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Linear Operators

Let A be a real matrix-valued linear operator,

A : Rn×n → Rn×n

that is X ∈ Rn×n =⇒ A(X ) ∈ Rn×n.
Examples of such operators are the following:

(i) A(X ) = AX + XB (Sylvester equation);

(ii) A(X ) =
∑

i BiXCi ;

(iii) A(X ) = A • X (componentwise multiplication);

(iv) A combination of previous cases.



The problem

Let us consider

A(X ) = λX , X 6= O (1)

where X and λ are allowed to be complex-valued.

We call a solution X of (1) eigenmatrix of the operator A.

As usual, the eigenvalues of A coincide with the eigenvalues of its
matrix representation, A ∈ Rn2×n2 .

We focus on computing either the rightmost eigenvalue λ1 when this
is real (and simple) or the righmost complex-conjugate pair (which is
generically unique).

We make, a priori, the following hypothesis :

(H) X has quickly decaying singular values.

This motivates to constrain the search of approximate eigensolutions to a
low-rank manifold.



A suited system of ODEs

We consider the following system of ODEs Ẋ (t) = A (X (t))− α(X (t))X (t)

X (0) = X0, ‖X0‖ = 1
(2)

for general real initial data, where α(X ) =
〈
A (X (t)) ,X (t)

〉
.

In the sequel we omit – when not necessary – the dependence on t.

For a pair of matrices A,B ∈ Rn×n we let

〈A,B〉 = trace(ATB) =
n∑

i,j=1

AijBij

denote the Frobenius inner product and ‖A‖ = 〈A,A〉1/2 the associated

Frobenius norm.



Properties of the system

a. Norm conservation :

X (t) ∈ B, B = {Z ∈ Rn×n : ‖Z‖ = 1}.

b. Equilibria: A matrix X ∈ B is an equilibrium of (2) if and only if it is an
eigenmatrix of A.

c. Assume that A has a unique rightmost eigenvalue λ1, which is assumed to
be real. Let V ∈ B be an eigenmatrix associated with a simple eigenvalue
λ ∈ R of A. Then V is a stable equilibrium of (2) if and only if λ = λ1.

d. If A has all real and simple eigenvalues, the solution of (2) cannot be
periodic.

e. If that X0 ∈ span
(
V ,V

)
∩ Rn×n, where V is a complex eigenvector of A.

Then X (t) tends to a periodic solution.

f. If A has a unique simple real rightmost eigenvalue λ1, with associated
eigenmatrix V1, and generically that 〈X0,V1〉 6= 0; then the solution of (2)
is such that

lim
t→∞

X (t) = ±V1.



Low rank approximation

Idea: find an approximate solution to the differential equation, working
only with its low-rank approximation1.
A natural criterion is the following:

‖Ẋ (t)− F (X (t)) ‖ −→ min

with

F (X (t)) = A (X (t))−
〈
A (X (t)) ,X (t)

〉
X (t)

where the minimization is over all matrices that are tangent to X (t) on the
manifold Mr of matrices of rank r , and the norm is the Frobenius norm.

1O. Koch and C. Lubich. Dynamical low-rank approximation. SIMAX, 2007



A constrained integration

Every real rank-r matrix X of dimension n × n can be written in the form

X = USVT

where U ∈ Rn×r and V ∈ Rn×r have orthonormal columns, i.e.,

UTU = Ir , VTV = Ir ,

(with the identity matrix Ir of dimension r), and S ∈ Rr×r is nonsingular.



Orthogonal projection

Lemma (Koch&Lubich)

The orthogonal projection onto the tangent space TXMr at
X = USVT ∈Mr is given by

PX (Z ) = Z − (I − UUT)Z (I − VVT)

= ZVVT − UUTZVVT + UUTZ

for Z ∈ Rn×n.



Projected equation

In the differential equation (2), we replace the right-hand side by its
orthogonal projection to TXMr , so that solutions starting with rank r will
retain rank r for all times:

Ẋ = PX

(
A(X )− 〈X ,A(X )〉X

)
. (3)

Since X ∈ TXMr , we have PX (X ) = X and 〈X ,Z 〉 = 〈X ,PX (Z )〉, and
hence the differential equation can be rewritten as

Ẋ = PX (A(X ))− 〈X ,PX (A(X ))〉X , (4)

which differs from (2), only in that A(X ) is replaced by its orthogonal
projection to TXMr .



Lemma (Koch & Lubich, 2007)

For X = USVT ∈Mr with nonsingular S ∈ Rr×r and with U ∈ Rn×r and
V ∈ Rr×r having orthonormal columns, the equation Ẋ = PX (Z ) is
equivalent to Ẋ = U̇SVT + UṠVT + USV̇T, where

Ṡ = UTZV

U̇ = (I − UUT)ZVS−1 (5)

V̇ = (I − VVT)ZTUS−T.

Remarks:

Replacing Z by F (X ) in (6), we obtain the projected system of ODEs
(5), written in terms of the factors U,S and V of X .

Norm conservation: If ‖X (0)‖ = 1, then, the solution of (4) has the
property ‖X (t)‖ = 1 ∀t ≥ 0.



Equilibria

The following result characterizes possible equilibria of (5).

Theorem

Let X = USVT (with U ∈ Rn×r and V ∈ Rn×r have orthonormal columns
and S ∈ Rr×r is nonsingular). X is an equilibrium of (5) if and only if{

F
(
USVT

)
V = O

UTF
(
USVT

)
= O

under the constraints UTU = Ir , V
TV = Ir , ‖S‖ = 1.

Remark

The existence and the number of equilibria for (5) (equivalently of (6)) is
non trivial, given the nonlinearity of the problem. The asymptotic
behaviour of the solution of (5) is also more complicated to determine.



Numerical integration

Goal: integrate the n × n matrix differential equation

 Ẋ (t) = F (X (t)) = PX (A (X (t)))−
〈
A (X (t)) ,X (t)

〉
X (t),

X (t) ∈ Mr , X (0) = X0 ∈Mr , ‖X0‖ = 1.

which is equivalent to the system (6) of differential equations for the
factors U,S ,V of X ∈Mr .



Projector splitting integrator

We consider a slight variant of the projector-splitting integrator of
Lubich&Oseledets 2, such that, the unit Frobenius norm is preserved.

It is a first-order method with an error bound that is independent of
possibly small singular values of X0 or X1.

The algorithm starts from the factorized rank-r matrix of unit norm

X0 = U0S0V
T
0 , ‖S0‖ = 1

at time t0 = 0.

After one step, it computes the factors of the approximation X1 = U1S1V
T
1 ,

again of unit Frobenius norm, at the next time t1 = t0 + h.

2C. Lubich and I. V. Oseledets. A projector-splitting integrator for dynamical
low-rank approximation. BIT, 2014.



1 With F0 = F (X0), set
K1 = U0S0 + hF0 V0

and, via a QR decomposition, compute the factorization

U1Ŝ1σ̂1 = K1

with U1 having orthonormal columns, with an r × r matrix Ŝ1 of unit
Frobenius norm, and a positive scalar σ̂1.

2 Set
σ̃0S̃0 = Ŝ1 − h UT

1 F0 V0,

where S̃0 is of unit Frobenius norm and σ̃0 > 0.

3 Set
L1 = V0S̃

T
0 + hFT

0 U1

and, via a QR decomposition, compute the factorization

V1S
T
1 σ1 = L1,

with V1 having orthonormal columns, with an r × r matrix S1 of unit
Frobenius norm, and a positive scalar σ1.



Example

Let us consider the operator:

A(X ) = AX + XAT + BXCT

for given matrices A,B,C ,X ∈ Rn×n.
We consider:

A diagonal

B,C of moderate norm

this suggests that the eigenvectors of A are reasonably close to those
of AX + XAT which have rank-1.

We choose n = 50

A =


− 1 0 . . . 0

0 − 2 . . . 0
...

... . . .
...

0 0 . . . − n

 ,

B and C full random matrices of Frobenius norm σn with σ ∈ [0.1, 1].



Example

σ r |λ̂1−λ1|
|λ1| ‖X1 − USVT‖

0.1 1 1.6681 e−4 0.0160
0.1 2 3.7769 e−5 0.0061
0.2 1 0.0025 0.0609
0.2 2 1.2001 e−4 0.0154
0.2 3 3.2617 e−5 0.0068
0.5 2 0.0625 0.2459
0.5 3 0.0102 0.1809
0.5 4 0.0052 0.1087
0.5 8 0.0019 0.0350
1.0 2 0.0792 0.3265
1.0 4 0.0335 0.3158
1.0 8 0.0298 0.1419
1.0 15 9.5427 e−4 0.0463

Table: Computed values for Example 1.



A particular example

Consider the problem (with separable coefficients)

ut = ε∆u + φ1(x)ψ1(y)ux + φ2(x)ψ2(y)uy

with zero Dirichlet boundary conditions on the domain [0, 1]× [0, 1].
Using standard finite differences and defining Uij = u(xi , yj) for
i , j = 1, . . . n, yields

U̇ = A(U) = TU + UT + Φ1BUΨT
1 + Ψ2U (Φ2B)T (6)

with U ∈ Rn×n. Denoting the stepsize k , the matrices are given by

T =
ε

k2
trid(1,−2, 1), B =

1

2k
trid(−1, 0, 1)

and - for ` = 1, 2 -

Φ` = diag (φ`(x1), . . . , φ`(xn)) , Ψ` = diag (ψ`(y1), . . . , ψ`(yn)) .



Setting

ε = 1/10 and n = 50,

φ1(x) = φ2(x) = sin(πx)

ψ1(y) = ψ2(y) = cos(πy)

we obtain a largest eigenvalue λ1 = −2.79071 . . . to which corresponds the
eigenmatrix U1 , whose five leading singular values are given by:

σ1 ≈ 0.8808, σ2 ≈ 0.4561, σ3 ≈ 0.1243, σ4 ≈ 0.0255, σ5 ≈ 0.0041.



This suggests that the eigenvalue problem may be well approximated
restricting the search of eigenmatrices to M3 or M4, the manifolds of
rank-3 and rank-4 n × n-matrices.
Applying the method we have presented,

(i) looking for a rank-3 approximation of U1, we obtain an approximated

eigenvalue λ̃1 ≈ −2.7814 . . . and an approximated eigenmatrix
Ũ1 ∈M3 with

‖U1 − Ũ1‖F
‖U1‖F

≈ 0.0950.

(2) looking for a rank-4 approximation of U1, we obtain an approximated

eigenvalue λ̂1 ≈ −2.7945 . . . and an approximated eigenmatrix
Û1 ∈M4 with

‖U1 − Û1‖F
‖U1‖F

≈ 0.0910.



Comparison to the ALS method

We compare our approach based on the modified projector splitting
integrator (MPS) with the ALS method on a symmetric operator of the
type

A(X ) = AX + XA + BXB

with A diagonal and B symmetric, of dimensions 50× 50.

Details:

The exact value for the maximum eigenvalue is λ = −1.7391.

The initial data are randomly chosen for both codes.

We set r = 1, 3, 5, 7, as values of the rank.



Comparison to the ALS method

ALS MPS

r λmax dX dXr
Time λmax dX dXr

Time

1 −1.7988 0.0443 0.5768 0.0155 −1.8010 0.0619 0.0460 0.0942

3 −1.7583 0.0482 0.0471 1.4616 −1.7404 0.0296 0.0047 0.0915

5 −1.7395 0.0151 0.0151 2.7483 −1.7392 0.0046 0.0045 0.0966

7 −1.7392 0.0044 2.55e−4 7.5043 −1.7391 3.50e−4 2.45e−4 0.3932

Details:

dX is distances between the rank r eigenmatrix computed by a method and
the exact eigenvector X

dXr is the distance between the computed eigenmatrix and Xr , the best
rank r approximation of X .

Time is in seconds.
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