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OVERVIEW



Problem formulation

Our goal is to solve

A︸︷︷︸
n×d

x︸︷︷︸
d

= b︸︷︷︸
n

, (1)

for which we assume that at least one solution exists.

In particular, we are interested in randomized solvers, which
recast the linear systems problem into a statistical estimation
problem and then solve the estimation problem.
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Two classes of randomized solvers

1. Random SketchingMethods. Thesemethods use a matrix,M,
with (much) fewer rows than A and solve the problem

min
x

∥(MA)x− (Mb)∥22, (2)

whereM is a specifically structured randommatrix, which we call
a random sketching matrix.
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Two classes of randomized solvers

2. Base Random Iteration. Thesemethods use a random vectors,
{wk : k+ 1 ∈ N} and perform the iteration

xk+1 = xk + γA′wk [(w′
kb− (w′

kA)xk] , (3)

where γ > 0 is some scalar.
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Why randomized solvers?

Random sketching methods have the lowest computational
complexities for finding an ϵ-accurate solution (in residual) with
high probability.

Base random iterations are cheap-per-iteration and converge
linearly in the number of iterations for appropriately selected
{wk}.

Even with high-probability, we would think that the best solution
then is the random sketching approach as it is the fastest method
available.
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Challenges with Random Sketching

The number of rows ofM depends on constants that are
unknown and problem-specific, and is proportional to the
reciprocal of ϵ.

Therefore,MA, which can be cheap to compute (ifM is sparse),
might still be too expensive to construct and store!
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TO SUMMARIZE
Random sketching has the best computational

complexity, but we do not know how to choose the
size ofM and it is nontrivial to storeMA.



OUR CONTRIBUTION



Overview &Consequences

We reformulate random sketching to implicitly constructMA and
simultaneously solve the projected system (i.e.,MAx = Mb).

We do not need to decide on the size ofM apriori. We can let the
size ofM grow implicitly, until, say, some stopping criteria is
reached or the system is solved.

Additionally, we do not need to create and store thematrixMA.
We implicitly work with this matrix without constructing it.
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BOTTOM LINE
Owing to our reformulation, we are able to move
towards the practical use of random sketching

methods to solve actual linear systems.



OUR PROCEDURE



Step 1: Streaming rows ofM

Letwk ∈ Rn denote the kth row of a sketching matrixM. Our first
requirement is to generatewk on the fly.

Example: Gaussian Sketch. M has independent, identically
distributed standard Gaussian entries. Thenwk is simply an
n-dimensional standard Gaussian vector, and each {wj} are
independent.
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Step 2: Iterative Solver

Recalling that {wk} are the rows of our sketching matrixM, we
nowwork through the iteration

xk+1 =

{
xk + SkA′wk

w′
k(b−Axk)

w′
kASkA′wk

SkA′wk ̸= 0

xk otherwise,
(4)

and

Sk+1 =

{
Sk −

SkA′wkw′
kASk

w′
kASkA′wk

SkA′wk ̸= 0

Sk otherwise,
(5)

where S0 = Id and x0 is arbitrary.
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Step 2: Iterative Solver

Note, {Sk} are orthogonal projections onto the space
perpendicular to the rows ofMA that have already been
observed.

In other words,Rl := span[A′w0, . . . ,A′wl−1] then Sl is an
orthogonal projection ontoR⊥

l .

Therefore, as soon as we see themaximal possible linearly
independent rows ofMA, then wewill have solved the system to
the highest accuracy possible allowed byM and A.
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THE CHALLENGE
How dowe characterize this maximal set when the
rows ofM are generated on the fly and they can have
an arbitrary (independent, random permutation,
adaptive, dependent) structure to previously

observed rows ofM?



THEORY



Subspace Characterizations
Letw ∈ Rn be an arbitrary random variable. Define

N (w) = span
[
z ∈ Rd : P [z′A′w = 0] = 1

]
(6)

and
R(w) = N (w)⊥. (7)

Lemma
R(w) is the smallest subspace ofRd such that P [A′w ∈ R(w)] = 1.
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Subspace Characterizations

Message: For an arbitrary random variablew

-R(w) characterizes the row space ofw′A

-N (w) characterizes the null space ofw′A

-V(w) characterizes the deficiency ofw′A compared to A.
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Iterations toMaximal Set

Now for an arbitrary random variablew, letR(w) andN (w) be
defined as before. For (a not necessarily related) set of random
variables {wk}, define

T = min{k ≥ 0 : span [A′w0, . . . ,A′wk] ⊃ R(w)}. (8)

Again, we havenot imposed any relationship between
w,w0,w1, . . .. Therefore, T is quite generally defined. (This is
useful when we consider parallel implementations.)
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Convergence

Theorem
Letw be a random variable, and let {wk} be random variables such
that P [A′wl ∈ R(w)] = 1 for all l ≥ 0. Define T as above. On the
event {T < ∞},
- For any s ≥ T+ 1, St+1 = Ss and xT+1 = xs.
- If Ax = b admits a solution x∗ (not necessarily unique), then

xT+1 = PN (w)x0 + PR(w)x∗. (9)
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Dowe solve the system?

Corollary

Under the settings of the preceding theorem, on the event
{T < ∞}, AxT+1 = b if and only if PV(w)x0 = PV(w)x∗.

(1)When is T < ∞?

(2)Whenwill PV(w)(x∗ − x0) = 0?

Basically, when is this going to actually work?
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When is this going to work?

Both of these questions will depend on how you choosew, and
how you designw0,w1, . . . for your particular system. This
should depend on the linear system's structure and the
hardware environment.

We have simply stated a very general theory of convergence for
suchmethods, and supply specific examples in the paper.

25



When is this going to work?

Both of these questions will depend on how you choosew, and
how you designw0,w1, . . . for your particular system. This
should depend on the linear system's structure and the
hardware environment.

We have simply stated a very general theory of convergence for
suchmethods, and supply specific examples in the paper.

25



SUMMARY
We restatedmatrix sketching as a random

orthogonalization procedure and characterized
the convergence for arbitrary sampling

methodologies. This allows us to implicitly and
incrementally generate and growMAwithout

storing it explicitly.
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