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Introduction

Motivation

Paradigm: We consider the elliptic boundary value problem

∇ · p∇u = f in Ω,

αu + βp∇u · n̂ = g on ∂Ω,

on a simply connected domain Ω ⊂ Rd , d = {2, 3} with smooth
boundary ∂Ω where the unit normal is n̂ and α, β, f and g are
chosen such that u is unique.

Applications: Engineering simulation, uncertainty propagation and
statistical inverse problems.

Focus: Computing a numerical approximation of u(p) for many
parameter fields p (diagonal tensors).
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Introduction

An example in electrostatics: Neumann problem

Left: a discrete profile of p on a disk with 9k nodes and 28k elements.
Right: a numerical solution u(p) with f = α = 0, β = 1 and

∫
∂Ω gds = 0

conditions. 3D grids can have > 106 nodes.
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Introduction

Galerkin finite elements

In Galerkin FEM with linear basis the BVP yields a linear system

Au = b,

with
A := (P

1
2D)T (P

1
2D)

where P ∈ RN×N is a positive diagonal, and D ∈ RN×n a tall sparse
matrix with i-th row D(i) and N > n.

The elements of P are the discretised model parameters of the PDE.

A is n × n real, sparse, symmetric, positive definite.

We consider n to be very large.
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Introduction Projection

Projected (again) FEM equations: POD

Given P we seek to approximate the high-dimensional solution uopt of

Au = b,

with ureg ∈ S that solves the projected equation

ΠAu = Πb

where Π : Rn → S is the projection onto

S := {Ψr | r ∈ Rs}

and ΨTΨ = I and s � n.

Assumptions:

Choice of basis: uopt ≈ Πuopt = ΨΨTuopt,

Existence of ureg: I − Π(I − A) is invertible ⇐⇒ A is invertible for Ψ ON.
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Introduction Projection

Projected FEM equations

Substituting ureg = Ψrreg into the projected equation yields an s × s
system

G r = ΨTb,

where

G := ΨTAΨ = ΨT (P
1
2D)T (P

1
2D)Ψ = (P

1
2X )T (P

1
2X )

and X ∈ RN×s tall having i-th row X(i) := D(i)Ψ and rank(X ) = s.

The special case P = I corresponds to the homogeneous PDE and a
projected system

Q r = ΨTb,

and note that G and Q are similar

G =
N∑
i=1

piQi , while Q :=
N∑
i=1

Qi , with Qi := XT
(i)X(i).
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Introduction Projection

Sketching the projected equations

The plan is to estimate Ĝ = (SP
1
2X )T (SP

1
2X ) from c � N iid

samples {i1, . . . , ic} ∈ {1, . . . ,N} using a suitable sketching matrix S ,
then

Ĝ r̂ = ΨTb −→ ûreg = ΨĜ−1ΨTb

The sketch Ĝ must be invertible with very high probability:

‖Ĝ−1G − I‖ → min

The sketch Ĝ should have low-variance, better than MC.

Sketching linear equations involving the Laplacian matrix of a graph.
(Drineas & Mahoney, 2010)
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Introduction Sketching based on leverage scores

Sketching invertible matrices

Consider first Q = XTX with ureg = ΨQ−1ΨTb, ûreg = ΨQ̂−1ΨTb
and X = UXΣXV

T
X . The sketching error is bounded by

‖ureg − ûreg‖ ≤ ‖Q̂−1Q − I‖ = ‖Σ−1
X (UT

X STSUX )−1ΣX − I‖,

conditioned on Q̂ = (SX )TSX being invertible.

How do we choose S ?

We argue S must be such that UT
X STSUX ≈ I in spectral norm,

which for ‖UT
X STSUX − I‖ < ε < 1 guarantees

1− ε ≤
‖UT

X STSUX − I‖
‖(UT

X STSUX )−1 − I‖
≤ 1 + ε.
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Introduction Sketching based on leverage scores

Leverage score sampling without replacement

Q̂−1 → ‖ûreg − ureg‖ bounded → UT
X STSUX ≈ I in spectral norm →

design sketch S .

Let `i (X ) = ‖UX (i)‖2 be the leverage score of X(i) and ξ a
distribution with element

ξi = `i (X )/s > 0, i = 1, . . . ,N,

then sampling each row of X independently with probability

ηi = min{1, c ′ξi}

where c ′ is an upper bound on the sample size, then by (Tropp, 2015)

P(‖UT
X STSUX − I‖ ≥ ε) ≤ 2s exp

(
− 3c ′ε2

6s + 2sε

)
, ∀ε > 0.
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Introduction Sketching based on leverage scores

Approximate leverage scores

Sampling based on `(X ) yields virtually always an invertible Q̂. We

are however interested in Ĝ = (SP
1
2X )T (SP

1
2X ) not Q̂ = (SX )TSX .

The desirable invertibility is preserved even when the rows of X are

re-weighted by positive scalars through P
1
2 .

Proposition: Let S be a sketching sparse diagonal matrix with rows

S(i) =
γi√
ηi
eTi , i = 1, . . . ,N,

where ei the i-th column of I , and γi is a Bernoulli variable with
P(γi = 1) = ηi then

P(Ĝ−1 exists) = P(Q̂−1 exists) ≥ 1− 2s exp
(
−3c

8s

)
.
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Introduction Sketching based on leverage scores

Approximate leverage scores - invertibility guarantees

Key idea: To sketch G based on the leverage scores of X which can
be pre-computed offline.

We can show that Ĝ � 0 when Q̂ � 0 by exploiting the commutative
property of diagonal matrices

Q̂ � 0⇐⇒ UT
X STSUX � 0

With P � 0 and rank(X ) = s =⇒ UT
X STPSUX � 0 since

Ĝ = XTP
1
2STSP

1
2X = XTSTPSX = VXΣX (UT

X STPSUX )ΣXV
T
X

Rescaling the rows of X by some positive values P
1
2 preserves the

invertibility iff UT
X STSUX � 0.
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Introduction Sketching based on leverage scores

Controlling complexity

To get c ≈ s log s + m samples we sample without replacement using
ηi = min{1, c ′ξi} where c ′ is an upper bound on samples.

For a given c ′ the invertibility probability bound depends on the ratio
c/s, where c is the actual number of samples.

For a target error ε in P(‖UT
X STSUX − I‖ ≥ ε) the choice of c ′

should be made independently of the high dimension N and around
O(ε−2s log s).

Alternatively we may fix the expected number of sample ce =
∑N

i=1 ηi
and compute the corresponding c ′ by finding the root of the
monotonic

c ′ = arg
{
ce −

N∑
j=1

min
{

1, c ′ ξj
}}

= 0.
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Introduction Sketching based on leverage scores

Remarks on leverages

Sampling O(s log s)� N rows of (P
1
2X ) the probability of

invertibility failure is infinitesimally small.

These remarks are consistent to the results in (Cohen et al., 2015)
describing the change in leverage scores & matrix coherence after
re-weighting a single row.

Invertibility breaks down if the elements of P
1
2 vary wildly. This

causes A = (P
1
2D)T (P

1
2D) to be ill-conditioned, uopt unstable.

Using the leverage scores suited for Q to sketch G , invertibility is
preserved at the cost of higher variance.

Estimating the leverage scores on-the-fly when solving
over-determined LS problems, e.g. (Drineas et al., 2012).
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Control variates Correcting the sketch

Sketching G with control variate Q

The elements of Ĝ = (SP
1
2X )T (SP

1
2X ) and Q̂ = (SX )T (SX ) are

positively correlated.

Variance is similarly distributed between Ĝij and Q̂ij .

Since Q does not depend on P we can compute it a priori, and
subsequently sketch it along with G .

Compute a new estimator with lower variance after applying an
element-wise correction to the sketched Ĝ as

G̃ = Ĝ −W ◦ (Q − Q̂),

where ◦ denotes Shur product, and W is s × s symmetric

Wij := arg min Var(G̃ij) =
Cov(Ĝij , Q̂ij)

Var(Q̂ij)
.
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Control variates Correcting the sketch

Control variates

Considering the control variates estimator

G̃ = Ĝ −W ◦ (Q − Q̂),

notice that although Ĝ � 0 with very high-probability, G̃ is indefinite
and thus G̃−1 may not exist.

To preserve invertibility and reduce variance we may correct the
matrix logarithm of Ĝ instead

l̃ogG = log Ĝ −W ◦ (logQ − log Q̂).

Rational: Compute an estimator whose expectation is logG and then
take its matrix exponential to get a positive definite estimator of G .
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Control variates Correcting the logarithm of the sketch

Logarithmic control variates

The log control variates estimator

l̃ogG = log Ĝ −W ◦ (logQ − log Q̂).

has two important shortcomings:

Bias(l̃ogG ) 6= 0, and it is not computationally tractable.

The variances and covariances needed for Wij are only available for
sample batches, i.e. logQi = log(XT

(i)X(i)) is not well defined.

To rectify this we propose to work with a finite expansion of the
Neumann series for the matrix log,

log(M) =
∞∑
k=1

(−1)k+1

k
(M − I )k ≈ (M − I )− 1

2
(M − I )2 := F(M)
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Control variates Correcting the logarithm of the sketch

Preconditioning

To ensure that the transform F converges to the log fast we sketch
instead

F(CT
0 QC0), and F(CTGC ),

for some choices of invertible preconditioners C0, C ∈ Rs×s such that

CT
0 QC0 ≈ I and CTGC ≈ I .

This yields an estimator

˜log(CTGC ) =
(
F(CT ĜC )− B1

)
−W ◦

(
F(CT

0 Q̂C0)− B2

)
for some bias correction matrices B1 and B2 and thus arriving at the
sought

G̃−1 = C exp
( ˜log(CTGC )

)
CT
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Control variates Correcting the logarithm of the sketch

A two-sample estimator

The optimal choice of preconditioners C0 and C requires knowledge
of Q and G .

Q is known a priori but G is not as it depends on P.

A way around this is to utilise two independent samples based on the
same Bernoulli probabilities.

Use the first sample to obtain a sketched approximation of G in order
to get C and C0 (involves one SVD of an s × s matrix).

Use the second sample to estimate F(CT
0 Q̂C0), F(CT ĜC ) and

compute weights

Wij =
Cov

(
F(CT ĜC )ij ,F(CT

0 Q̂C0)ij
)

Var
(
F(CT

0 Q̂C0)ij
)
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Control variates Correcting the logarithm of the sketch

Further implementation details

The choice of projection basis Ψ (in X = DΨ) requires solving a
large-scale eigenvalue problem off-line, or using a snapshots-derived
ON basis.

The low-dimensional bias correction matrices B1(η,X ,P) and
B2(η,X ) are needed. B2 can be computed off-line but B1 must be
approximated.

Sketching C0QC0 and CTGC is equivalent to sampling the rows of
two tall matrices with ON columns. This is not the case in sampling
directly Q and G .
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Numerical results

Tests: 2D toy problem

Two dimensional circular grid with n = 8830 and N = 52224.

s c/N
‖ûreg−ureg‖
‖ureg‖

‖ũreg−ureg‖
‖ureg‖

‖ûreg−uopt‖
‖uopt‖

‖ũreg−uopt‖
‖uopt‖

100 0.125 0.0503 0.0040 0.0546 0.0218

500 0.166 0.0675 0.0037 0.0675 0.0046

where

ûreg = Ĝ−1ΨTb, ũreg = G̃−1ΨTb, ureg = G−1ΨTb, uopt = A−1b

Error figures are based on averages of 100 solves for the same b. The
100 P profiles where sampled from a mixture of Gaussians.

Note the errors in the last two columns are inclusive of the subspace
approximation error.
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Numerical results

2D sketched solution and error

Left: a sketched solution and right: the log profile of the relative error.
Solution is with s = 500, c/N = 0.166.
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Numerical results

Tests: 3D problem

Three dimensional spherical mesh with n = 315743 and N = 5066607.

s c/N
‖ûreg−ureg‖
‖ureg‖

‖ũreg−ureg‖
‖ureg‖

‖ûreg−uopt‖
‖uopt‖

‖ũreg−uopt‖
‖uopt‖

50 0.020 0.0193 0.0024 0.0629 0.0595

150 0.020 0.0249 0.0036 0.0383 0.0298

150 0.100 0.0102 0.0015 0.0313 0.0297

where

ûreg = Ĝ−1ΨTb, ũreg = G̃−1ΨTb, ureg = G−1ΨTb, uopt = A−1b

Averages of 100 solves with same right hand side b. The 100 P
profiles where sampled from a lognormal random field with a smooth
Whittle-Matérn covariance function.

Note the errors in the last two columns are inclusive of the subspace
approximation error.
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Numerical results

Conclusions

Our approach decouples invertibility and accuracy of the sketched
projected matrix estimator.

Empirical results show the CV estimator suppresses sketching error by
an order of magnitude.

Low variance pays off when the subspace approximation error is small.

Is it more efficient than estimating quickly the leverage scores?

Further accuracy improvements via few iterations of a ‘smoother’
Jacobi iterative method.
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Numerical results
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