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Review

Divide and conquer eigensolutions for symmetric tridiagonal matrices

= + = QΛQT

I Rank-one update to symmetric eigenvalue problems [Golub, 1973], [Bunch, Nielson,
Sorenson, 1978], etc.

I Symmetric tridiagonal divide-and-conquer (DC) [since Cuppen, 1981]

I Arrow head eigenvalue problems [O’Leary, Stewart, 1990], [Arbenz, 1992], etc.

I Stability studies [Dongarra, Sorensen, 1987], [Sorensen, Tang, 1991], etc.

I Fully stable version [Gu, Eisenstat, 1995]

Costs

I O(n2) for eigenvalues, O(n3) for eigenvectors

I Possible acceleration to O(n logp n) with FMM (not done) [Gu, Eisenstat, 1995], [Demmel,
1997], [Chandrasekaran, Gu, 2004]
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Introduction

Superfast Divide and Conquer Eigensolver for rank-structured Hermitian matrix

A = QΛQ∗

Banded Block tridiagonal Dense HSS

I Stable, controllable accuracy, structured eigenmatrix Q

P
(3)

P
(2)

P
(1)

I No tridiagonal reduction needed.

I Almost linear complexity and storage (r = off-diagonal rank of A)

ξflops = O(r2n log2 n), ξstorage = O(rn log n)
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HSS Representation

Hierarchical semiseparable matrices (HSS)

A = Droot(T ), Di =
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I Rank-structured

I Nested basis

I Examples

I discretized kernel function

I Toeplitz matrix in Fourier space

I banded matrix

I schur complement of discretized matrix

I block tridiagonal matrix
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Dividing and Conquer Eigensolver

HSS matrices can be divided [Vogel, Xia, et al, SISC 2016]

= +

Dp =

(
Di − UiBiB

T
i UT

i

Dj − UjU
T
j

)
+

(
UiBi

Uj

)(
BT
i UT

i UT
j

)
≡
(
D̃i

D̃j

)
+ ZpZ

T
p

Theorem (HSS Structure preserving) [Vogel, Xia, et al, SISC 2016]

D̃i ≡ Di − UiHUT
i is HSS with generators (k → kl → · · · → k1 → i : a path in T from k to i)

Ũk = Uk , R̃k = Rk ,

B̃k = Bk − (RkRkl
· · ·Rk1

)H(RT
k1
· · ·RT

kl
RT

sib(k)),

D̃k = Dk − Uk (RkRkl
· · ·Rk1

)H(RT
k1
· · ·RT

kl
RT
k )UT

k
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Dividing and Conquer Eigensolver

Dp =

(
D̃i

D̃j

)
+ ZpZ

T
p

= +

I Solve recursively smaller problems D̃i = QiΛiQ
T
i and D̃j = QjΛjQ

T
j

Dp =

(
Qi

Qj

)[
Λ̃p +

r∑
k=1

zkz
T
k

](
QT

i

QT
j

)

I Conquer by solving diagonal-plus-rank-r update problem

Λ̃p +
r∑

k=1

zkz
T
k = QpΛpQ

T
p

I Reduce to r rank-1 update problems.
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Dividing and Conquer

Rank-1 update eigenproblem [Golub, 1973], [Bunch, Nielson, Sorenson, 1978]λ̃1

. . .

λ̃n

+ vvT = Q

λ1

. . .

λn

QT

λk ’s are roots of the secular function

f (λ) = 1 +
n∑

k=1

v2
k

λ̃k − λ
.

and eigenmatrix

Q =

(
vi sj

λ̃i − λj

)
1≤i,j≤n

.

Rough idea:

f and Q can be accelerated by the Fast Multipole method [Greengard, Rokhlin, 1987].
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Dividing Strategy

Original dividing strategy [Vogel, Xia, et al, SISC 2016]

Dp =

Di − UiBiB
T
i UT

i︸ ︷︷ ︸
Quadratic

Dj − UjU
T
j

 +

(
UiBi

Uj

)(
BT
i UT

i UT
j

)

≡
(
D̃i

D̃j

)
+ ZpZ

T
p

I HSS generators of D̃i and D̃j are updated from Di and Dj

I Straightforward but unstable

I Th quadratic terms BiB
T
i =⇒ generators of D̃i grow enormously

Proposition (Unstable dividing) [Ou, Xia, 2020]

Suppose β = supj∈T ‖Bj‖2, then the final updated generators B̃i and leaf-level diagonal blocks

D̃i satisfy

‖D̃i‖2 = O(β
n
2 ),

‖B̃i‖2 = O(β
n
4 ).

Specifically, if β � 1, D̃i and B̃i overflow.
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Stable Dividing Strategy

Stable dividing strategy [Ou, Xia, 2020]

Dp =


Di −

1

‖Bi‖2
UiBiB

T
i UT

i︸ ︷︷ ︸
Scaled quadratic

Dj − ‖Bi‖2UjU
T
j


+

(
1√
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UiBi√
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)(
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√
‖Bi‖2U

T
j

)
≡
(
D̂i

D̂j

)
+ Ẑp Ẑ

T
p

I HSS generators of D̂i and D̂j are updated from Di and Dj

I Scaled quadratic terms
Bi B

T
i

‖Bi‖2
, stable

Proposition (Stable dividing) [Ou, Xia, 2020]

The updated generator B̂i and leaf-level diagonal blocks D̂i satisfy

‖D̂i‖2 ≤ ‖Di‖2 +
n

2
β,

‖B̂i‖2 ≤
n

4
β.
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Stable Dividing Strategy

Comparisons between two dividing strategy for A =
(√
|xi − xj |

)
i,j
, xi = cos 2πi+1

2n
.
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Adaptive Dividing Strategy

Dp =

(
D̂i

D̂j

)
+ Ẑp Ẑ

T
p

= +

# rank-1 update problems = colsize(Ẑp)

Adaptivity to minimize colsize(Ẑp)

Ẑp =



(
1√
‖Bi‖2

UiBi√
‖Bi‖2Uj

)
, colsize(Bi ) ≤ rowsize(Bi )

( √
‖Bi‖2Ui
1√
‖Bi‖2

UjB
T
i

)
, colsize(Bi ) > rowsize(Bi )
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Conquering Stage

Rank-1 update eigenproblem [Golub, 1973], [Bunch, Nielson, Sorenson, 1978]λ̃1

. . .

λ̃n

+ vvT = Q

λ1

. . .

λn

QT

where v =
(
v1 · · · vn

)T
.

λk ’s are roots of the secular function

f (λ) = 1 +
n∑

k=1

v2
k

λ̃k − λ
,

and eigenvector

qk =
(

v1
λ̃1−λk

· · · vn
λ̃n−λk

)T
.
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Stable and Efficient Conquering Strategy

Classical conquering strategy [LAPACK, 1999], [Gu, Eisenstat, 1995], [Li, 1993]

f (x) ≡ 1 +
n∑

i=1

v2
i

di − x
= 0

x = d1 x = d2 x = d3 x = d4

λ1 λ2 λ3 λ4

I Solve each root λk ∈ (dk , dk+1) by modified Newton’s method.

I To avoid cancellation,

1. Separate positive and negative terms

f (x) = 1 +
k∑

i=1

v2
i

di − x︸ ︷︷ ︸
<0

+
n∑

i=k+1

v2
i

di − x︸ ︷︷ ︸
>0

≡ 1 + ψk (x) + φk (x),

2. Shift the origin to dk by letting δik = di − dk , and solve the shifted equation

0 = gk (η) = f (η + dk ) = 1 +
k∑

i=1

v2
i

δik − η
+

n∑
i=k+1

v2
i

δik − η
.

Shifting is crucial for stability and accuracy (e.g., clustered eigenvalues).
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Stable and Efficient Conquering Strategy

Classical conquering strategy [LAPACK, 1999], [Gu, Eisenstat, 1995], [Li, 1993]

f (x) ≡ 1 +
n∑

i=1

v2
i

di − x
= 0

x = d1 x = d2 x = d3 x = d4

λ1 λ2 λ3 λ4

I For stability

3. Compute Lowner’s formula

v̂i =

√√√√ ∏
j (λj − di )∏
j 6=i (dj − di )

,

and (stable) dense eigenvector

q̂k =
(

v̂1
λ̃1−λk

· · · v̂n
λ̃n−λk

)T
.

I About O(n) to find one root λk , hence roughly O(n2) to find all pairs {(λk , q̂k )}nk=1
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Stable and Efficient Conquering Strategy

New stable and efficient conquering strategy

f (x) ≡ 1 +
n∑

i=1

v2
i

di − x
= 0

I Deflation with user-supplied accuracy τ

I Assemble f as mat-vec with C =
(

1
di−xk

)
f (~x) = ~1 + C~v

I Solve all roots {λk}nk=1 simultaneously with FMM acceleration

I Our previous work [Vogel, Xia, SISC 2016] uses direct FMM acceleration but lack of stability.
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Stable and Efficient Conquering Strategy

f (~x) = ~1 + C~v = 0

I For stability

1. lower and upper triangular split (corresponding to positive-negative split)

f (~x) = ~1 + C~v = ~1 + Clower~v + Cupper~v ,

= +

Triangular FMM
accelerate−→ triangular matrix-vector products Clower~v ,Cupper~v

2. Shifting δik = di − dk is NOT directly applicable in triangular FMM.

e.g. consider the shifted matrix Cshift =
(

1
δik−(λk−dk )

)
possible remedy:

no shift in FMM, but store extra dense eigenvectors (not efficient).
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Stable and Efficient Conquering Strategy

I For stability

3. To incorporate shifting into triangular FMM:

I near-field: shift locally δik = di − dk

I far-field: compute as usual

Importance of near-field local shifting

I Stability: avoid division by zero, ensure eigenmatrix orthogonality

I Efficiency: speed up convergence of root-finding

n 4, 096 8, 192 16, 384 32, 768 65, 536

With local shifting 98.97% 99.25% 99.09% 99.11% 99.16%
Without local shifting 30.9% 34.8% 35.0% 39.9% 53.7%

Eigenvalues converged within 5 iterations.
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Stable and Efficient Conquering Strategy

I For stability

4. Lowner’s formula with FMM

log v̂i =
1

2

∑
k

log |λk − di | −
∑
k 6=i

|dk − di |



5. Normalized eigenvector with FMM

s−1
k =

∑
i

v̂2
i

(di − λk )2

6. Cauchy-like structured eigenmatrix

Q =

(
v̂i sk

di − λk

)
.

I Roughly O(n) to find all roots {λk}nk=1.
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Stable and Efficient Conquering Strategy

Conquer stage

Classical

I Solve each root λk separately

I Separate positive and negative terms

f (x) = 1 + ψk (x) + φk (x)

I Evaluate f (x) directly

I Global shifting δik = di − dk for 1 ≤ i ≤ n

I Lowner’s formula

I Dense eigenmatrix

Q =

(
v̂i sk

di − λk

)
=

(
v̂i sk

δik − ηk

)

I O(n2) operations + O(n2) storage

New

I Solve all roots {λk} simultaneously

I Split lower and upper triangular parts

f (~x) = ~1 + Clower~v + Cupper~v

I Evaluate f (~x) with triangular FMM

I Local shifting δik = di − dk in near field

I Lowner’s formula with FMM

I Cauchy-like structured eigenmatrix

Q =

(
v̂i sk

di − λk

)

I About O(n) operations + O(n) storage
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Structured Eigenmatrix

P (3) P (2) P (1)

Q1

Q2

Q4

Q5

Q8

Q9

Q11

Q12

Q3

Q6

Q10

Q13

Q7

Q14

Q15

Q15

Q6

Q4 Q5Q1 Q2

Q3

Q7 Q14

Q10 Q13

Q11 Q12Q8 Q9

P (1)

P (2)

P (3)

I Qi =

{
dense, leaf node,∏r

l=1 Cauchy-like, non-leaf node,

I P(l) = permutation matrices.

I Interlacing product of HSS and permutaion matrices

Q = Q(L)
0∏

l=L−1

(
P(l)Q(l)

)
,

where Q(l) = diag(Qi )lvl(i)=l is HSS.
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Performance

Performance compared to MATLAB’s eig

1 Tridiagonal matrix

I Breakeven point ≈ 4096

I At n = 32764, 6x faster and 6% memory

2 Banded matrix with corner points

I At n = 32764, 11x faster and 7% memory

3 Prolate Toeplitz matrix

I Off-diagonal rank r = O(log n)

I Intensive deflations happen

I At n = 32764, 136x faster and 6% memory

Memory efficient, applicable to much larger n.
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Numerical Experiments

Dense kernel matrix A =
(√
|xi − xj |

)
i,j
, xi = cos 2πi+1

2n .
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n 8192 16384 32768 65536

γ 8.0e-15 4.7e-15 3.3e-15 1.9e-15

e 2.4e-11 2.0e-11 1.1e-11 N/A

θ 3.2e-11 1.5e-11 7.9e-12 4.4e-12

I γ = max
‖QT qi−ei‖

n
, e =

‖Λ−Λtrue‖
n‖Λtrue‖

I θ =
‖AQ−ΛQ‖

n‖A‖
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Numerical Experiments

5-banded matrix with corner points, tolerance τ = 10−10
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Numerical Experiments
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I γ = max
‖QT qi−ei‖

n
, e =

‖Λ−Λtrue‖
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I θ =
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SuperDC Package

I https://www.math.purdue.edu/~xiaj/
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SuperDC Package

I https://github.com/fastsolvers/SuperDC
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SuperDC Package

Currently support:

I HSS matrix

I Banded matrix

I Block tridiagonal matrix

Ongoing future work:

I SVD decomposition

I Generalized eigenvalue solution

I General graph sparse eigenvalue solution

Applications:

I Matrix functions computations

I Separable PDEs solution
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