A fully adaptive Poisson solver
for smooth two-dimensional domains

Daniel Fortunato
Flatiron Institute

: .Vv‘ ¥ o
; ’)/ 7
=

Alex Barnett David Stein

Introduction

Inhomogeneous elliptic BVP

Fluid-structure interaction

Many applications involve solving an innomogeneous elliptic BVP. [Rycroft et al., 2020]

Active droplets [Stein, 2021]

Lu — f in Q (e.g. Poisson, Helmholtz, Stokes, ...)

Bu = g on [(e.g. Dirichlet, Neumann, Robin, ...)

(Today’s focus: L = /A, interior Dirichlet)

Bubble collision [Saye, 2017]

f«=0ms

D

f«a5ms f«~4ims

Introduction

Inhomogeneous elliptic BVP

Fluid-structure interaction

Many applications involve solving an innomogeneous elliptic BVP. [Rycroft et al., 2020]

Active droplets [Stein, 2021]

Lu — f in Q (e.g. Poisson, Helmholtz, Stokes, ...)

Bu = g on [(e.g. Dirichlet, Neumann, Robin, ...)

(Today’s focus: L = /A, interior Dirichlet)

Bubble collision [Saye, 2017]

f«=0ms

D

f«a5ms f«~4ims

Introduction

Many approaches for inhomogeneous BVP

Traditional

L RIE
R R R ERRITRES
s

o] RIS
R R R ORERERER
aAvavAYs T M =<
SRS Fav 0 / \
B !
‘?zhﬁ Bg S \ /
SRR oo
L ~

<}
;;gé S \
5 RORE
Egg RS
CEREK] Hg
SRERERERE ;
>§a EMNA NN p
O RAAvAvAvAVAYA
SRR
BERLEEL
Conforming Cut-cell

* Mesh generation (or cut-cell generation)

* Directly discretize with FEM, FDM, SEM, ...

m .
ear SYSU L onin |
4 b golve ine y precor\d\’t\o

Introduction

Many approaches for inhomogeneous BVP

Traditional Analysis-based

VAVAVAVA qu&
= YAVAY: ’AXWAW“ <

< WA N ATAYAV Wy SRR
e

[

Conforming Cut-cell e Write solution as U = uh + uP

* Mesh generation (or cut-cell generation) / \

homogeneous solution particular solution
- Directly discretize with FEM, FDM, SEM, ... + Find some (any!) function u® such that e
4. con
for olume DoFs- o\we Vequr\\f: func’t'\on'

. 0S
\\neaf System d\'\.\Oﬂ\ng needed L u p — f I n Q NV
_ Solve recol "
Spaf

« Compute uh to satisfy boundary conditions:

for

m
sie BIE.

o SY
sole \meaf\:s using

Lu" =0 in €2

bour\daWDo
Bu" =g —BuP onT /

Introduction

Computing a particular solution

Suppose we only know f(x) inside (1. We have a few options...

Introduction

Computing a particular solution

Suppose we only know f(x) inside (1. We have a few options...

» Build accurate quadrature scheme over () (e.g. adaptive boxes with cut cells
near boundary) and compute

up(X) — '/Q G(X,)/)f()/)dy <Poisson: G(X,y):ilog !)

\

free space fundamental solution I_

2 T |x —y|

Introduction

Computing a particular solution

Suppose we only know f(x) inside (1. We have a few options...

» Build accurate quadrature scheme over () (e.g. adaptive boxes with cut cells
near boundary) and compute

up(X) — —/Q G(i(,\)/)f()/)dy <Poisson: G(x,y) = % log |xiy|)
free space fundamental solution I_

. Extend f to f outside) (“function extension™). Adaptively resolve f and compute

P (x) = / G(x, y)F(y)dy

Quadrature tables for boxes can be precomputed (FMM “box code”)

Introduction

Computing a particular solution

Suppose we only know f(x) inside (1. We have a few options...

» Build accurate quadrature scheme over () (e.g. adaptive boxes with cut cells
near boundary) and compute

uP(x) = /Q G (>y<,\y)f (y)dy (Poisson: G(x.y) = 5 log [~)
free space fundamental solution I_

. Extend f to f outside) (“function extension™). Adaptively resolve f and compute

P (x) = / G(x, y)F(y)dy

Quadrature tables for boxes can be precomputed (FMM “box code”)

* Or, sample f on a uniform grid and use an FFT-based solver on J5.

Introduction

Computing a particular solution

Suppose we only know f(x) inside (1. We have a few options...

» Build accurate quadrature scheme over () (e.g. adaptive boxes with cut cells
near boundary) and compute

uP(x) = /Q G (>y<,\y)f (y)dy (Poisson: G(x.y) = 5 log [~)
free space fundamental solution I_

. Extend f to f outside) (“function extension™). Adaptively resolve f and compute

P (x) = / G(x, y)F(y)dy

Quadrature tables for boxes can be precomputed (FMM “box code”)

* Or, sample f on a uniform grid and use an FFT-based solver on J5.

Want f as smooth as f for fast convergence. How?

Function extension

Prior work

* Finite difference extension, second-order accurate [Mayo, 1984]
* Fourier continuation [Bruno & Lyon, 2010], [Bruno & Paul, 2020]
 Immersed boundary smooth extension [Stein, Guy, & Thomases, 2015]

e C Kbolyharmonic extension + box code, fourth-order accurate [Askham & Cerfon, 2017]
POly

* Partition of unity extension [Fryklund, Lehto, & Tornberg, 2018]

Function extension

Prior work

* Finite difference extension, second-order accurate [Mayo, 1984]
* Fourier continuation [Bruno & Lyon, 2010], [Bruno & Paul, 2020]
 Immersed boundary smooth extension [Stein, Guy, & Thomases, 2015]

e C Kbolyharmonic extension + box code, fourth-order accurate [Askham & Cerfon, 2017]
POly

* Partition of unity extension [Fryklund, Lehto, & Tornberg, 2018]

~ In general, smoothly extending f in a robust way is challenging. |
(Especially for multiscale geometry, multiscale f, close-to-touching regions, ...) |

Function “intension”

Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside (2.

Function “intension”

Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside (2.

* Define an annular strip S inside (2.

Function “intension”

Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside (2.

* Define an annular strip S inside (2.

+ Roll off f to zero smoothly in S. This is f.

Function “intension”

Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside (2.

* Define an annular strip S inside (2.
+ Roll off f to zero smoothly in S. This is f.

. Compute a particular solution for f in B.

ntension”

Function
Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside (2.

* Define an annular strip S inside (2.
+ Roll off f to zero smoothly in S. This is f.

. Compute a particular solution for f in B.

. Compute a particular solution for fin S.

Function

ntension”

Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside €2.

Define an annular strip S inside (2.

Roll off f to zero smoothly in S. This is .
Compute a particular solution for f in B.
Compute a particular solution for f in S.

Patch solutions together.

Function

ntension”

Our approach

Instead of trying to make f smooth outside €2,
let’s make it smooth inside €2.

Define an annular strip S inside (2.

Roll off f to zero smoothly in S. This is .
Compute a particular solution for f in B.
Compute a particular solution for f in S.

Patch solutions together.

How to define the strip?
How to solve in the strip?
How to patch the solutions?

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:

e inside .

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.

« as smoothas I .

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as [.

» not too close to | (or the roll off will be sharp).

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as |.
» not too close to | (or the roll off will be sharp).

» not too far from [(or the strip will be large — extra work).

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as [.
» not too close to | (or the roll off will be sharp).
» not too far from [(or the strip will be large — extra work).

* not self intersecting.

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as [.
» not too close to | (or the roll off will be sharp).
» not too far from [(or the strip will be large — extra work).
* not self intersecting.

 What about a uniform perturbation in the normal direction?

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:

e inside [.

» as smooth as [.

» not too close to | (or the roll off will be sharp).

» not too far from [(or the strip will be large — extra work).
* not self intersecting.

 What about a uniform perturbation in the normal direction?

 When all panels are roughly the same size, works well.

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as [.
» not too close to | (or the roll off will be sharp).
» not too far from [(or the strip will be large — extra work).
* not self intersecting.

 What about a uniform perturbation in the normal direction?

 When all panels are roughly the same size, works well.

e But when panels span many length scales...

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as [.
» not too close to | (or the roll off will be sharp).
» not too far from [(or the strip will be large — extra work).
* not self intersecting.

 What about a uniform perturbation in the normal direction?
 When all panels are roughly the same size, works well.
 But when panels span many length scales...

e can over-resolve the largest length scales.

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as [.
» not too close to | (or the roll off will be sharp).
» not too far from [(or the strip will be large — extra work).
* not self intersecting.

 What about a uniform perturbation in the normal direction?
 When all panels are roughly the same size, works well.

e But when panels span many length scales...

e can over-resolve the largest length scales.

e can self-intersect.

Defining the strip

Wish list

Task: Given a panelized curve [, compute another panelized curve [that is:
e inside [.
» as smooth as [.
» not too close to | (or the roll off will be sharp).
» not too far from [(or the strip will be large — extra work).
* not self intersecting.

 What about a uniform perturbation in the normal direction?
 When all panels are roughly the same size, works well.

e But when panels span many length scales...

e can over-resolve the largest length scales.

e can self-intersect.

[" should adapt to local panel size

Defining the strip

Adapting to local panel size

Task: Given a panelized curve [, compute another panelized curve [that is:

e inside .

« as smoothas I .

» not too close to | (or the roll off will be sharp).

» not too far from [(or the strip will be large — extra work).

* not self intersecting.

Solution:

Define piecewise linear width function based on average local panel size
Approximate each junction by smoothed abs(x)
Blend together using matched asymptotics

Perturb in the normal direction

Solving the strip problem

Spectral element discretization

We use a spectral element method in S, with spectral collocation at tensor-product Chebyshev nodes
on each element.

QKRR
RS
et et s
rootste
otorteterts
Soontoln s

Jacobian is numerically computed at each
point to form differentiation matrices.

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

@ Recursively apply S , starting from known boundary conditions at the top level.

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

@ Recursively apply S , starting from known boundary conditions at the top level.

Cost: O(p6npanel) t O(p3npane|) t O(p2npane|) = O(npane|)

0, @ €)

We typically use p = 16 on each panel and upsample the SEM grid to 2p = 32.

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the strip problem

A fast direct solver for the strip

We use the hierarchical Poincare-Steklov scheme to build a fast direct solver in S.

Given an inhomogeneity f:

@ On each element, compute:

2
« Solution operator: S € RMx4n
+ Dirchlet-to-Neumann map: DtN & [RAnx4n

@ Merge adjacent elements pairwise

« Compute S and DtN on parent via Schur complement

@ Recursively apply S , starting from known boundary conditions at the top level.

Cost: C’)(pﬁnpand) + O(psnpanel) + C’)(p2npane|) = O(npane|) Takeaway: 1D HPS is fast out of the box.

0, @ €)

We typically use p = 16 on each panel and upsample the SEM grid to 2p = 32.

[Gillman & Martinsson, 2015], [Martinsson, 2015]

10/ 20

Solving the bulk problem

Evaluating the roll off function

 Goal: Approximate f by quad-tree of tensor product Chebyshev nodes.

Far
F(B)

Near

N (B)

Solving the bulk problem

Evaluating the roll off function

 Goal: Approximate f by quad-tree of tensor product Chebyshev nodes.

* Problem: To evaluate the roll off function at a point,
we need to know where that point falls in the strip.

Far
F(B)

Near

N (B)

Solving the bulk problem

Evaluating the roll off function

 Goal: Approximate f by quad-tree of tensor product Chebyshev nodes.

* Problem: To evaluate the roll off function at a point,
we need to know where that point falls in the strip.

* Solution: Compute local coordinates via 1D interpolation
through normal vectors [Bruno & Paul, 2020]

Far
F(B)

Near

N (B)

Solving the bulk problem

Evaluating the roll off function

 Goal: Approximate f by quad-tree of tensor product Chebyshev nodes.

* Problem: To evaluate the roll off function at a point,
we need to know where that point falls in the strip.

* Solution: Compute local coordinates via 1D interpolation
through normal vectors [Bruno & Paul, 2020]

Use a box code to obtain a particular solution:

~

Aubu|k — f N B O(N) — C’)(pznboxes)

Far
Then, Aupy = finside [F(B)

Near

N (B)

Patching the solutions

Using the value of Ubulk as the inner boundary condition in the SEM, the solutions will match along .
However, their normal derivatives may not.

The “single-layer potentia

v(x) = (So)(x) = / G(x,y)o(y)dt,

/

satisfies Av = 0 and the jump relation

@jL ov
on |-, On |

Patching the solutions

Using the value of Ubulk as the inner boundary condition in the SEM, the solutions will match along .
However, their normal derivatives may not.

The “single-layer potentia

v(x) = (So)(x) = / G(x,y)o(y)dt,

/

satisfies Av = 0 and the jump relation

@jL ov
on |-, On |

O Ustrip O Upulk
on |, on |,

Apply SLP: Uglue = S (

Patching the solutions

Using the value of Ubulk as the inner boundary condition in the SEM, the solutions will match along .
However, their normal derivatives may not.

The “single-layer potentia

/(%) = (50)(x) = / G(x, y)o(y)dt,

/

satisfies Av = 0 and the jump relation

@jL ov
on |-, On |

O Ustrip O Ubulk
on |, on |,

Apply SLP: Ugiue = S (

Then, A(upuik + Uglue) = FiN Q\ S

Correcting the boundary conditions

Finally, the boundary conditions may not be satisfied.

Standard BIE solve using double-layer potential:

Aubc =0 in €2

Upc — 8 — (Ustrip|r + Uglue|r) on [

Correcting the boundary conditions

Finally, the boundary conditions may not be satisfied.

Standard BIE solve using double-layer potential:

Aubc =0 in €2

Upc — 8 — (Ustrip|r + Uglue|r) on [

Ubulk + Uglye + Upe 1N 2\ S
Then U :{ - S - \ satisfies:

Ustrip =+ Uglue + Upc IN S

Au=1f inQ
u=g onl

Numerical results

Example

1.002

1.0015

1.001

1.0005 ¢

0.9995 ¢

0.999 1

0.9985 ¢

-1 -0.5 0 0.5 1 x10™

Numerical results

Example

1.002

1.0015

1.001

1.0005 1

x107°

Numerical results

Example

1.0004

1.0003
1.0002 ¢

\
' \
’ \
1.0001 | i
: \
\ \

1t
0.9999 | ! 3
0.9998 |

0.9997 | “weee” e

0.9996

Numerical results

Example

&

= 5 F B " " »
= 5 B 5 B " P 7

= 5 F F " =

- % " " ¥ =

» & -

-

1.0004 0

1.0003

1.0002

1.0001

0.9999

0.9998

0.9997

%1074

Numerical results

Example

1.0004 0
1.0003 ’ ' -2
b _'I: | 1 4
1.0002 : E
| 1-6
1.0001
-8
1
sl -10
0.9999
12
0.9998 -
0.9997 e
0.9996
-4 2 0 2 4

%107

Numerical results

Example

1.0004

1.0003

1.0002 1

1.0001 ¢

0.9999
0.9998
0.9997

0.9996

-11

Thank you

» Still ongoing work
* Adaptivity can be performed on boundary (via panelization) and in volume (box code)

* Function “intension” can avoid pitfalls of function extension

<- FLATIRON

\ Center for Computational
Mathematics

Alex Barnett David Stein

