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@ Review of two parallel-in-time (PinT) algorithms
o lterative: Parareal, MGRIT, Space-time Multigrid, PFASST
@ Direct: space-time solver, ParaExp, Laplace Transform

© ParaDIAG: diagonalization-based PinT algorithms
@ As preconditioner
@ Asdirect solver

© Numerical examples

Q@ Summary
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1D Heat PDE: time-stepping with Backward Euler scheme

yi(x1) = yue(x,2),  (x,1) €(0,1) x (0,77,
¥(0,7) = (1 t)=0, t€][0,T],(Boundary Condition) (1)
y(x,0) = f(x), x € (0,1).(Initial Condition)

Uniform space-time mesh {x; = ih,t,, = mt} withh =1/(M +1),7 =T /N..

Lety" ~ y(xi,t,) and y? = f(x;).
The backward Euler scheme reads:

m—1

N b/ AR S | +yl+1
T h?

Letyr = [y, v, -+ ,ym] T, it gives sequential
time-stepping (N, stepsm = 1,2,--- | N;)

(L0, +An) ypr = Lyp1, (2)
where A, = tridiag(—1,2,—1) € RM*M is sparse.
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Choose the IC f(x) = 1(g4,0.6)(x) and T = 0.5.

Figure 1: Simulation of solving 1D heat eq by backward Euler time-stepping.
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The parareal algorithm [Lions et al., 2001] for ODEs IVP

Consider the (semi-discretized) ODEs IVP over [0, T:

u'(t) = f(u), u(0) = up € RM. (3)

Define two propagation (time-stepping) operators for (3):

» G(tp,t1,u) is a coarse/cheap approx. to w(t; ) with ICwu(t) = uy;

» F(f2,t1,u;) is a fine/expensive approx. to u(r2) with ICu (7)) = uy;
Partition (0, 7] into (7,1, T, with0=Ty < Ty < T, < --- < Ty =T.The
parareal algorithm initializes U? ~ w(T;,) by coarse time-stepping:

U =up; UL, =G(T41,T,,UY), n=0,1,--- N—1, (4)
and then runs the k-th correction iteration (marchingn =0,1,2,--- and Ué‘“ = uyg)

Uit = F(Tuit T, Up) + G(1010, T, U ) = (T, T, UY).

(5)

marching in parallel marching in serial already computed
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The illustration and limitation of parareal algorithm

U, U}
F . F : U}
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Figure 2: The initialization and 1st iteration of parareal algorithm (red U* are computed in
serial and blue F are performed in parallel). See www.unige.ch/~gander/poly.pdf

> |t always converges to the fine approximation after finite n steps:
U¥ = F(T;,,0,up) for k > n. But no speedup if needs k > n.

» The parallel efficiency < 1/K with K being total iteration number.

» Fast linear convergence for parabolic eq, but poor or no convergence for
hyperbolic eq. [Gander and Vandewalle, 2007] (can be improved)
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A fair comparison for a 2D heat eq using hypre and XBraid [Falgout et al., 2017].

10°

STMG V(1,1)
<-WRMG-CR V(1,1)
10° L#STMG-BR V(2,2)
--MGRIT V-FCF
--MGRIT-SC V-FCF
—1 [ #-time stepping

time [seconds]
=]

1 4 16 64 256 1024
# processors

4096

16,384

» multigrid-reduction-in-time algorithm (MGRIT) [Falgout et al., 2014]
¥ a multilevel extension of the parareal algorithm (2-level).

» space-time multigrid method (STMG) <C» fastest

[Gander and Vandewalle, 2007, Gander and Neumiiller, 2016]
» waveform relaxation multigrid (WRMG—CR) [Horton et al., 1995]
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A tensor-product direct solver [Maday and Rgnquist, 2008]

Couple all the N, time steps in (2) together:

=T Gl A =0, m=1,2,+ N, ©)
to get an all-at-once system (note IC gives y = £;,)
;Ih +Ap i _y}ll_ _%fh_
1 y2 0
—ily 2+ A, =1 @
i ~1n in+a] Y] L0

By separating time and space (in Kronecker product ®), rewrite into

1
Lyy:= B+ @A)y, =by,  B= p .- (8)

where I;,, I, are identity matrices. Clearly, B (as a Jordan block) is not diagonalizable.
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A tensor-product direct PinT solver [Maday and Rgnquist, 2008]

But, if all time steps sizes 7; are all different, then it is indeed diagonalizable:
1/771
1l v diagonalizabl _
o e _ypv!, %)
. with an explicit V
71/TN1 l/‘L_N/

which leads to a diagonalization-based PinT direct solver by inverting
L:= (E@Ih +1 ®Ah> = (VL) DL+ A,) (VIaL). (10)

Since (D @ I + I, ® Ap) is block-diagonal, inverting i, = L~ 'b;, in three steps:

g=(V"'®n)b, step-(a),
Aily+Ap)wj=gj, j=1,2,...,n, step-(b), parallelin time, (1)
= (Veh)w, step-(c),

where D = diag(A, ..., A,),w = (w],...,wHTandg = (g],...,&1) .

Fast Direct Solvers 2021 (Oct 24) A well-conditioned direct PinT solver for PDEs 9/25



The limitation of B-based direct PinT solver

Key limitation:
@ The roundoff errors of y, (due to diagonalization) are proportional to

Condy(V) := [V [[2[[V ™! |2.

@ With optimized 7; = (1+ €)/, Cond, (V) shows exponential growth, which
limits V; < 25 for stable solutions. [Gander et al., 2016, Gander et al., 2019]

© The restriction N; < 25 implies only ~25 processors are useful, although it can
still be applied to many short time windows in serial. Less efficient for large ;.

Two ways to control Cond, (V' ):
> lterative: preconditioning B by an oc-circulant matrix C, (diagonalizable by FFT)
> w#Direct: modify the time scheme to get a ‘normal’ B with well-conditioned V
A normal matrix is diagonalizable by a unitary matrix (with condition number=1)!
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A block ax-circulant PinT preconditioner [Lin and Ng, 2020]

Recall the all-at-once nonsymmetric system matrix

L:=BRL,+1,®(-4,), B= (12)

A block oc-circulant PinT preconditioner has the form (C,, is diagonalizable by FFT)
1 —o
-1 '1 | (1 3)

-1 1

Py:=Coq®@I+1, @ (—Ap), Cq=

Al

where the Toeplitz matrix B is replaced by a-circulant matrix (with o € (0, 1])

> For a sufficiently small ¢, preconditioned GMRES or fixed-point iteration has a
mesh-independent convergence rate (nontrivial to prove due to non-normality).

» To control the roundoff errors in diagonalization, o should not be too small.
» The similar PinT preconditioner also works for wave PDE [Liu and Wu, 2020].
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Revisit a boundary value method [Axelsson and Verwer, 1985]

Consider linear ODEs IVP (e.g. from semi-discretized PDE)
W (t) +Au(t) = g(t), u(0)=ugcRM. (14)

Use a uniform mesh ¢; = jt with 7 = T'/n. Applying centered difference for the first
(n— 1) time steps and backward Euler scheme for the last step, we get

{W+Auj=gj,j:1,2,...,n—l,

_ (15)
Un ‘?nfl +Aun =g,
Couple all the 2 time steps in (15) to get an all-at-once system with a better B:
0 1/2
1 ~1/2 0 1/2
(B®Ih +II®A) U, = gy, B=- g (16)

T 71-/2 0 12
-1 1

Such an all-at-once time scheme should not be solved in a time-stepping fashion.
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The diagonalization of the matrix B: formulas for n eigenpairs

Consider the tridiagonal matrix

Let 7;,(x) = cos(narccosx) and U, (x) = sin[(n+ 1) arccosx]|/ sin(arccosx)
denotes the n-th degree Chebyshev polynomials of the 1st- and 2nd-kind.

Theorem 1

0 1/2
~1/2 0 1/2

—1)2 0 1/2

-1 1

Leti = +/—1. The eigenvalues of B are A; = ix;, with {x;}';_, being the n roots of
Un—1(x) —iT,(x) = 0, and the corresponding eigenvector p; = [p;o,- -

Wfthpj70 = liSpj’k =ikUk(Xj), k=0,--- ,n— 1.
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The diagonalization of the matrix B: eigenvalues are simple

All n roots of U, (x) —iT,(x) = O are simple, complex with negative imaginary
parts, and have modulus less than 1 + 1/+/2n. Moreover, if x is a root, then so is —x.

In particular, n distinct eigenvalues implies B or B is indeed diagonalizable.

Locations of n roots: x; Eigenvalues \; = ix; of 7B
0 . . . . .
5 5 05
& -0.01 & -
> > XX% %
= 1 X x x
g L g 0 xxx X X
-0.02 ’551 ;f' % XXX
£ - £ -05
++
0.03 ‘ ++ ‘ 1 ‘ | |
-1 -0.5 0 0.5 1 0 0.01 0.02 0.03
Real part Real part
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The diagonalization of the matrix B: condition number of V

Theorem 3 J

LetV = [p1,pa,- - ,pn] be the eigenvector matrix. There holds Cond, (V) = O(n?).

Explicitly, the eigenvector matrix V' has the Chebyshev-Vandermonde structure

Up(x1) -+ Upl(xn)
V =diag (ii',---,i" ") : : : (17)

:=I unitary Un—l(xl) Un—l(xn)

=P

(i) Some fast inversion algorithms (e.g. [Gohberg and Olshevsky, 1994]) for V! in the
literature may be unstable, mainly due to complex nodes {x;}”_,.

(ii) By the Vandermonde-like structure of V = [i*U, (x;)], we designed a stable fast
algorithm with O(n?) complexity to compute V~!. Based on 3 terms recursion.
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Extension to 2nd-order problems (e.g. wave eq): B --» B2

Consider the 2nd-order nonlinear ODEs IVP:

u" (1) + f (u(t)) = 0,u(0) = ug, ' (0) = i, (18)
Rewritten into first-order ODEs (with v = u’) and then apply the same scheme:
[u(t)] ! _ [ v(t) ] [u(O)] _ [uo} (19)
v(7) —flu@)]” [(O)]  [do]’

but the system size is doubled. Luckily, we can eliminate v's after discretization:

Lemma 4 (reduced all-at-once system for (18))

The boundary-value method for the 2nd-order problem (18) can be formulated into

(B*®@L,)u+F(u)=b, (20)

~T T T
where b = (Lz’—"r, —27,0,... ,0) . Hence no extra cost due to B> = VD*V .
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Fast diagonalization algorithms for B = VDV ~!

Based on Theorem 1it holds A; = icos(6;), where 6 is the j-th root of
p(0) :=sin(n6) —icos(nO)sin 6 = 0. Applying 1D Newton'’s iteration leads to

0/ =6/ —p(6/")/p'(8"). 1=0,1,2,---. @

with n accurately estimated complex initial guesses: 9}0) =1 (% + %) + i

Table 1: Comparison of eig+backslash function and our fast diagonalization algorithm

MATLAB's eig+backslash | Our fast algorithm with MATLAB codes
n CPU Reseig Iter | CPU Ress.st EigErrorsast
512 0.277 9.69e-13 8 | 0.073 | 530e-11 8.89e-15
1024 1107 3.85e-12 9 | 0301 | 2.04e-10 2.63e-14
2048 6.741 1.01e-11 9 | 1206 | 512e-10 1.25e-13
4096 | 60.257 4.02e-1 10 | 5.054 | 6.75e-09 5.16e-13
8192 || 606.045 2.25e-10 10 | 23.402 | 2.85e-08 4.07e-13
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Approximation accuracy and Cond, (V') comparison

Uy — e = 0, u(x,0) = sin(27x), ' (x,0) =0, (x,¢) € (—1,1) x (0,T), (22)
with periodic BCu(—1,¢) = u(1,7). With centered difference in space it gives
u) +Apuy, =0, u,(0) = ug, u),(0) =0, 1€ (0,T). (23)

—&--{u;,} by Diag using At (this paper) 102
—-—-algorith sing Atj = At, 77"
o {uy} by Diag using Al — At, 7" algorithm using At; T
10 : - ; .. i
{0} by time-stepping TR using At; = At,7i—" D/gf algorithm using At (this paper) B B
o 5| e - i
, 10" e
P ~
>
= 107 ~ — '
: S
g o <100 ,'/
= / g s
%’ a §: 3 s
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Figure 3: Left: the errors for our algorithm, the algorithm in [Gander et al., 2019] and the
time-stepping TR. Right: comparison of the growing Cond, (V).
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A 2D linear heat eq; scaling results with C/MPI/PETSc

ut('xLy?t) _Au(x?y?t) = r(x?y7t)7 in Q X (07T)7 (24)

where Q = (0, 7r)? and the exact solution reads u(x, y,¢) = sin(x) sin(y)e ™.

Table 2: Error and Scaling results of example 1: a heat PDE (7 = 2 withM =5 122)

Core# strong scaling weak scaling
s n Error CPU | Speedup | Efficiency n Error CPU | Efficiency
1 512 | 2.23e-06 1318.8 1.0 100.0% 2 793e-02 54 100.0%
2 512 | 2.23e-06 667.8 2.0 98.7% 4 119e-02 5.4 100.0%
4 512 | 2.23e-06 346.4 38 95.2% 8 3.22e-03 5.4 100.0%
8 512 | 2.23e-06 173.0 76 95.3% 16 8.26e-04 55 98.2%
16 512 | 2.23e-06 90.7 145 90.9% 32 | 209e-04 | 58 93.1%
32 512 | 2.23e-06 511 25.8 80.7% 64 | 5.28e-05 6.6 81.8%
64 512 | 2.23e-06 320 412 64.4% 128 | 137e-05 83 65.1%
128 512 | 2.23e-06 23.0 573 44.8% 256 | 4.25e-06 | 12.0 45.0%
256 512 | 2.23e-06 19.4 68.0 26.6% 512 | 2.23e-06 | 19.6 27.6%

» Run on SIUE Campus Cluster: 10 CPU nodes via 25 Gbps Ethernet network, each
node has two 3.5GHz AMD EPYC 7F52 16-Core CPU and 256GB RAM.
Slow network may affect parallel efficiency. Here 5123 =~ 134 millions
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A 2D linear wave eq: difficult for parareal-type algorithms

g (x,9,1) — Au(x,y,t) = r(x,y,t), inQ x (0,T), (25)
where Q = (0, 1)? and the exact solution u(x, y,#) = x(x — 1)y(y — 1) sin(27t).

Table 3: Error and Scaling Results of Example 2: a wave PDE (T’ = 2 with M = 5122)

Core# Strong scaling Weak scaling
s n Error CPU Speedup | Efficiency n Error CPU | Efficiency
1 512 | 7.88e-05 || 13286 1.0 100.0% 2 9.19e-03 | 54 100.0%
2 512 | 7.88e-05 676.3 2.0 98.2% 4 221e-02 | 54 100.0%
4 512 | 7.88e-05 3326 40 99.9% 8 3.16e-01 55 100.0%
8 512 | 7.88e-05 1726 17 96.2% 16 1.33e-01 57 100.0%
16 512 | 7.88e-05 91.2 14.6 91.0% 32 | 230e-02 | 6.0 94.8%
32 512 | 7.88e-05 517 25.7 80.3% 64 | 521e-03 71 821%
64 512 | 7.88e-05 312 426 66.5% 128 | 127e-03 | 95 67.9%
128 512 | 7.88e-05 232 573 44.7% 256 | 3.16e-04 | 14.8 46.6%
256 512 | 7.88e-05 203 65.4 25.6% 512 | 7.88e-05 | 274 28.2%

> The parallel efficiency is the same as heat eq, without any extra treatments;

Fast Direct Solvers 2021 (Oct 24) A well-conditioned direct PinT solver for PDEs 20/25



Extension to nonlinear cases: simplified Newton iterations

Consider the nonlinear ODEs IVP: i/ (7) + f (1) = 0, u(0) = uo. The scheme reads
{‘”*];;’f”+f(u,-) —0,j=12,....n—1,
=t f () =0,
Rewrite (26) into all-at-once form (with F (w) = [£T (u1), f T (u2), ..., f7 (un)]")
(BoL)u+F(u)=b.
The Newton'’s iteration (with VF (u*) = blkdiag(Vf(uf),...,Vf(uk))) reads

(26)

(BRI + VF (u))ul+! = b+ (VF(uk) k—F(uk)). (27)
Following the idea [Gander and Halpern, 2017] of averaging Jacobian matrix
l /n
VF(u) x L oA, A= (Zj:lVf(u’j‘-)> , (28)
which gives a simplified Newton iteration (SNI) can be solved PinT again:
(BOL+1, @ A)uc! = b+ ((It®Ak)uk—F(uk)). (29)
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A semi-linear parabolic equation: with f(u) = u® —u

ur (X, y,1) = Au(x,y,0) + f () = r(x,y,1), inQ % (0,T),

(30)

where Q = (—1,1)? and the exact solution reads u(x,y,) = (x> — 1)(y*> — 1)e™".

Table 4: Error and Scaling Results of Example 3: a semi-linear PDE (T = 2 with M = 2562)

Core# Strong scaling Weak scaling
s n Error SNI CPU Speedup Efficiency n Error SNI CPU Efficiency
1 512 6.36e-07 9 1514.0 10 100.0% 2 4.40e-01 1 6.6 100.0%
2 512 6.36e-07 9 7704 20 98.3% 4 7.64e-03 9 54 1222%
4 512 6.36e-07 9 400.6 38 94.5% 8 233e-03 1 6.8 971%
8 512 6.36e-07 9 272 70 87.1% 16 6.38e-04 9 59 11.9%
16 512 6.36e-07 9 126.9 19 74.6% 32 1.63e-04 9 70 94.3%
32 512 6.36e-07 9 847 17.9 55.9% 64 4.07e-05 9 9.4 70.2%
64 512 6.36e-07 9 67.6 224 35.0% 128 1.02e-05 9 288 229%
128 512 6.36e-07 9 60.6 25.0 19.5% 256 2.55e-06 9 29.8 221%
256 512 6.36e-07 9 60.8 249 9.7% 512 6.36e-07 9 61.6 10.7%

» The SNI shows a mesh-independent linear convergence rate

» Aclear drop in efficiency when across computer nodes (32 cores per node),
but over 20 times speedup is still higher than the parareal (< 10 times).
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The summarized strong/weak scaling results
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and (ii) dispatching the residuals during the sequential SNI iterations.

» The current weak scaling results is less satisfactory; no MPI coding experience.

A well-conditioned direct PinT solver for PDEs
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The nonlinear case’s parallel efficiency is much lower, which is expected due to
the extra communication cost in (i) distributing the averaged Jacobian matrices
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Major contribution:
» New direct PinT solver works equally well for parabolic and hyperbolic egs
» The condition number of eigenvector matrix V can be controlled (O(n?))
» Fast O(n?) diagonalization (i.e. D,V ~!) algorithms of B are designed

Some open problems:
> The convergence (rate) analysis for nonlinear problems is still missing?

» How to efficiently solve n independent complex-shifted systems in step-(b)?
multigrid, model order reduction [Liu and Wang, 2020]

» Which time scheme leads to a diagonalizable B with minimal Cond(V')?
optimize parametric time scheme for better conditioned V

» Use adaptive time step sizes for improved accuracy
e.g., adaptive parareal algorithm [Maday and Mula, 2020]
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Thank you for your attention! Questions?

Iterative and Direct ParaDIAG related algorithms with C/MPI codes:
github.com/wushulin/ParaDIAG

Main reference:

» Jun Liu, Xiang-Sheng Wang, Shu-Lin Wu, and Tao Zhou, A well-conditioned direct PinT
algorithm for first-and second-order evolutionary equations, arXiv preprint, 2021.
arxiv.org/abs/2108.01716. Under minor revision.
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