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Executive Summary

« We propose ADAHESSIAN, a novel second order optimizer that achieves new

SOTA on various tasks:

o CV:Upto 5.55% better accuracy than Adam on ImageNet
o NLP: Upto 1.8 PPL better result than AdamW on PTB

o Recommendation System: Up to 0.032% better accuracy than Adagrad on Criteo

« ADAHESSIAN achieves these by:

o Low cost Hessian approximation, applicable to a wide range of NNs

o Anovel temporal and spatial smoothing scheme to reduce Hessian noise across iterations

___________________________________________________________________________________________________________________________________________________________________________



AdaHessian Motivation

« Choosing the right hyper-parameter for optimizing a NN

training has become a (very expensive) dark-art!
Problems with existing first-order solutions:
o Brute force hyper-parameter tuning

o No convergence guarantee unless taking many iterations

o Even the choice of the optimizer is a hyper-parameter!*

Task CV NLP Recommendation System

Optimizer Choice | SGD AdamW Adagrad

*BTW, not obvious if you just do popular things, e.g., ResNet50 training on ImageNet, since years of industrial scale (i.e., .
+ brute force) hyperparameter tuning and building systems for SGD-based methods mean those methods do well ... b5
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SGD Based Training
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First and Second Order Methods

General parameter update formula: _ A
W41 = W — e AWy

First Order Method Second Order Method

Awy = gt

« At the origin, the first derivative of y =4x2, y =x2, y =0.1 x2 is all the same: 0
« The second derivative give more information: 8 , 2, and 0.2 respectively



First and Second Order Methods

General parameter update formula: wWy4 1 = W — ntA”wt

—k— Gradient Descent Starting Point

Gradient Descent with Momentum

First Order Method so 88 e ————— Second Order Method

Awy = gt




First and Second Order Methods

General parameter update formula: §,, 1 = 0; — n; A6,

First Order Method Second Order Method

\ )
|

How about the middle part?

Af; = H,?gt — gt Al = Ht_lgt



Instead of using fully first or second order method, the following
formula is used: A, = Ht_kgh 0<k<I1

* For convex problem, since g;rHt_kgt > 0, Ht_kgt IS a descent
direction.

« For simple problems, computing Ht_k Is not a problem and it can
be done by an eigen-decomposition.

« However, for large scale machine learning problems (e.g., DNNSs),

forming/storing Hessian are impractical.
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Second Derivative (Hessian)
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Opening the Black Box with Second Derivative

Loss Lndscape Gradient: g € R4 Hessian: H € Rdxd
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E Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

! Z.Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018.

i Z.Yao*, A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine
i Learning, 2020.

E Code: https://github.com/amirgholami/PyHessian



Using Hessian Diagonal

1 AN
N
Forming the Hessian is infeasible: \_'\\.‘;\ z : =
S
\\I\\\ =
For ResNet50 (with 24M parameters) _\';\.:\ L
\-.\
o A
Hessian is a matrix of size 24Mx24M g = Diag(H) = . ‘:\-.‘:
AL 5N
\\.\\\.}
What if we approximate the Hessian? \\'\;’.:.\
) i\l.\.\
m = " \\.l:\
Idea: Use Hessian diagonal . o .
oy N
\-/

Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

Costas Bekas, Effrosyni Kokiopoulou, and Yousef Saad. An estimator for the diagonal of a matrix. Applied numerical mathematics, 57(11-12):1214— 1229, 2007

Z. Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018.

Z. Yao*, A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian, Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine
Learning Workshop, 2020.

Code: https://github.com/amirgholami/PyHessian 13



ADAHESSIAN algorithm is very simple and as follows:
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Different Optimizers

Table 1: Summary of the first and second moments used in dif-
ferent optimization algorithms for updating model parameters
(wey1 = wi — ymy/ve). Here B1 and (B2 are first and second
moment hyperparameters.

Optimizer my Vg

SGD [36] Brimi—1 + (1 — S1)8t 1

Adagrad [16] g Vil 8igi
Adam [21] (1-p1) 12:_%{1 Bi g \/(1—ﬂ2) Z]:_:—:ﬂlé y g
RMSProp [40] g VBt + (1 - B

ADAHESSIAN

Q-8 3¢, B g (1-B2) ¢, B D) D
1-B¢ 1-BE

' H Robbins and S Monro. A stochastic approximation method. The annals of mathematical statistics, 1951 :
i J Duchi, E Hazan, Y Singer. Adaptive subgradient methods for online learning and stochastic optimization, JMLR 2011 -
i D Kingma and J Ba. Adam: A method for stochastic optimization, ICLR 2015 :
i TTieleman and G Hinton. Lecture 6.5-RMSProp: Divide the gradient by a running average of its recent magnitude, 2012 |
' Z Yao, A Gholami, S Shen, M Mustafa, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, arXiv: 2006.00719 :

15



Is computing H ™! practical? Of course not ...

For ResNet50:

« # Parameters is 24M. |
lg| = 24M ~ 100 MB
|[H| = 24Mx24M ~ 2.4 PB

Can we:
compute H?
store H?
compute H~1?

Of course not ...

16



How can we get Diagonal without explicitly forming the Hessian?

Randomized Numerical Linear Algebra (RandNLA):
D = diag(H) = E[2 © (Hz)], 2~ Rademacher(0.5)

H Diag(H) z H 7
HEEEE -1 1 ] I RE
HOOEEN [1] [] IIII
EECEE =0 ~H © ENCEEE
HEENN 1 || 1w BE

HEEN [1] HEEREN

Diag(H) = E[z O (Hz)]
s.t. z ~ Rademacher(0.5)

L D5aR o DOROPOIOS S At 2 oD D RITEDr O 1T edond o1 a et PRI TR M eaIee o e e e 17



How can we get Diagonal without explicitly forming the Hessian?

The remaining question is how to compute /), ?

» Hessian-vector product:

g’ Og’ 0 g’
g Z: g z{gT—Z:LZ:HZ.

00 00 00 00

 Randomized numerical linear algebra (RandNLA):

D =diag(H) =E[z ® (Hz)], =z~ Rademacher(0.5)

« Getting Hessian information takes roughly 2X backprop time!

i Pearlmutter BA. Fast exact multiplication by the Hessian. Neural computation. 1994.

E Z. Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018. !

i Z.Yao", A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine

i Learning, 2020. '

E Code: https://github.com/amirgholami/PyHessian : 18
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ADAHESSIAN algorithm is very simple and as follows:

Wt41 = Wt — ntmt/vt, Without Second Order Momentum
¢ i 81 —+— With Second Order Momentum
m, — (1 — 51) 27:1 1 Zgz'
t — _ nt ) 6
1 -5 .
1— t  gt—ip p. S
Uy = ot .
1-5 g

Where D is the Hessian diagonal f(z) = 2% + 0.1z sin(z)
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Spatial Smoothing

 We also incorporate spatial averaging to smooth out the stochastic Hessian
noise across different iterations

3 x 3 Convolution

Gradient: g € RY Hessian: H € R9*d
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Variance Reduction

Incorporating momentum for both first and second order term:
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AdaHessian Algorithm

Algorithm 1: ADAHESSIAN

Require: Initial Parameter: 6

Require: Learning rate: 7

Require: Exponential decay rates: 31, (32
Require: Block size: b

Require: Hessian Power: £

Set: go = 0, Dy =0

for t =1,2,...do // Training Iterations
g; <— current step gradient

D; < current step estimated diagonal Hessian
Update m;, v; based on Eq. 10

O = 0i—1 — 77’Ut_kmt

22



Important Points for Empirical Results

« What hyper-parameters we modified in the experiments:
o Fixed learning rate

o Space averaging block size

» What hyper-parameters we did not modify in the experiments:
o Learning rate schedule
o Weight decay
o Warmup schedule
o Dropout rate

o First and second order momentum coefficients, £,/

23



Results on Image Classification

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Higher is better

Dataset Cifar10 ImageNet
ResNet20 ResNet 32 ResNet18
SGD [36] 92.08 + 0.08 93.14 +-0.10 70.03
Adam [19] 90.33 £ 0.13 91.63 = 0.10 64.53
AdamW [22] 91.97 = 0.15 92.72 £+ 0.20 67.41
ADAHESSIAN 92.13 +£0.18 93.08 £0.10 70.08

________________________________________________________________________________________________________________________________________________________________________



Results on Machine Translation

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Higher BLEU score is better

IWSLT14 WMT14

small base

SGD 28.57 £ .15 26.04
AdamW [24] 35.66 = .11 28.19

ADAHESSIAN 35.79 + .06 28.52

Model

________________________________________________________________________________________________________________________________________________________________________



Results on Language Modeling

Only learning rate and space averaging block size are tuned for ADAHESSIAN
Lower perplexity is better

Model PTB Wikitext-103
Three—-Layer Six—-Layer
SGD 5909 + 3.0 78.5
AdamW [24] 542+ 1.6 20.9
ADAHESSIAN 51.5+1.2 19.9

________________________________________________________________________________________________________________________________________________________________________



Results for SqueezeBERT on GLUE

The finetuning result for SqueezeBERT on GLUE benchmark
Higher accuracy is better

RTE MPRC STS-B SST-2 QNLI QQP MNLI-m MNLI-mm Avg.

AdamW™ [20] 71.8  89.8 89.4 920 905 894 82.9 82.3 86.01

AdamW* 79.06 90.69 90.00 91.28 90.30 89.49 82.61 81.84 86.91
ADAHESSIAN 80.14 9194 90.59 91.17 8997 89.33  82.78 82.62 87.32

i landola FN, Shaw AE, Krishna R, Keutzer KW. SqueezeBERT: What can computer vision teach NLP about efficient neural networks?. arXiv preprint arXiv:2006.11316, 2020. !
! ZYao, A Gholami, S Shen, M Mustafa, K Keutzer, MW Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, arXiv: 2006.00719, 2020. 1 27



Results on Recommendation Systems

Only learning rate and space averaging block size are tuned for ADAHESSIAN

Recommendation System

79.5 1
79.0 1
> Criteo Ad Kaggle Dataset Test Accuracy
© 78.5 -
S AdaGrad 79.135
< 7801
v Adagrad Training ADAHESSIAN 79.167
77.5 - ] Adagrad Testing
—— AdaHessian Training
77.0 - ---AdaHessian Testing
0 50000 100000 150000 200000 250000 300000

Iteration



Speed Comparison with SGD

* An important advantage is the not only AdaHessian achieves SOTA results but its per iteration

cost is comparable to SGD

« Computing Hessian diagonal at every step results in only 2x (theoretically) and 3.2x

(empirically) overhead compared to SGD

— This computation can be delayed to reduce this overhead down to 1.2x

Hessian Comp. Freq. 1 2 3 4 5
Theoretical Cost (xSGD) 2 X 1.5x 1.33x 1.25x 1.2x
ResNet20 (Cifar10) 92.13 £.08 9240+ .04 92.06+.18 9217+ .21 92.16 % .12
Measured Cost (xSGD) 2.42 % 1.71% 1.47 x 1.36x 1.28x
Measured Cost (X Adam) 2.27 X% 1.64 x 1.42% 1.32% 1.25%

________________________________________________________________________________________________________________________________________________________________________
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Robustness to Hyperparameter Tuning

Robustness to Learning Rate:
« AdaHessian still achieves acceptable performance even when scaling learning
rate by10x, while ADAM diverges after just 6x scaling.

LR Scaling 0.5 1 2 3 4 5 6 10

AdamW 3542 +.09 3566+.11 3537+.07 3518+.07 34.79+.15 1441+£1325 041+£ .32 Diverge
ADAHESSIAN 3533 £.10 35.79+.06 3521+.14 3474+.10 3419+.06 33.78+.14 3270 +.10 3248 + .83

Result on IWSLT14.

________________________________________________________________________________________________________________________________________________________________________



Robustness to Spatial Averaging (Block Size)

Attention Module Dim: 64 A Hessian
EEREERERERE 3 an...

E L 1 g

a8 F T l-._....

£ T

'-_.
Block Size: 64 s,
Block Size 1 2 4 8 16 % 4 128

ADAHESSIAN  35.67 £.10 35.66 £.07 3578+ .07 3577 +.08 35.67+.08 3579+.06 3572+ .06

35.67 = .11

Result on IWSLT14. The BLEU score of AdamW is 35.66
Choice of block size does not drastically change the
performance.

I
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Some related Work: pyHessian

PYHESSIAN
N
7 Zm'gt(“'“"") Gradient: o8 e RIVI
i=1 ow

o)
u H ol ol 0 1150- -0 [To
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min E(w) =
w ]
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Introduction

PyHessian is a pytorch library for Hessian based analysis of neural network models. The library enables computing
the following metrics:

* Top Hessian eigenvalues
* The trace of the Hessian matrix
e The full Hessian Eigenvalues Spectral Density (ESD)

Compute lots of Hessian

information for:

* Training (ADAHESSIAN)

* Quantization (HAWQ,
QBERT)

* |nference

Also for:

» Validation: loss landscape

« Validation: model robustness
« Validation: adversarial data

« Validation: test hypotheses

34



Conclusions

« We propose ADAHESSIAN, a novel second order optimizer that achieves new
SOTA on various tasks:

o CV:Upto 5.55% better accuracy than Adam on ImageNet
o NLP: Upto 1.8 PPL better result than AdamW on PTB

o Recommendation System: Up to 0.032% better accuracy than Adagrad on Criteo

« ADAHESSIAN achieves these by:

o Low cost Hessian approximation, applicable to a wide range of NNs

o Anovel temporal and spatial smoothing scheme to reduce Hessian noise across iterations

1 ZYao, A Gholami, S Shen, M Mustafa, K Keutzer, M. W. Mahoney, ADAHESSIAN: An Adaptive Second Order Optimizer for Machine Learning, arXiv: 2006.00719

\ Z.Yao*, A. Gholami*, Q. Lei, K. Keutzer, M. W. Mahoney, Hessian-based Analysis of Large Batch Training and Robustness to Adversaries, NeurlPS’18, 2018.

1 Z.Yao*, A. Gholami*, K. Keutzer, M. W. Mahoney, PyHessian: Neural Networks Through the Lens of the Hessian Spotlight at ICML’20 workshop on Beyond First-Order Optimization Methods in Machine

1 Learning, 2020.

! Code: https://github.com/amirgholami/PyHessian !
 Code: https://github.com/amirgholami/AdaHessian v 35
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Overcoming Inversion Bias in Distributed

Newton’s Method

Michael W. Mahoney

ICSI and Department of Statistics
University of California, Berkeley

Joint work with Burak Bartan, Mert Pilanci, and Michal Derezinski
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Convex optimization

Find w" = argmin £(w)
W

2/19



Why use second-order methods...

...when there is SGD?

@ Sensitive to hyper-parameters

o Limited effectiveness for large batch training
See, e.g., [DMKT18, GVY 18]

Second-order:

@ No hyper-parameter tuning

@ Supports large batch training

Recent interest in second-order methods:

e theoretical analysis [RKM19, RLXM18, WRKXM18]

e empirical (including DNNs) [GKC'19, FKR"18, KRMG18|

3/19



Newton’s method

Newton’s method

n

1 A
Lw) = 3 6(wTx)) + 5w

j=1

p=[ V%(w) |7 VL(w)
~—— N——
Hessian H gradient g

W¢ A = W} —
.\”\iﬂ t— P

W*
[ ]
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Newton’s method

Approximate Newton’s method

~ 1 A
Lw) = = 4(wxy) + 5wl

JES
p=[ VZw) ] VL(w)

Hessian estimate H gradient g
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Distributed Newton’s method

AN

Ly Ly J L,
p1 Py

Vo
N
l

Question: How to combine local Newton estimates pi, ..., Pg?

~

p

A\%

5/19



Model averaging

Standard averaging leads to biased estimates:

1
lim — Z Pt # p (q is the number of machines)

]E[ITI_I} £H™, even though E[ﬁ] = H.

6/19



General phenomenon: Inversion bias

Inversion bias: E[X '] # (E[X])_l for random X

7/19



General phenomenon: Inversion bias

Inversion bias: E[X '] # (E[X])_l for random X

Extends to inverting high-dimensional random matrices )

7/19



Inversion bias in model averaging

© Bagging .
@ Distributed optimization W= qzi:“’z — W' —E[w|]
Bias

@ Federated learning

A
| |
" \ 2\ //

%Zi Wi

N

%

)

q
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Determinantal correction

Hessian estimate: H = V%L (w)

Inversion bias: E [Itlfl} £ H!

9/19



Determinantal correction

Hessian estimate: H = V%L (w)

9/19



Determinantal correction

Hessian estimate: H = V%L (w)
Inversion bias: E [Itlfl} £ H!

E[det(H)H ']

~——— =H"!
E [det(H)]

Correction:

Two strategies of using the correction:

@ Weighted averaging instead of uniform averaging

Determinantal averaging [DM19]

@ Joint sampling instead of uniform sampling
Surrogate sketches [DBPM20]

9/19



Comparison of two strategies

Determinantal averaging

e consistent global estimate: p j> o)
m oo

o works with uniform sampling

Surrogate sketching

e unbiased local estimates: E[p¢] = p

e samples from a Determinantal Point Process (DPP)

10/ 19



Determinantal Point Processes (DPPs)

Non-i.i.d. randomized selection of a data subset S

Negative correlation: Pr(i € S |j € S) < Pr(i € S)

i.i.d. (left) versus DPP (right)

o Fast algorithms: [CDV20] (NeurIPS’20)

“Sampling from a k-DPP without looking at all items”

@ Learn more: [DM20] (Notices of the AMS)

“Determinantal point processes in randomized numerical linear algebra”

Image from [KT12]
11/19



Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ||[wyp1 — W = 5( -+ % ) - flwe — w¥|

“variance” “bias”
q - number of machines

m - data points per machine
d - number of parameters

| Method Convergence rate  Trade-offs
| Baseline \/q% + 7‘—1 Var Cost

[DM19] “Distributed estimation of the inverse Hessian by

determinantal averaging”, at NeurIPS’19.
12/19



Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ||[wyp1 — W = 5( -+ % ) - flwe — w¥|
“variance” “bias”

q - number of machines
m - data points per machine
d - number of parameters

| Method Convergence rate  Trade-offs

Baseline A /q% + 7‘—1 Var Cost

[DM19] | Determinantal averaging d

Var Bias Cost

3

[DM19] “Distributed estimation of the inverse Hessian by

determinantal averaging”, at NeurIPS’19.
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Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]
. X — ) d d *
Convergence rate:  [[wig1 — w*|| = O( o ) - flwe — w¥|
“vartance” “bias”
q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate  Trade-offs
Baseline \/% + 7‘—1 Var Cost
[DM19] | Determinantal averaging \/ZW Var Bias Cost
[DBPM20] | Surrogate sketching \/% Var  Bias Cost

[DBPM20] “Debiasing distributed second order optimization with

surrogate sketching and scaled regularization”, at NeurIPS’20.
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Correcting inversion bias in Distributed Newton

Baseline: Uniform averaging of biased estimates [WRKXM18]

Convergence rate: ||[wyp1 — W = 5( -+ % ) - flwe — w¥|

“variance” “bias”
q - number of machines

m - data points per machine
d - number of parameters

Method Convergence rate  Trade-offs
Baseline \/% + 7‘—1 Var Cost
[DM19] | Determinantal averaging \/ZW Var Bias Cost
[DBPM20] | Surrogate sketching \/% Var  Bias Cost
[DLDM20] | LESS embeddings VL o+ Var | Bias | Cost

[DLDM20] “Sparse sketches with small inversion bias”, Preprint at
arXiv:2011.10695.
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Bias-variance trade-offs in model averaging

estimation error

estimation error =

1 q
H*Zﬁi—p*
773

cpusmall dataset

\~\ -
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[ ~e ~
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Experiments: Effect of implicit regularization

Question: Should local regularizer match the global A7

Distributed Newton with 100 machines for logistic regression

(LX) = fix")/Fx™)

1072
& 10°°
= 107
;‘; 0] —— Gaussian
= 1071 v —— Uniform
—e— Surrogate sketch
1074 2
[ 5 10 15 20

iteration

(a) statlog-australian-credit

dashed lines:

regularized loss:

10! 10*
1072 o107
T 3
10-5 —— Gaussian = 107
v —— Uniform x
108 ) —— Surrogate sketch T 1078 —
", & —— Gaussian
071 5" E10-1{ —— Uniform
5 —e— Surrogate sketch -
10714 10-14 3
5 10 15 20 0 5 10 15 20
iteration iteration

(b) breast-cancer-wisc

S\H

- o

local regularizer = X -

WXJ

(c) ionosphere

(1-5)

A
+ Sl

[DBPM20] “Debiasing distributed second order optimization with

surrogate sketching and scaled regularization”, at NeurIPS’20.
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Conclusions

e Distributed Newton’s method suffers from inversion bias

@ We can correct this bias with:

o Weighted averaging instead of uniform averaging

Determinantal averaging

e Joint sampling instead of uniform sampling
Surrogate sketches

o Scaled local regularization in place of the global regularizer
N=x(1-%)

m

15/ 19
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“Physics-informed” ML: Be careful!

arXiv.org > cs > arXiv:2109.01050

Help | Advanced

Computer Science > Machine Learning

[Submitted on 2 Sep 2021]
Characterizing possible failure modes in physics-informed neural networks
Aditi S. Krishnapriyan, Amir Gholami, Shandian Zhe, Robert M. Kirby, Michael W. Mahoney

Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models. The typical approach is to
incorporate physical domain knowledge as soft constraints on an empirical loss function and use existing machine learning methodologies to train the
model. We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn
relevant physical phenomena even for simple PDEs. In particular, we analyze several distinct situations of widespread physical interest, including
learning differential equations with convection, reaction, and diffusion operators. We provide evidence that the soft regularization in PINNs, which
involves differential operators, can introduce a number of subtle problems, including making the problem ill-conditioned. Importantly, we show that
these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard
to optimize. We then describe two promising solutions to address these failure modes. The first approach is to use curriculum regularization, where the
PINN's loss term starts from a simple PDE regularization, and becomes progressively more complex as the NN gets trained. The second approach is to
pose the problem as a sequence-to-sequence learning task, rather than learning to predict the entire space-time at once. Extensive testing shows that
we can achieve up to 1-2 orders of magnitude lower error with these methods as compared to regular PINN training.

Comments: 22 pages

Subjects: Machine Learning (cs.LG); Artificial Intelligence (cs.All; Numerical Analysis (math.NA); Computational Physics (physics.comp-ph)
Journal reference: NeurlPS 2021

Cite as: arXiv:2109.01050 [cs.LG]

(or arXiv:2108.01050v1 [cs.LG] for this version)

Submission history
From: Aditi Krishnapriyan [view email]
[v1] Thu, 2 Sep 2021 16:06:45 UTC (2,501 KB)

First PINN paper in top ML venue — opportunities . . and caveats.



Second derivatives: Be careful!

Search
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[Submitted on 2 Mar 2021 (v1), last revised 17 Mar 2021 (this version, v2)]
Hessian Eigenspectra of More Realistic Nonlinear Models
Zhenyu Liao, Michael W. Mahoney

Given an optimization problem, the Hessian matrix and its eigenspectrum can be used in many ways, ranging from designing more efficient second-
order algorithms to performing model analysis and regression diagnostics. When nonlinear models and non-convex problems are considered, strong
simplifying assumptions are often made to make Hessian spectral analysis more tractable. This leads to the question of how relevant the conclusions of
such analyses are for more realistic nonlinear models. In this paper, we exploit deterministic equivalent techniques from random matrix theory to make
a \emph{precise} characterization of the Hessian engenspecua for a broad family of nonlinear medels, including models that generalize the classical
generalized linear models, without relying on streng simplifying i used previ . We show that, ing on the data properties, the
nonlinear response model, and the loss function, the Hessian can have \emph{qualitatively} dnfferent spectral behaviors: of bounded or unbounded
support, with single- or multi-bulk, and with isolated eigenvalues on the left- or right-hand side of the bulk. By focusing on such a simple but nontrivial
nonlinear model, our analysis takes a step forward to unveil the theoretical origin of many visually striking features observed in more complex machine
learning models.

Comments: Identical to v1, except for the inclusion of some additional references
Subjects:  Machine Learning (statML); Machine Learning (cs.LG); Spectral Theory (math.SP)
Citeas:  aniv:2103.01519 [statML]

(or arkiv:2103.01519v2 [statML] for this version)

Submission history

From: Zhenyu Liao [view email]
[v1] Tue, 2 Mar 2021 06:59:52 UTC (93 KB)
[v2] Wed, 17 Mar 2021 00:29:08 UTC (95 KB)

Hessians in ML # Hessians in scientific computing.
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Including: Randomized BLAS, least-squares®, low-rank
approximation, etc., etc.

systems”

(led by Riley Murray)

!View over/under-determined LS problems i.t.o. structured “saddle point
..opening the door to lower-level LAPACK-type optimizations for
broader class of stochastic second order optimization methods.
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Conclusions

Stochastic second order optimization:

» Theory: Builds on basic RandNLA principles, but need finer
control for algorithmic-statistical tradeooffs

» Implementations: ADAHessian (and pyHessian); and
Randomized BLAS/LAPACK

» Applications: Both scientific computing and machine learning,

but they are quite different
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