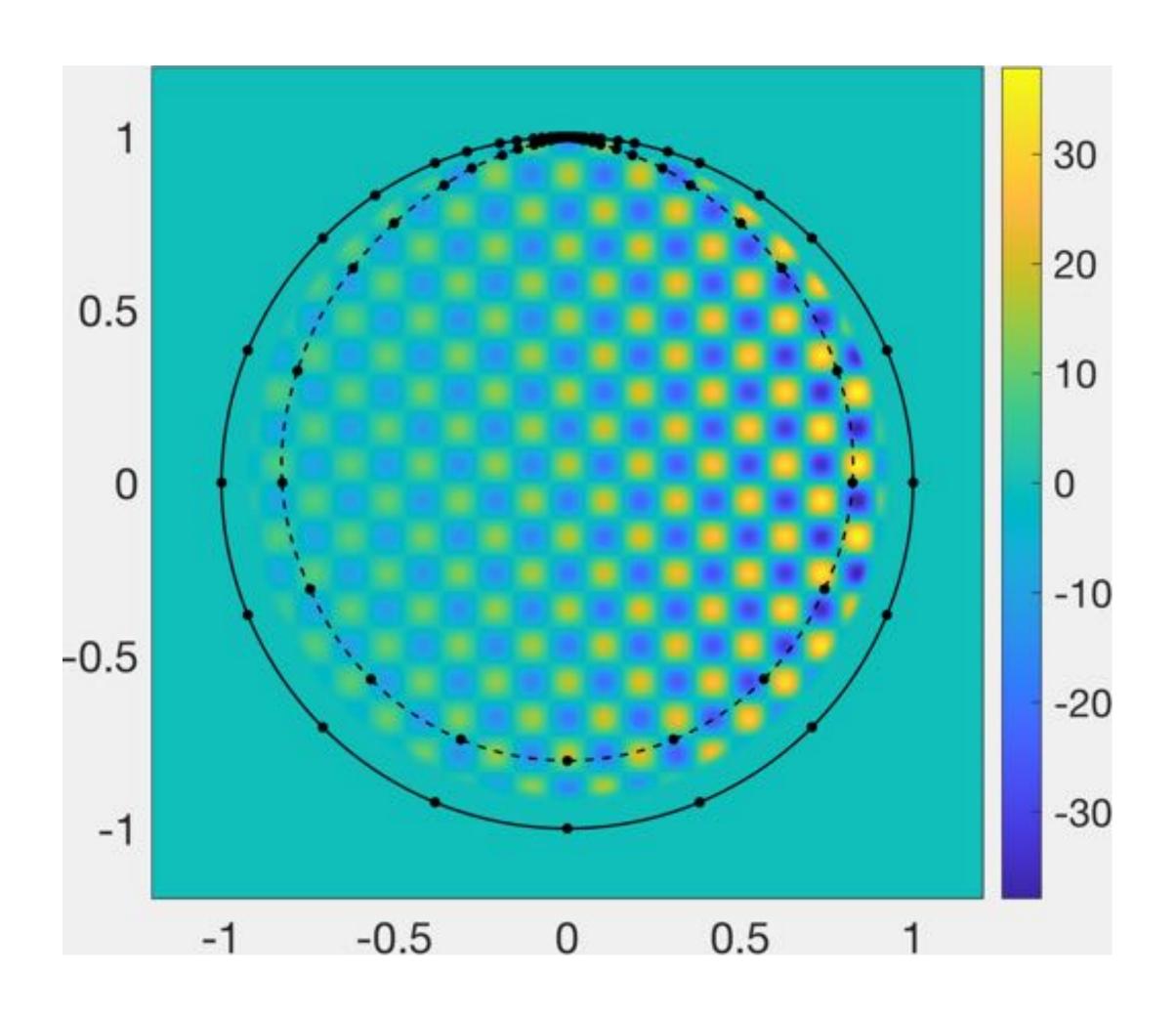


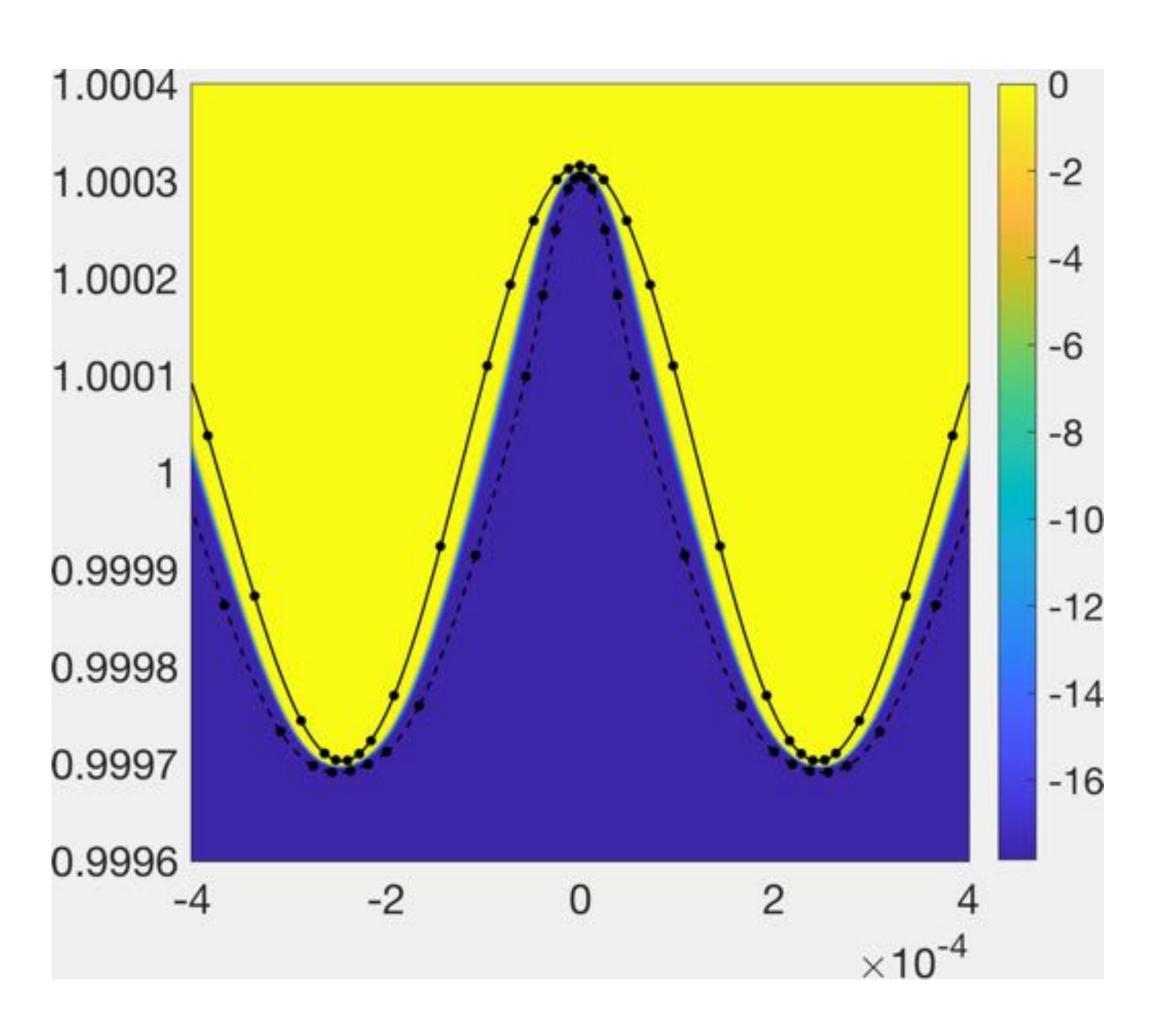


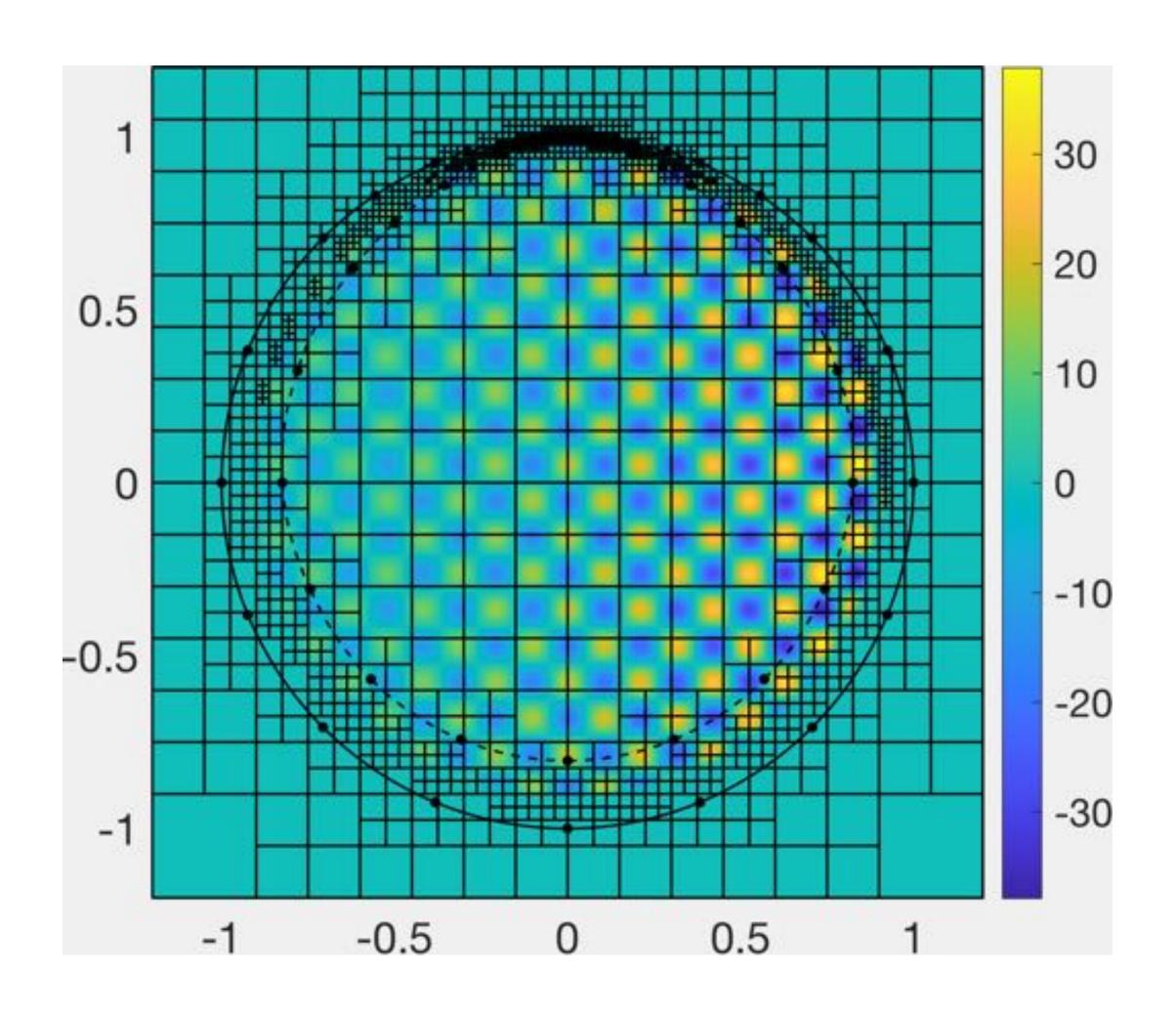


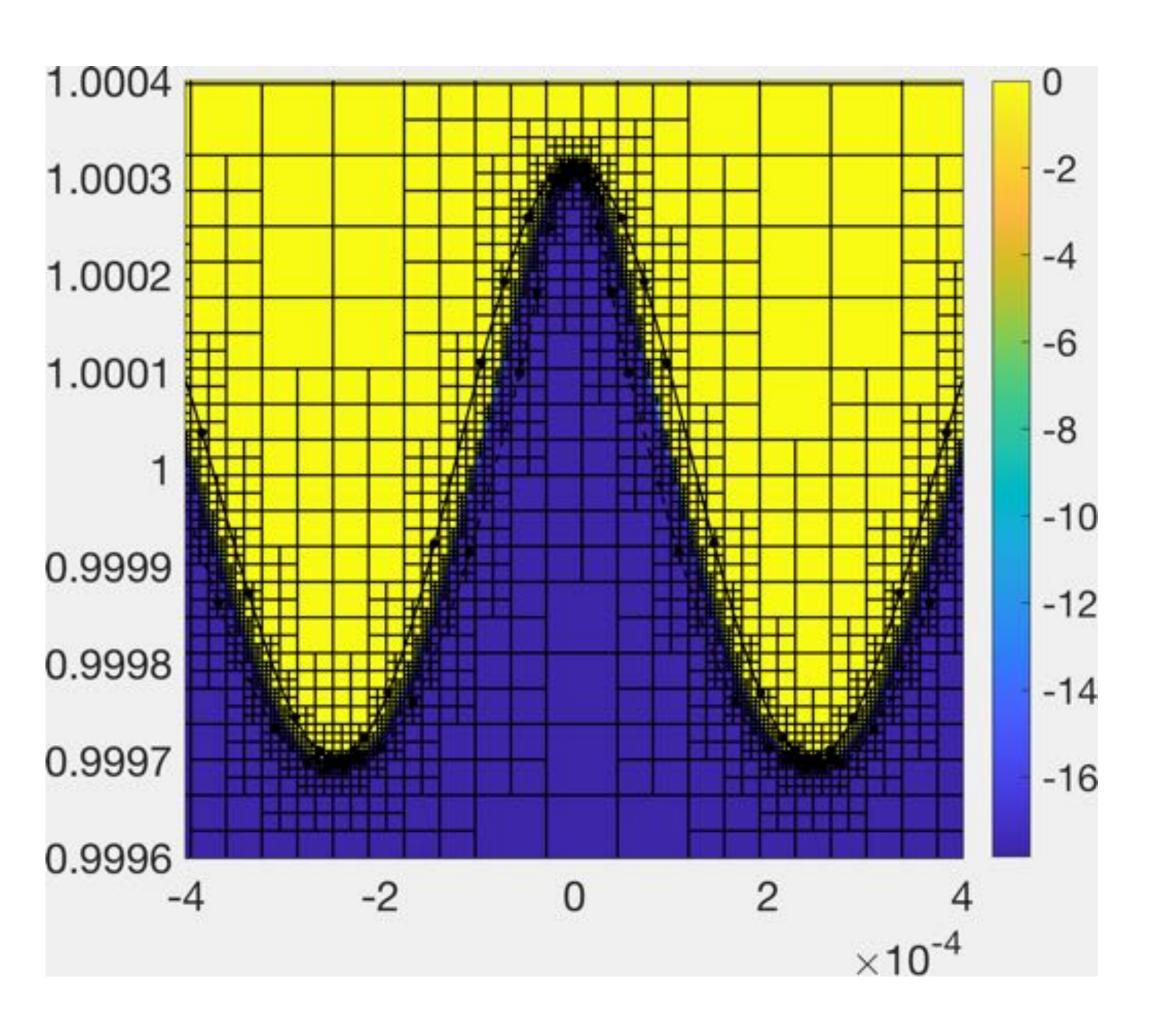


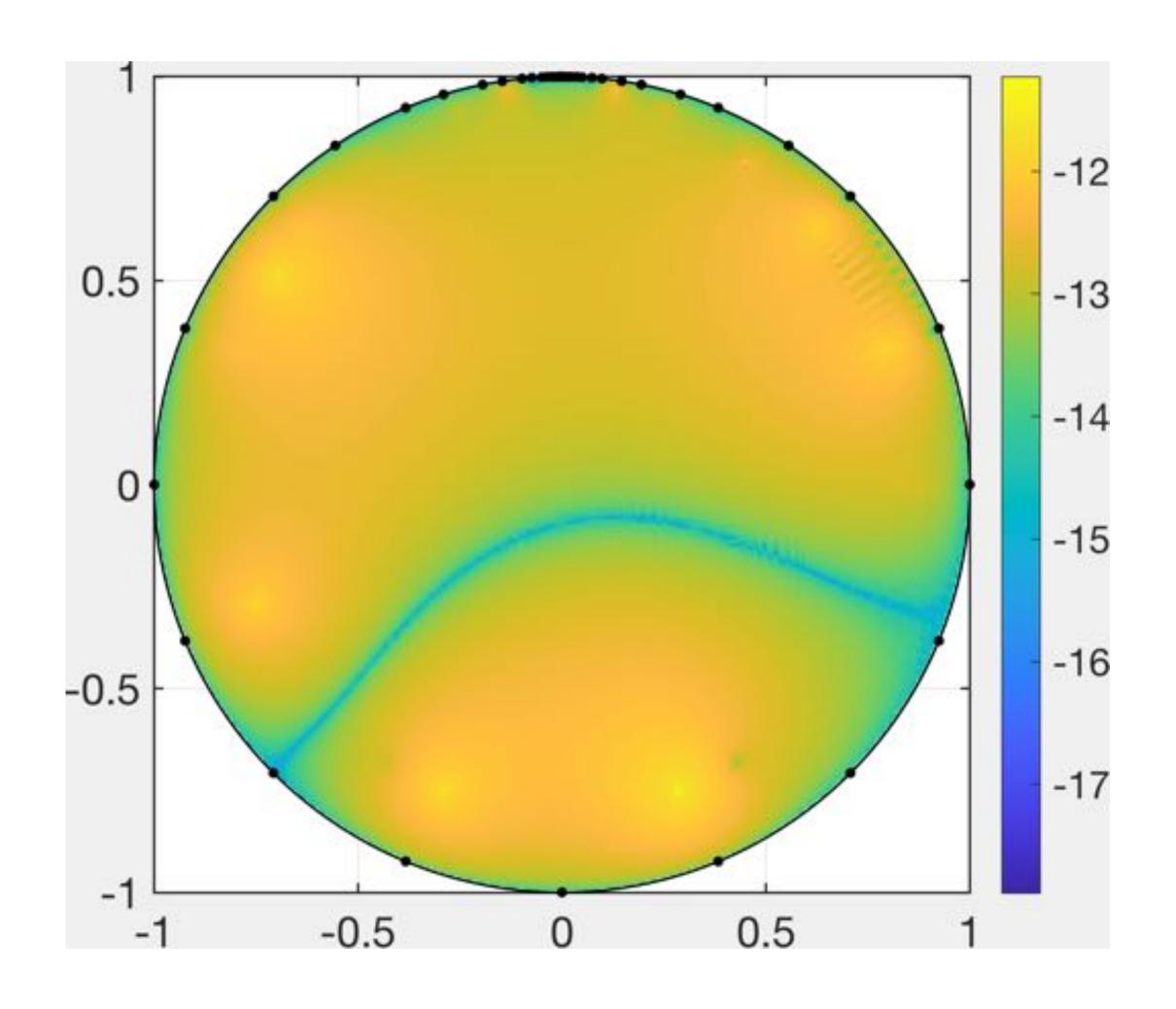


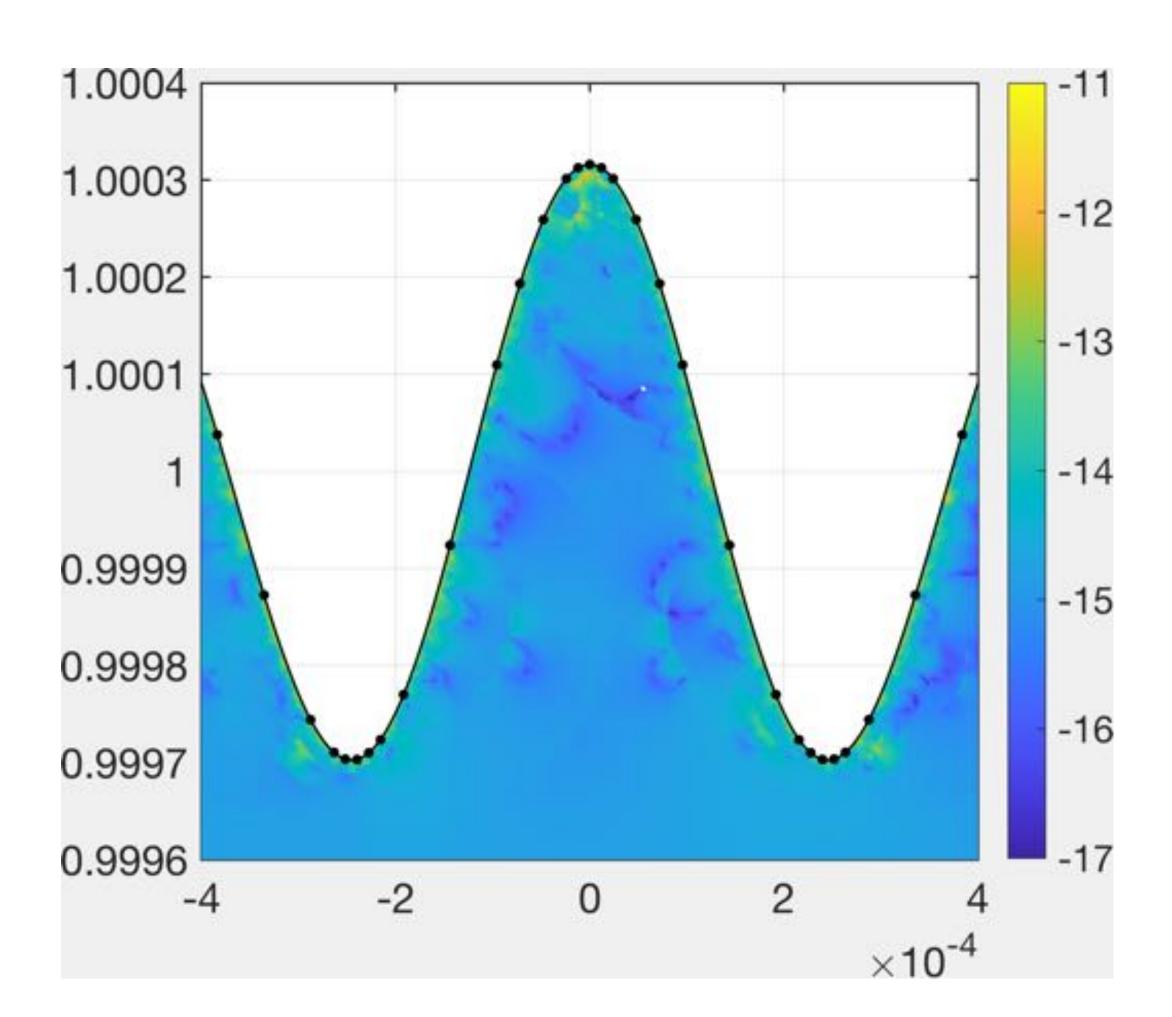












Thank you

- Still ongoing work
- Adaptivity can be performed on boundary (via panelization) and in volume (box code)
- Function "intension" can avoid pitfalls of function extension

Alex Barnett

David Stein