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Designing low rank methods for
matrices with displacement structure

A matrix X € C™*"™ is said to have (A, B) displacement structure if

AX ~XB=F

where A € C*™ B e C"*"™, and F € Cm*",

Sylvester matrix equations appear in:

stability analysis for dynamical systems e discretizations of PDEs e signal pro-
cessing and time series analysis e eigenvalue assignment problems e iterative
solvers for continuous algebraic Ricattti matrix equation e analyses/computations
involving special structured matrices (e.g., Toeplitz, Cauchy, Vandermonde)

In practical settings:

e A and B are sparse, banded, or structured, so that fast shifted inverts/matrix-vector
products are available.

e I is often a low rank matrix (rank 1 or 2).

e X is dense.

[ (Simoncini, 2016) |



Designing low rank methods for
matrices with displacement structure

AX — XB=F

When the spectra of A and B are well-separated and F' is low rank,

X is well-approximated by low rank matrices.

1. Why is this true?
2. When is this true?

e Only in the above circumstances or in greater generality?

e Can we be precise about how the low rank properties of X depend on A, B, and F?

3. How can we take advantage of it?




The ADI method and Zolotarev rational functions

(factored) ADI: A recipe for low rank approximations
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After k iterations:

W*

[ (Beckermann & Townsend, 2017), (Sabino, 2008), (Penzl, 1999), (Benner, Truhar & Li, 2009), (Li & White, 2002),
(Druskin, Knizhnerman & Simoncini, 2011), (Peaceman & Rachford, 1955), (Lu & Wachspress, 1991),
(Townsend & W., 2018) |



The ADI method and Zolotarev rational functions

X —X® =pr (A Xr(B)™Y, r(z)=]]

|X = X® 2 < r(A)re(B) M2l X N2 < llreA(A) 2llre(A(B)) ™ 2] X |2

Zolotarev’s third problem:

Zk(E G) .— inf SUP.c g ’T(Z)‘
" rerk InfLeq |r(2)]

(Y. L. Zolotarev)

[ (Beckermann & Townsend, 2017), (Sabino, 2008 ), (Penzl, 1999), (Benner, Truhar & Li, 2009), (Li & White, 2002),
(Druskin, Knizhnerman & Simoninci, 2011), (Peaceman & Rachford, 1955), (Lu & Wachspress, 1991),
(Townsend & W., 2018) |



The ADI method and Zolotarev rational functions

After k iterations:
o X — Zzww* rank(X®) < kp, p=rank(F)

k
x (k) — 7

Z—
e X - X0 = (A)Xre(B)Y, T@=1l7=F

Trp+1(X) < X = X Wy < [lre(A)r(B) 2l X2 < Zk(E, G)[[ X2

o Explicit bounds on the singular values of X

* A cheap method for constructing low rank approximations X (¥) = ZW* ~ X

Explains low rank properties in real-valued Vandermonde, Pick, Cauchy, Loewner
matrices and more... P "

(A Townsend) (B. Beckermann) 07—

[ (Beckermann & Townsend, 2017)]



The ADI method and Zolotarev rational functions

Connections to many other problems:

e Lirror bounds for rational Krylov methods, Cauchy skeletonization.
[Druskin, Knizhnerman and Simoninci (2011), Beckermann (2011)]

e Optimal complexity solvers for some elliptic PDEs.

[Olver and Townsend (2013) , Fortunato and Townsend (2018), Townsend, W., Wright (2016,2017),
Boulle and Townsend (2019)]

e Compression properties in tensors/tensor train compression.
[Townsend and Shi, 2021]

e Fast solvers for certain linear systems Xy = b.
[Martinsson, Rokhlin, and Tygert (2005), Chandrasekaran, Gu, Xia, and Zhu (2007), Xia, Xi, and Gu (2012).]

e Eifficient solvers for Ricatti (CARE) equation (rADI, qADI).
[Benner, Bujanovic¢, Kirshcher, and Saak (2018), Wong and Balakrishnan (2005).]

e Best R approximation to the sign function (and others).
[Istace and Thiran (1995), Gawlik and Nakatsukasa (2019), (Nakatsukasa and Freund (2016)]




When can ADI-based arguments be used?

To bound singular values of X via fADI, we need...

1. rank(F') is small.

2. The spectra of A and B are well-separated.

3. A solution to Zolotarev’s problem is known for sets E, G, where A(A) C E and A\(B) C G.

Problem: Many settings where these constraints are not satisfied!

Strategy 1: Make more problems ADI-friendly

ADI-friendly spectral discretizations for optimal complexity Poisson solvers

%68

[Boulle and Townsend (2019), Fortunato and Townsend (2018), Olver and Townsend (2013),
Townsend, W., and Wright (2016 2017)]

(D. Fortunato)



When can ADI-based arguments be used?

To bound singular values of X via fADI, we need...

1. rank(F') is small.

2. The spectra of A and B are well-separated.

3. A solution to Zolotarev’s problem is known for sets E, G, where A(A) C E and A\(B) C G.

Problem: Many practical applications do not satisfy these constraints!

Strategy 2: Make ADI friendlier for more problems!




Expanding ADI-based methods

| —perprbe—te-srarat—

F' has decaying singular values.

Townsend, W., (2018):
ADI with high-rank right-hand sides.

e low rank solver for AX — XB = F, F is full rank.

e bounds on numerical ranks of matrices,
e.g., multidimensional Vandermonde
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Subsets of the spectra of A and B are well-separated.

Beckermann, Kressner, W., (2021)

superfast solvers for Toeplitz system 1T'x = b.
ADI-based hierarchical compression.
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eextends to other related linear systems (e.g., NUDFT, Toeplitz+Hankel)

ecxplicit approx. error bounds + competitive with state-of-the-art.

[Kressner, Massei and Robol (2019), Martinsson, Rokhlin, and Tygert (2005), Chandrasekaran, Gu, Xia, and Zhu (2007),

Xia, Xi, and Gu (2012) ]



Zolotarev’s problem in the complex plane

3. A=seluticn-to Zolotarev’s problem is known for sets E, G, where A(A) C E and A\(B) C G.
An approximate solution

Solution is known for:

: e Intervals of the real line
Zolotarev’s third problem:

e Disks in the complex plane

)
’ - rerk infLeq |r(2))

For more general sets in C...

(Y. I. Zolotarev) (G. Starke)
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[(Zolotarev, 1877), (Sabino, 2008 ), (Beckermann & Townsend, 2017, 2019), (Starke, 1992) (Ganelius, 1976, 1979)]

Im(z)




Zolotarev’s problem in the complex plane

Im

h = exp(1/cap(F, G))

P: 00— A={2€C,1<|z|<h}

Suppose that ® is a type (1, 1) rational function...

sup,.c p ©*(2) _
inf,cq ®*(2) h*

h" < Zi(E,G) <

— 7Z,(E,G)=h""

[(Townsend, Rubin, W., 2021) (Starke, 1992) (Ganelius, 1976, 1979) (Goncar, 1969)]



Zolotarev’s problem in the complex plane
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When ® isn’t a rational function, the story gets more complicated...

o Apply a special “filtering” process to ®*(z),

e Results in a type (k, k) rational 7(z) (Faber rational),

SUb-p [k (2)] from above >
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[(Townsend, Rubin, W., 2021) (Ganelius, 1976, 1979)] (T. Ganelius) (G. Faber)

e Bound




Zolotarev’s problem in the complex plane

Theorem (Rubin, Townsend, W., 2021) If E, G are disjoint, bounded open con-
vex sets in C, then there is kg where for k > ko,

Zy(E,G) < 16h™% + O(h™2F).

*We have an inelegant explicit upper bound and expression for k.

Im
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Zk(Eo, —Eq))|

[(Townsend, Rubin, W., 2021) (Ganelius, 1976, 1979)]



Zolotarev’s problem in the complex plane

Disjoint sets E and G Bound Reference
finite intervals of R Z(E,G) < 4h™" Beckermann, Townsend (2017)
disks in C Zu(E,G) < h™F Starke (1992)

arcs on a circle C Z(E,G) < AR~k Beckermann, Kressner, W. (2021)
more general sets in C Zw(E,G) < 16h~* + O(h—2k)

e Bounds on singular values for families of matrices.

e Bounds for rational approximation to sign(z) on F,G.

ADI shift parameters?

[(Townsend, Rubin, W., 2021) (Ganelius, 1976, 1979)]



Revisiting old ideas (with new tools)
(supzeE |m<z>||)” e

inf,cq |re(2)

Asymptotically optimal points: lim

k— o0

Fejer Points:

(1) Pick equally spaced points P on inner and outer boundaries of A,

(2) Use ®~1(P) as ADI shift parameters.

Leja Points:  Greedy selection process from discretization of the boundaries of £ and G.
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[(Starke, 1992)]



Revisiting old ideas (with new tools)

Many modern tools available to compute ® (and h)

Lightning Laplace solver (Trefethen, Gopal, Baddoo)

Integral formulations (Gaier, Schiffer, Nasser)

Schwarz-Christoffel methods (Delillo, Elcrat, Driscoll, Crowdy, many more...)

To compute/evaluate &1

Construct a complex-valued barycentric rational interpolant to samples (®(2), 2).
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[(Townsend, Rubin, & W., 2021) (Trefethen, 2020) (Nakatsukasa, Trefethen, & Sete, 2018) ]




Thank you!



