
Recent Developments in the Theory/Practice of
Second Order Optimization for Machine Learning

Michael W. Mahoney
ICSI and Department of Statistics, UC Berkeley

October 2021

(Joint work with Z. Yao, A. Gholami, S. Shen, M. Mustafa, and K.

Keutzer (ADAHESSIAN), M. Derezinski, B. Bartan, and M. Pilanci

(Inversion Bias), and others (Recent Stuff in the Pipeline).

Outline

ADAHESSIAN: An Adaptive Second Order Optimizer for ML

Overcoming Inversion Bias in Distributed Newton’s Method

Some Extras: Recent Stuff in the Pipeline

Conclusions

o

o

o

o

o

o

o

o

min
w

E(w) =
1

N

N∑

i=1

cost(w, xi)

w1 = w0 − λ

B

B∑

i=1

∂Ei(w
0)

∂w

16

I

conv1
16 16

I

conv2/3

+

16 16

I

conv4/5

+

16 16

I

conv6/7

+

32 32

I/
2

conv8/9

D l

+ +

64 64
I/
4

conv18/19

+

FC&softmax

wt+1 = wt − ηt∆wt

∆wt = gt ∆wt = H−1
t gt

−4 −2 0 2 4

0

2

4

6

8

10
4.0x2

x2

0.1x2

wt+1 = wt − ηt∆wt

∆wt = gt ∆wt = H−1
t gt

f = x2 + 10y2

θt+1 = θt − ηt∆θt

∆θt = H0
t gt = gt ∆θt = H−1

t gt

∆θt = H−k
t gt, 0 ≤ k ≤ 1

gTt H
−k
t gt ≥ 0 H−k

t gt

H−k
t

16

I

conv1
16 16

I

conv2/3

+

16 16

I

conv4/5

+

16 16

I

conv6/7

+

32 32

I/
2

conv8/9

D l

+ +

64 64
I/
4

conv18/19

+

FC&softmax

min
w

E(w) =
1

N

N∑

i=1

cost(w, xi) Hessian:
∂2E

∂w2
∈ R|W |×|W |Gradient:

∂E

∂w
∈ R|W |

|W | |W |

|W |

Hessian: H ∈ Rd×d

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

ε1

ε2
L
os
s(
L
og
)

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

ε1

ε2

L
os
s(
L
og
)

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

ε1

ε2

L
os
s(
L
og
)

Input: x

Output: ŷ

Loss Landscape Gradient: g ∈ Rd

−0.4
−0.2

0
0.2

0.4 −0.4 −0.2 0 0.2 0.4

−2

−1

0

1

ε1

ε2

L
os
s(
L
og
)

g = Diag(H) =

wt+1 = wt − ηtmt/vt,

mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt
1

,

vt =

√
(1− β2)

∑t
i=1 β

t−i
2 DiDi

1− βt
2

.

Hessian:
∂2E

∂w2
∈ R|W |×|W |

g = H =

D = diag(H) = E[z � (Hz)], z ∼ Rademacher(0.5)

Dt

D = diag(H) = E[z � (Hz)], z ∼ Rademacher(0.5)

∂gT z

∂θ
=

∂gT

∂θ
z + gT

∂z

∂θ
=

∂gT

∂θ
z = Hz.

wt+1 = wt − ηtmt/vt,

mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt
1

,

vt =

√
(1− β2)

∑t
i=1 β

t−i
2 DiDi

1− βt
2

.

f(x) = x2 + 0.1x sin(x)

Hessian: H ∈ Rd×dGradient: g ∈ Rd

Attention Module Dim: 64

Block Size: 64

T
ok
en
s
D
im

:
51

2

≈≈

3× 3 Convolution

Block Size: 9

mt =
(1− β1)

∑t
i=1 β

t−i
1 gi

1− βt
1

, vt =

√
(1− β2)

∑t
i=1 β

t−i
2 DiDi

1− βt
2

.

o

o

o

o

o

o

o

HessianAttention Module Dim: 64

Block Size: 64

T
ok
en
s
D
im

:
51

2

≈≈

o

o

o

o

o

Outline

ADAHESSIAN: An Adaptive Second Order Optimizer for ML

Overcoming Inversion Bias in Distributed Newton’s Method

Some Extras: Recent Stuff in the Pipeline

Conclusions

Overcoming Inversion Bias in Distributed
Newton’s Method

Michael W. Mahoney

ICSI and Department of Statistics
University of California, Berkeley

Joint work with Burak Bartan, Mert Pilanci, and Micha l Dereziński

1 / 19

Convex optimization

Find w∗ = argmin
w

L(w)

w∗

w̃ = w − pw

2 / 19

Why use second-order methods...

...when there is SGD?

Sensitive to hyper-parameters

Limited effectiveness for large batch training

See, e.g., [DMK+18, GVY+18]

Second-order:

No hyper-parameter tuning

Supports large batch training

Recent interest in second-order methods:

theoretical analysis [RKM19, RLXM18, WRKXM18]

empirical (including DNNs) [GKC+19, FKR+18, KRMG18]
3 / 19

Newton’s method

Newton’s method

L(w) =
1

n

n∑
j=1

`j(w
>xj) +

λ

2
‖w‖2

p =
[
∇2L(w)︸ ︷︷ ︸
Hessian H

]−1 ∇L(w)︸ ︷︷ ︸
gradient g

w∗

wt+1 = wt − pwt

4 / 19

Newton’s method

Approximate Newton’s method

L̂(w) =
1

m

∑
j∈S

`j(w
>xj) +

λ

2
‖w‖2

p̂ =
[
∇2L̂(w)︸ ︷︷ ︸

Hessian estimate Ĥ

]−1 ∇L(w)︸ ︷︷ ︸
gradient g

w∗

wt+1 = wt − p̂wt

4 / 19

Distributed Newton’s method

w

L̂1 L̂2 · · · L̂q

p̂1 p̂2 · · · p̂q

p̂

w̃ = w − p̂

Question: How to combine local Newton estimates p̂1, ..., p̂q?

5 / 19

Model averaging

Standard averaging leads to biased estimates:

lim
q→∞

1

q

q∑
t=1

p̂t 6= p (q is the number of machines)

E
[
Ĥ−1

]
6= H−1, even though E

[
Ĥ
]

= H.

6 / 19

General phenomenon: Inversion bias

Inversion bias: E[X−1] 6=
(
E[X]

)−1
for random X

Extends to inverting high-dimensional random matrices

X−1

(
E[X]

)−1

E[X−1]

a−1

b−1

X = a X = bE[X]

7 / 19

General phenomenon: Inversion bias

Inversion bias: E[X−1] 6=
(
E[X]

)−1
for random X

Extends to inverting high-dimensional random matrices

X−1

(
E[X]

)−1

E[X−1]

a−1

b−1

X = a X = bE[X]

7 / 19

Inversion bias in model averaging

1 Bagging

2 Distributed optimization

3 Federated learning

w∗ − 1

q

∑
i

ŵi
q→∞−→ w∗ − E[ŵi]︸ ︷︷ ︸

Bias

D

S1 S2 · · · Sq

ŵ1 ŵ2 · · · ŵq

1
q

∑
i ŵi

8 / 19

Determinantal correction

Hessian estimate: Ĥ = ∇2L̂(w)

Inversion bias: E
[
Ĥ−1

]
6= H−1

Correction:
E
[
det(Ĥ)Ĥ−1

]
E
[
det(Ĥ)

] = H−1

Two strategies of using the correction:

1 Weighted averaging instead of uniform averaging

Determinantal averaging [DM19]

2 Joint sampling instead of uniform sampling

Surrogate sketches [DBPM20]

9 / 19

Determinantal correction

Hessian estimate: Ĥ = ∇2L̂(w)

Inversion bias: E
[
Ĥ−1

]
6= H−1

Correction:
E
[
det(Ĥ)Ĥ−1

]
E
[
det(Ĥ)

] = H−1

Two strategies of using the correction:

1 Weighted averaging instead of uniform averaging

Determinantal averaging [DM19]

2 Joint sampling instead of uniform sampling

Surrogate sketches [DBPM20]

9 / 19

Determinantal correction

Hessian estimate: Ĥ = ∇2L̂(w)

Inversion bias: E
[
Ĥ−1

]
6= H−1

Correction:
E
[
det(Ĥ)Ĥ−1

]
E
[
det(Ĥ)

] = H−1

Two strategies of using the correction:

1 Weighted averaging instead of uniform averaging

Determinantal averaging [DM19]

2 Joint sampling instead of uniform sampling

Surrogate sketches [DBPM20]

9 / 19

Comparison of two strategies

Determinantal averaging

consistent global estimate: p̂ −→
m→∞

p

works with uniform sampling

Surrogate sketching

unbiased local estimates: E[p̂t] = p

samples from a Determinantal Point Process (DPP)

10 / 19

Determinantal Point Processes (DPPs)

Non-i.i.d. randomized selection of a data subset S

Negative correlation: Pr(i ∈ S | j ∈ S) < Pr(i ∈ S)

i.i.d. (left) versus DPP (right)

Fast algorithms: [CDV20] (NeurIPS’20)

“Sampling from a k-DPP without looking at all items”

Learn more: [DM20] (Notices of the AMS)

“Determinantal point processes in randomized numerical linear algebra”

Image from [KT12]
11 / 19

Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ‖wt+1 −w∗‖ = Õ
(√
|dqm + d

m

)
· ‖wt −w∗‖

“variance” “bias”

q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate Trade-offs

Baseline
√
|d
qm

+ d
m

Var Bias Cost

[DM19] Determinantal averaging d√
qm

Var Bias Cost

[DBPM20] Surrogate sketching
√
|d
qm

Var Bias Cost

[DLDM20] LESS embeddings
√
|d
qm

+
√

d
m

Var Bias Cost

[DM19] “Distributed estimation of the inverse Hessian by

determinantal averaging”, at NeurIPS’19.
12 / 19

Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ‖wt+1 −w∗‖ = Õ
(√
|dqm + d

m

)
· ‖wt −w∗‖

“variance” “bias”

q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate Trade-offs

Baseline
√
|d
qm

+ d
m

Var Bias Cost

[DM19] Determinantal averaging d√
qm

Var Bias Cost

[DBPM20] Surrogate sketching
√
|d
qm

Var Bias Cost

[DLDM20] LESS embeddings
√
|d
qm

+
√

d
m

Var Bias Cost

[DM19] “Distributed estimation of the inverse Hessian by

determinantal averaging”, at NeurIPS’19.
12 / 19

Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ‖wt+1 −w∗‖ = Õ
(√
|dqm + d

m

)
· ‖wt −w∗‖

“variance” “bias”

q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate Trade-offs

Baseline
√
|d
qm

+ d
m

Var Bias Cost

[DM19] Determinantal averaging d√
qm

Var Bias Cost

[DBPM20] Surrogate sketching
√
|d
qm

Var Bias Cost

[DLDM20] LESS embeddings
√
|d
qm

+
√

d
m

Var Bias Cost

[DBPM20] “Debiasing distributed second order optimization with

surrogate sketching and scaled regularization”, at NeurIPS’20.
12 / 19

Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ‖wt+1 −w∗‖ = Õ
(√
|dqm + d

m

)
· ‖wt −w∗‖

“variance” “bias”

q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate Trade-offs

Baseline
√
|d
qm

+ d
m

Var Bias Cost

[DM19] Determinantal averaging d√
qm

Var Bias Cost

[DBPM20] Surrogate sketching
√
|d
qm

Var Bias Cost

[DLDM20] LESS embeddings
√
|d
qm

+
√

d
m

Var Bias Cost

[DLDM20] “Sparse sketches with small inversion bias”, Preprint at

arXiv:2011.10695.
12 / 19

Bias-variance trade-offs in model averaging

estimation error =
∥∥∥1

q

q∑
i=1

p̂i − p∗
∥∥∥

13 / 19

Experiments: Effect of implicit regularization

Question: Should local regularizer match the global λ?

Distributed Newton with 100 machines for logistic regression

dashed lines: local regularizer = λ ·
(
1− dλ

m

)

regularized loss: L(w) =
1

n

n∑
j=1

`j(w
>xj) +

λ

2
‖w‖2

[DBPM20] “Debiasing distributed second order optimization with

surrogate sketching and scaled regularization”, at NeurIPS’20.
14 / 19

Conclusions

Distributed Newton’s method suffers from inversion bias

We can correct this bias with:

Weighted averaging instead of uniform averaging

Determinantal averaging

Joint sampling instead of uniform sampling

Surrogate sketches

Scaled local regularization in place of the global regularizer

λ′ = λ · (1− dλ
m

)

15 / 19

References I

Daniele Calandriello, Micha l Dereziński, and Michal Valko.

Sampling from a k-dpp without looking at all items.

In Conference on Neural Information Processing Systems, 2020.

Micha l Dereziński, Burak Bartan, Mert Pilanci, and Michael W Mahoney.

Debiasing distributed second order optimization with surrogate sketching and scaled

regularization.

In Conference on Neural Information Processing Systems, 2020.

Micha l Dereziński, Zhenyu Liao, Edgar Dobriban, and Michael W Mahoney.

Sparse sketches with small inversion bias.

arXiv preprint arXiv:2011.10695, 2020.

Micha l Dereziński and Michael W Mahoney.

Distributed estimation of the inverse hessian by determinantal averaging.

In H. Wallach, H. Larochelle, A. Beygelzimer, F. d Alché-Buc, E. Fox, and R. Garnett,

editors, Advances in Neural Information Processing Systems 32, pages 11401–11411.

Curran Associates, Inc., 2019.

Micha l Dereziński and Michael W Mahoney.

Determinantal point processes in randomized numerical linear algebra.

Notices of the American Mathematical Society, 68(1):34–45, 2021.

17 / 19

References II

Micha l Dereziński, Dhruv Mahajan, S. Sathiya Keerthi, S. V. N. Vishwanathan, and

Markus Weimer.

Batch-expansion training: An efficient optimization framework.

In Amos Storkey and Fernando Perez-Cruz, editors, Proceedings of the Twenty-First

International Conference on Artificial Intelligence and Statistics, volume 84 of

Proceedings of Machine Learning Research, pages 736–744, Playa Blanca, Lanzarote,

Canary Islands, 09–11 Apr 2018.

Chih-Hao Fang, Sudhir B Kylasa, Fred Roosta, Michael W. Mahoney, and Ananth

Grama.

Newton-ADMM: A Distributed GPU-Accelerated Optimizer for Multiclass Classification

Problems.

arXiv e-prints, page arXiv:1807.07132, Jul 2018.

Vipul Gupta, Swanand Kadhe, Thomas Courtade, Michael W. Mahoney, and Kannan

Ramchandran.

OverSketched Newton: Fast Convex Optimization for Serverless Systems.

arXiv e-prints, page arXiv:1903.08857, Mar 2019.

Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai

Rothauge, Michael W. Mahoney, and Joseph Gonzalez.

On the Computational Inefficiency of Large Batch Sizes for Stochastic Gradient Descent.

arXiv e-prints, page arXiv:1811.12941, Nov 2018.

18 / 19

References III

Sudhir B. Kylasa, Farbod Roosta-Khorasani, Michael W. Mahoney, and Ananth Grama.

GPU Accelerated Sub-Sampled Newton’s Method.

arXiv e-prints, page arXiv:1802.09113, Feb 2018.

Alex Kulesza and Ben Taskar.

Determinantal Point Processes for Machine Learning.

Now Publishers Inc., Hanover, MA, USA, 2012.

Farbod Roosta-Khorasani and Michael W. Mahoney.

Sub-sampled newton methods.

Math. Program., 174(1–2):293–326, March 2019.

Fred Roosta, Yang Liu, Peng Xu, and Michael W. Mahoney.

Newton-MR: Newton’s Method Without Smoothness or Convexity.

arXiv e-prints, page arXiv:1810.00303, Sep 2018.

Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, and Michael W Mahoney.

GIANT: Globally improved approximate newton method for distributed optimization.

In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett,

editors, Advances in Neural Information Processing Systems 31, pages 2332–2342.

Curran Associates, Inc., 2018.

19 / 19

Outline

ADAHESSIAN: An Adaptive Second Order Optimizer for ML

Overcoming Inversion Bias in Distributed Newton’s Method

Some Extras: Recent Stuff in the Pipeline

Conclusions

“Physics-informed” ML: Be careful!

First PINN paper in top ML venue — opportunities . . . and caveats.

Second derivatives: Be careful!

Hessians in ML 6= Hessians in scientific computing.

RandNLA in BLAS/LAPACK . . . finally!

Including: Randomized BLAS, least-squares1, low-rank
approximation, etc., etc.
(led by Riley Murray)

1View over/under-determined LS problems i.t.o. structured “saddle point

systems” . . . opening the door to lower-level LAPACK-type optimizations for

broader class of stochastic second order optimization methods.

Outline

ADAHESSIAN: An Adaptive Second Order Optimizer for ML

Overcoming Inversion Bias in Distributed Newton’s Method

Some Extras: Recent Stuff in the Pipeline

Conclusions

Conclusions

Stochastic second order optimization:

I Theory: Builds on basic RandNLA principles, but need finer

control for algorithmic-statistical tradeooffs

I Implementations: ADAHessian (and pyHessian); and

Randomized BLAS/LAPACK

I Applications: Both scientific computing and machine learning,

but they are quite different

	ADAHESSIAN: An Adaptive Second Order Optimizer for ML
	Overcoming Inversion Bias in Distributed Newton's Method
	Some Extras: Recent Stuff in the Pipeline
	Conclusions

