Learning elliptic PDEs with randomized linear algebra

Alex Townsend Cornell University townsend@cornell.edu

Joint work with

Nicolas Boullé

Chris Earls

Question: Can one "learn" an unknown linear PDE from input-output data?

Question: Can one "learn" an unknown linear PDE from input-output data?

Question: Can one "learn" an unknown linear PDE from input-output data?

Input-output data: $\{(f_j, u_j)\}_{j=1}^{k+5}$ such that $\mathscr{L}u_j = f_j, \quad u_j|_{\partial\Omega} = g.$

Question: Can one "learn" an unknown linear PDE from input-output data?

Input-output data: $\{(f_j, u_j)\}_{j=1}^{k+5}$ such that $\mathscr{L}u_j = f_j, u_j|_{\partial\Omega} = g$.

For theory, I'll focus on self-adjoint 2nd-order elliptic PDEs with Dirichlet bcs.

Question: Can one "learn" an unknown linear PDE from input-output data?

Input-output data: $\{(f_j, u_j)\}_{j=1}^{k+5}$ such that $\mathscr{L}u_j = f_j, u_j|_{\partial\Omega} = g$.

For theory, I'll focus on self-adjoint 2nd-order elliptic PDEs with Dirichlet bcs.

Small selection of practical work:

[Brunton, Proctor, & Kutz, 16], [Rudy, Brunton, Proctor, & Kutz, 17], [Schaeffer, 17], [Raissi, Perdikaris, & Karniadakis, 17], [Raissi, 18], [Han, Jentzen, and E, 2018], [Khoo, Lu, & Ying, 2018], [Fan, Feliu-Faba, Lin, Ying, Zepeda-Nunez, 2018], [Raissi, Perdikaris, & Karniadakis, 19], [Gin, Shea, Brunton, & Kutz, 21]

 $\mathscr{L}: \mathscr{H}^2(\Omega) \cap \mathscr{H}^1_0(\Omega) \to L^2(\Omega)$ is unbounded so tricky to make learning precise

 $\mathscr{L}: \mathscr{H}^2(\Omega) \cap \mathscr{H}^1_0(\Omega) \to L^2(\Omega)$ is unbounded so tricky to make learning precise

 $\mathscr{L}: \mathscr{H}^2(\Omega) \cap \mathscr{H}^1_0(\Omega) \to L^2(\Omega)$ is unbounded so tricky to make learning precise

 $\mathscr{L}: \mathscr{H}^2(\Omega) \cap \mathscr{H}^1_0(\Omega) \to L^2(\Omega)$ is unbounded so tricky to make learning precise

DeepONet

[Quanta Magazine; Lu et al, 2021]

Fourier Neural Operator

[Quanta Magazine; Li et al, 2020]

DeepGreen

1. Theoretical results

1. Theoretical results

- Type and number of training data
- Performance guarantees
- Neural network architectures
- Noise robustness

1. Theoretical results

- Type and number of training data
- Performance guarantees
- Neural network architectures
- Noise robustness

2. Interpretability of the model

[[]Li et al, 2020]

1. Theoretical results

- Type and number of training data
- Performance guarantees
- Neural network architectures
- Noise robustness

2. Interpretability of the model

- Dominant modes
- Symmetries
- Conservation laws
- Singularities

Green's function

Green's function

Equivalently, for a uniformly elliptic PDE, learn a Green's function such that

$$u_{j}(x) = \int_{\Omega} G(x, y) f_{j}(y) dy, \quad x \in \Omega, \quad 1 \le j \le k + 5$$

This is a Hilbert-Schmidt (HS) integral operator.

[Feliu-Faba, Fan, & Ying, 2019]

Green's function

Equivalently, for a uniformly elliptic PDE, learn a Green's function such that

$$u_{j}(x) = \int_{\Omega} G(x, y) f_{j}(y) dy, \quad x \in \Omega, \quad 1 \le j \le k+5$$

This is a Hilbert-Schmidt (HS) integral operator.

[Feliu-Faba, Fan, & Ying, 2019]

Poisson equation

Helmholtz equation

$$-\nabla^2 u = f$$
$$u(0) = u(1) = 0$$

$$\nabla^2 u + k^2 u = f$$
$$u(0) = u(1)$$

Final theoretical result

Symmetric pos. def. matrix with bounded coefficients

Self-adjoint elliptic PDEs in ID, 2D, or 3D of the form:

$$\mathcal{L}u := -\nabla \cdot (A(x)\nabla u) = f \quad \longrightarrow \quad u(x) = \int_{\Omega} G(x, y) f(y) \, \mathrm{d}y$$

Theorem [Boullé & T., 2021]

There is a randomized algorithm that, for any $\epsilon > 0$, can construct an approximation \tilde{G} of G with $O(\epsilon^{-6} \log^4(1/\epsilon)/\Gamma_{\epsilon})$ input-output pairs (f, u) such that

$$||G - \tilde{G}||_{L^2(D \times D)} = O(\Gamma_{\epsilon}^{-3/4} \log^3(1/\epsilon) \epsilon),$$

with high probability.

<u>Proof</u>

1. Randomized numerical linear algebra

2. Regularity of the Green's function

Randomized numerical linear algebra

We can learn symmetric low-rank matrices via matrix-vector products $v \mapsto Xv$:

Randomized SVD:

[Halko, Martinsson, & Tropp, 2011], [Martinsson & Tropp, 2020]

We can learn symmetric low-rank matrices via matrix-vector products $v \mapsto Xv$:

We can learn symmetric low-rank matrices via matrix-vector products $v \mapsto Xv$:

We can learn symmetric low-rank matrices via matrix-vector products $v \mapsto Xv$:

We can learn symmetric low-rank matrices via matrix-vector products $v \mapsto Xv$:

Theorem (Halko, Martinsson, Tropp, 2011).

We can construct an approximation A_k of A from k+5random input vectors such that

$$\mathbb{P}\left[\|A - A_k\|_{\mathrm{F}} \le (1 + 15\sqrt{k+5})\epsilon_k\right] \ge 0.999$$

We can learn symmetric low-rank matrices via matrix-vector products $v \mapsto Xv$:

Theorem (Halko, Martinsson, Tropp, 2011).

We can construct an approximation A_k of A from k+5random input vectors such that

$$\mathbb{P}\left[\|A - A_k\|_{\mathrm{F}} \le (1 + 15\sqrt{k+5})\epsilon_k\right] \ge 0.999$$

Generalization of the randomized SVD

Standard Gaussian vectors

Correlated Gaussian vectors

Theorem [Boullé & T., 2021]

We can construct an approximation A_k of A from k+5 correlated random input vectors such that

$$\mathbb{P}\left[\|A - A_k\|_{\mathrm{F}} \le (1 + 18\sqrt{k/\gamma_k})\epsilon_k\right] \ge 0.999$$

Generalization of the randomized SVD

Standard Gaussian vectors

Theorem [Boullé & T., 2021]

We can construct an approximation A_k of A from k+5correlated random input vectors such that

$$\mathbb{P}\left[\|A - A_k\|_{\mathrm{F}} \le (1 + 18\sqrt{k/\gamma_k})\epsilon_k\right] \ge 0.999$$

Correlated Gaussian vectors

Singular values of a function

Singular value expansion of a square-integrable function $G: \Omega_1 \times \Omega_2 \to \mathbb{R}$:

Singular values of a function

Singular value expansion of a square-integrable function $G: \Omega_1 \times \Omega_2 \to \mathbb{R}$:

Randomized SVD for Green's functions [Boulle & T., 21] We can learn kernel in a self-adjoint HS integral operator $f \mapsto \int_{\Omega} G(x, y) f(y) dy$: **Randomized SVD for HS operators:**

Smoothness implies low-rank

Suppose $X_{ij} = G(x_i, y_j)$, where $G : [-1, 1]^2 \to \mathbb{R}$ is a continuous function.

 $G(\cdot, y)$ is ν -times diff. with bounded variation: $\sigma_k(G) = \mathcal{O}(k^{-\nu})$ $G(\cdot, y)$ is bounded analytic in neighborhood of [-1, 1]: $\sigma_k(G) = \mathcal{O}(\rho^{-k})$ [Reade, 83], [Little & Reade, 84], [Ibragimov & Rjasanow, 09], [Khoromskij, 10], [Trefethen, 13]

Aside: Covariance quality factor

Theorem

We can construct an approximation G_k of G from k+5 random input functions f such that

$$\mathbb{P}\left[\|G - G_k\|_{L^2} \le \mathcal{O}\left(\sqrt{k^2/\gamma_k}\right)\epsilon_k\right] \ge 0.999$$

Definition:

$$k_k = k/(\lambda_1 \operatorname{Tr}(\mathbf{C}^{-1}))$$

$$\mathbf{C}_{ij} = \int_{D \times D} v_i(x) K(x, y) v_j(y) \, \mathrm{d}x \, \mathrm{d}y$$

where v_i is the ith right singular vectors of *G*.

 $f \sim \mathcal{GP}(0, K)$

where K(x, y) is the covariance kernel

- $0 < \gamma_k \leq 1$
- We can impose prior knowledge on the covariance kernel
- Explicit bounds for the covariance quality factor are available

Regularity of Green's functions

One dimension

One dimension

Off-diagonal decay

Green's function of the Laplace operator:

$$-\nabla^2 u = f$$

Green's functions are smooth and decay off the diagonal. [Grüter, Widman, 1982]

$$G(x,y) \le \frac{1}{\|x-y\|}$$

PDE learning with a rigorous "learning rate"

Theorem [Boullé & T., 2021]

There is a randomized algorithm that, for any $\epsilon > 0$, can construct an approximation \tilde{G} of G with $O(\epsilon^{-6} \log^4(1/\epsilon)/\Gamma_{\epsilon})$ input-output pairs (f, u) such that

$$||G - \tilde{G}||_{L^2(D \times D)} = O(\Gamma_{\epsilon}^{-3/4} \log^3(1/\epsilon) \epsilon),$$

with high probability.

Randomized linear algebra

Off-diagonal decay

$$G(x,y) \le \frac{1}{\|x-y\|}$$

PDE learning with a rigorous "learning rate"

Coming soon...

Theorem [Boullé & T, 2021]

There is a randomized algorithm that, for any $\epsilon > 0$, can construct an approximation \tilde{G} of G with $O(\log^4(1/\epsilon)/\Gamma_{\epsilon})$ input-output pairs (f, u) such that

$$||G - \tilde{G}||_{L^2(D \times D)} = O(\Gamma_{\epsilon}^{-3/4} \log^3(1/\epsilon) \epsilon),$$

with high probability.

Randomized linear algebra

Off-diagonal decay

$$G(x,y) \le \frac{1}{\|x-y\|}$$

Learning Green's functions in practice

Deep learning method [Boullé, Earls, T., 2021]

Schrödinger equation, double well potential

x

20

Advection-diffusion equation

Recovering PDE properties from its Green's function

Recovering PDE properties from its Green's function

Question for the audience:

What PDE properties can we recover from a noisy /inaccurate Green's function?

Summary

1. Theory for learning Green's functions

$$\mathcal{L}u = -\nabla \cdot (A(x)\nabla u)$$

-	 •	
i		
1		
	_	

2. Generalization of the randomized SVD

Python package

pip install greenlearning

https://github.com/NBoulle/greenlearning

