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1D Heat PDE: time-stepping with Backward Euler scheme
yt(x, t) = yxx(x, t), (x, t) ∈ (0,1)× (0,T ],
y(0, t) = y(1, t) = 0, t ∈ [0,T ], (Boundary Condition)
y(x,0) = f (x), x ∈ (0,1).(Initial Condition) (1)

Uniform space-time mesh {xi = ih, tm = mτ} with h = 1/(M+1),τ = T/Nt .
Let ym

i ≈ y(xi, tm) and y0
i = f (xi).The backward Euler scheme reads:

ym
i − ym−1

i
τ

=
ym

i−1 −2ym
i + ym

i+1

h2 ,

Let ym
h = [ym

1 ,y
m
2 , · · · ,ym

M]T, it gives sequentialtime-stepping (Nt steps m = 1,2, · · · ,Nt )( 1
τ
Ih +Ah

)
ym

h = 1
τ
ym−1

h , (2)
where Ah =

1
h2 tridiag(−1,2,−1) ∈ RM×M is sparse.
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Goal: to compute y(x, t) faster with parallel machines?
Choose the IC f (x) = 1[0.4,0.6](x) and T = 0.5.

Figure 1: Simulation of solving 1D heat eq by backward Euler time-stepping.
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The parareal algorithm [Lions et al., 2001] for ODEs IVP
Consider the (semi-discretized) ODEs IVP over [0,T ]:

u′(t) = f(u), u(0) = u0 ∈ RM. (3)
Define two propagation (time-stepping) operators for (3):
▶ G(t2, t1,u1) is a coarse/cheap approx. to u(t2) with IC u(t1) = u1;
▶ F(t2, t1,u1) is a fine/expensive approx. to u(t2) with IC u(t1) = u1;

Partition (0,T ] into (Tn−1,Tn] with 0 = T0 < T1 < T2 < · · ·< TN = T . Theparareal algorithm initializes U 0
n ≈ u(Tn) by coarse time-stepping:

U 0
0 = u0; U 0

n+1 = G(Tn+1,Tn,U
0
n ), n = 0,1, · · · ,N −1, (4)

and then runs the k-th correction iteration (marching n = 0,1,2, · · · and Uk+1
0 = u0)

Uk+1
n+1 = F(Tn+1,Tn,U

k
n )︸ ︷︷ ︸marching in parallel
+G(Tn+1,Tn,U

k+1
n )︸ ︷︷ ︸marching in serial

−G(Tn+1,Tn,U
k
n )︸ ︷︷ ︸already computed
. (5)
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The illustration and limitation of parareal algorithm

Figure 2: The initialization and 1st iteration of parareal algorithm (red U k
n are computed inserial and blue F are performed in parallel). See www.unige.ch/~gander/poly.pdf

▶ It always converges to the fine approximation after finite n steps:
U k

n = F(Tn,0,u0) for k ≥ n. But no speedup if needs k ≥ n.
▶ The parallel efficiency < 1/K with K being total iteration number.
▶ Fast linear convergence for parabolic eq, but poor or no convergence forhyperbolic eq. [Gander and Vandewalle, 2007] (can be improved)
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A fair comparison for a 2D heat eq using hypre and XBraid [Falgout et al., 2017].

▶ multigrid-reduction-in-time algorithm (MGRIT) [Falgout et al., 2014]
¬ a multilevel extension of the parareal algorithm (2-level).

▶ space-time multigrid method (STMG) « fastest[Gander and Vandewalle, 2007, Gander and Neumüller, 2016]
▶ waveform relaxation multigrid (WRMG–CR) [Horton et al., 1995]
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A tensor-product direct solver [Maday and Rønquist, 2008]
Couple all the Nt time steps in (2) together:

− 1
τ
ym−1

h +
( 1

τ
Ih +Ah

)
ym

h = 0, m = 1,2, · · · ,Nt (6)
to get an all-at-once system (note IC gives y0

h = fh)

1
τ
Ih +Ah

− 1
τ
Ih

. . .
− 1

τ
Ih

1
τ
Ih +Ah. . . . . .

− 1
τ
Ih

1
τ
Ih +Ah




y1

h
y2

h......
yNt

h

=



1
τ

fh
0......
0

 . (7)

By separating time and space (in Kronecker product ⊗), rewrite into
Lyh := (B⊗ Ih + It ⊗Ah)yh = bh, B =

1
τ

 1
−1 1

. . . . . .
−1 1

 (8)
where Ih, It are identity matrices. Clearly, B (as a Jordan block) is not diagonalizable.
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A tensor-product direct PinT solver [Maday and Rønquist, 2008]
But, if all time steps sizes τ j are all different, then it is indeed diagonalizable:

B̂ =

 1/τ1
−1/τ2 1/τ2 . . . . . .

−1/τNt 1/τNt

 diagonalizable
=============
with an explicit V

V DV−1, (9)

which leads to a diagonalization-based PinT direct solver by inverting
L̂ :=

(
B̂⊗ Ih + It ⊗Ah

)
= (V ⊗ Ih)(D⊗ Ih + It ⊗Ah)(V−1 ⊗ Ih). (10)

Since (D⊗ Ih + It ⊗Ah) is block-diagonal, inverting yh = L̂−1bh in three steps:
g = (V−1 ⊗ Ih)bh, step-(a),
(λ jIh +Ah)w j = g j, j = 1,2, . . . ,n, step-(b), parallel in time,
yh = (V ⊗ Ih)w, step-(c),

(11)

where D = diag(λ1, . . . ,λn),w = (wT
1 , . . . ,w

T
n )

T and g = (gT1 , . . . ,g
T
n )

T.
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The limitation of B̂-based direct PinT solver
Key limitation:

1 The roundoff errors of yh (due to diagonalization) are proportional to
Cond2(V ) := ∥V∥2∥V−1∥2.

2 With optimized τ j = (1+ ε) j , Cond2(V ) shows exponential growth, whichlimits Nt ≲ 25 for stable solutions. [Gander et al., 2016, Gander et al., 2019]
3 The restriction Nt ≲ 25 implies only ∼25 processors are useful, although it canstill be applied to many short time windows in serial. Less efficient for largeNt .

Two ways to control Cond2(V ):
▶ Iterative: preconditioning B by an α-circulant matrix Cα (diagonalizable by FFT)
▶ ¬Direct: modify the time scheme to get a ‘normal’ B with well-conditioned V

A normal matrix is diagonalizable by a unitary matrix (with condition number=1)!
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A block α-circulant PinT preconditioner [Lin and Ng, 2020]
Recall the all-at-once nonsymmetric system matrix

L := B⊗ Ih + It ⊗ (−Ah), B =
1
τ

 1
−1 1

. . . . . .
−1 1

. (12)
A block α-circulant PinT preconditioner has the form (Cα is diagonalizable by FFT)

Pα :=Cα ⊗ Ih + It ⊗ (−Ah), Cα =
1
τ


1 −α

−1 1
−1 1

. . . . . .
−1 1

 (13)

where the Toeplitz matrix B is replaced by α-circulant matrix (with α ∈ (0,1])
▶ For a sufficiently small α , preconditioned GMRES or fixed-point iteration has amesh-independent convergence rate (nontrivial to prove due to non-normality).
▶ To control the roundoff errors in diagonalization, α should not be too small.
▶ The similar PinT preconditioner also works for wave PDE [Liu and Wu, 2020].
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Revisit a boundary value method [Axelsson and Verwer, 1985]
Consider linear ODEs IVP (e.g. from semi-discretized PDE)

u′(t)+Au(t) = g(t), u(0) = u0 ∈ RM. (14)
Use a uniform mesh t j = jτ with τ = T/n. Applying centered difference for the first
(n−1) time steps and backward Euler scheme for the last step, we get{

u j+1−u j−1
2τ

+Au j = g j, j = 1,2, . . . ,n−1,
un−un−1

τ
+Aun = gn.

(15)
Couple all the n time steps in (15) to get an all-at-once system with a better B:

(B⊗ Ih + It ⊗A)uh = gh, B =
1
τ


0 1/2

−1/2 0 1/2

. . . . . . . . .
−1/2 0 1/2

−1 1

 (16)

Such an all-at-once time scheme should not be solved in a time-stepping fashion.
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The diagonalization of the matrix B: formulas for n eigenpairs
Consider the tridiagonal matrix

B= τB =


0 1/2

−1/2 0 1/2. . . . . . . . .
−1/2 0 1/2

−1 1

 .

Let Tn(x) = cos(narccosx) and Un(x) = sin[(n+1)arccosx]/sin(arccosx)denotes the n-th degree Chebyshev polynomials of the 1st- and 2nd-kind.
Theorem 1
Let i =

√
−1. The eigenvalues ofB are λ j = ix j , with {x j}n

j=1 being the n roots of
Un−1(x)− iTn(x) = 0, and the corresponding eigenvector p j = [p j,0, · · · , p j,n−1]

T

with p j,0 = 1 is p j,k = ikUk(x j), k = 0, · · · ,n−1.
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The diagonalization of the matrix B: eigenvalues are simple
Theorem 2
All n roots ofUn−1(x)− iTn(x) = 0 are simple, complex with negative imaginary
parts, and have modulus less than 1+1/

√
2n. Moreover, if x is a root, then so is−x̄.

In particular, n distinct eigenvalues implies B or B is indeed diagonalizable.
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The diagonalization of the matrix B: condition number of V

Theorem 3
LetV = [p1,p2, · · · ,pn] be the eigenvector matrix. There holdsCond2(V ) = O(n2).

Explicitly, the eigenvector matrix V has the Chebyshev-Vandermonde structure

V = diag
(
i0, i1, · · · , in−1)︸ ︷︷ ︸
:=I unitary

 U0(x1) · · · U0(xn)... · · ·
...

Un−1(x1) · · · Un−1(xn)


︸ ︷︷ ︸

:=Φ

. (17)

(i) Some fast inversion algorithms (e.g. [Gohberg and Olshevsky, 1994]) for V−1 in theliterature may be unstable, mainly due to complex nodes {xi}n
i=1.(ii) By the Vandermonde-like structure of V = [ikUk(x j)], we designed a stable fastalgorithm with O(n2) complexity to compute V−1. Based on 3 terms recursion.
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Extension to 2nd-order problems (e.g. wave eq): B 99K B2

Consider the 2nd-order nonlinear ODEs IVP:
u′′(t)+ f (u(t)) = 0,u(0) = u0,u′(0) = ũ0, (18)

Rewritten into first-order ODEs (with v = u′) and then apply the same scheme:[
u(t)
v(t)

]′
=

[
v(t)

− f (u(t))

]
,

[
u(0)
v(0)

]
=

[
u0
ũ0

]
, (19)

but the system size is doubled. Luckily, we can eliminate v’s after discretization:
Lemma 4 (reduced all-at-once system for (18))
The boundary-value method for the 2nd-order problem (18) can be formulated into

(B2 ⊗ Ix)u+F(u) = b, (20)
where b=

(
ũT0
2τ
,− uT0

4τ2 ,0, . . . ,0
)T

. Hence no extra cost due toB2 =V D2V−1.
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Fast diagonalization algorithms for B =V DV−1

Based on Theorem 1 it holds λ j = i cos(θ j), where θ j is the j-th root of
ρ(θ) := sin(nθ)− i cos(nθ)sinθ = 0. Applying 1D Newton’s iteration leads to

θ
(l+1)
j = θ

(l)
j −ρ(θ

(l)
j )/ρ

′(θ
(l)
j ), l = 0,1,2, · · · . (21)

with n accurately estimated complex initial guesses: θ
(0)
j = 1

2

(
jπ
n + jπ

n+1

)
+ i

n .

Table 1: Comparison of eig+backslash function and our fast diagonalization algorithm
MATLAB’s eig+backslash Our fast algorithm with MATLAB codes

n CPU Reseig Iter CPU Resfast EigErrorfast512 0.277 9.69e-13 8 0.073 5.30e-11 8.89e-151024 1.107 3.85e-12 9 0.301 2.04e-10 2.63e-142048 6.741 1.01e-11 9 1.206 5.12e-10 1.25e-134096 60.257 4.02e-11 10 5.054 6.75e-09 5.16e-138192 606.045 2.25e-10 10 23.402 2.85e-08 4.07e-13
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Approximation accuracy and Cond2(V ) comparison
utt −uxx = 0, u(x,0) = sin(2πx), u′(x,0) = 0, (x, t) ∈ (−1,1)× (0,T ), (22)

with periodic BC u(−1, t) = u(1, t). With centered difference in space it gives
u′′

h +Ahuh = 0, uh(0) = u0, u
′
h(0) = 0, t ∈ (0,T ). (23)
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Figure 3: Left: the errors for our algorithm, the algorithm in [Gander et al., 2019] and thetime-stepping TR. Right: comparison of the growing Cond2(V ).
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A 2D linear heat eq: scaling results with C/MPI/PETSc
ut(x,y, t)−∆u(x,y, t) = r(x,y, t), in Ω× (0,T ), (24)

where Ω = (0,π)2 and the exact solution reads u(x,y, t) = sin(x)sin(y)e−t .
Table 2: Error and Scaling results of example 1: a heat PDE (T = 2 with M = 5122)

Core# strong scaling weak scaling
s n Error CPU Speedup Efficiency n Error CPU Efficiency1 512 2.23e-06 1318.8 1.0 100.0% 2 7.93e-02 5.4 100.0%2 512 2.23e-06 667.8 2.0 98.7% 4 1.19e-02 5.4 100.0%4 512 2.23e-06 346.4 3.8 95.2% 8 3.22e-03 5.4 100.0%8 512 2.23e-06 173.0 7.6 95.3% 16 8.26e-04 5.5 98.2%16 512 2.23e-06 90.7 14.5 90.9% 32 2.09e-04 5.8 93.1%32 512 2.23e-06 51.1 25.8 80.7% 64 5.28e-05 6.6 81.8%64 512 2.23e-06 32.0 41.2 64.4% 128 1.37e-05 8.3 65.1%128 512 2.23e-06 23.0 57.3 44.8% 256 4.25e-06 12.0 45.0%256 512 2.23e-06 19.4 68.0 26.6% 512 2.23e-06 19.6 27.6%

▶ Run on SIUE Campus Cluster: 10 CPU nodes via 25 Gbps Ethernet network, eachnode has two 3.5GHz AMD EPYC 7F52 16-Core CPU and 256GB RAM.Slow network may affect parallel efficiency. Here 5123 ≈ 134 millions
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A 2D linear wave eq: difficult for parareal-type algorithms
utt(x,y, t)−∆u(x,y, t) = r(x,y, t), in Ω× (0,T ), (25)

where Ω = (0,1)2 and the exact solution u(x,y, t) = x(x−1)y(y−1)sin(2πt).

Table 3: Error and Scaling Results of Example 2: a wave PDE (T = 2 with M = 5122)
Core# Strong scaling Weak scaling

s n Error CPU Speedup Efficiency n Error CPU Efficiency1 512 7.88e-05 1328.6 1.0 100.0% 2 9.19e-03 5.4 100.0%2 512 7.88e-05 676.3 2.0 98.2% 4 2.21e-02 5.4 100.0%4 512 7.88e-05 332.6 4.0 99.9% 8 3.16e-01 5.5 100.0%8 512 7.88e-05 172.6 7.7 96.2% 16 1.33e-01 5.7 100.0%16 512 7.88e-05 91.2 14.6 91.0% 32 2.30e-02 6.0 94.8%32 512 7.88e-05 51.7 25.7 80.3% 64 5.21e-03 7.1 82.1%64 512 7.88e-05 31.2 42.6 66.5% 128 1.27e-03 9.5 67.9%128 512 7.88e-05 23.2 57.3 44.7% 256 3.16e-04 14.8 46.6%256 512 7.88e-05 20.3 65.4 25.6% 512 7.88e-05 27.4 28.2%

▶ The parallel efficiency is the same as heat eq, without any extra treatments;
Fast Direct Solvers 2021 (Oct 24) A well-conditioned direct PinT solver for PDEs 20 / 25



Extension to nonlinear cases: simplified Newton iterations
Consider the nonlinear ODEs IVP: u′(t)+ f (u) = 0, u(0) = u0. The scheme reads{

u j+1−u j−1
2τ

+ f (u j) = 0, j = 1,2, . . . ,n−1,
un−un−1

τ
+ f (un) = 0,

(26)
Rewrite (26) into all-at-once form (with F(u) = [ fT(u1), fT(u2), . . . , fT(un)]

T)
(B⊗ Ix)u+F(u) = b.

The Newton’s iteration (with ∇F(uk) = blkdiag(∇ f (uk
1), . . . ,∇ f (uk

n))) reads
(B⊗ Ix +∇F(uk))uk+1 = b+

(
∇F(uk)uk −F(uk)

)
. (27)

Following the idea [Gander and Halpern, 2017] of averaging Jacobian matrix
∇F(uk)≈ It ⊗Ak, Ak =

1
n

(
∑

n
j=1∇ f (uk

j)
)
, (28)

which gives a simplified Newton iteration (SNI) can be solved PinT again:
(B⊗ Ix + It ⊗Ak)u

k+1 = b+
(
(It ⊗Ak)u

k −F(uk)
)
. (29)
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A semi-linear parabolic equation: with f (u) = u3 −u

ut(x,y, t)−∆u(x,y, t)+ f (u) = r(x,y, t), in Ω× (0,T ), (30)
where Ω = (−1,1)2 and the exact solution reads u(x,y, t) = (x2 −1)(y2 −1)e−t .

Table 4: Error and Scaling Results of Example 3: a semi-linear PDE (T = 2 with M = 2562)
Core# Strong scaling Weak scaling

s n Error SNI CPU Speedup Efficiency n Error SNI CPU Efficiency1 512 6.36e-07 9 1514.0 1.0 100.0% 2 4.40e-01 11 6.6 100.0%2 512 6.36e-07 9 770.4 2.0 98.3% 4 7.64e-03 9 5.4 122.2%4 512 6.36e-07 9 400.6 3.8 94.5% 8 2.33e-03 11 6.8 97.1%8 512 6.36e-07 9 217.2 7.0 87.1% 16 6.38e-04 9 5.9 111.9%16 512 6.36e-07 9 126.9 11.9 74.6% 32 1.63e-04 9 7.0 94.3%32 512 6.36e-07 9 84.7 17.9 55.9% 64 4.07e-05 9 9.4 70.2%64 512 6.36e-07 9 67.6 22.4 35.0% 128 1.02e-05 9 28.8 22.9%128 512 6.36e-07 9 60.6 25.0 19.5% 256 2.55e-06 9 29.8 22.1%256 512 6.36e-07 9 60.8 24.9 9.7% 512 6.36e-07 9 61.6 10.7%

▶ The SNI shows a mesh-independent linear convergence rate
▶ A clear drop in efficiency when across computer nodes (32 cores per node),but over 20 times speedup is still higher than the parareal (< 10 times).
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The summarized strong/weak scaling results
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▶ The nonlinear case’s parallel efficiency is much lower, which is expected due tothe extra communication cost in (i) distributing the averaged Jacobian matricesand (ii) dispatching the residuals during the sequential SNI iterations.
▶ The current weak scaling results is less satisfactory; no MPI coding experience.
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Summary
Major contribution:
▶ New direct PinT solver works equally well for parabolic and hyperbolic eqs
▶ The condition number of eigenvector matrix V can be controlled (O(n2))
▶ Fast O(n2) diagonalization (i.e. D,V−1) algorithms of B are designed

Some open problems:
▶ The convergence (rate) analysis for nonlinear problems is still missing?
▶ How to efficiently solve n independent complex-shifted systems in step-(b)?multigrid, model order reduction [Liu and Wang, 2020]
▶ Which time scheme leads to a diagonalizable B with minimal Cond(V )?optimize parametric time scheme for better conditioned V
▶ Use adaptive time step sizes for improved accuracye.g., adaptive parareal algorithm [Maday and Mula, 2020]
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Thank you for your attention! Questions?

Iterative and Direct ParaDIAG related algorithms with C/MPI codes:
github.com/wushulin/ParaDIAG

Main reference:
▶ Jun Liu, Xiang-Sheng Wang, Shu-Lin Wu, and Tao Zhou, A well-conditioned direct PinT

algorithm for first-and second-order evolutionary equations, arXiv preprint, 2021.
arxiv.org/abs/2108.01716. Under minor revision.
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