Low Variance Sketched Finite Elements for Elliptic Equations

Nick Polydorides, Robert Lung

School of Engineering University of Edinburgh

Conference on Fast Direct Solvers

THE UNIVERSITY of EDINBURGH

Nick Polydorides (UoEdinburgh)

Sketched finite element solvers

Purdue, October 2021 1 / 27

Table of Contents

Introduction

- Projection
- Sketching based on leverage scores

Control variates

- Correcting the sketch
- Correcting the logarithm of the sketch

3 Numerical results

3 > 4 3

Motivation

• Paradigm: We consider the elliptic boundary value problem

$$\nabla \cdot p \nabla u = f \quad \text{in } \Omega,$$

$$\alpha u + \beta p \nabla u \cdot \hat{n} = g \quad \text{on } \partial \Omega,$$

on a simply connected domain $\Omega \subset \mathbb{R}^d$, $d = \{2, 3\}$ with smooth boundary $\partial \Omega$ where the unit normal is \hat{n} and α , β , f and g are chosen such that u is unique.

- **Applications**: Engineering simulation, uncertainty propagation and statistical inverse problems.
- Focus: Computing a numerical approximation of u(p) for many parameter fields p (diagonal tensors).

・ロト ・ 同ト ・ ヨト ・ ヨト

An example in electrostatics: Neumann problem

Left: a discrete profile of p on a disk with 9k nodes and 28k elements. Right: a numerical solution u(p) with $f = \alpha = 0$, $\beta = 1$ and $\int_{\partial\Omega} g ds = 0$ conditions. 3D grids can have $> 10^6$ nodes.

Nick Polydorides (UoEdinburgh)

Galerkin finite elements

In Galerkin FEM with linear basis the BVP yields a linear system

$$Au = b$$
,

with

$$A := (P^{\frac{1}{2}}D)^{T}(P^{\frac{1}{2}}D)$$

where $P \in \mathbb{R}^{N \times N}$ is a positive diagonal, and $D \in \mathbb{R}^{N \times n}$ a tall sparse matrix with *i*-th row $D_{(i)}$ and N > n.

- The elements of *P* are the discretised model parameters of the PDE.
- A is $n \times n$ real, sparse, symmetric, positive definite.
- We consider *n* to be very large.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Projected (again) FEM equations: POD

• Given P we seek to approximate the high-dimensional solution u_{opt} of

Au = b,

with $u_{reg} \in \mathbb{S}$ that solves the projected equation

 $\Pi A u = \Pi b$

where $\Pi : \mathbb{R}^n \to \mathbb{S}$ is the projection onto

 $\mathbb{S} := \{\Psi r \mid r \in \mathbb{R}^s\}$

and $\Psi^T \Psi = I$ and $s \ll n$.

Assumptions:

• Choice of basis: $u_{opt} \approx \Pi u_{opt} = \Psi \Psi^T u_{opt}$,

• Existence of u_{reg} : $I - \Pi(I - A)$ is invertible $\iff A$ is invertible for Ψ ON.

Projection

Projected FEM equations

• Substituting $u_{\rm reg} = \Psi r_{\rm reg}$ into the projected equation yields an $s \times s$ system

$$\mathbf{G} \mathbf{r} = \mathbf{\Psi}^{\mathsf{T}} \mathbf{b},$$

where

$$G := \Psi^{\mathsf{T}} A \Psi = \Psi^{\mathsf{T}} (P^{\frac{1}{2}} D)^{\mathsf{T}} (P^{\frac{1}{2}} D) \Psi = (P^{\frac{1}{2}} X)^{\mathsf{T}} (P^{\frac{1}{2}} X)$$

and $X \in \mathbb{R}^{N \times s}$ tall having *i*-th row $X_{(i)} := D_{(i)} \Psi$ and rank $(X) = s$.

 The special case P = I corresponds to the homogeneous PDE and a projected system

$$Q r = \Psi^T b_s$$

and note that G and Q are similar

$$G = \sum_{i=1}^{N} p_i Q_i$$
, while $Q := \sum_{i=1}^{N} Q_i$, with $Q_i := X_{(i)}^T X_{(i)}$.

Nick Polydorides (UoEdinburgh)

Sketching the projected equations

• The plan is to estimate $\hat{G} = (SP^{\frac{1}{2}}X)^T (SP^{\frac{1}{2}}X)$ from $c \ll N$ iid samples $\{i_1, \ldots, i_c\} \in \{1, \ldots, N\}$ using a suitable sketching matrix S, then

$$\hat{G}\hat{r} = \Psi^{T}b \quad \longrightarrow \quad \hat{u}_{\mathsf{reg}} = \Psi\hat{G}^{-1}\Psi^{T}b$$

• The sketch \hat{G} must be invertible with very high probability:

$$\|\hat{G}^{-1}G - I\| \to \min$$

- The sketch \hat{G} should have low-variance, better than MC.
- Sketching linear equations involving the Laplacian matrix of a graph. (Drineas & Mahoney, 2010)

Sketching invertible matrices

• Consider first $Q = X^T X$ with $u_{reg} = \Psi Q^{-1} \Psi^T b$, $\hat{u}_{reg} = \Psi \hat{Q}^{-1} \Psi^T b$ and $X = U_X \Sigma_X V_X^T$. The sketching error is bounded by

$$\|u_{\mathsf{reg}} - \hat{u}_{\mathsf{reg}}\| \le \|\hat{Q}^{-1}Q - I\| = \|\Sigma_X^{-1}(U_X^T S^T S U_X)^{-1} \Sigma_X - I\|,$$

conditioned on $\hat{Q} = (SX)^T SX$ being invertible.

- How do we choose *S* ?
- We argue S must be such that $U_X^T S^T S U_X \approx I$ in spectral norm, which for $||U_X^T S^T S U_X I|| < \epsilon < 1$ guarantees

$$1-\epsilon \leq \frac{\|U_X^T S^T S U_X - I\|}{\|(U_X^T S^T S U_X)^{-1} - I\|} \leq 1+\epsilon.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Leverage score sampling without replacement

- $\hat{Q}^{-1} \rightarrow \|\hat{u}_{reg} u_{reg}\|$ bounded $\rightarrow U_X^T S^T S U_X \approx I$ in spectral norm \rightarrow design sketch S.
- Let $\ell_i(X) = ||U_{X(i)}||^2$ be the leverage score of $X_{(i)}$ and ξ a distribution with element

$$\xi_i = \ell_i(X)/s > 0, \quad i = 1, \dots, N,$$

then sampling each row of X independently with probability

$$\eta_i = \min\{1, c'\xi_i\}$$

where c' is an upper bound on the sample size, then by (Tropp, 2015)

$$\mathbb{P}(\|U_X^{\mathsf{T}}S^{\mathsf{T}}SU_X - I\| \ge \epsilon) \le 2s \exp\left(-\frac{3c'\epsilon^2}{6s + 2s\epsilon}\right), \quad \forall \epsilon > 0.$$

10/27

Approximate leverage scores

- Sampling based on $\ell(X)$ yields virtually always an invertible \hat{Q} . We are however interested in $\hat{G} = (SP^{\frac{1}{2}}X)^T (SP^{\frac{1}{2}}X)$ not $\hat{Q} = (SX)^T SX$.
- The desirable invertibility is preserved even when the rows of X are re-weighted by positive scalars through P^{1/2}.
- Proposition: Let S be a sketching sparse diagonal matrix with rows

$$S_{(i)} = rac{\gamma_i}{\sqrt{\eta_i}} e_i^T, \quad i = 1, \dots, N,$$

where e_i the *i*-th column of *I*, and γ_i is a Bernoulli variable with $\mathbb{P}(\gamma_i = 1) = \eta_i$ then

$$\mathbb{P}(\hat{G}^{-1} \text{ exists}) = \mathbb{P}(\hat{Q}^{-1} \text{ exists}) \ge 1 - 2s \exp\left(-\frac{3c}{8s}\right).$$

Nick Polydorides (UoEdinburgh)

Approximate leverage scores - invertibility guarantees

- Key idea: To sketch G based on the leverage scores of X which can be pre-computed offline.
- We can show that $\hat{G} \succ 0$ when $\hat{Q} \succ 0$ by exploiting the commutative property of diagonal matrices

$$\hat{Q} \succ 0 \Longleftrightarrow U_X^T S^T S U_X \succ 0$$

• With $P \succ 0$ and rank $(X) = s \implies U_X^T S^T PSU_X \succ 0$ since

 $\hat{G} = X^T P^{\frac{1}{2}} S^T S P^{\frac{1}{2}} X = X^T S^T P S X = V_X \Sigma_X (U_X^T S^T P S U_X) \Sigma_X V_X^T$

• Rescaling the rows of X by some positive values $P^{\frac{1}{2}}$ preserves the invertibility iff $U_X^T S^T S U_X \succ 0$.

Nick Polydorides (UoEdinburgh)

12/27

Controlling complexity

- To get $c \approx s \log s + m$ samples we sample without replacement using $\eta_i = \min\{1, c'\xi_i\}$ where c' is an upper bound on samples.
- For a given c' the invertibility probability bound depends on the ratio c/s, where c is the actual number of samples.
- For a target error ϵ in $\mathbb{P}(||U_X^T S^T S U_X I|| \ge \epsilon)$ the choice of c' should be made independently of the high dimension N and around $\mathcal{O}(\epsilon^{-2} s \log s)$.
- Alternatively we may fix the expected number of sample $c_e = \sum_{i=1}^{N} \eta_i$ and compute the corresponding c' by finding the root of the monotonic

$$c' = \arg\left\{c_e - \sum_{j=1}^{N} \min\left\{1, c'\xi_j\right\}\right\} = 0.$$

Remarks on leverages

- Sampling O(s log s) ≪ N rows of (P^{1/2}X) the probability of invertibility failure is infinitesimally small.
- These remarks are consistent to the results in (Cohen et al., 2015) describing the change in leverage scores & matrix coherence after re-weighting a single row.
- Invertibility breaks down if the elements of $P^{\frac{1}{2}}$ vary wildly. This causes $A = (P^{\frac{1}{2}}D)^T (P^{\frac{1}{2}}D)$ to be ill-conditioned, u_{opt} unstable.
- Using the leverage scores suited for Q to sketch G, invertibility is preserved at the cost of higher variance.
- Estimating the leverage scores on-the-fly when solving over-determined LS problems, e.g. (Drineas et al., 2012).

Nick Polydorides (UoEdinburgh)

Sketched finite element solvers

Table of Contents

Introduction

- Projection
- Sketching based on leverage scores

2 Control variates

- Correcting the sketch
- Correcting the logarithm of the sketch

Numerical results

(B)

Sketching G with control variate Q

- The elements of $\hat{G} = (SP^{\frac{1}{2}}X)^T (SP^{\frac{1}{2}}X)$ and $\hat{Q} = (SX)^T (SX)$ are positively correlated.
- Variance is similarly distributed between \hat{G}_{ij} and \hat{Q}_{ij} .
- Since Q does not depend on P we can compute it a priori, and subsequently sketch it along with G.
- Compute a new estimator with lower variance after applying an element-wise correction to the sketched \hat{G} as

$$\tilde{G} = \hat{G} - W \circ (Q - \hat{Q}),$$

where \circ denotes Shur product, and W is $s \times s$ symmetric

$$W_{ij} := rg \min {\sf Var}(ilde{G}_{ij}) = rac{{\sf Cov}(\hat{G}_{ij},\hat{Q}_{ij})}{{\sf Var}(\hat{Q}_{ij})}.$$

Control variates

Considering the control variates estimator

$$ilde{G} = \hat{G} - W \circ (Q - \hat{Q}),$$

notice that although $\hat{G} \succ 0$ with very high-probability, \tilde{G} is indefinite and thus \tilde{G}^{-1} may not exist.

• To preserve invertibility and reduce variance we may correct the matrix logarithm of \hat{G} instead

$$\widetilde{\log G} = \log \hat{G} - W \circ (\log Q - \log \hat{Q}).$$

• Rational: Compute an estimator whose expectation is log G and then take its matrix exponential to get a positive definite estimator of G.

Logarithmic control variates

• The log control variates estimator

$$\widetilde{\log G} = \log \hat{G} - W \circ (\log Q - \log \hat{Q}).$$

has two important shortcomings:

- Bias($\log G$) \neq 0, and it is not computationally tractable.
- The variances and covariances needed for W_{ij} are only available for sample batches, i.e. log Q_i = log(X^T_(i)X_(i)) is not well defined.
- To rectify this we propose to work with a finite expansion of the Neumann series for the matrix log,

$$\log(M) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (M-I)^k \approx (M-I) - \frac{1}{2} (M-I)^2 := \mathcal{F}(M)$$

Preconditioning

 \bullet To ensure that the transform ${\mathcal F}$ converges to the log fast we sketch instead

$$\mathcal{F}(C_0^T Q C_0)$$
, and $\mathcal{F}(C^T G C)$,

for some choices of invertible preconditioners $C_0, \ C \in \mathbb{R}^{s \times s}$ such that

$$C_0^T Q C_0 \approx I$$
 and $C^T G C \approx I$.

• This yields an estimator

$$\widetilde{\log(C^{T}GC)} = \left(\mathcal{F}(C^{T}\hat{G}C) - B_{1}\right) - W \circ \left(\mathcal{F}(C_{0}^{T}\hat{Q}C_{0}) - B_{2}\right)$$

for some bias correction matrices B_1 and B_2 and thus arriving at the sought

$$\widetilde{G}^{-1} = C \exp\left(\log(\widetilde{C^{T}GC})\right) C^{T}$$

Nick Polydorides (UoEdinburgh)

19/27

A two-sample estimator

- The optimal choice of preconditioners C₀ and C requires knowledge of Q and G.
- Q is known a priori but G is not as it depends on P.
- A way around this is to utilise two independent samples based on the same Bernoulli probabilities.
- Use the first sample to obtain a sketched approximation of G in order to get C and C₀ (involves one SVD of an s × s matrix).
- Use the second sample to estimate \$\mathcal{F}(C_0^T \hat{Q} C_0)\$, \$\mathcal{F}(C^T \hat{G} C)\$ and compute weights

$$W_{ij} = \frac{\operatorname{Cov}\left(\mathcal{F}(C^{T}\hat{G}C)_{ij}, \mathcal{F}(C_{0}^{T}\hat{Q}C_{0})_{ij}\right)}{\operatorname{Var}\left(\mathcal{F}(C_{0}^{T}\hat{Q}C_{0})_{ij}\right), \quad \text{for } i \in \mathbb{R}, \quad i \in \mathbb{R},$$

20 / 27

Further implementation details

- The choice of projection basis Ψ (in $X = D\Psi$) requires solving a large-scale eigenvalue problem off-line, or using a snapshots-derived ON basis.
- The low-dimensional bias correction matrices $B_1(\eta, X, P)$ and $B_2(\eta, X)$ are needed. B_2 can be computed off-line but B_1 must be approximated.
- Sketching $C_0 Q C_0$ and $C^T G C$ is equivalent to sampling the rows of two tall matrices with ON columns. This is not the case in sampling directly Q and G.

イロト 不得 トイラト イラト 二日

Table of Contents

Introduction

- Projection
- Sketching based on leverage scores

2 Control variates

- Correcting the sketch
- Correcting the logarithm of the sketch

Numerical results

A B A A B A

< 🗗 🕨

Tests: 2D toy problem

Two dimensional circular grid with n = 8830 and N = 52224.

5	c/N	$\frac{\ \hat{u}_{\text{reg}} - u_{\text{reg}}\ }{\ u_{\text{reg}}\ }$	$\frac{\ \tilde{u}_{\text{reg}} - u_{\text{reg}}\ }{\ u_{\text{reg}}\ }$	$\frac{\ \hat{u}_{\text{reg}} - u_{\text{opt}}\ }{\ u_{\text{opt}}\ }$	$\frac{\ \tilde{u}_{\rm reg} - u_{\rm opt}\ }{\ u_{\rm opt}\ }$
100	0.125	0.0503	0.0040	0.0546	0.0218
500	0.166	0.0675	0.0037	0.0675	0.0046

where

$$\hat{u}_{\mathsf{reg}} = \hat{G}^{-1} \Psi^{\mathsf{T}} b, \quad \tilde{u}_{\mathsf{reg}} = \tilde{G}^{-1} \Psi^{\mathsf{T}} b, \quad u_{\mathsf{reg}} = G^{-1} \Psi^{\mathsf{T}} b, \quad u_{\mathsf{opt}} = A^{-1} b$$

- Error figures are based on averages of 100 solves for the same *b*. The 100 *P* profiles where sampled from a mixture of Gaussians.
- Note the errors in the last two columns are inclusive of the subspace approximation error.

Nick Polydorides (UoEdinburgh)

2D sketched solution and error

Left: a sketched solution and right: the log profile of the relative error. Solution is with s = 500, c/N = 0.166.

Nick Polydorides (UoEdinburgh)

Sketched finite element solvers

Purdue, October 2021 24 / 27

Tests: 3D problem

Three dimensional spherical mesh with n = 315743 and N = 5066607.

S	c/N	$\frac{\ \hat{u}_{\text{reg}} - u_{\text{reg}}\ }{\ u_{\text{reg}}\ }$	$\frac{\ \tilde{u}_{\text{reg}} - u_{\text{reg}}\ }{\ u_{\text{reg}}\ }$	$\frac{\ \hat{u}_{\rm reg} - u_{\rm opt}\ }{\ u_{\rm opt}\ }$	$\frac{\ \tilde{u}_{\rm reg} - u_{\rm opt}\ }{\ u_{\rm opt}\ }$
50	0.020	0.0193	0.0024	0.0629	0.0595
150	0.020	0.0249	0.0036	0.0383	0.0298
150	0.100	0.0102	0.0015	0.0313	0.0297

where

$$\hat{u}_{\text{reg}} = \hat{G}^{-1} \Psi^{\mathsf{T}} b, \quad \tilde{u}_{\text{reg}} = \tilde{G}^{-1} \Psi^{\mathsf{T}} b, \quad u_{\text{reg}} = G^{-1} \Psi^{\mathsf{T}} b, \quad u_{\text{opt}} = A^{-1} b$$

- Averages of 100 solves with same right hand side b. The 100 P profiles where sampled from a lognormal random field with a smooth Whittle-Matérn covariance function.
- Note the errors in the last two columns are inclusive of the subspace approximation error.

Nick Polydorides (UoEdinburgh)

Conclusions

- Our approach decouples invertibility and accuracy of the sketched projected matrix estimator.
- Empirical results show the CV estimator suppresses sketching error by an order of magnitude.
- Low variance pays off when the subspace approximation error is small.
- Is it more efficient than estimating quickly the leverage scores?
- Further accuracy improvements via few iterations of a 'smoother' Jacobi iterative method.

26 / 27

References

- P. Drineas and M. W. Mahoney, Effective Resistances, Statistical Leverage, and Applications to Linear Equation Solving, ArXiv, (2010).
- P. Drineas, M. Magdon-Ismail, M. W. Mahoney and D. P. Woodruff, Fast Approximation of Matrix Coherence and Statistical Leverage, Jour. Mach. Learn. Res. (2012), 13.
- J. A. Tropp, User-friendly tail bounds for sums of random matrices, Found. Comput. Math (2012), 12.
- I. C. F. Ipsen and T. Wentworth, The effect of coherence on sampling from matrices with orthonormal columns, and preconditioned LS problems, SIAM J. Matrix Anal. Appl., (2014), 35(4).
- M. B. Cohen, Y. T. Lee, C. Musco, Ch. Musco, R. Peng and A. Sidford, Uniform sampling for matrix approximation, ArXiv, (2014).
- R. Lung, Y. Wu, D. Kamilis and N. Polydorides, A sketched finite element method for elliptic models, Comp. Meth. Appl. Mech. Eng., (2020), 364.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの